2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
32 #include <trace/events/block.h>
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
39 #define BIO_INLINE_VECS 4
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
46 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
47 static struct biovec_slab bvec_slabs
[BVEC_POOL_NR
] __read_mostly
= {
48 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES
, max
),
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
56 struct bio_set fs_bio_set
;
57 EXPORT_SYMBOL(fs_bio_set
);
60 * Our slab pool management
63 struct kmem_cache
*slab
;
64 unsigned int slab_ref
;
65 unsigned int slab_size
;
68 static DEFINE_MUTEX(bio_slab_lock
);
69 static struct bio_slab
*bio_slabs
;
70 static unsigned int bio_slab_nr
, bio_slab_max
;
72 static struct kmem_cache
*bio_find_or_create_slab(unsigned int extra_size
)
74 unsigned int sz
= sizeof(struct bio
) + extra_size
;
75 struct kmem_cache
*slab
= NULL
;
76 struct bio_slab
*bslab
, *new_bio_slabs
;
77 unsigned int new_bio_slab_max
;
78 unsigned int i
, entry
= -1;
80 mutex_lock(&bio_slab_lock
);
83 while (i
< bio_slab_nr
) {
84 bslab
= &bio_slabs
[i
];
86 if (!bslab
->slab
&& entry
== -1)
88 else if (bslab
->slab_size
== sz
) {
99 if (bio_slab_nr
== bio_slab_max
&& entry
== -1) {
100 new_bio_slab_max
= bio_slab_max
<< 1;
101 new_bio_slabs
= krealloc(bio_slabs
,
102 new_bio_slab_max
* sizeof(struct bio_slab
),
106 bio_slab_max
= new_bio_slab_max
;
107 bio_slabs
= new_bio_slabs
;
110 entry
= bio_slab_nr
++;
112 bslab
= &bio_slabs
[entry
];
114 snprintf(bslab
->name
, sizeof(bslab
->name
), "bio-%d", entry
);
115 slab
= kmem_cache_create(bslab
->name
, sz
, ARCH_KMALLOC_MINALIGN
,
116 SLAB_HWCACHE_ALIGN
, NULL
);
122 bslab
->slab_size
= sz
;
124 mutex_unlock(&bio_slab_lock
);
128 static void bio_put_slab(struct bio_set
*bs
)
130 struct bio_slab
*bslab
= NULL
;
133 mutex_lock(&bio_slab_lock
);
135 for (i
= 0; i
< bio_slab_nr
; i
++) {
136 if (bs
->bio_slab
== bio_slabs
[i
].slab
) {
137 bslab
= &bio_slabs
[i
];
142 if (WARN(!bslab
, KERN_ERR
"bio: unable to find slab!\n"))
145 WARN_ON(!bslab
->slab_ref
);
147 if (--bslab
->slab_ref
)
150 kmem_cache_destroy(bslab
->slab
);
154 mutex_unlock(&bio_slab_lock
);
157 unsigned int bvec_nr_vecs(unsigned short idx
)
159 return bvec_slabs
[--idx
].nr_vecs
;
162 void bvec_free(mempool_t
*pool
, struct bio_vec
*bv
, unsigned int idx
)
168 BIO_BUG_ON(idx
>= BVEC_POOL_NR
);
170 if (idx
== BVEC_POOL_MAX
) {
171 mempool_free(bv
, pool
);
173 struct biovec_slab
*bvs
= bvec_slabs
+ idx
;
175 kmem_cache_free(bvs
->slab
, bv
);
179 struct bio_vec
*bvec_alloc(gfp_t gfp_mask
, int nr
, unsigned long *idx
,
185 * see comment near bvec_array define!
203 case 129 ... BIO_MAX_PAGES
:
211 * idx now points to the pool we want to allocate from. only the
212 * 1-vec entry pool is mempool backed.
214 if (*idx
== BVEC_POOL_MAX
) {
216 bvl
= mempool_alloc(pool
, gfp_mask
);
218 struct biovec_slab
*bvs
= bvec_slabs
+ *idx
;
219 gfp_t __gfp_mask
= gfp_mask
& ~(__GFP_DIRECT_RECLAIM
| __GFP_IO
);
222 * Make this allocation restricted and don't dump info on
223 * allocation failures, since we'll fallback to the mempool
224 * in case of failure.
226 __gfp_mask
|= __GFP_NOMEMALLOC
| __GFP_NORETRY
| __GFP_NOWARN
;
229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
230 * is set, retry with the 1-entry mempool
232 bvl
= kmem_cache_alloc(bvs
->slab
, __gfp_mask
);
233 if (unlikely(!bvl
&& (gfp_mask
& __GFP_DIRECT_RECLAIM
))) {
234 *idx
= BVEC_POOL_MAX
;
243 void bio_uninit(struct bio
*bio
)
245 bio_disassociate_task(bio
);
247 EXPORT_SYMBOL(bio_uninit
);
249 static void bio_free(struct bio
*bio
)
251 struct bio_set
*bs
= bio
->bi_pool
;
257 bvec_free(&bs
->bvec_pool
, bio
->bi_io_vec
, BVEC_POOL_IDX(bio
));
260 * If we have front padding, adjust the bio pointer before freeing
265 mempool_free(p
, &bs
->bio_pool
);
267 /* Bio was allocated by bio_kmalloc() */
273 * Users of this function have their own bio allocation. Subsequently,
274 * they must remember to pair any call to bio_init() with bio_uninit()
275 * when IO has completed, or when the bio is released.
277 void bio_init(struct bio
*bio
, struct bio_vec
*table
,
278 unsigned short max_vecs
)
280 memset(bio
, 0, sizeof(*bio
));
281 atomic_set(&bio
->__bi_remaining
, 1);
282 atomic_set(&bio
->__bi_cnt
, 1);
284 bio
->bi_io_vec
= table
;
285 bio
->bi_max_vecs
= max_vecs
;
287 EXPORT_SYMBOL(bio_init
);
290 * bio_reset - reinitialize a bio
294 * After calling bio_reset(), @bio will be in the same state as a freshly
295 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
296 * preserved are the ones that are initialized by bio_alloc_bioset(). See
297 * comment in struct bio.
299 void bio_reset(struct bio
*bio
)
301 unsigned long flags
= bio
->bi_flags
& (~0UL << BIO_RESET_BITS
);
305 memset(bio
, 0, BIO_RESET_BYTES
);
306 bio
->bi_flags
= flags
;
307 atomic_set(&bio
->__bi_remaining
, 1);
309 EXPORT_SYMBOL(bio_reset
);
311 static struct bio
*__bio_chain_endio(struct bio
*bio
)
313 struct bio
*parent
= bio
->bi_private
;
315 if (!parent
->bi_status
)
316 parent
->bi_status
= bio
->bi_status
;
321 static void bio_chain_endio(struct bio
*bio
)
323 bio_endio(__bio_chain_endio(bio
));
327 * bio_chain - chain bio completions
328 * @bio: the target bio
329 * @parent: the @bio's parent bio
331 * The caller won't have a bi_end_io called when @bio completes - instead,
332 * @parent's bi_end_io won't be called until both @parent and @bio have
333 * completed; the chained bio will also be freed when it completes.
335 * The caller must not set bi_private or bi_end_io in @bio.
337 void bio_chain(struct bio
*bio
, struct bio
*parent
)
339 BUG_ON(bio
->bi_private
|| bio
->bi_end_io
);
341 bio
->bi_private
= parent
;
342 bio
->bi_end_io
= bio_chain_endio
;
343 bio_inc_remaining(parent
);
345 EXPORT_SYMBOL(bio_chain
);
347 static void bio_alloc_rescue(struct work_struct
*work
)
349 struct bio_set
*bs
= container_of(work
, struct bio_set
, rescue_work
);
353 spin_lock(&bs
->rescue_lock
);
354 bio
= bio_list_pop(&bs
->rescue_list
);
355 spin_unlock(&bs
->rescue_lock
);
360 generic_make_request(bio
);
364 static void punt_bios_to_rescuer(struct bio_set
*bs
)
366 struct bio_list punt
, nopunt
;
369 if (WARN_ON_ONCE(!bs
->rescue_workqueue
))
372 * In order to guarantee forward progress we must punt only bios that
373 * were allocated from this bio_set; otherwise, if there was a bio on
374 * there for a stacking driver higher up in the stack, processing it
375 * could require allocating bios from this bio_set, and doing that from
376 * our own rescuer would be bad.
378 * Since bio lists are singly linked, pop them all instead of trying to
379 * remove from the middle of the list:
382 bio_list_init(&punt
);
383 bio_list_init(&nopunt
);
385 while ((bio
= bio_list_pop(¤t
->bio_list
[0])))
386 bio_list_add(bio
->bi_pool
== bs
? &punt
: &nopunt
, bio
);
387 current
->bio_list
[0] = nopunt
;
389 bio_list_init(&nopunt
);
390 while ((bio
= bio_list_pop(¤t
->bio_list
[1])))
391 bio_list_add(bio
->bi_pool
== bs
? &punt
: &nopunt
, bio
);
392 current
->bio_list
[1] = nopunt
;
394 spin_lock(&bs
->rescue_lock
);
395 bio_list_merge(&bs
->rescue_list
, &punt
);
396 spin_unlock(&bs
->rescue_lock
);
398 queue_work(bs
->rescue_workqueue
, &bs
->rescue_work
);
402 * bio_alloc_bioset - allocate a bio for I/O
403 * @gfp_mask: the GFP_* mask given to the slab allocator
404 * @nr_iovecs: number of iovecs to pre-allocate
405 * @bs: the bio_set to allocate from.
408 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
409 * backed by the @bs's mempool.
411 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
412 * always be able to allocate a bio. This is due to the mempool guarantees.
413 * To make this work, callers must never allocate more than 1 bio at a time
414 * from this pool. Callers that need to allocate more than 1 bio must always
415 * submit the previously allocated bio for IO before attempting to allocate
416 * a new one. Failure to do so can cause deadlocks under memory pressure.
418 * Note that when running under generic_make_request() (i.e. any block
419 * driver), bios are not submitted until after you return - see the code in
420 * generic_make_request() that converts recursion into iteration, to prevent
423 * This would normally mean allocating multiple bios under
424 * generic_make_request() would be susceptible to deadlocks, but we have
425 * deadlock avoidance code that resubmits any blocked bios from a rescuer
428 * However, we do not guarantee forward progress for allocations from other
429 * mempools. Doing multiple allocations from the same mempool under
430 * generic_make_request() should be avoided - instead, use bio_set's front_pad
431 * for per bio allocations.
434 * Pointer to new bio on success, NULL on failure.
436 struct bio
*bio_alloc_bioset(gfp_t gfp_mask
, unsigned int nr_iovecs
,
439 gfp_t saved_gfp
= gfp_mask
;
441 unsigned inline_vecs
;
442 struct bio_vec
*bvl
= NULL
;
447 if (nr_iovecs
> UIO_MAXIOV
)
450 p
= kmalloc(sizeof(struct bio
) +
451 nr_iovecs
* sizeof(struct bio_vec
),
454 inline_vecs
= nr_iovecs
;
456 /* should not use nobvec bioset for nr_iovecs > 0 */
457 if (WARN_ON_ONCE(!mempool_initialized(&bs
->bvec_pool
) &&
461 * generic_make_request() converts recursion to iteration; this
462 * means if we're running beneath it, any bios we allocate and
463 * submit will not be submitted (and thus freed) until after we
466 * This exposes us to a potential deadlock if we allocate
467 * multiple bios from the same bio_set() while running
468 * underneath generic_make_request(). If we were to allocate
469 * multiple bios (say a stacking block driver that was splitting
470 * bios), we would deadlock if we exhausted the mempool's
473 * We solve this, and guarantee forward progress, with a rescuer
474 * workqueue per bio_set. If we go to allocate and there are
475 * bios on current->bio_list, we first try the allocation
476 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
477 * bios we would be blocking to the rescuer workqueue before
478 * we retry with the original gfp_flags.
481 if (current
->bio_list
&&
482 (!bio_list_empty(¤t
->bio_list
[0]) ||
483 !bio_list_empty(¤t
->bio_list
[1])) &&
484 bs
->rescue_workqueue
)
485 gfp_mask
&= ~__GFP_DIRECT_RECLAIM
;
487 p
= mempool_alloc(&bs
->bio_pool
, gfp_mask
);
488 if (!p
&& gfp_mask
!= saved_gfp
) {
489 punt_bios_to_rescuer(bs
);
490 gfp_mask
= saved_gfp
;
491 p
= mempool_alloc(&bs
->bio_pool
, gfp_mask
);
494 front_pad
= bs
->front_pad
;
495 inline_vecs
= BIO_INLINE_VECS
;
502 bio_init(bio
, NULL
, 0);
504 if (nr_iovecs
> inline_vecs
) {
505 unsigned long idx
= 0;
507 bvl
= bvec_alloc(gfp_mask
, nr_iovecs
, &idx
, &bs
->bvec_pool
);
508 if (!bvl
&& gfp_mask
!= saved_gfp
) {
509 punt_bios_to_rescuer(bs
);
510 gfp_mask
= saved_gfp
;
511 bvl
= bvec_alloc(gfp_mask
, nr_iovecs
, &idx
, &bs
->bvec_pool
);
517 bio
->bi_flags
|= idx
<< BVEC_POOL_OFFSET
;
518 } else if (nr_iovecs
) {
519 bvl
= bio
->bi_inline_vecs
;
523 bio
->bi_max_vecs
= nr_iovecs
;
524 bio
->bi_io_vec
= bvl
;
528 mempool_free(p
, &bs
->bio_pool
);
531 EXPORT_SYMBOL(bio_alloc_bioset
);
533 void zero_fill_bio_iter(struct bio
*bio
, struct bvec_iter start
)
537 struct bvec_iter iter
;
539 __bio_for_each_segment(bv
, bio
, iter
, start
) {
540 char *data
= bvec_kmap_irq(&bv
, &flags
);
541 memset(data
, 0, bv
.bv_len
);
542 flush_dcache_page(bv
.bv_page
);
543 bvec_kunmap_irq(data
, &flags
);
546 EXPORT_SYMBOL(zero_fill_bio_iter
);
549 * bio_put - release a reference to a bio
550 * @bio: bio to release reference to
553 * Put a reference to a &struct bio, either one you have gotten with
554 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
556 void bio_put(struct bio
*bio
)
558 if (!bio_flagged(bio
, BIO_REFFED
))
561 BIO_BUG_ON(!atomic_read(&bio
->__bi_cnt
));
566 if (atomic_dec_and_test(&bio
->__bi_cnt
))
570 EXPORT_SYMBOL(bio_put
);
572 inline int bio_phys_segments(struct request_queue
*q
, struct bio
*bio
)
574 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
575 blk_recount_segments(q
, bio
);
577 return bio
->bi_phys_segments
;
579 EXPORT_SYMBOL(bio_phys_segments
);
582 * __bio_clone_fast - clone a bio that shares the original bio's biovec
583 * @bio: destination bio
584 * @bio_src: bio to clone
586 * Clone a &bio. Caller will own the returned bio, but not
587 * the actual data it points to. Reference count of returned
590 * Caller must ensure that @bio_src is not freed before @bio.
592 void __bio_clone_fast(struct bio
*bio
, struct bio
*bio_src
)
594 BUG_ON(bio
->bi_pool
&& BVEC_POOL_IDX(bio
));
597 * most users will be overriding ->bi_disk with a new target,
598 * so we don't set nor calculate new physical/hw segment counts here
600 bio
->bi_disk
= bio_src
->bi_disk
;
601 bio
->bi_partno
= bio_src
->bi_partno
;
602 bio_set_flag(bio
, BIO_CLONED
);
603 if (bio_flagged(bio_src
, BIO_THROTTLED
))
604 bio_set_flag(bio
, BIO_THROTTLED
);
605 bio
->bi_opf
= bio_src
->bi_opf
;
606 bio
->bi_write_hint
= bio_src
->bi_write_hint
;
607 bio
->bi_iter
= bio_src
->bi_iter
;
608 bio
->bi_io_vec
= bio_src
->bi_io_vec
;
610 bio_clone_blkcg_association(bio
, bio_src
);
612 EXPORT_SYMBOL(__bio_clone_fast
);
615 * bio_clone_fast - clone a bio that shares the original bio's biovec
617 * @gfp_mask: allocation priority
618 * @bs: bio_set to allocate from
620 * Like __bio_clone_fast, only also allocates the returned bio
622 struct bio
*bio_clone_fast(struct bio
*bio
, gfp_t gfp_mask
, struct bio_set
*bs
)
626 b
= bio_alloc_bioset(gfp_mask
, 0, bs
);
630 __bio_clone_fast(b
, bio
);
632 if (bio_integrity(bio
)) {
635 ret
= bio_integrity_clone(b
, bio
, gfp_mask
);
645 EXPORT_SYMBOL(bio_clone_fast
);
648 * bio_clone_bioset - clone a bio
649 * @bio_src: bio to clone
650 * @gfp_mask: allocation priority
651 * @bs: bio_set to allocate from
653 * Clone bio. Caller will own the returned bio, but not the actual data it
654 * points to. Reference count of returned bio will be one.
656 struct bio
*bio_clone_bioset(struct bio
*bio_src
, gfp_t gfp_mask
,
659 struct bvec_iter iter
;
664 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
665 * bio_src->bi_io_vec to bio->bi_io_vec.
667 * We can't do that anymore, because:
669 * - The point of cloning the biovec is to produce a bio with a biovec
670 * the caller can modify: bi_idx and bi_bvec_done should be 0.
672 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
673 * we tried to clone the whole thing bio_alloc_bioset() would fail.
674 * But the clone should succeed as long as the number of biovecs we
675 * actually need to allocate is fewer than BIO_MAX_PAGES.
677 * - Lastly, bi_vcnt should not be looked at or relied upon by code
678 * that does not own the bio - reason being drivers don't use it for
679 * iterating over the biovec anymore, so expecting it to be kept up
680 * to date (i.e. for clones that share the parent biovec) is just
681 * asking for trouble and would force extra work on
682 * __bio_clone_fast() anyways.
685 bio
= bio_alloc_bioset(gfp_mask
, bio_segments(bio_src
), bs
);
688 bio
->bi_disk
= bio_src
->bi_disk
;
689 bio
->bi_opf
= bio_src
->bi_opf
;
690 bio
->bi_write_hint
= bio_src
->bi_write_hint
;
691 bio
->bi_iter
.bi_sector
= bio_src
->bi_iter
.bi_sector
;
692 bio
->bi_iter
.bi_size
= bio_src
->bi_iter
.bi_size
;
694 switch (bio_op(bio
)) {
696 case REQ_OP_SECURE_ERASE
:
697 case REQ_OP_WRITE_ZEROES
:
699 case REQ_OP_WRITE_SAME
:
700 bio
->bi_io_vec
[bio
->bi_vcnt
++] = bio_src
->bi_io_vec
[0];
703 bio_for_each_segment(bv
, bio_src
, iter
)
704 bio
->bi_io_vec
[bio
->bi_vcnt
++] = bv
;
708 if (bio_integrity(bio_src
)) {
711 ret
= bio_integrity_clone(bio
, bio_src
, gfp_mask
);
718 bio_clone_blkcg_association(bio
, bio_src
);
722 EXPORT_SYMBOL(bio_clone_bioset
);
725 * bio_add_pc_page - attempt to add page to bio
726 * @q: the target queue
727 * @bio: destination bio
729 * @len: vec entry length
730 * @offset: vec entry offset
732 * Attempt to add a page to the bio_vec maplist. This can fail for a
733 * number of reasons, such as the bio being full or target block device
734 * limitations. The target block device must allow bio's up to PAGE_SIZE,
735 * so it is always possible to add a single page to an empty bio.
737 * This should only be used by REQ_PC bios.
739 int bio_add_pc_page(struct request_queue
*q
, struct bio
*bio
, struct page
740 *page
, unsigned int len
, unsigned int offset
)
742 int retried_segments
= 0;
743 struct bio_vec
*bvec
;
746 * cloned bio must not modify vec list
748 if (unlikely(bio_flagged(bio
, BIO_CLONED
)))
751 if (((bio
->bi_iter
.bi_size
+ len
) >> 9) > queue_max_hw_sectors(q
))
755 * For filesystems with a blocksize smaller than the pagesize
756 * we will often be called with the same page as last time and
757 * a consecutive offset. Optimize this special case.
759 if (bio
->bi_vcnt
> 0) {
760 struct bio_vec
*prev
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
762 if (page
== prev
->bv_page
&&
763 offset
== prev
->bv_offset
+ prev
->bv_len
) {
765 bio
->bi_iter
.bi_size
+= len
;
770 * If the queue doesn't support SG gaps and adding this
771 * offset would create a gap, disallow it.
773 if (bvec_gap_to_prev(q
, prev
, offset
))
781 * setup the new entry, we might clear it again later if we
782 * cannot add the page
784 bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
];
785 bvec
->bv_page
= page
;
787 bvec
->bv_offset
= offset
;
789 bio
->bi_phys_segments
++;
790 bio
->bi_iter
.bi_size
+= len
;
793 * Perform a recount if the number of segments is greater
794 * than queue_max_segments(q).
797 while (bio
->bi_phys_segments
> queue_max_segments(q
)) {
799 if (retried_segments
)
802 retried_segments
= 1;
803 blk_recount_segments(q
, bio
);
806 /* If we may be able to merge these biovecs, force a recount */
807 if (bio
->bi_vcnt
> 1 && (BIOVEC_PHYS_MERGEABLE(bvec
-1, bvec
)))
808 bio_clear_flag(bio
, BIO_SEG_VALID
);
814 bvec
->bv_page
= NULL
;
818 bio
->bi_iter
.bi_size
-= len
;
819 blk_recount_segments(q
, bio
);
822 EXPORT_SYMBOL(bio_add_pc_page
);
825 * __bio_try_merge_page - try appending data to an existing bvec.
826 * @bio: destination bio
828 * @len: length of the data to add
829 * @off: offset of the data in @page
831 * Try to add the data at @page + @off to the last bvec of @bio. This is a
832 * a useful optimisation for file systems with a block size smaller than the
835 * Return %true on success or %false on failure.
837 bool __bio_try_merge_page(struct bio
*bio
, struct page
*page
,
838 unsigned int len
, unsigned int off
)
840 if (WARN_ON_ONCE(bio_flagged(bio
, BIO_CLONED
)))
843 if (bio
->bi_vcnt
> 0) {
844 struct bio_vec
*bv
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
846 if (page
== bv
->bv_page
&& off
== bv
->bv_offset
+ bv
->bv_len
) {
848 bio
->bi_iter
.bi_size
+= len
;
854 EXPORT_SYMBOL_GPL(__bio_try_merge_page
);
857 * __bio_add_page - add page to a bio in a new segment
858 * @bio: destination bio
860 * @len: length of the data to add
861 * @off: offset of the data in @page
863 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
864 * that @bio has space for another bvec.
866 void __bio_add_page(struct bio
*bio
, struct page
*page
,
867 unsigned int len
, unsigned int off
)
869 struct bio_vec
*bv
= &bio
->bi_io_vec
[bio
->bi_vcnt
];
871 WARN_ON_ONCE(bio_flagged(bio
, BIO_CLONED
));
872 WARN_ON_ONCE(bio_full(bio
));
878 bio
->bi_iter
.bi_size
+= len
;
881 EXPORT_SYMBOL_GPL(__bio_add_page
);
884 * bio_add_page - attempt to add page to bio
885 * @bio: destination bio
887 * @len: vec entry length
888 * @offset: vec entry offset
890 * Attempt to add a page to the bio_vec maplist. This will only fail
891 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
893 int bio_add_page(struct bio
*bio
, struct page
*page
,
894 unsigned int len
, unsigned int offset
)
896 if (!__bio_try_merge_page(bio
, page
, len
, offset
)) {
899 __bio_add_page(bio
, page
, len
, offset
);
903 EXPORT_SYMBOL(bio_add_page
);
906 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
907 * @bio: bio to add pages to
908 * @iter: iov iterator describing the region to be mapped
910 * Pins pages from *iter and appends them to @bio's bvec array. The
911 * pages will have to be released using put_page() when done.
912 * For multi-segment *iter, this function only adds pages from the
913 * the next non-empty segment of the iov iterator.
915 static int __bio_iov_iter_get_pages(struct bio
*bio
, struct iov_iter
*iter
)
917 unsigned short nr_pages
= bio
->bi_max_vecs
- bio
->bi_vcnt
, idx
;
918 struct bio_vec
*bv
= bio
->bi_io_vec
+ bio
->bi_vcnt
;
919 struct page
**pages
= (struct page
**)bv
;
923 size
= iov_iter_get_pages(iter
, pages
, LONG_MAX
, nr_pages
, &offset
);
924 if (unlikely(size
<= 0))
925 return size
? size
: -EFAULT
;
926 idx
= nr_pages
= (size
+ offset
+ PAGE_SIZE
- 1) / PAGE_SIZE
;
929 * Deep magic below: We need to walk the pinned pages backwards
930 * because we are abusing the space allocated for the bio_vecs
931 * for the page array. Because the bio_vecs are larger than the
932 * page pointers by definition this will always work. But it also
933 * means we can't use bio_add_page, so any changes to it's semantics
934 * need to be reflected here as well.
936 bio
->bi_iter
.bi_size
+= size
;
937 bio
->bi_vcnt
+= nr_pages
;
940 bv
[idx
].bv_page
= pages
[idx
];
941 bv
[idx
].bv_len
= PAGE_SIZE
;
942 bv
[idx
].bv_offset
= 0;
945 bv
[0].bv_offset
+= offset
;
946 bv
[0].bv_len
-= offset
;
947 bv
[nr_pages
- 1].bv_len
-= nr_pages
* PAGE_SIZE
- offset
- size
;
949 iov_iter_advance(iter
, size
);
954 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
955 * @bio: bio to add pages to
956 * @iter: iov iterator describing the region to be mapped
958 * Pins pages from *iter and appends them to @bio's bvec array. The
959 * pages will have to be released using put_page() when done.
960 * The function tries, but does not guarantee, to pin as many pages as
961 * fit into the bio, or are requested in *iter, whatever is smaller.
962 * If MM encounters an error pinning the requested pages, it stops.
963 * Error is returned only if 0 pages could be pinned.
965 int bio_iov_iter_get_pages(struct bio
*bio
, struct iov_iter
*iter
)
967 unsigned short orig_vcnt
= bio
->bi_vcnt
;
970 int ret
= __bio_iov_iter_get_pages(bio
, iter
);
973 return bio
->bi_vcnt
> orig_vcnt
? 0 : ret
;
975 } while (iov_iter_count(iter
) && !bio_full(bio
));
979 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages
);
981 static void submit_bio_wait_endio(struct bio
*bio
)
983 complete(bio
->bi_private
);
987 * submit_bio_wait - submit a bio, and wait until it completes
988 * @bio: The &struct bio which describes the I/O
990 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
991 * bio_endio() on failure.
993 * WARNING: Unlike to how submit_bio() is usually used, this function does not
994 * result in bio reference to be consumed. The caller must drop the reference
997 int submit_bio_wait(struct bio
*bio
)
999 DECLARE_COMPLETION_ONSTACK_MAP(done
, bio
->bi_disk
->lockdep_map
);
1001 bio
->bi_private
= &done
;
1002 bio
->bi_end_io
= submit_bio_wait_endio
;
1003 bio
->bi_opf
|= REQ_SYNC
;
1005 wait_for_completion_io(&done
);
1007 return blk_status_to_errno(bio
->bi_status
);
1009 EXPORT_SYMBOL(submit_bio_wait
);
1012 * bio_advance - increment/complete a bio by some number of bytes
1013 * @bio: bio to advance
1014 * @bytes: number of bytes to complete
1016 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1017 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1018 * be updated on the last bvec as well.
1020 * @bio will then represent the remaining, uncompleted portion of the io.
1022 void bio_advance(struct bio
*bio
, unsigned bytes
)
1024 if (bio_integrity(bio
))
1025 bio_integrity_advance(bio
, bytes
);
1027 bio_advance_iter(bio
, &bio
->bi_iter
, bytes
);
1029 EXPORT_SYMBOL(bio_advance
);
1031 void bio_copy_data_iter(struct bio
*dst
, struct bvec_iter
*dst_iter
,
1032 struct bio
*src
, struct bvec_iter
*src_iter
)
1034 struct bio_vec src_bv
, dst_bv
;
1035 void *src_p
, *dst_p
;
1038 while (src_iter
->bi_size
&& dst_iter
->bi_size
) {
1039 src_bv
= bio_iter_iovec(src
, *src_iter
);
1040 dst_bv
= bio_iter_iovec(dst
, *dst_iter
);
1042 bytes
= min(src_bv
.bv_len
, dst_bv
.bv_len
);
1044 src_p
= kmap_atomic(src_bv
.bv_page
);
1045 dst_p
= kmap_atomic(dst_bv
.bv_page
);
1047 memcpy(dst_p
+ dst_bv
.bv_offset
,
1048 src_p
+ src_bv
.bv_offset
,
1051 kunmap_atomic(dst_p
);
1052 kunmap_atomic(src_p
);
1054 flush_dcache_page(dst_bv
.bv_page
);
1056 bio_advance_iter(src
, src_iter
, bytes
);
1057 bio_advance_iter(dst
, dst_iter
, bytes
);
1060 EXPORT_SYMBOL(bio_copy_data_iter
);
1063 * bio_copy_data - copy contents of data buffers from one bio to another
1065 * @dst: destination bio
1067 * Stops when it reaches the end of either @src or @dst - that is, copies
1068 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1070 void bio_copy_data(struct bio
*dst
, struct bio
*src
)
1072 struct bvec_iter src_iter
= src
->bi_iter
;
1073 struct bvec_iter dst_iter
= dst
->bi_iter
;
1075 bio_copy_data_iter(dst
, &dst_iter
, src
, &src_iter
);
1077 EXPORT_SYMBOL(bio_copy_data
);
1080 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1082 * @src: source bio list
1083 * @dst: destination bio list
1085 * Stops when it reaches the end of either the @src list or @dst list - that is,
1086 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1089 void bio_list_copy_data(struct bio
*dst
, struct bio
*src
)
1091 struct bvec_iter src_iter
= src
->bi_iter
;
1092 struct bvec_iter dst_iter
= dst
->bi_iter
;
1095 if (!src_iter
.bi_size
) {
1100 src_iter
= src
->bi_iter
;
1103 if (!dst_iter
.bi_size
) {
1108 dst_iter
= dst
->bi_iter
;
1111 bio_copy_data_iter(dst
, &dst_iter
, src
, &src_iter
);
1114 EXPORT_SYMBOL(bio_list_copy_data
);
1116 struct bio_map_data
{
1118 struct iov_iter iter
;
1122 static struct bio_map_data
*bio_alloc_map_data(struct iov_iter
*data
,
1125 struct bio_map_data
*bmd
;
1126 if (data
->nr_segs
> UIO_MAXIOV
)
1129 bmd
= kmalloc(sizeof(struct bio_map_data
) +
1130 sizeof(struct iovec
) * data
->nr_segs
, gfp_mask
);
1133 memcpy(bmd
->iov
, data
->iov
, sizeof(struct iovec
) * data
->nr_segs
);
1135 bmd
->iter
.iov
= bmd
->iov
;
1140 * bio_copy_from_iter - copy all pages from iov_iter to bio
1141 * @bio: The &struct bio which describes the I/O as destination
1142 * @iter: iov_iter as source
1144 * Copy all pages from iov_iter to bio.
1145 * Returns 0 on success, or error on failure.
1147 static int bio_copy_from_iter(struct bio
*bio
, struct iov_iter
*iter
)
1150 struct bio_vec
*bvec
;
1152 bio_for_each_segment_all(bvec
, bio
, i
) {
1155 ret
= copy_page_from_iter(bvec
->bv_page
,
1160 if (!iov_iter_count(iter
))
1163 if (ret
< bvec
->bv_len
)
1171 * bio_copy_to_iter - copy all pages from bio to iov_iter
1172 * @bio: The &struct bio which describes the I/O as source
1173 * @iter: iov_iter as destination
1175 * Copy all pages from bio to iov_iter.
1176 * Returns 0 on success, or error on failure.
1178 static int bio_copy_to_iter(struct bio
*bio
, struct iov_iter iter
)
1181 struct bio_vec
*bvec
;
1183 bio_for_each_segment_all(bvec
, bio
, i
) {
1186 ret
= copy_page_to_iter(bvec
->bv_page
,
1191 if (!iov_iter_count(&iter
))
1194 if (ret
< bvec
->bv_len
)
1201 void bio_free_pages(struct bio
*bio
)
1203 struct bio_vec
*bvec
;
1206 bio_for_each_segment_all(bvec
, bio
, i
)
1207 __free_page(bvec
->bv_page
);
1209 EXPORT_SYMBOL(bio_free_pages
);
1212 * bio_uncopy_user - finish previously mapped bio
1213 * @bio: bio being terminated
1215 * Free pages allocated from bio_copy_user_iov() and write back data
1216 * to user space in case of a read.
1218 int bio_uncopy_user(struct bio
*bio
)
1220 struct bio_map_data
*bmd
= bio
->bi_private
;
1223 if (!bio_flagged(bio
, BIO_NULL_MAPPED
)) {
1225 * if we're in a workqueue, the request is orphaned, so
1226 * don't copy into a random user address space, just free
1227 * and return -EINTR so user space doesn't expect any data.
1231 else if (bio_data_dir(bio
) == READ
)
1232 ret
= bio_copy_to_iter(bio
, bmd
->iter
);
1233 if (bmd
->is_our_pages
)
1234 bio_free_pages(bio
);
1242 * bio_copy_user_iov - copy user data to bio
1243 * @q: destination block queue
1244 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1245 * @iter: iovec iterator
1246 * @gfp_mask: memory allocation flags
1248 * Prepares and returns a bio for indirect user io, bouncing data
1249 * to/from kernel pages as necessary. Must be paired with
1250 * call bio_uncopy_user() on io completion.
1252 struct bio
*bio_copy_user_iov(struct request_queue
*q
,
1253 struct rq_map_data
*map_data
,
1254 struct iov_iter
*iter
,
1257 struct bio_map_data
*bmd
;
1262 unsigned int len
= iter
->count
;
1263 unsigned int offset
= map_data
? offset_in_page(map_data
->offset
) : 0;
1265 bmd
= bio_alloc_map_data(iter
, gfp_mask
);
1267 return ERR_PTR(-ENOMEM
);
1270 * We need to do a deep copy of the iov_iter including the iovecs.
1271 * The caller provided iov might point to an on-stack or otherwise
1274 bmd
->is_our_pages
= map_data
? 0 : 1;
1276 nr_pages
= DIV_ROUND_UP(offset
+ len
, PAGE_SIZE
);
1277 if (nr_pages
> BIO_MAX_PAGES
)
1278 nr_pages
= BIO_MAX_PAGES
;
1281 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1288 nr_pages
= 1 << map_data
->page_order
;
1289 i
= map_data
->offset
/ PAGE_SIZE
;
1292 unsigned int bytes
= PAGE_SIZE
;
1300 if (i
== map_data
->nr_entries
* nr_pages
) {
1305 page
= map_data
->pages
[i
/ nr_pages
];
1306 page
+= (i
% nr_pages
);
1310 page
= alloc_page(q
->bounce_gfp
| gfp_mask
);
1317 if (bio_add_pc_page(q
, bio
, page
, bytes
, offset
) < bytes
)
1328 map_data
->offset
+= bio
->bi_iter
.bi_size
;
1333 if (((iter
->type
& WRITE
) && (!map_data
|| !map_data
->null_mapped
)) ||
1334 (map_data
&& map_data
->from_user
)) {
1335 ret
= bio_copy_from_iter(bio
, iter
);
1339 iov_iter_advance(iter
, bio
->bi_iter
.bi_size
);
1342 bio
->bi_private
= bmd
;
1343 if (map_data
&& map_data
->null_mapped
)
1344 bio_set_flag(bio
, BIO_NULL_MAPPED
);
1348 bio_free_pages(bio
);
1352 return ERR_PTR(ret
);
1356 * bio_map_user_iov - map user iovec into bio
1357 * @q: the struct request_queue for the bio
1358 * @iter: iovec iterator
1359 * @gfp_mask: memory allocation flags
1361 * Map the user space address into a bio suitable for io to a block
1362 * device. Returns an error pointer in case of error.
1364 struct bio
*bio_map_user_iov(struct request_queue
*q
,
1365 struct iov_iter
*iter
,
1371 struct bio_vec
*bvec
;
1373 if (!iov_iter_count(iter
))
1374 return ERR_PTR(-EINVAL
);
1376 bio
= bio_kmalloc(gfp_mask
, iov_iter_npages(iter
, BIO_MAX_PAGES
));
1378 return ERR_PTR(-ENOMEM
);
1380 while (iov_iter_count(iter
)) {
1381 struct page
**pages
;
1383 size_t offs
, added
= 0;
1386 bytes
= iov_iter_get_pages_alloc(iter
, &pages
, LONG_MAX
, &offs
);
1387 if (unlikely(bytes
<= 0)) {
1388 ret
= bytes
? bytes
: -EFAULT
;
1392 npages
= DIV_ROUND_UP(offs
+ bytes
, PAGE_SIZE
);
1394 if (unlikely(offs
& queue_dma_alignment(q
))) {
1398 for (j
= 0; j
< npages
; j
++) {
1399 struct page
*page
= pages
[j
];
1400 unsigned int n
= PAGE_SIZE
- offs
;
1401 unsigned short prev_bi_vcnt
= bio
->bi_vcnt
;
1406 if (!bio_add_pc_page(q
, bio
, page
, n
, offs
))
1410 * check if vector was merged with previous
1411 * drop page reference if needed
1413 if (bio
->bi_vcnt
== prev_bi_vcnt
)
1420 iov_iter_advance(iter
, added
);
1423 * release the pages we didn't map into the bio, if any
1426 put_page(pages
[j
++]);
1428 /* couldn't stuff something into bio? */
1433 bio_set_flag(bio
, BIO_USER_MAPPED
);
1436 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1437 * it would normally disappear when its bi_end_io is run.
1438 * however, we need it for the unmap, so grab an extra
1445 bio_for_each_segment_all(bvec
, bio
, j
) {
1446 put_page(bvec
->bv_page
);
1449 return ERR_PTR(ret
);
1452 static void __bio_unmap_user(struct bio
*bio
)
1454 struct bio_vec
*bvec
;
1458 * make sure we dirty pages we wrote to
1460 bio_for_each_segment_all(bvec
, bio
, i
) {
1461 if (bio_data_dir(bio
) == READ
)
1462 set_page_dirty_lock(bvec
->bv_page
);
1464 put_page(bvec
->bv_page
);
1471 * bio_unmap_user - unmap a bio
1472 * @bio: the bio being unmapped
1474 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1477 * bio_unmap_user() may sleep.
1479 void bio_unmap_user(struct bio
*bio
)
1481 __bio_unmap_user(bio
);
1485 static void bio_map_kern_endio(struct bio
*bio
)
1491 * bio_map_kern - map kernel address into bio
1492 * @q: the struct request_queue for the bio
1493 * @data: pointer to buffer to map
1494 * @len: length in bytes
1495 * @gfp_mask: allocation flags for bio allocation
1497 * Map the kernel address into a bio suitable for io to a block
1498 * device. Returns an error pointer in case of error.
1500 struct bio
*bio_map_kern(struct request_queue
*q
, void *data
, unsigned int len
,
1503 unsigned long kaddr
= (unsigned long)data
;
1504 unsigned long end
= (kaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1505 unsigned long start
= kaddr
>> PAGE_SHIFT
;
1506 const int nr_pages
= end
- start
;
1510 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1512 return ERR_PTR(-ENOMEM
);
1514 offset
= offset_in_page(kaddr
);
1515 for (i
= 0; i
< nr_pages
; i
++) {
1516 unsigned int bytes
= PAGE_SIZE
- offset
;
1524 if (bio_add_pc_page(q
, bio
, virt_to_page(data
), bytes
,
1526 /* we don't support partial mappings */
1528 return ERR_PTR(-EINVAL
);
1536 bio
->bi_end_io
= bio_map_kern_endio
;
1539 EXPORT_SYMBOL(bio_map_kern
);
1541 static void bio_copy_kern_endio(struct bio
*bio
)
1543 bio_free_pages(bio
);
1547 static void bio_copy_kern_endio_read(struct bio
*bio
)
1549 char *p
= bio
->bi_private
;
1550 struct bio_vec
*bvec
;
1553 bio_for_each_segment_all(bvec
, bio
, i
) {
1554 memcpy(p
, page_address(bvec
->bv_page
), bvec
->bv_len
);
1558 bio_copy_kern_endio(bio
);
1562 * bio_copy_kern - copy kernel address into bio
1563 * @q: the struct request_queue for the bio
1564 * @data: pointer to buffer to copy
1565 * @len: length in bytes
1566 * @gfp_mask: allocation flags for bio and page allocation
1567 * @reading: data direction is READ
1569 * copy the kernel address into a bio suitable for io to a block
1570 * device. Returns an error pointer in case of error.
1572 struct bio
*bio_copy_kern(struct request_queue
*q
, void *data
, unsigned int len
,
1573 gfp_t gfp_mask
, int reading
)
1575 unsigned long kaddr
= (unsigned long)data
;
1576 unsigned long end
= (kaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1577 unsigned long start
= kaddr
>> PAGE_SHIFT
;
1586 return ERR_PTR(-EINVAL
);
1588 nr_pages
= end
- start
;
1589 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1591 return ERR_PTR(-ENOMEM
);
1595 unsigned int bytes
= PAGE_SIZE
;
1600 page
= alloc_page(q
->bounce_gfp
| gfp_mask
);
1605 memcpy(page_address(page
), p
, bytes
);
1607 if (bio_add_pc_page(q
, bio
, page
, bytes
, 0) < bytes
)
1615 bio
->bi_end_io
= bio_copy_kern_endio_read
;
1616 bio
->bi_private
= data
;
1618 bio
->bi_end_io
= bio_copy_kern_endio
;
1624 bio_free_pages(bio
);
1626 return ERR_PTR(-ENOMEM
);
1630 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1631 * for performing direct-IO in BIOs.
1633 * The problem is that we cannot run set_page_dirty() from interrupt context
1634 * because the required locks are not interrupt-safe. So what we can do is to
1635 * mark the pages dirty _before_ performing IO. And in interrupt context,
1636 * check that the pages are still dirty. If so, fine. If not, redirty them
1637 * in process context.
1639 * We special-case compound pages here: normally this means reads into hugetlb
1640 * pages. The logic in here doesn't really work right for compound pages
1641 * because the VM does not uniformly chase down the head page in all cases.
1642 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1643 * handle them at all. So we skip compound pages here at an early stage.
1645 * Note that this code is very hard to test under normal circumstances because
1646 * direct-io pins the pages with get_user_pages(). This makes
1647 * is_page_cache_freeable return false, and the VM will not clean the pages.
1648 * But other code (eg, flusher threads) could clean the pages if they are mapped
1651 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1652 * deferred bio dirtying paths.
1656 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1658 void bio_set_pages_dirty(struct bio
*bio
)
1660 struct bio_vec
*bvec
;
1663 bio_for_each_segment_all(bvec
, bio
, i
) {
1664 struct page
*page
= bvec
->bv_page
;
1666 if (page
&& !PageCompound(page
))
1667 set_page_dirty_lock(page
);
1670 EXPORT_SYMBOL_GPL(bio_set_pages_dirty
);
1672 static void bio_release_pages(struct bio
*bio
)
1674 struct bio_vec
*bvec
;
1677 bio_for_each_segment_all(bvec
, bio
, i
) {
1678 struct page
*page
= bvec
->bv_page
;
1686 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1687 * If they are, then fine. If, however, some pages are clean then they must
1688 * have been written out during the direct-IO read. So we take another ref on
1689 * the BIO and the offending pages and re-dirty the pages in process context.
1691 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1692 * here on. It will run one put_page() against each page and will run one
1693 * bio_put() against the BIO.
1696 static void bio_dirty_fn(struct work_struct
*work
);
1698 static DECLARE_WORK(bio_dirty_work
, bio_dirty_fn
);
1699 static DEFINE_SPINLOCK(bio_dirty_lock
);
1700 static struct bio
*bio_dirty_list
;
1703 * This runs in process context
1705 static void bio_dirty_fn(struct work_struct
*work
)
1707 unsigned long flags
;
1710 spin_lock_irqsave(&bio_dirty_lock
, flags
);
1711 bio
= bio_dirty_list
;
1712 bio_dirty_list
= NULL
;
1713 spin_unlock_irqrestore(&bio_dirty_lock
, flags
);
1716 struct bio
*next
= bio
->bi_private
;
1718 bio_set_pages_dirty(bio
);
1719 bio_release_pages(bio
);
1725 void bio_check_pages_dirty(struct bio
*bio
)
1727 struct bio_vec
*bvec
;
1728 int nr_clean_pages
= 0;
1731 bio_for_each_segment_all(bvec
, bio
, i
) {
1732 struct page
*page
= bvec
->bv_page
;
1734 if (PageDirty(page
) || PageCompound(page
)) {
1736 bvec
->bv_page
= NULL
;
1742 if (nr_clean_pages
) {
1743 unsigned long flags
;
1745 spin_lock_irqsave(&bio_dirty_lock
, flags
);
1746 bio
->bi_private
= bio_dirty_list
;
1747 bio_dirty_list
= bio
;
1748 spin_unlock_irqrestore(&bio_dirty_lock
, flags
);
1749 schedule_work(&bio_dirty_work
);
1754 EXPORT_SYMBOL_GPL(bio_check_pages_dirty
);
1756 void generic_start_io_acct(struct request_queue
*q
, int rw
,
1757 unsigned long sectors
, struct hd_struct
*part
)
1759 int cpu
= part_stat_lock();
1761 part_round_stats(q
, cpu
, part
);
1762 part_stat_inc(cpu
, part
, ios
[rw
]);
1763 part_stat_add(cpu
, part
, sectors
[rw
], sectors
);
1764 part_inc_in_flight(q
, part
, rw
);
1768 EXPORT_SYMBOL(generic_start_io_acct
);
1770 void generic_end_io_acct(struct request_queue
*q
, int rw
,
1771 struct hd_struct
*part
, unsigned long start_time
)
1773 unsigned long duration
= jiffies
- start_time
;
1774 int cpu
= part_stat_lock();
1776 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
1777 part_round_stats(q
, cpu
, part
);
1778 part_dec_in_flight(q
, part
, rw
);
1782 EXPORT_SYMBOL(generic_end_io_acct
);
1784 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1785 void bio_flush_dcache_pages(struct bio
*bi
)
1787 struct bio_vec bvec
;
1788 struct bvec_iter iter
;
1790 bio_for_each_segment(bvec
, bi
, iter
)
1791 flush_dcache_page(bvec
.bv_page
);
1793 EXPORT_SYMBOL(bio_flush_dcache_pages
);
1796 static inline bool bio_remaining_done(struct bio
*bio
)
1799 * If we're not chaining, then ->__bi_remaining is always 1 and
1800 * we always end io on the first invocation.
1802 if (!bio_flagged(bio
, BIO_CHAIN
))
1805 BUG_ON(atomic_read(&bio
->__bi_remaining
) <= 0);
1807 if (atomic_dec_and_test(&bio
->__bi_remaining
)) {
1808 bio_clear_flag(bio
, BIO_CHAIN
);
1816 * bio_endio - end I/O on a bio
1820 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1821 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1822 * bio unless they own it and thus know that it has an end_io function.
1824 * bio_endio() can be called several times on a bio that has been chained
1825 * using bio_chain(). The ->bi_end_io() function will only be called the
1826 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1827 * generated if BIO_TRACE_COMPLETION is set.
1829 void bio_endio(struct bio
*bio
)
1832 if (!bio_remaining_done(bio
))
1834 if (!bio_integrity_endio(bio
))
1838 * Need to have a real endio function for chained bios, otherwise
1839 * various corner cases will break (like stacking block devices that
1840 * save/restore bi_end_io) - however, we want to avoid unbounded
1841 * recursion and blowing the stack. Tail call optimization would
1842 * handle this, but compiling with frame pointers also disables
1843 * gcc's sibling call optimization.
1845 if (bio
->bi_end_io
== bio_chain_endio
) {
1846 bio
= __bio_chain_endio(bio
);
1850 if (bio
->bi_disk
&& bio_flagged(bio
, BIO_TRACE_COMPLETION
)) {
1851 trace_block_bio_complete(bio
->bi_disk
->queue
, bio
,
1852 blk_status_to_errno(bio
->bi_status
));
1853 bio_clear_flag(bio
, BIO_TRACE_COMPLETION
);
1856 blk_throtl_bio_endio(bio
);
1857 /* release cgroup info */
1860 bio
->bi_end_io(bio
);
1862 EXPORT_SYMBOL(bio_endio
);
1865 * bio_split - split a bio
1866 * @bio: bio to split
1867 * @sectors: number of sectors to split from the front of @bio
1869 * @bs: bio set to allocate from
1871 * Allocates and returns a new bio which represents @sectors from the start of
1872 * @bio, and updates @bio to represent the remaining sectors.
1874 * Unless this is a discard request the newly allocated bio will point
1875 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1876 * @bio is not freed before the split.
1878 struct bio
*bio_split(struct bio
*bio
, int sectors
,
1879 gfp_t gfp
, struct bio_set
*bs
)
1883 BUG_ON(sectors
<= 0);
1884 BUG_ON(sectors
>= bio_sectors(bio
));
1886 split
= bio_clone_fast(bio
, gfp
, bs
);
1890 split
->bi_iter
.bi_size
= sectors
<< 9;
1892 if (bio_integrity(split
))
1893 bio_integrity_trim(split
);
1895 bio_advance(bio
, split
->bi_iter
.bi_size
);
1896 bio
->bi_iter
.bi_done
= 0;
1898 if (bio_flagged(bio
, BIO_TRACE_COMPLETION
))
1899 bio_set_flag(split
, BIO_TRACE_COMPLETION
);
1903 EXPORT_SYMBOL(bio_split
);
1906 * bio_trim - trim a bio
1908 * @offset: number of sectors to trim from the front of @bio
1909 * @size: size we want to trim @bio to, in sectors
1911 void bio_trim(struct bio
*bio
, int offset
, int size
)
1913 /* 'bio' is a cloned bio which we need to trim to match
1914 * the given offset and size.
1918 if (offset
== 0 && size
== bio
->bi_iter
.bi_size
)
1921 bio_clear_flag(bio
, BIO_SEG_VALID
);
1923 bio_advance(bio
, offset
<< 9);
1925 bio
->bi_iter
.bi_size
= size
;
1927 if (bio_integrity(bio
))
1928 bio_integrity_trim(bio
);
1931 EXPORT_SYMBOL_GPL(bio_trim
);
1934 * create memory pools for biovec's in a bio_set.
1935 * use the global biovec slabs created for general use.
1937 int biovec_init_pool(mempool_t
*pool
, int pool_entries
)
1939 struct biovec_slab
*bp
= bvec_slabs
+ BVEC_POOL_MAX
;
1941 return mempool_init_slab_pool(pool
, pool_entries
, bp
->slab
);
1945 * bioset_exit - exit a bioset initialized with bioset_init()
1947 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1950 void bioset_exit(struct bio_set
*bs
)
1952 if (bs
->rescue_workqueue
)
1953 destroy_workqueue(bs
->rescue_workqueue
);
1954 bs
->rescue_workqueue
= NULL
;
1956 mempool_exit(&bs
->bio_pool
);
1957 mempool_exit(&bs
->bvec_pool
);
1959 bioset_integrity_free(bs
);
1962 bs
->bio_slab
= NULL
;
1964 EXPORT_SYMBOL(bioset_exit
);
1967 * bioset_init - Initialize a bio_set
1968 * @bs: pool to initialize
1969 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1970 * @front_pad: Number of bytes to allocate in front of the returned bio
1971 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1972 * and %BIOSET_NEED_RESCUER
1975 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1976 * to ask for a number of bytes to be allocated in front of the bio.
1977 * Front pad allocation is useful for embedding the bio inside
1978 * another structure, to avoid allocating extra data to go with the bio.
1979 * Note that the bio must be embedded at the END of that structure always,
1980 * or things will break badly.
1981 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1982 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1983 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1984 * dispatch queued requests when the mempool runs out of space.
1987 int bioset_init(struct bio_set
*bs
,
1988 unsigned int pool_size
,
1989 unsigned int front_pad
,
1992 unsigned int back_pad
= BIO_INLINE_VECS
* sizeof(struct bio_vec
);
1994 bs
->front_pad
= front_pad
;
1996 spin_lock_init(&bs
->rescue_lock
);
1997 bio_list_init(&bs
->rescue_list
);
1998 INIT_WORK(&bs
->rescue_work
, bio_alloc_rescue
);
2000 bs
->bio_slab
= bio_find_or_create_slab(front_pad
+ back_pad
);
2004 if (mempool_init_slab_pool(&bs
->bio_pool
, pool_size
, bs
->bio_slab
))
2007 if ((flags
& BIOSET_NEED_BVECS
) &&
2008 biovec_init_pool(&bs
->bvec_pool
, pool_size
))
2011 if (!(flags
& BIOSET_NEED_RESCUER
))
2014 bs
->rescue_workqueue
= alloc_workqueue("bioset", WQ_MEM_RECLAIM
, 0);
2015 if (!bs
->rescue_workqueue
)
2023 EXPORT_SYMBOL(bioset_init
);
2026 * Initialize and setup a new bio_set, based on the settings from
2029 int bioset_init_from_src(struct bio_set
*bs
, struct bio_set
*src
)
2034 if (src
->bvec_pool
.min_nr
)
2035 flags
|= BIOSET_NEED_BVECS
;
2036 if (src
->rescue_workqueue
)
2037 flags
|= BIOSET_NEED_RESCUER
;
2039 return bioset_init(bs
, src
->bio_pool
.min_nr
, src
->front_pad
, flags
);
2041 EXPORT_SYMBOL(bioset_init_from_src
);
2043 #ifdef CONFIG_BLK_CGROUP
2046 * bio_associate_blkcg - associate a bio with the specified blkcg
2048 * @blkcg_css: css of the blkcg to associate
2050 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2051 * treat @bio as if it were issued by a task which belongs to the blkcg.
2053 * This function takes an extra reference of @blkcg_css which will be put
2054 * when @bio is released. The caller must own @bio and is responsible for
2055 * synchronizing calls to this function.
2057 int bio_associate_blkcg(struct bio
*bio
, struct cgroup_subsys_state
*blkcg_css
)
2059 if (unlikely(bio
->bi_css
))
2062 bio
->bi_css
= blkcg_css
;
2065 EXPORT_SYMBOL_GPL(bio_associate_blkcg
);
2068 * bio_disassociate_task - undo bio_associate_current()
2071 void bio_disassociate_task(struct bio
*bio
)
2074 put_io_context(bio
->bi_ioc
);
2078 css_put(bio
->bi_css
);
2084 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2085 * @dst: destination bio
2088 void bio_clone_blkcg_association(struct bio
*dst
, struct bio
*src
)
2091 WARN_ON(bio_associate_blkcg(dst
, src
->bi_css
));
2093 EXPORT_SYMBOL_GPL(bio_clone_blkcg_association
);
2094 #endif /* CONFIG_BLK_CGROUP */
2096 static void __init
biovec_init_slabs(void)
2100 for (i
= 0; i
< BVEC_POOL_NR
; i
++) {
2102 struct biovec_slab
*bvs
= bvec_slabs
+ i
;
2104 if (bvs
->nr_vecs
<= BIO_INLINE_VECS
) {
2109 size
= bvs
->nr_vecs
* sizeof(struct bio_vec
);
2110 bvs
->slab
= kmem_cache_create(bvs
->name
, size
, 0,
2111 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
2115 static int __init
init_bio(void)
2119 bio_slabs
= kcalloc(bio_slab_max
, sizeof(struct bio_slab
),
2122 panic("bio: can't allocate bios\n");
2124 bio_integrity_init();
2125 biovec_init_slabs();
2127 if (bioset_init(&fs_bio_set
, BIO_POOL_SIZE
, 0, BIOSET_NEED_BVECS
))
2128 panic("bio: can't allocate bios\n");
2130 if (bioset_integrity_create(&fs_bio_set
, BIO_POOL_SIZE
))
2131 panic("bio: can't create integrity pool\n");
2135 subsys_initcall(init_bio
);