Linux 4.18.10
[linux/fpc-iii.git] / block / blk-mq-sched.c
blobf5745acc2d98bedeb752f95e86ebca9603ee7033
1 /*
2 * blk-mq scheduling framework
4 * Copyright (C) 2016 Jens Axboe
5 */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
10 #include <trace/events/block.h>
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-debugfs.h"
15 #include "blk-mq-sched.h"
16 #include "blk-mq-tag.h"
17 #include "blk-wbt.h"
19 void blk_mq_sched_free_hctx_data(struct request_queue *q,
20 void (*exit)(struct blk_mq_hw_ctx *))
22 struct blk_mq_hw_ctx *hctx;
23 int i;
25 queue_for_each_hw_ctx(q, hctx, i) {
26 if (exit && hctx->sched_data)
27 exit(hctx);
28 kfree(hctx->sched_data);
29 hctx->sched_data = NULL;
32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
34 void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
36 struct request_queue *q = rq->q;
37 struct io_context *ioc = rq_ioc(bio);
38 struct io_cq *icq;
40 spin_lock_irq(q->queue_lock);
41 icq = ioc_lookup_icq(ioc, q);
42 spin_unlock_irq(q->queue_lock);
44 if (!icq) {
45 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
46 if (!icq)
47 return;
49 get_io_context(icq->ioc);
50 rq->elv.icq = icq;
54 * Mark a hardware queue as needing a restart. For shared queues, maintain
55 * a count of how many hardware queues are marked for restart.
57 static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
59 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
60 return;
62 if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
63 struct request_queue *q = hctx->queue;
65 if (!test_and_set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
66 atomic_inc(&q->shared_hctx_restart);
67 } else
68 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
71 static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
73 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
74 return false;
76 if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
77 struct request_queue *q = hctx->queue;
79 if (test_and_clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
80 atomic_dec(&q->shared_hctx_restart);
81 } else
82 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
84 return blk_mq_run_hw_queue(hctx, true);
88 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
89 * its queue by itself in its completion handler, so we don't need to
90 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
92 static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
94 struct request_queue *q = hctx->queue;
95 struct elevator_queue *e = q->elevator;
96 LIST_HEAD(rq_list);
98 do {
99 struct request *rq;
101 if (e->type->ops.mq.has_work &&
102 !e->type->ops.mq.has_work(hctx))
103 break;
105 if (!blk_mq_get_dispatch_budget(hctx))
106 break;
108 rq = e->type->ops.mq.dispatch_request(hctx);
109 if (!rq) {
110 blk_mq_put_dispatch_budget(hctx);
111 break;
115 * Now this rq owns the budget which has to be released
116 * if this rq won't be queued to driver via .queue_rq()
117 * in blk_mq_dispatch_rq_list().
119 list_add(&rq->queuelist, &rq_list);
120 } while (blk_mq_dispatch_rq_list(q, &rq_list, true));
123 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
124 struct blk_mq_ctx *ctx)
126 unsigned idx = ctx->index_hw;
128 if (++idx == hctx->nr_ctx)
129 idx = 0;
131 return hctx->ctxs[idx];
135 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
136 * its queue by itself in its completion handler, so we don't need to
137 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
139 static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
141 struct request_queue *q = hctx->queue;
142 LIST_HEAD(rq_list);
143 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
145 do {
146 struct request *rq;
148 if (!sbitmap_any_bit_set(&hctx->ctx_map))
149 break;
151 if (!blk_mq_get_dispatch_budget(hctx))
152 break;
154 rq = blk_mq_dequeue_from_ctx(hctx, ctx);
155 if (!rq) {
156 blk_mq_put_dispatch_budget(hctx);
157 break;
161 * Now this rq owns the budget which has to be released
162 * if this rq won't be queued to driver via .queue_rq()
163 * in blk_mq_dispatch_rq_list().
165 list_add(&rq->queuelist, &rq_list);
167 /* round robin for fair dispatch */
168 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
170 } while (blk_mq_dispatch_rq_list(q, &rq_list, true));
172 WRITE_ONCE(hctx->dispatch_from, ctx);
175 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
177 struct request_queue *q = hctx->queue;
178 struct elevator_queue *e = q->elevator;
179 const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
180 LIST_HEAD(rq_list);
182 /* RCU or SRCU read lock is needed before checking quiesced flag */
183 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
184 return;
186 hctx->run++;
189 * If we have previous entries on our dispatch list, grab them first for
190 * more fair dispatch.
192 if (!list_empty_careful(&hctx->dispatch)) {
193 spin_lock(&hctx->lock);
194 if (!list_empty(&hctx->dispatch))
195 list_splice_init(&hctx->dispatch, &rq_list);
196 spin_unlock(&hctx->lock);
200 * Only ask the scheduler for requests, if we didn't have residual
201 * requests from the dispatch list. This is to avoid the case where
202 * we only ever dispatch a fraction of the requests available because
203 * of low device queue depth. Once we pull requests out of the IO
204 * scheduler, we can no longer merge or sort them. So it's best to
205 * leave them there for as long as we can. Mark the hw queue as
206 * needing a restart in that case.
208 * We want to dispatch from the scheduler if there was nothing
209 * on the dispatch list or we were able to dispatch from the
210 * dispatch list.
212 if (!list_empty(&rq_list)) {
213 blk_mq_sched_mark_restart_hctx(hctx);
214 if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
215 if (has_sched_dispatch)
216 blk_mq_do_dispatch_sched(hctx);
217 else
218 blk_mq_do_dispatch_ctx(hctx);
220 } else if (has_sched_dispatch) {
221 blk_mq_do_dispatch_sched(hctx);
222 } else if (q->mq_ops->get_budget) {
224 * If we need to get budget before queuing request, we
225 * dequeue request one by one from sw queue for avoiding
226 * to mess up I/O merge when dispatch runs out of resource.
228 * TODO: get more budgets, and dequeue more requests in
229 * one time.
231 blk_mq_do_dispatch_ctx(hctx);
232 } else {
233 blk_mq_flush_busy_ctxs(hctx, &rq_list);
234 blk_mq_dispatch_rq_list(q, &rq_list, false);
238 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
239 struct request **merged_request)
241 struct request *rq;
243 switch (elv_merge(q, &rq, bio)) {
244 case ELEVATOR_BACK_MERGE:
245 if (!blk_mq_sched_allow_merge(q, rq, bio))
246 return false;
247 if (!bio_attempt_back_merge(q, rq, bio))
248 return false;
249 *merged_request = attempt_back_merge(q, rq);
250 if (!*merged_request)
251 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
252 return true;
253 case ELEVATOR_FRONT_MERGE:
254 if (!blk_mq_sched_allow_merge(q, rq, bio))
255 return false;
256 if (!bio_attempt_front_merge(q, rq, bio))
257 return false;
258 *merged_request = attempt_front_merge(q, rq);
259 if (!*merged_request)
260 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
261 return true;
262 case ELEVATOR_DISCARD_MERGE:
263 return bio_attempt_discard_merge(q, rq, bio);
264 default:
265 return false;
268 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
271 * Iterate list of requests and see if we can merge this bio with any
272 * of them.
274 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
275 struct bio *bio)
277 struct request *rq;
278 int checked = 8;
280 list_for_each_entry_reverse(rq, list, queuelist) {
281 bool merged = false;
283 if (!checked--)
284 break;
286 if (!blk_rq_merge_ok(rq, bio))
287 continue;
289 switch (blk_try_merge(rq, bio)) {
290 case ELEVATOR_BACK_MERGE:
291 if (blk_mq_sched_allow_merge(q, rq, bio))
292 merged = bio_attempt_back_merge(q, rq, bio);
293 break;
294 case ELEVATOR_FRONT_MERGE:
295 if (blk_mq_sched_allow_merge(q, rq, bio))
296 merged = bio_attempt_front_merge(q, rq, bio);
297 break;
298 case ELEVATOR_DISCARD_MERGE:
299 merged = bio_attempt_discard_merge(q, rq, bio);
300 break;
301 default:
302 continue;
305 return merged;
308 return false;
310 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);
313 * Reverse check our software queue for entries that we could potentially
314 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
315 * too much time checking for merges.
317 static bool blk_mq_attempt_merge(struct request_queue *q,
318 struct blk_mq_ctx *ctx, struct bio *bio)
320 lockdep_assert_held(&ctx->lock);
322 if (blk_mq_bio_list_merge(q, &ctx->rq_list, bio)) {
323 ctx->rq_merged++;
324 return true;
327 return false;
330 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
332 struct elevator_queue *e = q->elevator;
333 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
334 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
335 bool ret = false;
337 if (e && e->type->ops.mq.bio_merge) {
338 blk_mq_put_ctx(ctx);
339 return e->type->ops.mq.bio_merge(hctx, bio);
342 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
343 !list_empty_careful(&ctx->rq_list)) {
344 /* default per sw-queue merge */
345 spin_lock(&ctx->lock);
346 ret = blk_mq_attempt_merge(q, ctx, bio);
347 spin_unlock(&ctx->lock);
350 blk_mq_put_ctx(ctx);
351 return ret;
354 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
356 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
358 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
360 void blk_mq_sched_request_inserted(struct request *rq)
362 trace_block_rq_insert(rq->q, rq);
364 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
366 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
367 bool has_sched,
368 struct request *rq)
370 /* dispatch flush rq directly */
371 if (rq->rq_flags & RQF_FLUSH_SEQ) {
372 spin_lock(&hctx->lock);
373 list_add(&rq->queuelist, &hctx->dispatch);
374 spin_unlock(&hctx->lock);
375 return true;
378 if (has_sched)
379 rq->rq_flags |= RQF_SORTED;
381 return false;
385 * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list
386 * @pos: loop cursor.
387 * @skip: the list element that will not be examined. Iteration starts at
388 * @skip->next.
389 * @head: head of the list to examine. This list must have at least one
390 * element, namely @skip.
391 * @member: name of the list_head structure within typeof(*pos).
393 #define list_for_each_entry_rcu_rr(pos, skip, head, member) \
394 for ((pos) = (skip); \
395 (pos = (pos)->member.next != (head) ? list_entry_rcu( \
396 (pos)->member.next, typeof(*pos), member) : \
397 list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \
398 (pos) != (skip); )
401 * Called after a driver tag has been freed to check whether a hctx needs to
402 * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware
403 * queues in a round-robin fashion if the tag set of @hctx is shared with other
404 * hardware queues.
406 void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx)
408 struct blk_mq_tags *const tags = hctx->tags;
409 struct blk_mq_tag_set *const set = hctx->queue->tag_set;
410 struct request_queue *const queue = hctx->queue, *q;
411 struct blk_mq_hw_ctx *hctx2;
412 unsigned int i, j;
414 if (set->flags & BLK_MQ_F_TAG_SHARED) {
416 * If this is 0, then we know that no hardware queues
417 * have RESTART marked. We're done.
419 if (!atomic_read(&queue->shared_hctx_restart))
420 return;
422 rcu_read_lock();
423 list_for_each_entry_rcu_rr(q, queue, &set->tag_list,
424 tag_set_list) {
425 queue_for_each_hw_ctx(q, hctx2, i)
426 if (hctx2->tags == tags &&
427 blk_mq_sched_restart_hctx(hctx2))
428 goto done;
430 j = hctx->queue_num + 1;
431 for (i = 0; i < queue->nr_hw_queues; i++, j++) {
432 if (j == queue->nr_hw_queues)
433 j = 0;
434 hctx2 = queue->queue_hw_ctx[j];
435 if (hctx2->tags == tags &&
436 blk_mq_sched_restart_hctx(hctx2))
437 break;
439 done:
440 rcu_read_unlock();
441 } else {
442 blk_mq_sched_restart_hctx(hctx);
446 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
447 bool run_queue, bool async)
449 struct request_queue *q = rq->q;
450 struct elevator_queue *e = q->elevator;
451 struct blk_mq_ctx *ctx = rq->mq_ctx;
452 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
454 /* flush rq in flush machinery need to be dispatched directly */
455 if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
456 blk_insert_flush(rq);
457 goto run;
460 WARN_ON(e && (rq->tag != -1));
462 if (blk_mq_sched_bypass_insert(hctx, !!e, rq))
463 goto run;
465 if (e && e->type->ops.mq.insert_requests) {
466 LIST_HEAD(list);
468 list_add(&rq->queuelist, &list);
469 e->type->ops.mq.insert_requests(hctx, &list, at_head);
470 } else {
471 spin_lock(&ctx->lock);
472 __blk_mq_insert_request(hctx, rq, at_head);
473 spin_unlock(&ctx->lock);
476 run:
477 if (run_queue)
478 blk_mq_run_hw_queue(hctx, async);
481 void blk_mq_sched_insert_requests(struct request_queue *q,
482 struct blk_mq_ctx *ctx,
483 struct list_head *list, bool run_queue_async)
485 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
486 struct elevator_queue *e = hctx->queue->elevator;
488 if (e && e->type->ops.mq.insert_requests)
489 e->type->ops.mq.insert_requests(hctx, list, false);
490 else
491 blk_mq_insert_requests(hctx, ctx, list);
493 blk_mq_run_hw_queue(hctx, run_queue_async);
496 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
497 struct blk_mq_hw_ctx *hctx,
498 unsigned int hctx_idx)
500 if (hctx->sched_tags) {
501 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
502 blk_mq_free_rq_map(hctx->sched_tags);
503 hctx->sched_tags = NULL;
507 static int blk_mq_sched_alloc_tags(struct request_queue *q,
508 struct blk_mq_hw_ctx *hctx,
509 unsigned int hctx_idx)
511 struct blk_mq_tag_set *set = q->tag_set;
512 int ret;
514 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
515 set->reserved_tags);
516 if (!hctx->sched_tags)
517 return -ENOMEM;
519 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
520 if (ret)
521 blk_mq_sched_free_tags(set, hctx, hctx_idx);
523 return ret;
526 static void blk_mq_sched_tags_teardown(struct request_queue *q)
528 struct blk_mq_tag_set *set = q->tag_set;
529 struct blk_mq_hw_ctx *hctx;
530 int i;
532 queue_for_each_hw_ctx(q, hctx, i)
533 blk_mq_sched_free_tags(set, hctx, i);
536 int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
537 unsigned int hctx_idx)
539 struct elevator_queue *e = q->elevator;
540 int ret;
542 if (!e)
543 return 0;
545 ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
546 if (ret)
547 return ret;
549 if (e->type->ops.mq.init_hctx) {
550 ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
551 if (ret) {
552 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
553 return ret;
557 blk_mq_debugfs_register_sched_hctx(q, hctx);
559 return 0;
562 void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
563 unsigned int hctx_idx)
565 struct elevator_queue *e = q->elevator;
567 if (!e)
568 return;
570 blk_mq_debugfs_unregister_sched_hctx(hctx);
572 if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
573 e->type->ops.mq.exit_hctx(hctx, hctx_idx);
574 hctx->sched_data = NULL;
577 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
580 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
582 struct blk_mq_hw_ctx *hctx;
583 struct elevator_queue *eq;
584 unsigned int i;
585 int ret;
587 if (!e) {
588 q->elevator = NULL;
589 q->nr_requests = q->tag_set->queue_depth;
590 return 0;
594 * Default to double of smaller one between hw queue_depth and 128,
595 * since we don't split into sync/async like the old code did.
596 * Additionally, this is a per-hw queue depth.
598 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
599 BLKDEV_MAX_RQ);
601 queue_for_each_hw_ctx(q, hctx, i) {
602 ret = blk_mq_sched_alloc_tags(q, hctx, i);
603 if (ret)
604 goto err;
607 ret = e->ops.mq.init_sched(q, e);
608 if (ret)
609 goto err;
611 blk_mq_debugfs_register_sched(q);
613 queue_for_each_hw_ctx(q, hctx, i) {
614 if (e->ops.mq.init_hctx) {
615 ret = e->ops.mq.init_hctx(hctx, i);
616 if (ret) {
617 eq = q->elevator;
618 blk_mq_exit_sched(q, eq);
619 kobject_put(&eq->kobj);
620 return ret;
623 blk_mq_debugfs_register_sched_hctx(q, hctx);
626 return 0;
628 err:
629 blk_mq_sched_tags_teardown(q);
630 q->elevator = NULL;
631 return ret;
634 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
636 struct blk_mq_hw_ctx *hctx;
637 unsigned int i;
639 queue_for_each_hw_ctx(q, hctx, i) {
640 blk_mq_debugfs_unregister_sched_hctx(hctx);
641 if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
642 e->type->ops.mq.exit_hctx(hctx, i);
643 hctx->sched_data = NULL;
646 blk_mq_debugfs_unregister_sched(q);
647 if (e->type->ops.mq.exit_sched)
648 e->type->ops.mq.exit_sched(e);
649 blk_mq_sched_tags_teardown(q);
650 q->elevator = NULL;