Linux 4.18.10
[linux/fpc-iii.git] / block / blk-mq.c
blob2f9e14361673f40e43d3f440d8889914c1bf753f
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 int ddir, bytes, bucket;
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
51 bucket = ddir + 2*(ilog2(bytes) - 9);
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58 return bucket;
62 * Check if any of the ctx's have pending work in this hardware queue
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
72 * Mark this ctx as having pending work in this hardware queue
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
96 struct mq_inflight *mi = priv;
99 * index[0] counts the specific partition that was asked for. index[1]
100 * counts the ones that are active on the whole device, so increment
101 * that if mi->part is indeed a partition, and not a whole device.
103 if (rq->part == mi->part)
104 mi->inflight[0]++;
105 if (mi->part->partno)
106 mi->inflight[1]++;
109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
110 unsigned int inflight[2])
112 struct mq_inflight mi = { .part = part, .inflight = inflight, };
114 inflight[0] = inflight[1] = 0;
115 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
119 struct request *rq, void *priv,
120 bool reserved)
122 struct mq_inflight *mi = priv;
124 if (rq->part == mi->part)
125 mi->inflight[rq_data_dir(rq)]++;
128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
129 unsigned int inflight[2])
131 struct mq_inflight mi = { .part = part, .inflight = inflight, };
133 inflight[0] = inflight[1] = 0;
134 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
137 void blk_freeze_queue_start(struct request_queue *q)
139 int freeze_depth;
141 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
142 if (freeze_depth == 1) {
143 percpu_ref_kill(&q->q_usage_counter);
144 if (q->mq_ops)
145 blk_mq_run_hw_queues(q, false);
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
150 void blk_mq_freeze_queue_wait(struct request_queue *q)
152 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157 unsigned long timeout)
159 return wait_event_timeout(q->mq_freeze_wq,
160 percpu_ref_is_zero(&q->q_usage_counter),
161 timeout);
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
166 * Guarantee no request is in use, so we can change any data structure of
167 * the queue afterward.
169 void blk_freeze_queue(struct request_queue *q)
172 * In the !blk_mq case we are only calling this to kill the
173 * q_usage_counter, otherwise this increases the freeze depth
174 * and waits for it to return to zero. For this reason there is
175 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176 * exported to drivers as the only user for unfreeze is blk_mq.
178 blk_freeze_queue_start(q);
179 if (!q->mq_ops)
180 blk_drain_queue(q);
181 blk_mq_freeze_queue_wait(q);
184 void blk_mq_freeze_queue(struct request_queue *q)
187 * ...just an alias to keep freeze and unfreeze actions balanced
188 * in the blk_mq_* namespace
190 blk_freeze_queue(q);
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
194 void blk_mq_unfreeze_queue(struct request_queue *q)
196 int freeze_depth;
198 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
199 WARN_ON_ONCE(freeze_depth < 0);
200 if (!freeze_depth) {
201 percpu_ref_reinit(&q->q_usage_counter);
202 wake_up_all(&q->mq_freeze_wq);
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
208 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209 * mpt3sas driver such that this function can be removed.
211 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
213 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
218 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219 * @q: request queue.
221 * Note: this function does not prevent that the struct request end_io()
222 * callback function is invoked. Once this function is returned, we make
223 * sure no dispatch can happen until the queue is unquiesced via
224 * blk_mq_unquiesce_queue().
226 void blk_mq_quiesce_queue(struct request_queue *q)
228 struct blk_mq_hw_ctx *hctx;
229 unsigned int i;
230 bool rcu = false;
232 blk_mq_quiesce_queue_nowait(q);
234 queue_for_each_hw_ctx(q, hctx, i) {
235 if (hctx->flags & BLK_MQ_F_BLOCKING)
236 synchronize_srcu(hctx->srcu);
237 else
238 rcu = true;
240 if (rcu)
241 synchronize_rcu();
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
246 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
247 * @q: request queue.
249 * This function recovers queue into the state before quiescing
250 * which is done by blk_mq_quiesce_queue.
252 void blk_mq_unquiesce_queue(struct request_queue *q)
254 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
256 /* dispatch requests which are inserted during quiescing */
257 blk_mq_run_hw_queues(q, true);
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
261 void blk_mq_wake_waiters(struct request_queue *q)
263 struct blk_mq_hw_ctx *hctx;
264 unsigned int i;
266 queue_for_each_hw_ctx(q, hctx, i)
267 if (blk_mq_hw_queue_mapped(hctx))
268 blk_mq_tag_wakeup_all(hctx->tags, true);
271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
273 return blk_mq_has_free_tags(hctx->tags);
275 EXPORT_SYMBOL(blk_mq_can_queue);
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 unsigned int tag, unsigned int op)
280 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 struct request *rq = tags->static_rqs[tag];
282 req_flags_t rq_flags = 0;
284 if (data->flags & BLK_MQ_REQ_INTERNAL) {
285 rq->tag = -1;
286 rq->internal_tag = tag;
287 } else {
288 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
289 rq_flags = RQF_MQ_INFLIGHT;
290 atomic_inc(&data->hctx->nr_active);
292 rq->tag = tag;
293 rq->internal_tag = -1;
294 data->hctx->tags->rqs[rq->tag] = rq;
297 /* csd/requeue_work/fifo_time is initialized before use */
298 rq->q = data->q;
299 rq->mq_ctx = data->ctx;
300 rq->rq_flags = rq_flags;
301 rq->cpu = -1;
302 rq->cmd_flags = op;
303 if (data->flags & BLK_MQ_REQ_PREEMPT)
304 rq->rq_flags |= RQF_PREEMPT;
305 if (blk_queue_io_stat(data->q))
306 rq->rq_flags |= RQF_IO_STAT;
307 INIT_LIST_HEAD(&rq->queuelist);
308 INIT_HLIST_NODE(&rq->hash);
309 RB_CLEAR_NODE(&rq->rb_node);
310 rq->rq_disk = NULL;
311 rq->part = NULL;
312 rq->start_time_ns = ktime_get_ns();
313 rq->io_start_time_ns = 0;
314 rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316 rq->nr_integrity_segments = 0;
317 #endif
318 rq->special = NULL;
319 /* tag was already set */
320 rq->extra_len = 0;
321 rq->__deadline = 0;
323 INIT_LIST_HEAD(&rq->timeout_list);
324 rq->timeout = 0;
326 rq->end_io = NULL;
327 rq->end_io_data = NULL;
328 rq->next_rq = NULL;
330 #ifdef CONFIG_BLK_CGROUP
331 rq->rl = NULL;
332 #endif
334 data->ctx->rq_dispatched[op_is_sync(op)]++;
335 refcount_set(&rq->ref, 1);
336 return rq;
339 static struct request *blk_mq_get_request(struct request_queue *q,
340 struct bio *bio, unsigned int op,
341 struct blk_mq_alloc_data *data)
343 struct elevator_queue *e = q->elevator;
344 struct request *rq;
345 unsigned int tag;
346 bool put_ctx_on_error = false;
348 blk_queue_enter_live(q);
349 data->q = q;
350 if (likely(!data->ctx)) {
351 data->ctx = blk_mq_get_ctx(q);
352 put_ctx_on_error = true;
354 if (likely(!data->hctx))
355 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356 if (op & REQ_NOWAIT)
357 data->flags |= BLK_MQ_REQ_NOWAIT;
359 if (e) {
360 data->flags |= BLK_MQ_REQ_INTERNAL;
363 * Flush requests are special and go directly to the
364 * dispatch list. Don't include reserved tags in the
365 * limiting, as it isn't useful.
367 if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
368 !(data->flags & BLK_MQ_REQ_RESERVED))
369 e->type->ops.mq.limit_depth(op, data);
370 } else {
371 blk_mq_tag_busy(data->hctx);
374 tag = blk_mq_get_tag(data);
375 if (tag == BLK_MQ_TAG_FAIL) {
376 if (put_ctx_on_error) {
377 blk_mq_put_ctx(data->ctx);
378 data->ctx = NULL;
380 blk_queue_exit(q);
381 return NULL;
384 rq = blk_mq_rq_ctx_init(data, tag, op);
385 if (!op_is_flush(op)) {
386 rq->elv.icq = NULL;
387 if (e && e->type->ops.mq.prepare_request) {
388 if (e->type->icq_cache && rq_ioc(bio))
389 blk_mq_sched_assign_ioc(rq, bio);
391 e->type->ops.mq.prepare_request(rq, bio);
392 rq->rq_flags |= RQF_ELVPRIV;
395 data->hctx->queued++;
396 return rq;
399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400 blk_mq_req_flags_t flags)
402 struct blk_mq_alloc_data alloc_data = { .flags = flags };
403 struct request *rq;
404 int ret;
406 ret = blk_queue_enter(q, flags);
407 if (ret)
408 return ERR_PTR(ret);
410 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
411 blk_queue_exit(q);
413 if (!rq)
414 return ERR_PTR(-EWOULDBLOCK);
416 blk_mq_put_ctx(alloc_data.ctx);
418 rq->__data_len = 0;
419 rq->__sector = (sector_t) -1;
420 rq->bio = rq->biotail = NULL;
421 return rq;
423 EXPORT_SYMBOL(blk_mq_alloc_request);
425 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
426 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
428 struct blk_mq_alloc_data alloc_data = { .flags = flags };
429 struct request *rq;
430 unsigned int cpu;
431 int ret;
434 * If the tag allocator sleeps we could get an allocation for a
435 * different hardware context. No need to complicate the low level
436 * allocator for this for the rare use case of a command tied to
437 * a specific queue.
439 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
440 return ERR_PTR(-EINVAL);
442 if (hctx_idx >= q->nr_hw_queues)
443 return ERR_PTR(-EIO);
445 ret = blk_queue_enter(q, flags);
446 if (ret)
447 return ERR_PTR(ret);
450 * Check if the hardware context is actually mapped to anything.
451 * If not tell the caller that it should skip this queue.
453 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
454 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
455 blk_queue_exit(q);
456 return ERR_PTR(-EXDEV);
458 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
459 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
461 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
462 blk_queue_exit(q);
464 if (!rq)
465 return ERR_PTR(-EWOULDBLOCK);
467 return rq;
469 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
471 static void __blk_mq_free_request(struct request *rq)
473 struct request_queue *q = rq->q;
474 struct blk_mq_ctx *ctx = rq->mq_ctx;
475 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
476 const int sched_tag = rq->internal_tag;
478 if (rq->tag != -1)
479 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
480 if (sched_tag != -1)
481 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
482 blk_mq_sched_restart(hctx);
483 blk_queue_exit(q);
486 void blk_mq_free_request(struct request *rq)
488 struct request_queue *q = rq->q;
489 struct elevator_queue *e = q->elevator;
490 struct blk_mq_ctx *ctx = rq->mq_ctx;
491 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
493 if (rq->rq_flags & RQF_ELVPRIV) {
494 if (e && e->type->ops.mq.finish_request)
495 e->type->ops.mq.finish_request(rq);
496 if (rq->elv.icq) {
497 put_io_context(rq->elv.icq->ioc);
498 rq->elv.icq = NULL;
502 ctx->rq_completed[rq_is_sync(rq)]++;
503 if (rq->rq_flags & RQF_MQ_INFLIGHT)
504 atomic_dec(&hctx->nr_active);
506 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
507 laptop_io_completion(q->backing_dev_info);
509 wbt_done(q->rq_wb, rq);
511 if (blk_rq_rl(rq))
512 blk_put_rl(blk_rq_rl(rq));
514 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
515 if (refcount_dec_and_test(&rq->ref))
516 __blk_mq_free_request(rq);
518 EXPORT_SYMBOL_GPL(blk_mq_free_request);
520 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
522 u64 now = ktime_get_ns();
524 if (rq->rq_flags & RQF_STATS) {
525 blk_mq_poll_stats_start(rq->q);
526 blk_stat_add(rq, now);
529 blk_account_io_done(rq, now);
531 if (rq->end_io) {
532 wbt_done(rq->q->rq_wb, rq);
533 rq->end_io(rq, error);
534 } else {
535 if (unlikely(blk_bidi_rq(rq)))
536 blk_mq_free_request(rq->next_rq);
537 blk_mq_free_request(rq);
540 EXPORT_SYMBOL(__blk_mq_end_request);
542 void blk_mq_end_request(struct request *rq, blk_status_t error)
544 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
545 BUG();
546 __blk_mq_end_request(rq, error);
548 EXPORT_SYMBOL(blk_mq_end_request);
550 static void __blk_mq_complete_request_remote(void *data)
552 struct request *rq = data;
554 rq->q->softirq_done_fn(rq);
557 static void __blk_mq_complete_request(struct request *rq)
559 struct blk_mq_ctx *ctx = rq->mq_ctx;
560 bool shared = false;
561 int cpu;
563 if (!blk_mq_mark_complete(rq))
564 return;
565 if (rq->internal_tag != -1)
566 blk_mq_sched_completed_request(rq);
568 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
569 rq->q->softirq_done_fn(rq);
570 return;
573 cpu = get_cpu();
574 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
575 shared = cpus_share_cache(cpu, ctx->cpu);
577 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
578 rq->csd.func = __blk_mq_complete_request_remote;
579 rq->csd.info = rq;
580 rq->csd.flags = 0;
581 smp_call_function_single_async(ctx->cpu, &rq->csd);
582 } else {
583 rq->q->softirq_done_fn(rq);
585 put_cpu();
588 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
589 __releases(hctx->srcu)
591 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
592 rcu_read_unlock();
593 else
594 srcu_read_unlock(hctx->srcu, srcu_idx);
597 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
598 __acquires(hctx->srcu)
600 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
601 /* shut up gcc false positive */
602 *srcu_idx = 0;
603 rcu_read_lock();
604 } else
605 *srcu_idx = srcu_read_lock(hctx->srcu);
609 * blk_mq_complete_request - end I/O on a request
610 * @rq: the request being processed
612 * Description:
613 * Ends all I/O on a request. It does not handle partial completions.
614 * The actual completion happens out-of-order, through a IPI handler.
616 void blk_mq_complete_request(struct request *rq)
618 if (unlikely(blk_should_fake_timeout(rq->q)))
619 return;
620 __blk_mq_complete_request(rq);
622 EXPORT_SYMBOL(blk_mq_complete_request);
624 int blk_mq_request_started(struct request *rq)
626 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
628 EXPORT_SYMBOL_GPL(blk_mq_request_started);
630 void blk_mq_start_request(struct request *rq)
632 struct request_queue *q = rq->q;
634 blk_mq_sched_started_request(rq);
636 trace_block_rq_issue(q, rq);
638 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
639 rq->io_start_time_ns = ktime_get_ns();
640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
641 rq->throtl_size = blk_rq_sectors(rq);
642 #endif
643 rq->rq_flags |= RQF_STATS;
644 wbt_issue(q->rq_wb, rq);
647 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
649 blk_add_timer(rq);
650 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
652 if (q->dma_drain_size && blk_rq_bytes(rq)) {
654 * Make sure space for the drain appears. We know we can do
655 * this because max_hw_segments has been adjusted to be one
656 * fewer than the device can handle.
658 rq->nr_phys_segments++;
661 EXPORT_SYMBOL(blk_mq_start_request);
663 static void __blk_mq_requeue_request(struct request *rq)
665 struct request_queue *q = rq->q;
667 blk_mq_put_driver_tag(rq);
669 trace_block_rq_requeue(q, rq);
670 wbt_requeue(q->rq_wb, rq);
672 if (blk_mq_request_started(rq)) {
673 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
674 rq->rq_flags &= ~RQF_TIMED_OUT;
675 if (q->dma_drain_size && blk_rq_bytes(rq))
676 rq->nr_phys_segments--;
680 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
682 __blk_mq_requeue_request(rq);
684 /* this request will be re-inserted to io scheduler queue */
685 blk_mq_sched_requeue_request(rq);
687 BUG_ON(blk_queued_rq(rq));
688 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
690 EXPORT_SYMBOL(blk_mq_requeue_request);
692 static void blk_mq_requeue_work(struct work_struct *work)
694 struct request_queue *q =
695 container_of(work, struct request_queue, requeue_work.work);
696 LIST_HEAD(rq_list);
697 struct request *rq, *next;
699 spin_lock_irq(&q->requeue_lock);
700 list_splice_init(&q->requeue_list, &rq_list);
701 spin_unlock_irq(&q->requeue_lock);
703 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
704 if (!(rq->rq_flags & RQF_SOFTBARRIER))
705 continue;
707 rq->rq_flags &= ~RQF_SOFTBARRIER;
708 list_del_init(&rq->queuelist);
709 blk_mq_sched_insert_request(rq, true, false, false);
712 while (!list_empty(&rq_list)) {
713 rq = list_entry(rq_list.next, struct request, queuelist);
714 list_del_init(&rq->queuelist);
715 blk_mq_sched_insert_request(rq, false, false, false);
718 blk_mq_run_hw_queues(q, false);
721 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
722 bool kick_requeue_list)
724 struct request_queue *q = rq->q;
725 unsigned long flags;
728 * We abuse this flag that is otherwise used by the I/O scheduler to
729 * request head insertion from the workqueue.
731 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
733 spin_lock_irqsave(&q->requeue_lock, flags);
734 if (at_head) {
735 rq->rq_flags |= RQF_SOFTBARRIER;
736 list_add(&rq->queuelist, &q->requeue_list);
737 } else {
738 list_add_tail(&rq->queuelist, &q->requeue_list);
740 spin_unlock_irqrestore(&q->requeue_lock, flags);
742 if (kick_requeue_list)
743 blk_mq_kick_requeue_list(q);
745 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
747 void blk_mq_kick_requeue_list(struct request_queue *q)
749 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
751 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
753 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
754 unsigned long msecs)
756 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
757 msecs_to_jiffies(msecs));
759 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
761 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
763 if (tag < tags->nr_tags) {
764 prefetch(tags->rqs[tag]);
765 return tags->rqs[tag];
768 return NULL;
770 EXPORT_SYMBOL(blk_mq_tag_to_rq);
772 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
774 req->rq_flags |= RQF_TIMED_OUT;
775 if (req->q->mq_ops->timeout) {
776 enum blk_eh_timer_return ret;
778 ret = req->q->mq_ops->timeout(req, reserved);
779 if (ret == BLK_EH_DONE)
780 return;
781 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
784 blk_add_timer(req);
787 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
789 unsigned long deadline;
791 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
792 return false;
793 if (rq->rq_flags & RQF_TIMED_OUT)
794 return false;
796 deadline = blk_rq_deadline(rq);
797 if (time_after_eq(jiffies, deadline))
798 return true;
800 if (*next == 0)
801 *next = deadline;
802 else if (time_after(*next, deadline))
803 *next = deadline;
804 return false;
807 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
808 struct request *rq, void *priv, bool reserved)
810 unsigned long *next = priv;
813 * Just do a quick check if it is expired before locking the request in
814 * so we're not unnecessarilly synchronizing across CPUs.
816 if (!blk_mq_req_expired(rq, next))
817 return;
820 * We have reason to believe the request may be expired. Take a
821 * reference on the request to lock this request lifetime into its
822 * currently allocated context to prevent it from being reallocated in
823 * the event the completion by-passes this timeout handler.
825 * If the reference was already released, then the driver beat the
826 * timeout handler to posting a natural completion.
828 if (!refcount_inc_not_zero(&rq->ref))
829 return;
832 * The request is now locked and cannot be reallocated underneath the
833 * timeout handler's processing. Re-verify this exact request is truly
834 * expired; if it is not expired, then the request was completed and
835 * reallocated as a new request.
837 if (blk_mq_req_expired(rq, next))
838 blk_mq_rq_timed_out(rq, reserved);
839 if (refcount_dec_and_test(&rq->ref))
840 __blk_mq_free_request(rq);
843 static void blk_mq_timeout_work(struct work_struct *work)
845 struct request_queue *q =
846 container_of(work, struct request_queue, timeout_work);
847 unsigned long next = 0;
848 struct blk_mq_hw_ctx *hctx;
849 int i;
851 /* A deadlock might occur if a request is stuck requiring a
852 * timeout at the same time a queue freeze is waiting
853 * completion, since the timeout code would not be able to
854 * acquire the queue reference here.
856 * That's why we don't use blk_queue_enter here; instead, we use
857 * percpu_ref_tryget directly, because we need to be able to
858 * obtain a reference even in the short window between the queue
859 * starting to freeze, by dropping the first reference in
860 * blk_freeze_queue_start, and the moment the last request is
861 * consumed, marked by the instant q_usage_counter reaches
862 * zero.
864 if (!percpu_ref_tryget(&q->q_usage_counter))
865 return;
867 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
869 if (next != 0) {
870 mod_timer(&q->timeout, next);
871 } else {
873 * Request timeouts are handled as a forward rolling timer. If
874 * we end up here it means that no requests are pending and
875 * also that no request has been pending for a while. Mark
876 * each hctx as idle.
878 queue_for_each_hw_ctx(q, hctx, i) {
879 /* the hctx may be unmapped, so check it here */
880 if (blk_mq_hw_queue_mapped(hctx))
881 blk_mq_tag_idle(hctx);
884 blk_queue_exit(q);
887 struct flush_busy_ctx_data {
888 struct blk_mq_hw_ctx *hctx;
889 struct list_head *list;
892 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
894 struct flush_busy_ctx_data *flush_data = data;
895 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
896 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
898 spin_lock(&ctx->lock);
899 list_splice_tail_init(&ctx->rq_list, flush_data->list);
900 sbitmap_clear_bit(sb, bitnr);
901 spin_unlock(&ctx->lock);
902 return true;
906 * Process software queues that have been marked busy, splicing them
907 * to the for-dispatch
909 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
911 struct flush_busy_ctx_data data = {
912 .hctx = hctx,
913 .list = list,
916 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
918 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
920 struct dispatch_rq_data {
921 struct blk_mq_hw_ctx *hctx;
922 struct request *rq;
925 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
926 void *data)
928 struct dispatch_rq_data *dispatch_data = data;
929 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
930 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
932 spin_lock(&ctx->lock);
933 if (!list_empty(&ctx->rq_list)) {
934 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
935 list_del_init(&dispatch_data->rq->queuelist);
936 if (list_empty(&ctx->rq_list))
937 sbitmap_clear_bit(sb, bitnr);
939 spin_unlock(&ctx->lock);
941 return !dispatch_data->rq;
944 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
945 struct blk_mq_ctx *start)
947 unsigned off = start ? start->index_hw : 0;
948 struct dispatch_rq_data data = {
949 .hctx = hctx,
950 .rq = NULL,
953 __sbitmap_for_each_set(&hctx->ctx_map, off,
954 dispatch_rq_from_ctx, &data);
956 return data.rq;
959 static inline unsigned int queued_to_index(unsigned int queued)
961 if (!queued)
962 return 0;
964 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
967 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
968 bool wait)
970 struct blk_mq_alloc_data data = {
971 .q = rq->q,
972 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
973 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
975 bool shared;
977 might_sleep_if(wait);
979 if (rq->tag != -1)
980 goto done;
982 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
983 data.flags |= BLK_MQ_REQ_RESERVED;
985 shared = blk_mq_tag_busy(data.hctx);
986 rq->tag = blk_mq_get_tag(&data);
987 if (rq->tag >= 0) {
988 if (shared) {
989 rq->rq_flags |= RQF_MQ_INFLIGHT;
990 atomic_inc(&data.hctx->nr_active);
992 data.hctx->tags->rqs[rq->tag] = rq;
995 done:
996 if (hctx)
997 *hctx = data.hctx;
998 return rq->tag != -1;
1001 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1002 int flags, void *key)
1004 struct blk_mq_hw_ctx *hctx;
1006 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1008 list_del_init(&wait->entry);
1009 blk_mq_run_hw_queue(hctx, true);
1010 return 1;
1014 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1015 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1016 * restart. For both cases, take care to check the condition again after
1017 * marking us as waiting.
1019 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1020 struct request *rq)
1022 struct blk_mq_hw_ctx *this_hctx = *hctx;
1023 struct sbq_wait_state *ws;
1024 wait_queue_entry_t *wait;
1025 bool ret;
1027 if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1028 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1029 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1032 * It's possible that a tag was freed in the window between the
1033 * allocation failure and adding the hardware queue to the wait
1034 * queue.
1036 * Don't clear RESTART here, someone else could have set it.
1037 * At most this will cost an extra queue run.
1039 return blk_mq_get_driver_tag(rq, hctx, false);
1042 wait = &this_hctx->dispatch_wait;
1043 if (!list_empty_careful(&wait->entry))
1044 return false;
1046 spin_lock(&this_hctx->lock);
1047 if (!list_empty(&wait->entry)) {
1048 spin_unlock(&this_hctx->lock);
1049 return false;
1052 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1053 add_wait_queue(&ws->wait, wait);
1056 * It's possible that a tag was freed in the window between the
1057 * allocation failure and adding the hardware queue to the wait
1058 * queue.
1060 ret = blk_mq_get_driver_tag(rq, hctx, false);
1061 if (!ret) {
1062 spin_unlock(&this_hctx->lock);
1063 return false;
1067 * We got a tag, remove ourselves from the wait queue to ensure
1068 * someone else gets the wakeup.
1070 spin_lock_irq(&ws->wait.lock);
1071 list_del_init(&wait->entry);
1072 spin_unlock_irq(&ws->wait.lock);
1073 spin_unlock(&this_hctx->lock);
1075 return true;
1078 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1081 * Returns true if we did some work AND can potentially do more.
1083 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1084 bool got_budget)
1086 struct blk_mq_hw_ctx *hctx;
1087 struct request *rq, *nxt;
1088 bool no_tag = false;
1089 int errors, queued;
1090 blk_status_t ret = BLK_STS_OK;
1092 if (list_empty(list))
1093 return false;
1095 WARN_ON(!list_is_singular(list) && got_budget);
1098 * Now process all the entries, sending them to the driver.
1100 errors = queued = 0;
1101 do {
1102 struct blk_mq_queue_data bd;
1104 rq = list_first_entry(list, struct request, queuelist);
1106 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1107 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1108 break;
1110 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1112 * The initial allocation attempt failed, so we need to
1113 * rerun the hardware queue when a tag is freed. The
1114 * waitqueue takes care of that. If the queue is run
1115 * before we add this entry back on the dispatch list,
1116 * we'll re-run it below.
1118 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1119 blk_mq_put_dispatch_budget(hctx);
1121 * For non-shared tags, the RESTART check
1122 * will suffice.
1124 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1125 no_tag = true;
1126 break;
1130 list_del_init(&rq->queuelist);
1132 bd.rq = rq;
1135 * Flag last if we have no more requests, or if we have more
1136 * but can't assign a driver tag to it.
1138 if (list_empty(list))
1139 bd.last = true;
1140 else {
1141 nxt = list_first_entry(list, struct request, queuelist);
1142 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1145 ret = q->mq_ops->queue_rq(hctx, &bd);
1146 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1148 * If an I/O scheduler has been configured and we got a
1149 * driver tag for the next request already, free it
1150 * again.
1152 if (!list_empty(list)) {
1153 nxt = list_first_entry(list, struct request, queuelist);
1154 blk_mq_put_driver_tag(nxt);
1156 list_add(&rq->queuelist, list);
1157 __blk_mq_requeue_request(rq);
1158 break;
1161 if (unlikely(ret != BLK_STS_OK)) {
1162 errors++;
1163 blk_mq_end_request(rq, BLK_STS_IOERR);
1164 continue;
1167 queued++;
1168 } while (!list_empty(list));
1170 hctx->dispatched[queued_to_index(queued)]++;
1173 * Any items that need requeuing? Stuff them into hctx->dispatch,
1174 * that is where we will continue on next queue run.
1176 if (!list_empty(list)) {
1177 bool needs_restart;
1179 spin_lock(&hctx->lock);
1180 list_splice_init(list, &hctx->dispatch);
1181 spin_unlock(&hctx->lock);
1184 * If SCHED_RESTART was set by the caller of this function and
1185 * it is no longer set that means that it was cleared by another
1186 * thread and hence that a queue rerun is needed.
1188 * If 'no_tag' is set, that means that we failed getting
1189 * a driver tag with an I/O scheduler attached. If our dispatch
1190 * waitqueue is no longer active, ensure that we run the queue
1191 * AFTER adding our entries back to the list.
1193 * If no I/O scheduler has been configured it is possible that
1194 * the hardware queue got stopped and restarted before requests
1195 * were pushed back onto the dispatch list. Rerun the queue to
1196 * avoid starvation. Notes:
1197 * - blk_mq_run_hw_queue() checks whether or not a queue has
1198 * been stopped before rerunning a queue.
1199 * - Some but not all block drivers stop a queue before
1200 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1201 * and dm-rq.
1203 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1204 * bit is set, run queue after a delay to avoid IO stalls
1205 * that could otherwise occur if the queue is idle.
1207 needs_restart = blk_mq_sched_needs_restart(hctx);
1208 if (!needs_restart ||
1209 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1210 blk_mq_run_hw_queue(hctx, true);
1211 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1212 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1214 return false;
1218 * If the host/device is unable to accept more work, inform the
1219 * caller of that.
1221 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1222 return false;
1224 return (queued + errors) != 0;
1227 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1229 int srcu_idx;
1232 * We should be running this queue from one of the CPUs that
1233 * are mapped to it.
1235 * There are at least two related races now between setting
1236 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1237 * __blk_mq_run_hw_queue():
1239 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1240 * but later it becomes online, then this warning is harmless
1241 * at all
1243 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1244 * but later it becomes offline, then the warning can't be
1245 * triggered, and we depend on blk-mq timeout handler to
1246 * handle dispatched requests to this hctx
1248 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1249 cpu_online(hctx->next_cpu)) {
1250 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1251 raw_smp_processor_id(),
1252 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1253 dump_stack();
1257 * We can't run the queue inline with ints disabled. Ensure that
1258 * we catch bad users of this early.
1260 WARN_ON_ONCE(in_interrupt());
1262 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1264 hctx_lock(hctx, &srcu_idx);
1265 blk_mq_sched_dispatch_requests(hctx);
1266 hctx_unlock(hctx, srcu_idx);
1269 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1271 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1273 if (cpu >= nr_cpu_ids)
1274 cpu = cpumask_first(hctx->cpumask);
1275 return cpu;
1279 * It'd be great if the workqueue API had a way to pass
1280 * in a mask and had some smarts for more clever placement.
1281 * For now we just round-robin here, switching for every
1282 * BLK_MQ_CPU_WORK_BATCH queued items.
1284 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1286 bool tried = false;
1287 int next_cpu = hctx->next_cpu;
1289 if (hctx->queue->nr_hw_queues == 1)
1290 return WORK_CPU_UNBOUND;
1292 if (--hctx->next_cpu_batch <= 0) {
1293 select_cpu:
1294 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1295 cpu_online_mask);
1296 if (next_cpu >= nr_cpu_ids)
1297 next_cpu = blk_mq_first_mapped_cpu(hctx);
1298 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1302 * Do unbound schedule if we can't find a online CPU for this hctx,
1303 * and it should only happen in the path of handling CPU DEAD.
1305 if (!cpu_online(next_cpu)) {
1306 if (!tried) {
1307 tried = true;
1308 goto select_cpu;
1312 * Make sure to re-select CPU next time once after CPUs
1313 * in hctx->cpumask become online again.
1315 hctx->next_cpu = next_cpu;
1316 hctx->next_cpu_batch = 1;
1317 return WORK_CPU_UNBOUND;
1320 hctx->next_cpu = next_cpu;
1321 return next_cpu;
1324 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1325 unsigned long msecs)
1327 if (unlikely(blk_mq_hctx_stopped(hctx)))
1328 return;
1330 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1331 int cpu = get_cpu();
1332 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1333 __blk_mq_run_hw_queue(hctx);
1334 put_cpu();
1335 return;
1338 put_cpu();
1341 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1342 msecs_to_jiffies(msecs));
1345 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1347 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1349 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1351 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1353 int srcu_idx;
1354 bool need_run;
1357 * When queue is quiesced, we may be switching io scheduler, or
1358 * updating nr_hw_queues, or other things, and we can't run queue
1359 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1361 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1362 * quiesced.
1364 hctx_lock(hctx, &srcu_idx);
1365 need_run = !blk_queue_quiesced(hctx->queue) &&
1366 blk_mq_hctx_has_pending(hctx);
1367 hctx_unlock(hctx, srcu_idx);
1369 if (need_run) {
1370 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1371 return true;
1374 return false;
1376 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1378 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1380 struct blk_mq_hw_ctx *hctx;
1381 int i;
1383 queue_for_each_hw_ctx(q, hctx, i) {
1384 if (blk_mq_hctx_stopped(hctx))
1385 continue;
1387 blk_mq_run_hw_queue(hctx, async);
1390 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1393 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1394 * @q: request queue.
1396 * The caller is responsible for serializing this function against
1397 * blk_mq_{start,stop}_hw_queue().
1399 bool blk_mq_queue_stopped(struct request_queue *q)
1401 struct blk_mq_hw_ctx *hctx;
1402 int i;
1404 queue_for_each_hw_ctx(q, hctx, i)
1405 if (blk_mq_hctx_stopped(hctx))
1406 return true;
1408 return false;
1410 EXPORT_SYMBOL(blk_mq_queue_stopped);
1413 * This function is often used for pausing .queue_rq() by driver when
1414 * there isn't enough resource or some conditions aren't satisfied, and
1415 * BLK_STS_RESOURCE is usually returned.
1417 * We do not guarantee that dispatch can be drained or blocked
1418 * after blk_mq_stop_hw_queue() returns. Please use
1419 * blk_mq_quiesce_queue() for that requirement.
1421 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1423 cancel_delayed_work(&hctx->run_work);
1425 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1427 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1430 * This function is often used for pausing .queue_rq() by driver when
1431 * there isn't enough resource or some conditions aren't satisfied, and
1432 * BLK_STS_RESOURCE is usually returned.
1434 * We do not guarantee that dispatch can be drained or blocked
1435 * after blk_mq_stop_hw_queues() returns. Please use
1436 * blk_mq_quiesce_queue() for that requirement.
1438 void blk_mq_stop_hw_queues(struct request_queue *q)
1440 struct blk_mq_hw_ctx *hctx;
1441 int i;
1443 queue_for_each_hw_ctx(q, hctx, i)
1444 blk_mq_stop_hw_queue(hctx);
1446 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1448 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1450 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1452 blk_mq_run_hw_queue(hctx, false);
1454 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1456 void blk_mq_start_hw_queues(struct request_queue *q)
1458 struct blk_mq_hw_ctx *hctx;
1459 int i;
1461 queue_for_each_hw_ctx(q, hctx, i)
1462 blk_mq_start_hw_queue(hctx);
1464 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1466 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1468 if (!blk_mq_hctx_stopped(hctx))
1469 return;
1471 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1472 blk_mq_run_hw_queue(hctx, async);
1474 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1476 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1478 struct blk_mq_hw_ctx *hctx;
1479 int i;
1481 queue_for_each_hw_ctx(q, hctx, i)
1482 blk_mq_start_stopped_hw_queue(hctx, async);
1484 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1486 static void blk_mq_run_work_fn(struct work_struct *work)
1488 struct blk_mq_hw_ctx *hctx;
1490 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1493 * If we are stopped, don't run the queue.
1495 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1496 return;
1498 __blk_mq_run_hw_queue(hctx);
1501 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1502 struct request *rq,
1503 bool at_head)
1505 struct blk_mq_ctx *ctx = rq->mq_ctx;
1507 lockdep_assert_held(&ctx->lock);
1509 trace_block_rq_insert(hctx->queue, rq);
1511 if (at_head)
1512 list_add(&rq->queuelist, &ctx->rq_list);
1513 else
1514 list_add_tail(&rq->queuelist, &ctx->rq_list);
1517 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1518 bool at_head)
1520 struct blk_mq_ctx *ctx = rq->mq_ctx;
1522 lockdep_assert_held(&ctx->lock);
1524 __blk_mq_insert_req_list(hctx, rq, at_head);
1525 blk_mq_hctx_mark_pending(hctx, ctx);
1529 * Should only be used carefully, when the caller knows we want to
1530 * bypass a potential IO scheduler on the target device.
1532 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1534 struct blk_mq_ctx *ctx = rq->mq_ctx;
1535 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1537 spin_lock(&hctx->lock);
1538 list_add_tail(&rq->queuelist, &hctx->dispatch);
1539 spin_unlock(&hctx->lock);
1541 if (run_queue)
1542 blk_mq_run_hw_queue(hctx, false);
1545 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1546 struct list_head *list)
1550 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1551 * offline now
1553 spin_lock(&ctx->lock);
1554 while (!list_empty(list)) {
1555 struct request *rq;
1557 rq = list_first_entry(list, struct request, queuelist);
1558 BUG_ON(rq->mq_ctx != ctx);
1559 list_del_init(&rq->queuelist);
1560 __blk_mq_insert_req_list(hctx, rq, false);
1562 blk_mq_hctx_mark_pending(hctx, ctx);
1563 spin_unlock(&ctx->lock);
1566 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1568 struct request *rqa = container_of(a, struct request, queuelist);
1569 struct request *rqb = container_of(b, struct request, queuelist);
1571 return !(rqa->mq_ctx < rqb->mq_ctx ||
1572 (rqa->mq_ctx == rqb->mq_ctx &&
1573 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1576 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1578 struct blk_mq_ctx *this_ctx;
1579 struct request_queue *this_q;
1580 struct request *rq;
1581 LIST_HEAD(list);
1582 LIST_HEAD(ctx_list);
1583 unsigned int depth;
1585 list_splice_init(&plug->mq_list, &list);
1587 list_sort(NULL, &list, plug_ctx_cmp);
1589 this_q = NULL;
1590 this_ctx = NULL;
1591 depth = 0;
1593 while (!list_empty(&list)) {
1594 rq = list_entry_rq(list.next);
1595 list_del_init(&rq->queuelist);
1596 BUG_ON(!rq->q);
1597 if (rq->mq_ctx != this_ctx) {
1598 if (this_ctx) {
1599 trace_block_unplug(this_q, depth, from_schedule);
1600 blk_mq_sched_insert_requests(this_q, this_ctx,
1601 &ctx_list,
1602 from_schedule);
1605 this_ctx = rq->mq_ctx;
1606 this_q = rq->q;
1607 depth = 0;
1610 depth++;
1611 list_add_tail(&rq->queuelist, &ctx_list);
1615 * If 'this_ctx' is set, we know we have entries to complete
1616 * on 'ctx_list'. Do those.
1618 if (this_ctx) {
1619 trace_block_unplug(this_q, depth, from_schedule);
1620 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1621 from_schedule);
1625 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1627 blk_init_request_from_bio(rq, bio);
1629 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1631 blk_account_io_start(rq, true);
1634 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1636 if (rq->tag != -1)
1637 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1639 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1642 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1643 struct request *rq,
1644 blk_qc_t *cookie)
1646 struct request_queue *q = rq->q;
1647 struct blk_mq_queue_data bd = {
1648 .rq = rq,
1649 .last = true,
1651 blk_qc_t new_cookie;
1652 blk_status_t ret;
1654 new_cookie = request_to_qc_t(hctx, rq);
1657 * For OK queue, we are done. For error, caller may kill it.
1658 * Any other error (busy), just add it to our list as we
1659 * previously would have done.
1661 ret = q->mq_ops->queue_rq(hctx, &bd);
1662 switch (ret) {
1663 case BLK_STS_OK:
1664 *cookie = new_cookie;
1665 break;
1666 case BLK_STS_RESOURCE:
1667 case BLK_STS_DEV_RESOURCE:
1668 __blk_mq_requeue_request(rq);
1669 break;
1670 default:
1671 *cookie = BLK_QC_T_NONE;
1672 break;
1675 return ret;
1678 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1679 struct request *rq,
1680 blk_qc_t *cookie,
1681 bool bypass_insert)
1683 struct request_queue *q = rq->q;
1684 bool run_queue = true;
1687 * RCU or SRCU read lock is needed before checking quiesced flag.
1689 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1690 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1691 * and avoid driver to try to dispatch again.
1693 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1694 run_queue = false;
1695 bypass_insert = false;
1696 goto insert;
1699 if (q->elevator && !bypass_insert)
1700 goto insert;
1702 if (!blk_mq_get_dispatch_budget(hctx))
1703 goto insert;
1705 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1706 blk_mq_put_dispatch_budget(hctx);
1707 goto insert;
1710 return __blk_mq_issue_directly(hctx, rq, cookie);
1711 insert:
1712 if (bypass_insert)
1713 return BLK_STS_RESOURCE;
1715 blk_mq_sched_insert_request(rq, false, run_queue, false);
1716 return BLK_STS_OK;
1719 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1720 struct request *rq, blk_qc_t *cookie)
1722 blk_status_t ret;
1723 int srcu_idx;
1725 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1727 hctx_lock(hctx, &srcu_idx);
1729 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1730 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1731 blk_mq_sched_insert_request(rq, false, true, false);
1732 else if (ret != BLK_STS_OK)
1733 blk_mq_end_request(rq, ret);
1735 hctx_unlock(hctx, srcu_idx);
1738 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1740 blk_status_t ret;
1741 int srcu_idx;
1742 blk_qc_t unused_cookie;
1743 struct blk_mq_ctx *ctx = rq->mq_ctx;
1744 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1746 hctx_lock(hctx, &srcu_idx);
1747 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1748 hctx_unlock(hctx, srcu_idx);
1750 return ret;
1753 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1755 const int is_sync = op_is_sync(bio->bi_opf);
1756 const int is_flush_fua = op_is_flush(bio->bi_opf);
1757 struct blk_mq_alloc_data data = { .flags = 0 };
1758 struct request *rq;
1759 unsigned int request_count = 0;
1760 struct blk_plug *plug;
1761 struct request *same_queue_rq = NULL;
1762 blk_qc_t cookie;
1763 unsigned int wb_acct;
1765 blk_queue_bounce(q, &bio);
1767 blk_queue_split(q, &bio);
1769 if (!bio_integrity_prep(bio))
1770 return BLK_QC_T_NONE;
1772 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1773 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1774 return BLK_QC_T_NONE;
1776 if (blk_mq_sched_bio_merge(q, bio))
1777 return BLK_QC_T_NONE;
1779 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1781 trace_block_getrq(q, bio, bio->bi_opf);
1783 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1784 if (unlikely(!rq)) {
1785 __wbt_done(q->rq_wb, wb_acct);
1786 if (bio->bi_opf & REQ_NOWAIT)
1787 bio_wouldblock_error(bio);
1788 return BLK_QC_T_NONE;
1791 wbt_track(rq, wb_acct);
1793 cookie = request_to_qc_t(data.hctx, rq);
1795 plug = current->plug;
1796 if (unlikely(is_flush_fua)) {
1797 blk_mq_put_ctx(data.ctx);
1798 blk_mq_bio_to_request(rq, bio);
1800 /* bypass scheduler for flush rq */
1801 blk_insert_flush(rq);
1802 blk_mq_run_hw_queue(data.hctx, true);
1803 } else if (plug && q->nr_hw_queues == 1) {
1804 struct request *last = NULL;
1806 blk_mq_put_ctx(data.ctx);
1807 blk_mq_bio_to_request(rq, bio);
1810 * @request_count may become stale because of schedule
1811 * out, so check the list again.
1813 if (list_empty(&plug->mq_list))
1814 request_count = 0;
1815 else if (blk_queue_nomerges(q))
1816 request_count = blk_plug_queued_count(q);
1818 if (!request_count)
1819 trace_block_plug(q);
1820 else
1821 last = list_entry_rq(plug->mq_list.prev);
1823 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1824 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1825 blk_flush_plug_list(plug, false);
1826 trace_block_plug(q);
1829 list_add_tail(&rq->queuelist, &plug->mq_list);
1830 } else if (plug && !blk_queue_nomerges(q)) {
1831 blk_mq_bio_to_request(rq, bio);
1834 * We do limited plugging. If the bio can be merged, do that.
1835 * Otherwise the existing request in the plug list will be
1836 * issued. So the plug list will have one request at most
1837 * The plug list might get flushed before this. If that happens,
1838 * the plug list is empty, and same_queue_rq is invalid.
1840 if (list_empty(&plug->mq_list))
1841 same_queue_rq = NULL;
1842 if (same_queue_rq)
1843 list_del_init(&same_queue_rq->queuelist);
1844 list_add_tail(&rq->queuelist, &plug->mq_list);
1846 blk_mq_put_ctx(data.ctx);
1848 if (same_queue_rq) {
1849 data.hctx = blk_mq_map_queue(q,
1850 same_queue_rq->mq_ctx->cpu);
1851 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1852 &cookie);
1854 } else if (q->nr_hw_queues > 1 && is_sync) {
1855 blk_mq_put_ctx(data.ctx);
1856 blk_mq_bio_to_request(rq, bio);
1857 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1858 } else {
1859 blk_mq_put_ctx(data.ctx);
1860 blk_mq_bio_to_request(rq, bio);
1861 blk_mq_sched_insert_request(rq, false, true, true);
1864 return cookie;
1867 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1868 unsigned int hctx_idx)
1870 struct page *page;
1872 if (tags->rqs && set->ops->exit_request) {
1873 int i;
1875 for (i = 0; i < tags->nr_tags; i++) {
1876 struct request *rq = tags->static_rqs[i];
1878 if (!rq)
1879 continue;
1880 set->ops->exit_request(set, rq, hctx_idx);
1881 tags->static_rqs[i] = NULL;
1885 while (!list_empty(&tags->page_list)) {
1886 page = list_first_entry(&tags->page_list, struct page, lru);
1887 list_del_init(&page->lru);
1889 * Remove kmemleak object previously allocated in
1890 * blk_mq_init_rq_map().
1892 kmemleak_free(page_address(page));
1893 __free_pages(page, page->private);
1897 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1899 kfree(tags->rqs);
1900 tags->rqs = NULL;
1901 kfree(tags->static_rqs);
1902 tags->static_rqs = NULL;
1904 blk_mq_free_tags(tags);
1907 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1908 unsigned int hctx_idx,
1909 unsigned int nr_tags,
1910 unsigned int reserved_tags)
1912 struct blk_mq_tags *tags;
1913 int node;
1915 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1916 if (node == NUMA_NO_NODE)
1917 node = set->numa_node;
1919 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1920 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1921 if (!tags)
1922 return NULL;
1924 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1925 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1926 node);
1927 if (!tags->rqs) {
1928 blk_mq_free_tags(tags);
1929 return NULL;
1932 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1933 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1934 node);
1935 if (!tags->static_rqs) {
1936 kfree(tags->rqs);
1937 blk_mq_free_tags(tags);
1938 return NULL;
1941 return tags;
1944 static size_t order_to_size(unsigned int order)
1946 return (size_t)PAGE_SIZE << order;
1949 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1950 unsigned int hctx_idx, int node)
1952 int ret;
1954 if (set->ops->init_request) {
1955 ret = set->ops->init_request(set, rq, hctx_idx, node);
1956 if (ret)
1957 return ret;
1960 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1961 return 0;
1964 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1965 unsigned int hctx_idx, unsigned int depth)
1967 unsigned int i, j, entries_per_page, max_order = 4;
1968 size_t rq_size, left;
1969 int node;
1971 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1972 if (node == NUMA_NO_NODE)
1973 node = set->numa_node;
1975 INIT_LIST_HEAD(&tags->page_list);
1978 * rq_size is the size of the request plus driver payload, rounded
1979 * to the cacheline size
1981 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1982 cache_line_size());
1983 left = rq_size * depth;
1985 for (i = 0; i < depth; ) {
1986 int this_order = max_order;
1987 struct page *page;
1988 int to_do;
1989 void *p;
1991 while (this_order && left < order_to_size(this_order - 1))
1992 this_order--;
1994 do {
1995 page = alloc_pages_node(node,
1996 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1997 this_order);
1998 if (page)
1999 break;
2000 if (!this_order--)
2001 break;
2002 if (order_to_size(this_order) < rq_size)
2003 break;
2004 } while (1);
2006 if (!page)
2007 goto fail;
2009 page->private = this_order;
2010 list_add_tail(&page->lru, &tags->page_list);
2012 p = page_address(page);
2014 * Allow kmemleak to scan these pages as they contain pointers
2015 * to additional allocations like via ops->init_request().
2017 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2018 entries_per_page = order_to_size(this_order) / rq_size;
2019 to_do = min(entries_per_page, depth - i);
2020 left -= to_do * rq_size;
2021 for (j = 0; j < to_do; j++) {
2022 struct request *rq = p;
2024 tags->static_rqs[i] = rq;
2025 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2026 tags->static_rqs[i] = NULL;
2027 goto fail;
2030 p += rq_size;
2031 i++;
2034 return 0;
2036 fail:
2037 blk_mq_free_rqs(set, tags, hctx_idx);
2038 return -ENOMEM;
2042 * 'cpu' is going away. splice any existing rq_list entries from this
2043 * software queue to the hw queue dispatch list, and ensure that it
2044 * gets run.
2046 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2048 struct blk_mq_hw_ctx *hctx;
2049 struct blk_mq_ctx *ctx;
2050 LIST_HEAD(tmp);
2052 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2053 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2055 spin_lock(&ctx->lock);
2056 if (!list_empty(&ctx->rq_list)) {
2057 list_splice_init(&ctx->rq_list, &tmp);
2058 blk_mq_hctx_clear_pending(hctx, ctx);
2060 spin_unlock(&ctx->lock);
2062 if (list_empty(&tmp))
2063 return 0;
2065 spin_lock(&hctx->lock);
2066 list_splice_tail_init(&tmp, &hctx->dispatch);
2067 spin_unlock(&hctx->lock);
2069 blk_mq_run_hw_queue(hctx, true);
2070 return 0;
2073 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2075 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2076 &hctx->cpuhp_dead);
2079 /* hctx->ctxs will be freed in queue's release handler */
2080 static void blk_mq_exit_hctx(struct request_queue *q,
2081 struct blk_mq_tag_set *set,
2082 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2084 blk_mq_debugfs_unregister_hctx(hctx);
2086 if (blk_mq_hw_queue_mapped(hctx))
2087 blk_mq_tag_idle(hctx);
2089 if (set->ops->exit_request)
2090 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2092 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2094 if (set->ops->exit_hctx)
2095 set->ops->exit_hctx(hctx, hctx_idx);
2097 if (hctx->flags & BLK_MQ_F_BLOCKING)
2098 cleanup_srcu_struct(hctx->srcu);
2100 blk_mq_remove_cpuhp(hctx);
2101 blk_free_flush_queue(hctx->fq);
2102 sbitmap_free(&hctx->ctx_map);
2105 static void blk_mq_exit_hw_queues(struct request_queue *q,
2106 struct blk_mq_tag_set *set, int nr_queue)
2108 struct blk_mq_hw_ctx *hctx;
2109 unsigned int i;
2111 queue_for_each_hw_ctx(q, hctx, i) {
2112 if (i == nr_queue)
2113 break;
2114 blk_mq_exit_hctx(q, set, hctx, i);
2118 static int blk_mq_init_hctx(struct request_queue *q,
2119 struct blk_mq_tag_set *set,
2120 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2122 int node;
2124 node = hctx->numa_node;
2125 if (node == NUMA_NO_NODE)
2126 node = hctx->numa_node = set->numa_node;
2128 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2129 spin_lock_init(&hctx->lock);
2130 INIT_LIST_HEAD(&hctx->dispatch);
2131 hctx->queue = q;
2132 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2134 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2136 hctx->tags = set->tags[hctx_idx];
2139 * Allocate space for all possible cpus to avoid allocation at
2140 * runtime
2142 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2143 GFP_KERNEL, node);
2144 if (!hctx->ctxs)
2145 goto unregister_cpu_notifier;
2147 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2148 node))
2149 goto free_ctxs;
2151 hctx->nr_ctx = 0;
2153 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2154 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2156 if (set->ops->init_hctx &&
2157 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2158 goto free_bitmap;
2160 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2161 goto exit_hctx;
2163 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2164 if (!hctx->fq)
2165 goto sched_exit_hctx;
2167 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2168 goto free_fq;
2170 if (hctx->flags & BLK_MQ_F_BLOCKING)
2171 init_srcu_struct(hctx->srcu);
2173 blk_mq_debugfs_register_hctx(q, hctx);
2175 return 0;
2177 free_fq:
2178 kfree(hctx->fq);
2179 sched_exit_hctx:
2180 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2181 exit_hctx:
2182 if (set->ops->exit_hctx)
2183 set->ops->exit_hctx(hctx, hctx_idx);
2184 free_bitmap:
2185 sbitmap_free(&hctx->ctx_map);
2186 free_ctxs:
2187 kfree(hctx->ctxs);
2188 unregister_cpu_notifier:
2189 blk_mq_remove_cpuhp(hctx);
2190 return -1;
2193 static void blk_mq_init_cpu_queues(struct request_queue *q,
2194 unsigned int nr_hw_queues)
2196 unsigned int i;
2198 for_each_possible_cpu(i) {
2199 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2200 struct blk_mq_hw_ctx *hctx;
2202 __ctx->cpu = i;
2203 spin_lock_init(&__ctx->lock);
2204 INIT_LIST_HEAD(&__ctx->rq_list);
2205 __ctx->queue = q;
2208 * Set local node, IFF we have more than one hw queue. If
2209 * not, we remain on the home node of the device
2211 hctx = blk_mq_map_queue(q, i);
2212 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2213 hctx->numa_node = local_memory_node(cpu_to_node(i));
2217 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2219 int ret = 0;
2221 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2222 set->queue_depth, set->reserved_tags);
2223 if (!set->tags[hctx_idx])
2224 return false;
2226 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2227 set->queue_depth);
2228 if (!ret)
2229 return true;
2231 blk_mq_free_rq_map(set->tags[hctx_idx]);
2232 set->tags[hctx_idx] = NULL;
2233 return false;
2236 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2237 unsigned int hctx_idx)
2239 if (set->tags[hctx_idx]) {
2240 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2241 blk_mq_free_rq_map(set->tags[hctx_idx]);
2242 set->tags[hctx_idx] = NULL;
2246 static void blk_mq_map_swqueue(struct request_queue *q)
2248 unsigned int i, hctx_idx;
2249 struct blk_mq_hw_ctx *hctx;
2250 struct blk_mq_ctx *ctx;
2251 struct blk_mq_tag_set *set = q->tag_set;
2254 * Avoid others reading imcomplete hctx->cpumask through sysfs
2256 mutex_lock(&q->sysfs_lock);
2258 queue_for_each_hw_ctx(q, hctx, i) {
2259 cpumask_clear(hctx->cpumask);
2260 hctx->nr_ctx = 0;
2261 hctx->dispatch_from = NULL;
2265 * Map software to hardware queues.
2267 * If the cpu isn't present, the cpu is mapped to first hctx.
2269 for_each_possible_cpu(i) {
2270 hctx_idx = q->mq_map[i];
2271 /* unmapped hw queue can be remapped after CPU topo changed */
2272 if (!set->tags[hctx_idx] &&
2273 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2275 * If tags initialization fail for some hctx,
2276 * that hctx won't be brought online. In this
2277 * case, remap the current ctx to hctx[0] which
2278 * is guaranteed to always have tags allocated
2280 q->mq_map[i] = 0;
2283 ctx = per_cpu_ptr(q->queue_ctx, i);
2284 hctx = blk_mq_map_queue(q, i);
2286 cpumask_set_cpu(i, hctx->cpumask);
2287 ctx->index_hw = hctx->nr_ctx;
2288 hctx->ctxs[hctx->nr_ctx++] = ctx;
2291 mutex_unlock(&q->sysfs_lock);
2293 queue_for_each_hw_ctx(q, hctx, i) {
2295 * If no software queues are mapped to this hardware queue,
2296 * disable it and free the request entries.
2298 if (!hctx->nr_ctx) {
2299 /* Never unmap queue 0. We need it as a
2300 * fallback in case of a new remap fails
2301 * allocation
2303 if (i && set->tags[i])
2304 blk_mq_free_map_and_requests(set, i);
2306 hctx->tags = NULL;
2307 continue;
2310 hctx->tags = set->tags[i];
2311 WARN_ON(!hctx->tags);
2314 * Set the map size to the number of mapped software queues.
2315 * This is more accurate and more efficient than looping
2316 * over all possibly mapped software queues.
2318 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2321 * Initialize batch roundrobin counts
2323 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2324 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2329 * Caller needs to ensure that we're either frozen/quiesced, or that
2330 * the queue isn't live yet.
2332 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2334 struct blk_mq_hw_ctx *hctx;
2335 int i;
2337 queue_for_each_hw_ctx(q, hctx, i) {
2338 if (shared) {
2339 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2340 atomic_inc(&q->shared_hctx_restart);
2341 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2342 } else {
2343 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2344 atomic_dec(&q->shared_hctx_restart);
2345 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2350 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2351 bool shared)
2353 struct request_queue *q;
2355 lockdep_assert_held(&set->tag_list_lock);
2357 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2358 blk_mq_freeze_queue(q);
2359 queue_set_hctx_shared(q, shared);
2360 blk_mq_unfreeze_queue(q);
2364 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2366 struct blk_mq_tag_set *set = q->tag_set;
2368 mutex_lock(&set->tag_list_lock);
2369 list_del_rcu(&q->tag_set_list);
2370 if (list_is_singular(&set->tag_list)) {
2371 /* just transitioned to unshared */
2372 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2373 /* update existing queue */
2374 blk_mq_update_tag_set_depth(set, false);
2376 mutex_unlock(&set->tag_list_lock);
2377 synchronize_rcu();
2378 INIT_LIST_HEAD(&q->tag_set_list);
2381 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2382 struct request_queue *q)
2384 q->tag_set = set;
2386 mutex_lock(&set->tag_list_lock);
2389 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2391 if (!list_empty(&set->tag_list) &&
2392 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2393 set->flags |= BLK_MQ_F_TAG_SHARED;
2394 /* update existing queue */
2395 blk_mq_update_tag_set_depth(set, true);
2397 if (set->flags & BLK_MQ_F_TAG_SHARED)
2398 queue_set_hctx_shared(q, true);
2399 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2401 mutex_unlock(&set->tag_list_lock);
2405 * It is the actual release handler for mq, but we do it from
2406 * request queue's release handler for avoiding use-after-free
2407 * and headache because q->mq_kobj shouldn't have been introduced,
2408 * but we can't group ctx/kctx kobj without it.
2410 void blk_mq_release(struct request_queue *q)
2412 struct blk_mq_hw_ctx *hctx;
2413 unsigned int i;
2415 /* hctx kobj stays in hctx */
2416 queue_for_each_hw_ctx(q, hctx, i) {
2417 if (!hctx)
2418 continue;
2419 kobject_put(&hctx->kobj);
2422 q->mq_map = NULL;
2424 kfree(q->queue_hw_ctx);
2427 * release .mq_kobj and sw queue's kobject now because
2428 * both share lifetime with request queue.
2430 blk_mq_sysfs_deinit(q);
2432 free_percpu(q->queue_ctx);
2435 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2437 struct request_queue *uninit_q, *q;
2439 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2440 if (!uninit_q)
2441 return ERR_PTR(-ENOMEM);
2443 q = blk_mq_init_allocated_queue(set, uninit_q);
2444 if (IS_ERR(q))
2445 blk_cleanup_queue(uninit_q);
2447 return q;
2449 EXPORT_SYMBOL(blk_mq_init_queue);
2451 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2453 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2455 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2456 __alignof__(struct blk_mq_hw_ctx)) !=
2457 sizeof(struct blk_mq_hw_ctx));
2459 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2460 hw_ctx_size += sizeof(struct srcu_struct);
2462 return hw_ctx_size;
2465 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2466 struct request_queue *q)
2468 int i, j;
2469 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2471 blk_mq_sysfs_unregister(q);
2473 /* protect against switching io scheduler */
2474 mutex_lock(&q->sysfs_lock);
2475 for (i = 0; i < set->nr_hw_queues; i++) {
2476 int node;
2478 if (hctxs[i])
2479 continue;
2481 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2482 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2483 GFP_KERNEL, node);
2484 if (!hctxs[i])
2485 break;
2487 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2488 node)) {
2489 kfree(hctxs[i]);
2490 hctxs[i] = NULL;
2491 break;
2494 atomic_set(&hctxs[i]->nr_active, 0);
2495 hctxs[i]->numa_node = node;
2496 hctxs[i]->queue_num = i;
2498 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2499 free_cpumask_var(hctxs[i]->cpumask);
2500 kfree(hctxs[i]);
2501 hctxs[i] = NULL;
2502 break;
2504 blk_mq_hctx_kobj_init(hctxs[i]);
2506 for (j = i; j < q->nr_hw_queues; j++) {
2507 struct blk_mq_hw_ctx *hctx = hctxs[j];
2509 if (hctx) {
2510 if (hctx->tags)
2511 blk_mq_free_map_and_requests(set, j);
2512 blk_mq_exit_hctx(q, set, hctx, j);
2513 kobject_put(&hctx->kobj);
2514 hctxs[j] = NULL;
2518 q->nr_hw_queues = i;
2519 mutex_unlock(&q->sysfs_lock);
2520 blk_mq_sysfs_register(q);
2523 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2524 struct request_queue *q)
2526 /* mark the queue as mq asap */
2527 q->mq_ops = set->ops;
2529 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2530 blk_mq_poll_stats_bkt,
2531 BLK_MQ_POLL_STATS_BKTS, q);
2532 if (!q->poll_cb)
2533 goto err_exit;
2535 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2536 if (!q->queue_ctx)
2537 goto err_exit;
2539 /* init q->mq_kobj and sw queues' kobjects */
2540 blk_mq_sysfs_init(q);
2542 q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
2543 GFP_KERNEL, set->numa_node);
2544 if (!q->queue_hw_ctx)
2545 goto err_percpu;
2547 q->mq_map = set->mq_map;
2549 blk_mq_realloc_hw_ctxs(set, q);
2550 if (!q->nr_hw_queues)
2551 goto err_hctxs;
2553 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2554 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2556 q->nr_queues = nr_cpu_ids;
2558 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2560 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2561 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2563 q->sg_reserved_size = INT_MAX;
2565 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2566 INIT_LIST_HEAD(&q->requeue_list);
2567 spin_lock_init(&q->requeue_lock);
2569 blk_queue_make_request(q, blk_mq_make_request);
2570 if (q->mq_ops->poll)
2571 q->poll_fn = blk_mq_poll;
2574 * Do this after blk_queue_make_request() overrides it...
2576 q->nr_requests = set->queue_depth;
2579 * Default to classic polling
2581 q->poll_nsec = -1;
2583 if (set->ops->complete)
2584 blk_queue_softirq_done(q, set->ops->complete);
2586 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2587 blk_mq_add_queue_tag_set(set, q);
2588 blk_mq_map_swqueue(q);
2590 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2591 int ret;
2593 ret = elevator_init_mq(q);
2594 if (ret)
2595 return ERR_PTR(ret);
2598 return q;
2600 err_hctxs:
2601 kfree(q->queue_hw_ctx);
2602 err_percpu:
2603 free_percpu(q->queue_ctx);
2604 err_exit:
2605 q->mq_ops = NULL;
2606 return ERR_PTR(-ENOMEM);
2608 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2610 void blk_mq_free_queue(struct request_queue *q)
2612 struct blk_mq_tag_set *set = q->tag_set;
2614 blk_mq_del_queue_tag_set(q);
2615 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2618 /* Basically redo blk_mq_init_queue with queue frozen */
2619 static void blk_mq_queue_reinit(struct request_queue *q)
2621 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2623 blk_mq_debugfs_unregister_hctxs(q);
2624 blk_mq_sysfs_unregister(q);
2627 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2628 * we should change hctx numa_node according to the new topology (this
2629 * involves freeing and re-allocating memory, worth doing?)
2631 blk_mq_map_swqueue(q);
2633 blk_mq_sysfs_register(q);
2634 blk_mq_debugfs_register_hctxs(q);
2637 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2639 int i;
2641 for (i = 0; i < set->nr_hw_queues; i++)
2642 if (!__blk_mq_alloc_rq_map(set, i))
2643 goto out_unwind;
2645 return 0;
2647 out_unwind:
2648 while (--i >= 0)
2649 blk_mq_free_rq_map(set->tags[i]);
2651 return -ENOMEM;
2655 * Allocate the request maps associated with this tag_set. Note that this
2656 * may reduce the depth asked for, if memory is tight. set->queue_depth
2657 * will be updated to reflect the allocated depth.
2659 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2661 unsigned int depth;
2662 int err;
2664 depth = set->queue_depth;
2665 do {
2666 err = __blk_mq_alloc_rq_maps(set);
2667 if (!err)
2668 break;
2670 set->queue_depth >>= 1;
2671 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2672 err = -ENOMEM;
2673 break;
2675 } while (set->queue_depth);
2677 if (!set->queue_depth || err) {
2678 pr_err("blk-mq: failed to allocate request map\n");
2679 return -ENOMEM;
2682 if (depth != set->queue_depth)
2683 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2684 depth, set->queue_depth);
2686 return 0;
2689 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2691 if (set->ops->map_queues) {
2692 int cpu;
2694 * transport .map_queues is usually done in the following
2695 * way:
2697 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2698 * mask = get_cpu_mask(queue)
2699 * for_each_cpu(cpu, mask)
2700 * set->mq_map[cpu] = queue;
2703 * When we need to remap, the table has to be cleared for
2704 * killing stale mapping since one CPU may not be mapped
2705 * to any hw queue.
2707 for_each_possible_cpu(cpu)
2708 set->mq_map[cpu] = 0;
2710 return set->ops->map_queues(set);
2711 } else
2712 return blk_mq_map_queues(set);
2716 * Alloc a tag set to be associated with one or more request queues.
2717 * May fail with EINVAL for various error conditions. May adjust the
2718 * requested depth down, if if it too large. In that case, the set
2719 * value will be stored in set->queue_depth.
2721 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2723 int ret;
2725 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2727 if (!set->nr_hw_queues)
2728 return -EINVAL;
2729 if (!set->queue_depth)
2730 return -EINVAL;
2731 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2732 return -EINVAL;
2734 if (!set->ops->queue_rq)
2735 return -EINVAL;
2737 if (!set->ops->get_budget ^ !set->ops->put_budget)
2738 return -EINVAL;
2740 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2741 pr_info("blk-mq: reduced tag depth to %u\n",
2742 BLK_MQ_MAX_DEPTH);
2743 set->queue_depth = BLK_MQ_MAX_DEPTH;
2747 * If a crashdump is active, then we are potentially in a very
2748 * memory constrained environment. Limit us to 1 queue and
2749 * 64 tags to prevent using too much memory.
2751 if (is_kdump_kernel()) {
2752 set->nr_hw_queues = 1;
2753 set->queue_depth = min(64U, set->queue_depth);
2756 * There is no use for more h/w queues than cpus.
2758 if (set->nr_hw_queues > nr_cpu_ids)
2759 set->nr_hw_queues = nr_cpu_ids;
2761 set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2762 GFP_KERNEL, set->numa_node);
2763 if (!set->tags)
2764 return -ENOMEM;
2766 ret = -ENOMEM;
2767 set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
2768 GFP_KERNEL, set->numa_node);
2769 if (!set->mq_map)
2770 goto out_free_tags;
2772 ret = blk_mq_update_queue_map(set);
2773 if (ret)
2774 goto out_free_mq_map;
2776 ret = blk_mq_alloc_rq_maps(set);
2777 if (ret)
2778 goto out_free_mq_map;
2780 mutex_init(&set->tag_list_lock);
2781 INIT_LIST_HEAD(&set->tag_list);
2783 return 0;
2785 out_free_mq_map:
2786 kfree(set->mq_map);
2787 set->mq_map = NULL;
2788 out_free_tags:
2789 kfree(set->tags);
2790 set->tags = NULL;
2791 return ret;
2793 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2795 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2797 int i;
2799 for (i = 0; i < nr_cpu_ids; i++)
2800 blk_mq_free_map_and_requests(set, i);
2802 kfree(set->mq_map);
2803 set->mq_map = NULL;
2805 kfree(set->tags);
2806 set->tags = NULL;
2808 EXPORT_SYMBOL(blk_mq_free_tag_set);
2810 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2812 struct blk_mq_tag_set *set = q->tag_set;
2813 struct blk_mq_hw_ctx *hctx;
2814 int i, ret;
2816 if (!set)
2817 return -EINVAL;
2819 blk_mq_freeze_queue(q);
2820 blk_mq_quiesce_queue(q);
2822 ret = 0;
2823 queue_for_each_hw_ctx(q, hctx, i) {
2824 if (!hctx->tags)
2825 continue;
2827 * If we're using an MQ scheduler, just update the scheduler
2828 * queue depth. This is similar to what the old code would do.
2830 if (!hctx->sched_tags) {
2831 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2832 false);
2833 } else {
2834 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2835 nr, true);
2837 if (ret)
2838 break;
2841 if (!ret)
2842 q->nr_requests = nr;
2844 blk_mq_unquiesce_queue(q);
2845 blk_mq_unfreeze_queue(q);
2847 return ret;
2850 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2851 int nr_hw_queues)
2853 struct request_queue *q;
2855 lockdep_assert_held(&set->tag_list_lock);
2857 if (nr_hw_queues > nr_cpu_ids)
2858 nr_hw_queues = nr_cpu_ids;
2859 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2860 return;
2862 list_for_each_entry(q, &set->tag_list, tag_set_list)
2863 blk_mq_freeze_queue(q);
2865 set->nr_hw_queues = nr_hw_queues;
2866 blk_mq_update_queue_map(set);
2867 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2868 blk_mq_realloc_hw_ctxs(set, q);
2869 blk_mq_queue_reinit(q);
2872 list_for_each_entry(q, &set->tag_list, tag_set_list)
2873 blk_mq_unfreeze_queue(q);
2876 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2878 mutex_lock(&set->tag_list_lock);
2879 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2880 mutex_unlock(&set->tag_list_lock);
2882 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2884 /* Enable polling stats and return whether they were already enabled. */
2885 static bool blk_poll_stats_enable(struct request_queue *q)
2887 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2888 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
2889 return true;
2890 blk_stat_add_callback(q, q->poll_cb);
2891 return false;
2894 static void blk_mq_poll_stats_start(struct request_queue *q)
2897 * We don't arm the callback if polling stats are not enabled or the
2898 * callback is already active.
2900 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2901 blk_stat_is_active(q->poll_cb))
2902 return;
2904 blk_stat_activate_msecs(q->poll_cb, 100);
2907 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2909 struct request_queue *q = cb->data;
2910 int bucket;
2912 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2913 if (cb->stat[bucket].nr_samples)
2914 q->poll_stat[bucket] = cb->stat[bucket];
2918 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2919 struct blk_mq_hw_ctx *hctx,
2920 struct request *rq)
2922 unsigned long ret = 0;
2923 int bucket;
2926 * If stats collection isn't on, don't sleep but turn it on for
2927 * future users
2929 if (!blk_poll_stats_enable(q))
2930 return 0;
2933 * As an optimistic guess, use half of the mean service time
2934 * for this type of request. We can (and should) make this smarter.
2935 * For instance, if the completion latencies are tight, we can
2936 * get closer than just half the mean. This is especially
2937 * important on devices where the completion latencies are longer
2938 * than ~10 usec. We do use the stats for the relevant IO size
2939 * if available which does lead to better estimates.
2941 bucket = blk_mq_poll_stats_bkt(rq);
2942 if (bucket < 0)
2943 return ret;
2945 if (q->poll_stat[bucket].nr_samples)
2946 ret = (q->poll_stat[bucket].mean + 1) / 2;
2948 return ret;
2951 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2952 struct blk_mq_hw_ctx *hctx,
2953 struct request *rq)
2955 struct hrtimer_sleeper hs;
2956 enum hrtimer_mode mode;
2957 unsigned int nsecs;
2958 ktime_t kt;
2960 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
2961 return false;
2964 * poll_nsec can be:
2966 * -1: don't ever hybrid sleep
2967 * 0: use half of prev avg
2968 * >0: use this specific value
2970 if (q->poll_nsec == -1)
2971 return false;
2972 else if (q->poll_nsec > 0)
2973 nsecs = q->poll_nsec;
2974 else
2975 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2977 if (!nsecs)
2978 return false;
2980 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
2983 * This will be replaced with the stats tracking code, using
2984 * 'avg_completion_time / 2' as the pre-sleep target.
2986 kt = nsecs;
2988 mode = HRTIMER_MODE_REL;
2989 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2990 hrtimer_set_expires(&hs.timer, kt);
2992 hrtimer_init_sleeper(&hs, current);
2993 do {
2994 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
2995 break;
2996 set_current_state(TASK_UNINTERRUPTIBLE);
2997 hrtimer_start_expires(&hs.timer, mode);
2998 if (hs.task)
2999 io_schedule();
3000 hrtimer_cancel(&hs.timer);
3001 mode = HRTIMER_MODE_ABS;
3002 } while (hs.task && !signal_pending(current));
3004 __set_current_state(TASK_RUNNING);
3005 destroy_hrtimer_on_stack(&hs.timer);
3006 return true;
3009 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3011 struct request_queue *q = hctx->queue;
3012 long state;
3015 * If we sleep, have the caller restart the poll loop to reset
3016 * the state. Like for the other success return cases, the
3017 * caller is responsible for checking if the IO completed. If
3018 * the IO isn't complete, we'll get called again and will go
3019 * straight to the busy poll loop.
3021 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3022 return true;
3024 hctx->poll_considered++;
3026 state = current->state;
3027 while (!need_resched()) {
3028 int ret;
3030 hctx->poll_invoked++;
3032 ret = q->mq_ops->poll(hctx, rq->tag);
3033 if (ret > 0) {
3034 hctx->poll_success++;
3035 set_current_state(TASK_RUNNING);
3036 return true;
3039 if (signal_pending_state(state, current))
3040 set_current_state(TASK_RUNNING);
3042 if (current->state == TASK_RUNNING)
3043 return true;
3044 if (ret < 0)
3045 break;
3046 cpu_relax();
3049 __set_current_state(TASK_RUNNING);
3050 return false;
3053 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3055 struct blk_mq_hw_ctx *hctx;
3056 struct request *rq;
3058 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3059 return false;
3061 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3062 if (!blk_qc_t_is_internal(cookie))
3063 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3064 else {
3065 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3067 * With scheduling, if the request has completed, we'll
3068 * get a NULL return here, as we clear the sched tag when
3069 * that happens. The request still remains valid, like always,
3070 * so we should be safe with just the NULL check.
3072 if (!rq)
3073 return false;
3076 return __blk_mq_poll(hctx, rq);
3079 static int __init blk_mq_init(void)
3081 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3082 blk_mq_hctx_notify_dead);
3083 return 0;
3085 subsys_initcall(blk_mq_init);