Linux 4.18.10
[linux/fpc-iii.git] / drivers / char / hw_random / n2-drv.c
blobf8411515fe1cf675358154de9c7b82bbfc494eae
1 /* n2-drv.c: Niagara-2 RNG driver.
3 * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
4 */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/workqueue.h>
12 #include <linux/preempt.h>
13 #include <linux/hw_random.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
18 #include <asm/hypervisor.h>
20 #include "n2rng.h"
22 #define DRV_MODULE_NAME "n2rng"
23 #define PFX DRV_MODULE_NAME ": "
24 #define DRV_MODULE_VERSION "0.3"
25 #define DRV_MODULE_RELDATE "Jan 7, 2017"
27 static char version[] =
28 DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
30 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
31 MODULE_DESCRIPTION("Niagara2 RNG driver");
32 MODULE_LICENSE("GPL");
33 MODULE_VERSION(DRV_MODULE_VERSION);
35 /* The Niagara2 RNG provides a 64-bit read-only random number
36 * register, plus a control register. Access to the RNG is
37 * virtualized through the hypervisor so that both guests and control
38 * nodes can access the device.
40 * The entropy source consists of raw entropy sources, each
41 * constructed from a voltage controlled oscillator whose phase is
42 * jittered by thermal noise sources.
44 * The oscillator in each of the three raw entropy sources run at
45 * different frequencies. Normally, all three generator outputs are
46 * gathered, xored together, and fed into a CRC circuit, the output of
47 * which is the 64-bit read-only register.
49 * Some time is necessary for all the necessary entropy to build up
50 * such that a full 64-bits of entropy are available in the register.
51 * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
52 * an interlock which blocks register reads until sufficient entropy
53 * is available.
55 * A control register is provided for adjusting various aspects of RNG
56 * operation, and to enable diagnostic modes. Each of the three raw
57 * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}). Also
58 * provided are fields for controlling the minimum time in cycles
59 * between read accesses to the register (RNG_CTL_WAIT, this controls
60 * the interlock described in the previous paragraph).
62 * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
63 * all three entropy sources enabled, and the interlock time set
64 * appropriately.
66 * The CRC polynomial used by the chip is:
68 * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
69 * x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
70 * x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
72 * The RNG_CTL_VCO value of each noise cell must be programmed
73 * separately. This is why 4 control register values must be provided
74 * to the hypervisor. During a write, the hypervisor writes them all,
75 * one at a time, to the actual RNG_CTL register. The first three
76 * values are used to setup the desired RNG_CTL_VCO for each entropy
77 * source, for example:
79 * control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
80 * control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
81 * control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
83 * And then the fourth value sets the final chip state and enables
84 * desired.
87 static int n2rng_hv_err_trans(unsigned long hv_err)
89 switch (hv_err) {
90 case HV_EOK:
91 return 0;
92 case HV_EWOULDBLOCK:
93 return -EAGAIN;
94 case HV_ENOACCESS:
95 return -EPERM;
96 case HV_EIO:
97 return -EIO;
98 case HV_EBUSY:
99 return -EBUSY;
100 case HV_EBADALIGN:
101 case HV_ENORADDR:
102 return -EFAULT;
103 default:
104 return -EINVAL;
108 static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
109 unsigned long unit)
111 unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
112 int block = 0, busy = 0;
114 while (1) {
115 hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
116 &ticks,
117 &watchdog_delta,
118 &watchdog_status);
119 if (hv_err == HV_EOK)
120 break;
122 if (hv_err == HV_EBUSY) {
123 if (++busy >= N2RNG_BUSY_LIMIT)
124 break;
126 udelay(1);
127 } else if (hv_err == HV_EWOULDBLOCK) {
128 if (++block >= N2RNG_BLOCK_LIMIT)
129 break;
131 __delay(ticks);
132 } else
133 break;
136 return hv_err;
139 /* In multi-socket situations, the hypervisor might need to
140 * queue up the RNG control register write if it's for a unit
141 * that is on a cpu socket other than the one we are executing on.
143 * We poll here waiting for a successful read of that control
144 * register to make sure the write has been actually performed.
146 static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
148 unsigned long ra = __pa(&np->scratch_control[0]);
150 return n2rng_generic_read_control_v2(ra, unit);
153 static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
154 unsigned long state,
155 unsigned long control_ra,
156 unsigned long watchdog_timeout,
157 unsigned long *ticks)
159 unsigned long hv_err;
161 if (np->hvapi_major == 1) {
162 hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
163 watchdog_timeout, ticks);
164 } else {
165 hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
166 watchdog_timeout, unit);
167 if (hv_err == HV_EOK)
168 hv_err = n2rng_control_settle_v2(np, unit);
169 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
172 return hv_err;
175 static int n2rng_generic_read_data(unsigned long data_ra)
177 unsigned long ticks, hv_err;
178 int block = 0, hcheck = 0;
180 while (1) {
181 hv_err = sun4v_rng_data_read(data_ra, &ticks);
182 if (hv_err == HV_EOK)
183 return 0;
185 if (hv_err == HV_EWOULDBLOCK) {
186 if (++block >= N2RNG_BLOCK_LIMIT)
187 return -EWOULDBLOCK;
188 __delay(ticks);
189 } else if (hv_err == HV_ENOACCESS) {
190 return -EPERM;
191 } else if (hv_err == HV_EIO) {
192 if (++hcheck >= N2RNG_HCHECK_LIMIT)
193 return -EIO;
194 udelay(10000);
195 } else
196 return -ENODEV;
200 static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
201 unsigned long unit,
202 unsigned long data_ra,
203 unsigned long data_len,
204 unsigned long *ticks)
206 unsigned long hv_err;
208 if (np->hvapi_major == 1) {
209 hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
210 } else {
211 hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
212 unit, ticks);
213 if (!*ticks)
214 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
216 return hv_err;
219 static int n2rng_generic_read_diag_data(struct n2rng *np,
220 unsigned long unit,
221 unsigned long data_ra,
222 unsigned long data_len)
224 unsigned long ticks, hv_err;
225 int block = 0;
227 while (1) {
228 hv_err = n2rng_read_diag_data_one(np, unit,
229 data_ra, data_len,
230 &ticks);
231 if (hv_err == HV_EOK)
232 return 0;
234 if (hv_err == HV_EWOULDBLOCK) {
235 if (++block >= N2RNG_BLOCK_LIMIT)
236 return -EWOULDBLOCK;
237 __delay(ticks);
238 } else if (hv_err == HV_ENOACCESS) {
239 return -EPERM;
240 } else if (hv_err == HV_EIO) {
241 return -EIO;
242 } else
243 return -ENODEV;
248 static int n2rng_generic_write_control(struct n2rng *np,
249 unsigned long control_ra,
250 unsigned long unit,
251 unsigned long state)
253 unsigned long hv_err, ticks;
254 int block = 0, busy = 0;
256 while (1) {
257 hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
258 np->wd_timeo, &ticks);
259 if (hv_err == HV_EOK)
260 return 0;
262 if (hv_err == HV_EWOULDBLOCK) {
263 if (++block >= N2RNG_BLOCK_LIMIT)
264 return -EWOULDBLOCK;
265 __delay(ticks);
266 } else if (hv_err == HV_EBUSY) {
267 if (++busy >= N2RNG_BUSY_LIMIT)
268 return -EBUSY;
269 udelay(1);
270 } else
271 return -ENODEV;
275 /* Just try to see if we can successfully access the control register
276 * of the RNG on the domain on which we are currently executing.
278 static int n2rng_try_read_ctl(struct n2rng *np)
280 unsigned long hv_err;
281 unsigned long x;
283 if (np->hvapi_major == 1) {
284 hv_err = sun4v_rng_get_diag_ctl();
285 } else {
286 /* We purposefully give invalid arguments, HV_NOACCESS
287 * is higher priority than the errors we'd get from
288 * these other cases, and that's the error we are
289 * truly interested in.
291 hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
292 switch (hv_err) {
293 case HV_EWOULDBLOCK:
294 case HV_ENOACCESS:
295 break;
296 default:
297 hv_err = HV_EOK;
298 break;
302 return n2rng_hv_err_trans(hv_err);
305 static u64 n2rng_control_default(struct n2rng *np, int ctl)
307 u64 val = 0;
309 if (np->data->chip_version == 1) {
310 val = ((2 << RNG_v1_CTL_ASEL_SHIFT) |
311 (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_v1_CTL_WAIT_SHIFT) |
312 RNG_CTL_LFSR);
314 switch (ctl) {
315 case 0:
316 val |= (1 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES1;
317 break;
318 case 1:
319 val |= (2 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES2;
320 break;
321 case 2:
322 val |= (3 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES3;
323 break;
324 case 3:
325 val |= RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3;
326 break;
327 default:
328 break;
331 } else {
332 val = ((2 << RNG_v2_CTL_ASEL_SHIFT) |
333 (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_v2_CTL_WAIT_SHIFT) |
334 RNG_CTL_LFSR);
336 switch (ctl) {
337 case 0:
338 val |= (1 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES1;
339 break;
340 case 1:
341 val |= (2 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES2;
342 break;
343 case 2:
344 val |= (3 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES3;
345 break;
346 case 3:
347 val |= RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3;
348 break;
349 default:
350 break;
354 return val;
357 static void n2rng_control_swstate_init(struct n2rng *np)
359 int i;
361 np->flags |= N2RNG_FLAG_CONTROL;
363 np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
364 np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
365 np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
367 for (i = 0; i < np->num_units; i++) {
368 struct n2rng_unit *up = &np->units[i];
370 up->control[0] = n2rng_control_default(np, 0);
371 up->control[1] = n2rng_control_default(np, 1);
372 up->control[2] = n2rng_control_default(np, 2);
373 up->control[3] = n2rng_control_default(np, 3);
376 np->hv_state = HV_RNG_STATE_UNCONFIGURED;
379 static int n2rng_grab_diag_control(struct n2rng *np)
381 int i, busy_count, err = -ENODEV;
383 busy_count = 0;
384 for (i = 0; i < 100; i++) {
385 err = n2rng_try_read_ctl(np);
386 if (err != -EAGAIN)
387 break;
389 if (++busy_count > 100) {
390 dev_err(&np->op->dev,
391 "Grab diag control timeout.\n");
392 return -ENODEV;
395 udelay(1);
398 return err;
401 static int n2rng_init_control(struct n2rng *np)
403 int err = n2rng_grab_diag_control(np);
405 /* Not in the control domain, that's OK we are only a consumer
406 * of the RNG data, we don't setup and program it.
408 if (err == -EPERM)
409 return 0;
410 if (err)
411 return err;
413 n2rng_control_swstate_init(np);
415 return 0;
418 static int n2rng_data_read(struct hwrng *rng, u32 *data)
420 struct n2rng *np = (struct n2rng *) rng->priv;
421 unsigned long ra = __pa(&np->test_data);
422 int len;
424 if (!(np->flags & N2RNG_FLAG_READY)) {
425 len = 0;
426 } else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
427 np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
428 *data = np->buffer;
429 len = 4;
430 } else {
431 int err = n2rng_generic_read_data(ra);
432 if (!err) {
433 np->flags |= N2RNG_FLAG_BUFFER_VALID;
434 np->buffer = np->test_data >> 32;
435 *data = np->test_data & 0xffffffff;
436 len = 4;
437 } else {
438 dev_err(&np->op->dev, "RNG error, retesting\n");
439 np->flags &= ~N2RNG_FLAG_READY;
440 if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
441 schedule_delayed_work(&np->work, 0);
442 len = 0;
446 return len;
449 /* On a guest node, just make sure we can read random data properly.
450 * If a control node reboots or reloads it's n2rng driver, this won't
451 * work during that time. So we have to keep probing until the device
452 * becomes usable.
454 static int n2rng_guest_check(struct n2rng *np)
456 unsigned long ra = __pa(&np->test_data);
458 return n2rng_generic_read_data(ra);
461 static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
462 u64 *pre_control, u64 pre_state,
463 u64 *buffer, unsigned long buf_len,
464 u64 *post_control, u64 post_state)
466 unsigned long post_ctl_ra = __pa(post_control);
467 unsigned long pre_ctl_ra = __pa(pre_control);
468 unsigned long buffer_ra = __pa(buffer);
469 int err;
471 err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
472 if (err)
473 return err;
475 err = n2rng_generic_read_diag_data(np, unit,
476 buffer_ra, buf_len);
478 (void) n2rng_generic_write_control(np, post_ctl_ra, unit,
479 post_state);
481 return err;
484 static u64 advance_polynomial(u64 poly, u64 val, int count)
486 int i;
488 for (i = 0; i < count; i++) {
489 int highbit_set = ((s64)val < 0);
491 val <<= 1;
492 if (highbit_set)
493 val ^= poly;
496 return val;
499 static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
501 int i, count = 0;
503 /* Purposefully skip over the first word. */
504 for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
505 if (np->test_buffer[i] == val)
506 count++;
508 return count;
511 static void n2rng_dump_test_buffer(struct n2rng *np)
513 int i;
515 for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
516 dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
517 i, np->test_buffer[i]);
520 static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
522 u64 val;
523 int err, matches, limit;
525 switch (np->data->id) {
526 case N2_n2_rng:
527 case N2_vf_rng:
528 case N2_kt_rng:
529 case N2_m4_rng: /* yes, m4 uses the old value */
530 val = RNG_v1_SELFTEST_VAL;
531 break;
532 default:
533 val = RNG_v2_SELFTEST_VAL;
534 break;
537 matches = 0;
538 for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
539 matches += n2rng_test_buffer_find(np, val);
540 if (matches >= SELFTEST_MATCH_GOAL)
541 break;
542 val = advance_polynomial(SELFTEST_POLY, val, 1);
545 err = 0;
546 if (limit >= SELFTEST_LOOPS_MAX) {
547 err = -ENODEV;
548 dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
549 n2rng_dump_test_buffer(np);
550 } else
551 dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
553 return err;
556 static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
558 int err;
559 u64 base, base3;
561 switch (np->data->id) {
562 case N2_n2_rng:
563 case N2_vf_rng:
564 case N2_kt_rng:
565 base = RNG_v1_CTL_ASEL_NOOUT << RNG_v1_CTL_ASEL_SHIFT;
566 base3 = base | RNG_CTL_LFSR |
567 ((RNG_v1_SELFTEST_TICKS - 2) << RNG_v1_CTL_WAIT_SHIFT);
568 break;
569 case N2_m4_rng:
570 base = RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT;
571 base3 = base | RNG_CTL_LFSR |
572 ((RNG_v1_SELFTEST_TICKS - 2) << RNG_v2_CTL_WAIT_SHIFT);
573 break;
574 default:
575 base = RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT;
576 base3 = base | RNG_CTL_LFSR |
577 (RNG_v2_SELFTEST_TICKS << RNG_v2_CTL_WAIT_SHIFT);
578 break;
581 np->test_control[0] = base;
582 np->test_control[1] = base;
583 np->test_control[2] = base;
584 np->test_control[3] = base3;
586 err = n2rng_entropy_diag_read(np, unit, np->test_control,
587 HV_RNG_STATE_HEALTHCHECK,
588 np->test_buffer,
589 sizeof(np->test_buffer),
590 &np->units[unit].control[0],
591 np->hv_state);
592 if (err)
593 return err;
595 return n2rng_check_selftest_buffer(np, unit);
598 static int n2rng_control_check(struct n2rng *np)
600 int i;
602 for (i = 0; i < np->num_units; i++) {
603 int err = n2rng_control_selftest(np, i);
604 if (err)
605 return err;
607 return 0;
610 /* The sanity checks passed, install the final configuration into the
611 * chip, it's ready to use.
613 static int n2rng_control_configure_units(struct n2rng *np)
615 int unit, err;
617 err = 0;
618 for (unit = 0; unit < np->num_units; unit++) {
619 struct n2rng_unit *up = &np->units[unit];
620 unsigned long ctl_ra = __pa(&up->control[0]);
621 int esrc;
622 u64 base, shift;
624 if (np->data->chip_version == 1) {
625 base = ((np->accum_cycles << RNG_v1_CTL_WAIT_SHIFT) |
626 (RNG_v1_CTL_ASEL_NOOUT << RNG_v1_CTL_ASEL_SHIFT) |
627 RNG_CTL_LFSR);
628 shift = RNG_v1_CTL_VCO_SHIFT;
629 } else {
630 base = ((np->accum_cycles << RNG_v2_CTL_WAIT_SHIFT) |
631 (RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT) |
632 RNG_CTL_LFSR);
633 shift = RNG_v2_CTL_VCO_SHIFT;
636 /* XXX This isn't the best. We should fetch a bunch
637 * XXX of words using each entropy source combined XXX
638 * with each VCO setting, and see which combinations
639 * XXX give the best random data.
641 for (esrc = 0; esrc < 3; esrc++)
642 up->control[esrc] = base |
643 (esrc << shift) |
644 (RNG_CTL_ES1 << esrc);
646 up->control[3] = base |
647 (RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
649 err = n2rng_generic_write_control(np, ctl_ra, unit,
650 HV_RNG_STATE_CONFIGURED);
651 if (err)
652 break;
655 return err;
658 static void n2rng_work(struct work_struct *work)
660 struct n2rng *np = container_of(work, struct n2rng, work.work);
661 int err = 0;
662 static int retries = 4;
664 if (!(np->flags & N2RNG_FLAG_CONTROL)) {
665 err = n2rng_guest_check(np);
666 } else {
667 preempt_disable();
668 err = n2rng_control_check(np);
669 preempt_enable();
671 if (!err)
672 err = n2rng_control_configure_units(np);
675 if (!err) {
676 np->flags |= N2RNG_FLAG_READY;
677 dev_info(&np->op->dev, "RNG ready\n");
680 if (--retries == 0)
681 dev_err(&np->op->dev, "Self-test retries failed, RNG not ready\n");
682 else if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
683 schedule_delayed_work(&np->work, HZ * 2);
686 static void n2rng_driver_version(void)
688 static int n2rng_version_printed;
690 if (n2rng_version_printed++ == 0)
691 pr_info("%s", version);
694 static const struct of_device_id n2rng_match[];
695 static int n2rng_probe(struct platform_device *op)
697 const struct of_device_id *match;
698 int err = -ENOMEM;
699 struct n2rng *np;
701 match = of_match_device(n2rng_match, &op->dev);
702 if (!match)
703 return -EINVAL;
705 n2rng_driver_version();
706 np = devm_kzalloc(&op->dev, sizeof(*np), GFP_KERNEL);
707 if (!np)
708 goto out;
709 np->op = op;
710 np->data = (struct n2rng_template *)match->data;
712 INIT_DELAYED_WORK(&np->work, n2rng_work);
714 if (np->data->multi_capable)
715 np->flags |= N2RNG_FLAG_MULTI;
717 err = -ENODEV;
718 np->hvapi_major = 2;
719 if (sun4v_hvapi_register(HV_GRP_RNG,
720 np->hvapi_major,
721 &np->hvapi_minor)) {
722 np->hvapi_major = 1;
723 if (sun4v_hvapi_register(HV_GRP_RNG,
724 np->hvapi_major,
725 &np->hvapi_minor)) {
726 dev_err(&op->dev, "Cannot register suitable "
727 "HVAPI version.\n");
728 goto out;
732 if (np->flags & N2RNG_FLAG_MULTI) {
733 if (np->hvapi_major < 2) {
734 dev_err(&op->dev, "multi-unit-capable RNG requires "
735 "HVAPI major version 2 or later, got %lu\n",
736 np->hvapi_major);
737 goto out_hvapi_unregister;
739 np->num_units = of_getintprop_default(op->dev.of_node,
740 "rng-#units", 0);
741 if (!np->num_units) {
742 dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
743 goto out_hvapi_unregister;
745 } else {
746 np->num_units = 1;
749 dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
750 np->hvapi_major, np->hvapi_minor);
751 np->units = devm_kcalloc(&op->dev, np->num_units, sizeof(*np->units),
752 GFP_KERNEL);
753 err = -ENOMEM;
754 if (!np->units)
755 goto out_hvapi_unregister;
757 err = n2rng_init_control(np);
758 if (err)
759 goto out_hvapi_unregister;
761 dev_info(&op->dev, "Found %s RNG, units: %d\n",
762 ((np->flags & N2RNG_FLAG_MULTI) ?
763 "multi-unit-capable" : "single-unit"),
764 np->num_units);
766 np->hwrng.name = DRV_MODULE_NAME;
767 np->hwrng.data_read = n2rng_data_read;
768 np->hwrng.priv = (unsigned long) np;
770 err = hwrng_register(&np->hwrng);
771 if (err)
772 goto out_hvapi_unregister;
774 platform_set_drvdata(op, np);
776 schedule_delayed_work(&np->work, 0);
778 return 0;
780 out_hvapi_unregister:
781 sun4v_hvapi_unregister(HV_GRP_RNG);
783 out:
784 return err;
787 static int n2rng_remove(struct platform_device *op)
789 struct n2rng *np = platform_get_drvdata(op);
791 np->flags |= N2RNG_FLAG_SHUTDOWN;
793 cancel_delayed_work_sync(&np->work);
795 hwrng_unregister(&np->hwrng);
797 sun4v_hvapi_unregister(HV_GRP_RNG);
799 return 0;
802 static struct n2rng_template n2_template = {
803 .id = N2_n2_rng,
804 .multi_capable = 0,
805 .chip_version = 1,
808 static struct n2rng_template vf_template = {
809 .id = N2_vf_rng,
810 .multi_capable = 1,
811 .chip_version = 1,
814 static struct n2rng_template kt_template = {
815 .id = N2_kt_rng,
816 .multi_capable = 1,
817 .chip_version = 1,
820 static struct n2rng_template m4_template = {
821 .id = N2_m4_rng,
822 .multi_capable = 1,
823 .chip_version = 2,
826 static struct n2rng_template m7_template = {
827 .id = N2_m7_rng,
828 .multi_capable = 1,
829 .chip_version = 2,
832 static const struct of_device_id n2rng_match[] = {
834 .name = "random-number-generator",
835 .compatible = "SUNW,n2-rng",
836 .data = &n2_template,
839 .name = "random-number-generator",
840 .compatible = "SUNW,vf-rng",
841 .data = &vf_template,
844 .name = "random-number-generator",
845 .compatible = "SUNW,kt-rng",
846 .data = &kt_template,
849 .name = "random-number-generator",
850 .compatible = "ORCL,m4-rng",
851 .data = &m4_template,
854 .name = "random-number-generator",
855 .compatible = "ORCL,m7-rng",
856 .data = &m7_template,
860 MODULE_DEVICE_TABLE(of, n2rng_match);
862 static struct platform_driver n2rng_driver = {
863 .driver = {
864 .name = "n2rng",
865 .of_match_table = n2rng_match,
867 .probe = n2rng_probe,
868 .remove = n2rng_remove,
871 module_platform_driver(n2rng_driver);