Linux 4.18.10
[linux/fpc-iii.git] / drivers / clk / berlin / berlin2-avpll.c
blobaa89b4c9464e77fd1c7e36f1531fa8aee042e97a
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2014 Marvell Technology Group Ltd.
5 * Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
6 * Alexandre Belloni <alexandre.belloni@free-electrons.com>
7 */
8 #include <linux/clk-provider.h>
9 #include <linux/io.h>
10 #include <linux/kernel.h>
11 #include <linux/of.h>
12 #include <linux/of_address.h>
13 #include <linux/slab.h>
15 #include "berlin2-avpll.h"
18 * Berlin2 SoCs comprise up to two PLLs called AVPLL built upon a
19 * VCO with 8 channels each, channel 8 is the odd-one-out and does
20 * not provide mul/div.
22 * Unfortunately, its registers are not named but just numbered. To
23 * get in at least some kind of structure, we split each AVPLL into
24 * the VCOs and each channel into separate clock drivers.
26 * Also, here and there the VCO registers are a bit different with
27 * respect to bit shifts. Make sure to add a comment for those.
29 #define NUM_CHANNELS 8
31 #define AVPLL_CTRL(x) ((x) * 0x4)
33 #define VCO_CTRL0 AVPLL_CTRL(0)
34 /* BG2/BG2CDs VCO_B has an additional shift of 4 for its VCO_CTRL0 reg */
35 #define VCO_RESET BIT(0)
36 #define VCO_POWERUP BIT(1)
37 #define VCO_INTERPOL_SHIFT 2
38 #define VCO_INTERPOL_MASK (0xf << VCO_INTERPOL_SHIFT)
39 #define VCO_REG1V45_SEL_SHIFT 6
40 #define VCO_REG1V45_SEL(x) ((x) << VCO_REG1V45_SEL_SHIFT)
41 #define VCO_REG1V45_SEL_1V40 VCO_REG1V45_SEL(0)
42 #define VCO_REG1V45_SEL_1V45 VCO_REG1V45_SEL(1)
43 #define VCO_REG1V45_SEL_1V50 VCO_REG1V45_SEL(2)
44 #define VCO_REG1V45_SEL_1V55 VCO_REG1V45_SEL(3)
45 #define VCO_REG1V45_SEL_MASK VCO_REG1V45_SEL(3)
46 #define VCO_REG0V9_SEL_SHIFT 8
47 #define VCO_REG0V9_SEL_MASK (0xf << VCO_REG0V9_SEL_SHIFT)
48 #define VCO_VTHCAL_SHIFT 12
49 #define VCO_VTHCAL(x) ((x) << VCO_VTHCAL_SHIFT)
50 #define VCO_VTHCAL_0V90 VCO_VTHCAL(0)
51 #define VCO_VTHCAL_0V95 VCO_VTHCAL(1)
52 #define VCO_VTHCAL_1V00 VCO_VTHCAL(2)
53 #define VCO_VTHCAL_1V05 VCO_VTHCAL(3)
54 #define VCO_VTHCAL_MASK VCO_VTHCAL(3)
55 #define VCO_KVCOEXT_SHIFT 14
56 #define VCO_KVCOEXT_MASK (0x3 << VCO_KVCOEXT_SHIFT)
57 #define VCO_KVCOEXT_ENABLE BIT(17)
58 #define VCO_V2IEXT_SHIFT 18
59 #define VCO_V2IEXT_MASK (0xf << VCO_V2IEXT_SHIFT)
60 #define VCO_V2IEXT_ENABLE BIT(22)
61 #define VCO_SPEED_SHIFT 23
62 #define VCO_SPEED(x) ((x) << VCO_SPEED_SHIFT)
63 #define VCO_SPEED_1G08_1G21 VCO_SPEED(0)
64 #define VCO_SPEED_1G21_1G40 VCO_SPEED(1)
65 #define VCO_SPEED_1G40_1G61 VCO_SPEED(2)
66 #define VCO_SPEED_1G61_1G86 VCO_SPEED(3)
67 #define VCO_SPEED_1G86_2G00 VCO_SPEED(4)
68 #define VCO_SPEED_2G00_2G22 VCO_SPEED(5)
69 #define VCO_SPEED_2G22 VCO_SPEED(6)
70 #define VCO_SPEED_MASK VCO_SPEED(0x7)
71 #define VCO_CLKDET_ENABLE BIT(26)
72 #define VCO_CTRL1 AVPLL_CTRL(1)
73 #define VCO_REFDIV_SHIFT 0
74 #define VCO_REFDIV(x) ((x) << VCO_REFDIV_SHIFT)
75 #define VCO_REFDIV_1 VCO_REFDIV(0)
76 #define VCO_REFDIV_2 VCO_REFDIV(1)
77 #define VCO_REFDIV_4 VCO_REFDIV(2)
78 #define VCO_REFDIV_3 VCO_REFDIV(3)
79 #define VCO_REFDIV_MASK VCO_REFDIV(0x3f)
80 #define VCO_FBDIV_SHIFT 6
81 #define VCO_FBDIV(x) ((x) << VCO_FBDIV_SHIFT)
82 #define VCO_FBDIV_MASK VCO_FBDIV(0xff)
83 #define VCO_ICP_SHIFT 14
84 /* PLL Charge Pump Current = 10uA * (x + 1) */
85 #define VCO_ICP(x) ((x) << VCO_ICP_SHIFT)
86 #define VCO_ICP_MASK VCO_ICP(0xf)
87 #define VCO_LOAD_CAP BIT(18)
88 #define VCO_CALIBRATION_START BIT(19)
89 #define VCO_FREQOFFSETn(x) AVPLL_CTRL(3 + (x))
90 #define VCO_FREQOFFSET_MASK 0x7ffff
91 #define VCO_CTRL10 AVPLL_CTRL(10)
92 #define VCO_POWERUP_CH1 BIT(20)
93 #define VCO_CTRL11 AVPLL_CTRL(11)
94 #define VCO_CTRL12 AVPLL_CTRL(12)
95 #define VCO_CTRL13 AVPLL_CTRL(13)
96 #define VCO_CTRL14 AVPLL_CTRL(14)
97 #define VCO_CTRL15 AVPLL_CTRL(15)
98 #define VCO_SYNC1n(x) AVPLL_CTRL(15 + (x))
99 #define VCO_SYNC1_MASK 0x1ffff
100 #define VCO_SYNC2n(x) AVPLL_CTRL(23 + (x))
101 #define VCO_SYNC2_MASK 0x1ffff
102 #define VCO_CTRL30 AVPLL_CTRL(30)
103 #define VCO_DPLL_CH1_ENABLE BIT(17)
105 struct berlin2_avpll_vco {
106 struct clk_hw hw;
107 void __iomem *base;
108 u8 flags;
111 #define to_avpll_vco(hw) container_of(hw, struct berlin2_avpll_vco, hw)
113 static int berlin2_avpll_vco_is_enabled(struct clk_hw *hw)
115 struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
116 u32 reg;
118 reg = readl_relaxed(vco->base + VCO_CTRL0);
119 if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
120 reg >>= 4;
122 return !!(reg & VCO_POWERUP);
125 static int berlin2_avpll_vco_enable(struct clk_hw *hw)
127 struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
128 u32 reg;
130 reg = readl_relaxed(vco->base + VCO_CTRL0);
131 if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
132 reg |= VCO_POWERUP << 4;
133 else
134 reg |= VCO_POWERUP;
135 writel_relaxed(reg, vco->base + VCO_CTRL0);
137 return 0;
140 static void berlin2_avpll_vco_disable(struct clk_hw *hw)
142 struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
143 u32 reg;
145 reg = readl_relaxed(vco->base + VCO_CTRL0);
146 if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
147 reg &= ~(VCO_POWERUP << 4);
148 else
149 reg &= ~VCO_POWERUP;
150 writel_relaxed(reg, vco->base + VCO_CTRL0);
153 static u8 vco_refdiv[] = { 1, 2, 4, 3 };
155 static unsigned long
156 berlin2_avpll_vco_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
158 struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
159 u32 reg, refdiv, fbdiv;
160 u64 freq = parent_rate;
162 /* AVPLL VCO frequency: Fvco = (Fref / refdiv) * fbdiv */
163 reg = readl_relaxed(vco->base + VCO_CTRL1);
164 refdiv = (reg & VCO_REFDIV_MASK) >> VCO_REFDIV_SHIFT;
165 refdiv = vco_refdiv[refdiv];
166 fbdiv = (reg & VCO_FBDIV_MASK) >> VCO_FBDIV_SHIFT;
167 freq *= fbdiv;
168 do_div(freq, refdiv);
170 return (unsigned long)freq;
173 static const struct clk_ops berlin2_avpll_vco_ops = {
174 .is_enabled = berlin2_avpll_vco_is_enabled,
175 .enable = berlin2_avpll_vco_enable,
176 .disable = berlin2_avpll_vco_disable,
177 .recalc_rate = berlin2_avpll_vco_recalc_rate,
180 int __init berlin2_avpll_vco_register(void __iomem *base,
181 const char *name, const char *parent_name,
182 u8 vco_flags, unsigned long flags)
184 struct berlin2_avpll_vco *vco;
185 struct clk_init_data init;
187 vco = kzalloc(sizeof(*vco), GFP_KERNEL);
188 if (!vco)
189 return -ENOMEM;
191 vco->base = base;
192 vco->flags = vco_flags;
193 vco->hw.init = &init;
194 init.name = name;
195 init.ops = &berlin2_avpll_vco_ops;
196 init.parent_names = &parent_name;
197 init.num_parents = 1;
198 init.flags = flags;
200 return clk_hw_register(NULL, &vco->hw);
203 struct berlin2_avpll_channel {
204 struct clk_hw hw;
205 void __iomem *base;
206 u8 flags;
207 u8 index;
210 #define to_avpll_channel(hw) container_of(hw, struct berlin2_avpll_channel, hw)
212 static int berlin2_avpll_channel_is_enabled(struct clk_hw *hw)
214 struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
215 u32 reg;
217 if (ch->index == 7)
218 return 1;
220 reg = readl_relaxed(ch->base + VCO_CTRL10);
221 reg &= VCO_POWERUP_CH1 << ch->index;
223 return !!reg;
226 static int berlin2_avpll_channel_enable(struct clk_hw *hw)
228 struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
229 u32 reg;
231 reg = readl_relaxed(ch->base + VCO_CTRL10);
232 reg |= VCO_POWERUP_CH1 << ch->index;
233 writel_relaxed(reg, ch->base + VCO_CTRL10);
235 return 0;
238 static void berlin2_avpll_channel_disable(struct clk_hw *hw)
240 struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
241 u32 reg;
243 reg = readl_relaxed(ch->base + VCO_CTRL10);
244 reg &= ~(VCO_POWERUP_CH1 << ch->index);
245 writel_relaxed(reg, ch->base + VCO_CTRL10);
248 static const u8 div_hdmi[] = { 1, 2, 4, 6 };
249 static const u8 div_av1[] = { 1, 2, 5, 5 };
251 static unsigned long
252 berlin2_avpll_channel_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
254 struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
255 u32 reg, div_av2, div_av3, divider = 1;
256 u64 freq = parent_rate;
258 reg = readl_relaxed(ch->base + VCO_CTRL30);
259 if ((reg & (VCO_DPLL_CH1_ENABLE << ch->index)) == 0)
260 goto skip_div;
263 * Fch = (Fref * sync2) /
264 * (sync1 * div_hdmi * div_av1 * div_av2 * div_av3)
267 reg = readl_relaxed(ch->base + VCO_SYNC1n(ch->index));
268 /* BG2/BG2CDs SYNC1 reg on AVPLL_B channel 1 is shifted by 4 */
269 if (ch->flags & BERLIN2_AVPLL_BIT_QUIRK && ch->index == 0)
270 reg >>= 4;
271 divider = reg & VCO_SYNC1_MASK;
273 reg = readl_relaxed(ch->base + VCO_SYNC2n(ch->index));
274 freq *= reg & VCO_SYNC2_MASK;
276 /* Channel 8 has no dividers */
277 if (ch->index == 7)
278 goto skip_div;
281 * HDMI divider start at VCO_CTRL11, bit 7; MSB is enable, lower 2 bit
282 * determine divider.
284 reg = readl_relaxed(ch->base + VCO_CTRL11) >> 7;
285 reg = (reg >> (ch->index * 3));
286 if (reg & BIT(2))
287 divider *= div_hdmi[reg & 0x3];
290 * AV1 divider start at VCO_CTRL11, bit 28; MSB is enable, lower 2 bit
291 * determine divider.
293 if (ch->index == 0) {
294 reg = readl_relaxed(ch->base + VCO_CTRL11);
295 reg >>= 28;
296 } else {
297 reg = readl_relaxed(ch->base + VCO_CTRL12);
298 reg >>= (ch->index-1) * 3;
300 if (reg & BIT(2))
301 divider *= div_av1[reg & 0x3];
304 * AV2 divider start at VCO_CTRL12, bit 18; each 7 bits wide,
305 * zero is not a valid value.
307 if (ch->index < 2) {
308 reg = readl_relaxed(ch->base + VCO_CTRL12);
309 reg >>= 18 + (ch->index * 7);
310 } else if (ch->index < 7) {
311 reg = readl_relaxed(ch->base + VCO_CTRL13);
312 reg >>= (ch->index - 2) * 7;
313 } else {
314 reg = readl_relaxed(ch->base + VCO_CTRL14);
316 div_av2 = reg & 0x7f;
317 if (div_av2)
318 divider *= div_av2;
321 * AV3 divider start at VCO_CTRL14, bit 7; each 4 bits wide.
322 * AV2/AV3 form a fractional divider, where only specfic values for AV3
323 * are allowed. AV3 != 0 divides by AV2/2, AV3=0 is bypass.
325 if (ch->index < 6) {
326 reg = readl_relaxed(ch->base + VCO_CTRL14);
327 reg >>= 7 + (ch->index * 4);
328 } else {
329 reg = readl_relaxed(ch->base + VCO_CTRL15);
331 div_av3 = reg & 0xf;
332 if (div_av2 && div_av3)
333 freq *= 2;
335 skip_div:
336 do_div(freq, divider);
337 return (unsigned long)freq;
340 static const struct clk_ops berlin2_avpll_channel_ops = {
341 .is_enabled = berlin2_avpll_channel_is_enabled,
342 .enable = berlin2_avpll_channel_enable,
343 .disable = berlin2_avpll_channel_disable,
344 .recalc_rate = berlin2_avpll_channel_recalc_rate,
348 * Another nice quirk:
349 * On some production SoCs, AVPLL channels are scrambled with respect
350 * to the channel numbering in the registers but still referenced by
351 * their original channel numbers. We deal with it by having a flag
352 * and a translation table for the index.
354 static const u8 quirk_index[] __initconst = { 0, 6, 5, 4, 3, 2, 1, 7 };
356 int __init berlin2_avpll_channel_register(void __iomem *base,
357 const char *name, u8 index, const char *parent_name,
358 u8 ch_flags, unsigned long flags)
360 struct berlin2_avpll_channel *ch;
361 struct clk_init_data init;
363 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
364 if (!ch)
365 return -ENOMEM;
367 ch->base = base;
368 if (ch_flags & BERLIN2_AVPLL_SCRAMBLE_QUIRK)
369 ch->index = quirk_index[index];
370 else
371 ch->index = index;
373 ch->flags = ch_flags;
374 ch->hw.init = &init;
375 init.name = name;
376 init.ops = &berlin2_avpll_channel_ops;
377 init.parent_names = &parent_name;
378 init.num_parents = 1;
379 init.flags = flags;
381 return clk_hw_register(NULL, &ch->hw);