2 * Marvell Armada 37xx SoC Peripheral clocks
4 * Copyright (C) 2016 Marvell
6 * Gregory CLEMENT <gregory.clement@free-electrons.com>
8 * This file is licensed under the terms of the GNU General Public
9 * License version 2 or later. This program is licensed "as is"
10 * without any warranty of any kind, whether express or implied.
12 * Most of the peripheral clocks can be modelled like this:
13 * _____ _______ _______
14 * TBG-A-P --| | | | | | ______
15 * TBG-B-P --| Mux |--| /div1 |--| /div2 |--| Gate |--> perip_clk
16 * TBG-A-S --| | | | | | |______|
17 * TBG-B-S --|_____| |_______| |_______|
19 * However some clocks may use only one or two block or and use the
20 * xtal clock as parent.
23 #include <linux/clk-provider.h>
24 #include <linux/mfd/syscon.h>
26 #include <linux/of_device.h>
27 #include <linux/platform_device.h>
28 #include <linux/regmap.h>
29 #include <linux/slab.h>
38 #define ARMADA_37XX_DVFS_LOAD_1 1
39 #define LOAD_LEVEL_NR 4
41 #define ARMADA_37XX_NB_L0L1 0x18
42 #define ARMADA_37XX_NB_L2L3 0x1C
43 #define ARMADA_37XX_NB_TBG_DIV_OFF 13
44 #define ARMADA_37XX_NB_TBG_DIV_MASK 0x7
45 #define ARMADA_37XX_NB_CLK_SEL_OFF 11
46 #define ARMADA_37XX_NB_CLK_SEL_MASK 0x1
47 #define ARMADA_37XX_NB_TBG_SEL_OFF 9
48 #define ARMADA_37XX_NB_TBG_SEL_MASK 0x3
49 #define ARMADA_37XX_NB_CONFIG_SHIFT 16
50 #define ARMADA_37XX_NB_DYN_MOD 0x24
51 #define ARMADA_37XX_NB_DFS_EN 31
52 #define ARMADA_37XX_NB_CPU_LOAD 0x30
53 #define ARMADA_37XX_NB_CPU_LOAD_MASK 0x3
54 #define ARMADA_37XX_DVFS_LOAD_0 0
55 #define ARMADA_37XX_DVFS_LOAD_1 1
56 #define ARMADA_37XX_DVFS_LOAD_2 2
57 #define ARMADA_37XX_DVFS_LOAD_3 3
59 struct clk_periph_driver_data
{
60 struct clk_hw_onecell_data
*hw_data
;
64 struct clk_double_div
{
74 void __iomem
*reg_mux
;
77 void __iomem
*reg_div
;
79 struct regmap
*nb_pm_base
;
82 #define to_clk_double_div(_hw) container_of(_hw, struct clk_double_div, hw)
83 #define to_clk_pm_cpu(_hw) container_of(_hw, struct clk_pm_cpu, hw)
85 struct clk_periph_data
{
87 const char * const *parent_names
;
89 struct clk_hw
*mux_hw
;
90 struct clk_hw
*rate_hw
;
91 struct clk_hw
*gate_hw
;
92 struct clk_hw
*muxrate_hw
;
96 static const struct clk_div_table clk_table6
[] = {
97 { .val
= 1, .div
= 1, },
98 { .val
= 2, .div
= 2, },
99 { .val
= 3, .div
= 3, },
100 { .val
= 4, .div
= 4, },
101 { .val
= 5, .div
= 5, },
102 { .val
= 6, .div
= 6, },
103 { .val
= 0, .div
= 0, }, /* last entry */
106 static const struct clk_div_table clk_table1
[] = {
107 { .val
= 0, .div
= 1, },
108 { .val
= 1, .div
= 2, },
109 { .val
= 0, .div
= 0, }, /* last entry */
112 static const struct clk_div_table clk_table2
[] = {
113 { .val
= 0, .div
= 2, },
114 { .val
= 1, .div
= 4, },
115 { .val
= 0, .div
= 0, }, /* last entry */
118 static const struct clk_ops clk_double_div_ops
;
119 static const struct clk_ops clk_pm_cpu_ops
;
121 #define PERIPH_GATE(_name, _bit) \
122 struct clk_gate gate_##_name = { \
123 .reg = (void *)CLK_DIS, \
125 .hw.init = &(struct clk_init_data){ \
126 .ops = &clk_gate_ops, \
130 #define PERIPH_MUX(_name, _shift) \
131 struct clk_mux mux_##_name = { \
132 .reg = (void *)TBG_SEL, \
135 .hw.init = &(struct clk_init_data){ \
136 .ops = &clk_mux_ro_ops, \
140 #define PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2) \
141 struct clk_double_div rate_##_name = { \
142 .reg1 = (void *)_reg1, \
143 .reg2 = (void *)_reg2, \
146 .hw.init = &(struct clk_init_data){ \
147 .ops = &clk_double_div_ops, \
151 #define PERIPH_DIV(_name, _reg, _shift, _table) \
152 struct clk_divider rate_##_name = { \
153 .reg = (void *)_reg, \
156 .hw.init = &(struct clk_init_data){ \
157 .ops = &clk_divider_ro_ops, \
161 #define PERIPH_PM_CPU(_name, _shift1, _reg, _shift2) \
162 struct clk_pm_cpu muxrate_##_name = { \
163 .reg_mux = (void *)TBG_SEL, \
165 .shift_mux = _shift1, \
166 .reg_div = (void *)_reg, \
167 .shift_div = _shift2, \
168 .hw.init = &(struct clk_init_data){ \
169 .ops = &clk_pm_cpu_ops, \
173 #define PERIPH_CLK_FULL_DD(_name, _bit, _shift, _reg1, _reg2, _shift1, _shift2)\
174 static PERIPH_GATE(_name, _bit); \
175 static PERIPH_MUX(_name, _shift); \
176 static PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2);
178 #define PERIPH_CLK_FULL(_name, _bit, _shift, _reg, _shift1, _table) \
179 static PERIPH_GATE(_name, _bit); \
180 static PERIPH_MUX(_name, _shift); \
181 static PERIPH_DIV(_name, _reg, _shift1, _table);
183 #define PERIPH_CLK_GATE_DIV(_name, _bit, _reg, _shift, _table) \
184 static PERIPH_GATE(_name, _bit); \
185 static PERIPH_DIV(_name, _reg, _shift, _table);
187 #define PERIPH_CLK_MUX_DD(_name, _shift, _reg1, _reg2, _shift1, _shift2)\
188 static PERIPH_MUX(_name, _shift); \
189 static PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2);
191 #define REF_CLK_FULL(_name) \
193 .parent_names = (const char *[]){ "TBG-A-P", \
194 "TBG-B-P", "TBG-A-S", "TBG-B-S"}, \
196 .mux_hw = &mux_##_name.hw, \
197 .gate_hw = &gate_##_name.hw, \
198 .rate_hw = &rate_##_name.hw, \
201 #define REF_CLK_FULL_DD(_name) \
203 .parent_names = (const char *[]){ "TBG-A-P", \
204 "TBG-B-P", "TBG-A-S", "TBG-B-S"}, \
206 .mux_hw = &mux_##_name.hw, \
207 .gate_hw = &gate_##_name.hw, \
208 .rate_hw = &rate_##_name.hw, \
209 .is_double_div = true, \
212 #define REF_CLK_GATE(_name, _parent_name) \
214 .parent_names = (const char *[]){ _parent_name}, \
216 .gate_hw = &gate_##_name.hw, \
219 #define REF_CLK_GATE_DIV(_name, _parent_name) \
221 .parent_names = (const char *[]){ _parent_name}, \
223 .gate_hw = &gate_##_name.hw, \
224 .rate_hw = &rate_##_name.hw, \
227 #define REF_CLK_PM_CPU(_name) \
229 .parent_names = (const char *[]){ "TBG-A-P", \
230 "TBG-B-P", "TBG-A-S", "TBG-B-S"}, \
232 .muxrate_hw = &muxrate_##_name.hw, \
235 #define REF_CLK_MUX_DD(_name) \
237 .parent_names = (const char *[]){ "TBG-A-P", \
238 "TBG-B-P", "TBG-A-S", "TBG-B-S"}, \
240 .mux_hw = &mux_##_name.hw, \
241 .rate_hw = &rate_##_name.hw, \
242 .is_double_div = true, \
245 /* NB periph clocks */
246 PERIPH_CLK_FULL_DD(mmc
, 2, 0, DIV_SEL2
, DIV_SEL2
, 16, 13);
247 PERIPH_CLK_FULL_DD(sata_host
, 3, 2, DIV_SEL2
, DIV_SEL2
, 10, 7);
248 PERIPH_CLK_FULL_DD(sec_at
, 6, 4, DIV_SEL1
, DIV_SEL1
, 3, 0);
249 PERIPH_CLK_FULL_DD(sec_dap
, 7, 6, DIV_SEL1
, DIV_SEL1
, 9, 6);
250 PERIPH_CLK_FULL_DD(tscem
, 8, 8, DIV_SEL1
, DIV_SEL1
, 15, 12);
251 PERIPH_CLK_FULL(tscem_tmx
, 10, 10, DIV_SEL1
, 18, clk_table6
);
252 static PERIPH_GATE(avs
, 11);
253 PERIPH_CLK_FULL_DD(pwm
, 13, 14, DIV_SEL0
, DIV_SEL0
, 3, 0);
254 PERIPH_CLK_FULL_DD(sqf
, 12, 12, DIV_SEL1
, DIV_SEL1
, 27, 24);
255 static PERIPH_GATE(i2c_2
, 16);
256 static PERIPH_GATE(i2c_1
, 17);
257 PERIPH_CLK_GATE_DIV(ddr_phy
, 19, DIV_SEL0
, 18, clk_table2
);
258 PERIPH_CLK_FULL_DD(ddr_fclk
, 21, 16, DIV_SEL0
, DIV_SEL0
, 15, 12);
259 PERIPH_CLK_FULL(trace
, 22, 18, DIV_SEL0
, 20, clk_table6
);
260 PERIPH_CLK_FULL(counter
, 23, 20, DIV_SEL0
, 23, clk_table6
);
261 PERIPH_CLK_FULL_DD(eip97
, 24, 24, DIV_SEL2
, DIV_SEL2
, 22, 19);
262 static PERIPH_PM_CPU(cpu
, 22, DIV_SEL0
, 28);
264 static struct clk_periph_data data_nb
[] = {
265 REF_CLK_FULL_DD(mmc
),
266 REF_CLK_FULL_DD(sata_host
),
267 REF_CLK_FULL_DD(sec_at
),
268 REF_CLK_FULL_DD(sec_dap
),
269 REF_CLK_FULL_DD(tscem
),
270 REF_CLK_FULL(tscem_tmx
),
271 REF_CLK_GATE(avs
, "xtal"),
272 REF_CLK_FULL_DD(sqf
),
273 REF_CLK_FULL_DD(pwm
),
274 REF_CLK_GATE(i2c_2
, "xtal"),
275 REF_CLK_GATE(i2c_1
, "xtal"),
276 REF_CLK_GATE_DIV(ddr_phy
, "TBG-A-S"),
277 REF_CLK_FULL_DD(ddr_fclk
),
279 REF_CLK_FULL(counter
),
280 REF_CLK_FULL_DD(eip97
),
285 /* SB periph clocks */
286 PERIPH_CLK_MUX_DD(gbe_50
, 6, DIV_SEL2
, DIV_SEL2
, 6, 9);
287 PERIPH_CLK_MUX_DD(gbe_core
, 8, DIV_SEL1
, DIV_SEL1
, 18, 21);
288 PERIPH_CLK_MUX_DD(gbe_125
, 10, DIV_SEL1
, DIV_SEL1
, 6, 9);
289 static PERIPH_GATE(gbe1_50
, 0);
290 static PERIPH_GATE(gbe0_50
, 1);
291 static PERIPH_GATE(gbe1_125
, 2);
292 static PERIPH_GATE(gbe0_125
, 3);
293 PERIPH_CLK_GATE_DIV(gbe1_core
, 4, DIV_SEL1
, 13, clk_table1
);
294 PERIPH_CLK_GATE_DIV(gbe0_core
, 5, DIV_SEL1
, 14, clk_table1
);
295 PERIPH_CLK_GATE_DIV(gbe_bm
, 12, DIV_SEL1
, 0, clk_table1
);
296 PERIPH_CLK_FULL_DD(sdio
, 11, 14, DIV_SEL0
, DIV_SEL0
, 3, 6);
297 PERIPH_CLK_FULL_DD(usb32_usb2_sys
, 16, 16, DIV_SEL0
, DIV_SEL0
, 9, 12);
298 PERIPH_CLK_FULL_DD(usb32_ss_sys
, 17, 18, DIV_SEL0
, DIV_SEL0
, 15, 18);
300 static struct clk_periph_data data_sb
[] = {
301 REF_CLK_MUX_DD(gbe_50
),
302 REF_CLK_MUX_DD(gbe_core
),
303 REF_CLK_MUX_DD(gbe_125
),
304 REF_CLK_GATE(gbe1_50
, "gbe_50"),
305 REF_CLK_GATE(gbe0_50
, "gbe_50"),
306 REF_CLK_GATE(gbe1_125
, "gbe_125"),
307 REF_CLK_GATE(gbe0_125
, "gbe_125"),
308 REF_CLK_GATE_DIV(gbe1_core
, "gbe_core"),
309 REF_CLK_GATE_DIV(gbe0_core
, "gbe_core"),
310 REF_CLK_GATE_DIV(gbe_bm
, "gbe_core"),
311 REF_CLK_FULL_DD(sdio
),
312 REF_CLK_FULL_DD(usb32_usb2_sys
),
313 REF_CLK_FULL_DD(usb32_ss_sys
),
317 static unsigned int get_div(void __iomem
*reg
, int shift
)
321 val
= (readl(reg
) >> shift
) & 0x7;
327 static unsigned long clk_double_div_recalc_rate(struct clk_hw
*hw
,
328 unsigned long parent_rate
)
330 struct clk_double_div
*double_div
= to_clk_double_div(hw
);
333 div
= get_div(double_div
->reg1
, double_div
->shift1
);
334 div
*= get_div(double_div
->reg2
, double_div
->shift2
);
336 return DIV_ROUND_UP_ULL((u64
)parent_rate
, div
);
339 static const struct clk_ops clk_double_div_ops
= {
340 .recalc_rate
= clk_double_div_recalc_rate
,
343 static void armada_3700_pm_dvfs_update_regs(unsigned int load_level
,
345 unsigned int *offset
)
347 if (load_level
<= ARMADA_37XX_DVFS_LOAD_1
)
348 *reg
= ARMADA_37XX_NB_L0L1
;
350 *reg
= ARMADA_37XX_NB_L2L3
;
352 if (load_level
== ARMADA_37XX_DVFS_LOAD_0
||
353 load_level
== ARMADA_37XX_DVFS_LOAD_2
)
354 *offset
+= ARMADA_37XX_NB_CONFIG_SHIFT
;
357 static bool armada_3700_pm_dvfs_is_enabled(struct regmap
*base
)
359 unsigned int val
, reg
= ARMADA_37XX_NB_DYN_MOD
;
364 regmap_read(base
, reg
, &val
);
366 return !!(val
& BIT(ARMADA_37XX_NB_DFS_EN
));
369 static unsigned int armada_3700_pm_dvfs_get_cpu_div(struct regmap
*base
)
371 unsigned int reg
= ARMADA_37XX_NB_CPU_LOAD
;
372 unsigned int offset
= ARMADA_37XX_NB_TBG_DIV_OFF
;
373 unsigned int load_level
, div
;
376 * This function is always called after the function
377 * armada_3700_pm_dvfs_is_enabled, so no need to check again
378 * if the base is valid.
380 regmap_read(base
, reg
, &load_level
);
383 * The register and the offset inside this register accessed to
384 * read the current divider depend on the load level
386 load_level
&= ARMADA_37XX_NB_CPU_LOAD_MASK
;
387 armada_3700_pm_dvfs_update_regs(load_level
, ®
, &offset
);
389 regmap_read(base
, reg
, &div
);
391 return (div
>> offset
) & ARMADA_37XX_NB_TBG_DIV_MASK
;
394 static unsigned int armada_3700_pm_dvfs_get_cpu_parent(struct regmap
*base
)
396 unsigned int reg
= ARMADA_37XX_NB_CPU_LOAD
;
397 unsigned int offset
= ARMADA_37XX_NB_TBG_SEL_OFF
;
398 unsigned int load_level
, sel
;
401 * This function is always called after the function
402 * armada_3700_pm_dvfs_is_enabled, so no need to check again
403 * if the base is valid
405 regmap_read(base
, reg
, &load_level
);
408 * The register and the offset inside this register accessed to
409 * read the current divider depend on the load level
411 load_level
&= ARMADA_37XX_NB_CPU_LOAD_MASK
;
412 armada_3700_pm_dvfs_update_regs(load_level
, ®
, &offset
);
414 regmap_read(base
, reg
, &sel
);
416 return (sel
>> offset
) & ARMADA_37XX_NB_TBG_SEL_MASK
;
419 static u8
clk_pm_cpu_get_parent(struct clk_hw
*hw
)
421 struct clk_pm_cpu
*pm_cpu
= to_clk_pm_cpu(hw
);
422 int num_parents
= clk_hw_get_num_parents(hw
);
425 if (armada_3700_pm_dvfs_is_enabled(pm_cpu
->nb_pm_base
)) {
426 val
= armada_3700_pm_dvfs_get_cpu_parent(pm_cpu
->nb_pm_base
);
428 val
= readl(pm_cpu
->reg_mux
) >> pm_cpu
->shift_mux
;
429 val
&= pm_cpu
->mask_mux
;
435 static int clk_pm_cpu_set_parent(struct clk_hw
*hw
, u8 index
)
437 struct clk_pm_cpu
*pm_cpu
= to_clk_pm_cpu(hw
);
438 struct regmap
*base
= pm_cpu
->nb_pm_base
;
442 * We set the clock parent only if the DVFS is available but
445 if (IS_ERR(base
) || armada_3700_pm_dvfs_is_enabled(base
))
448 /* Set the parent clock for all the load level */
449 for (load_level
= 0; load_level
< LOAD_LEVEL_NR
; load_level
++) {
450 unsigned int reg
, mask
, val
,
451 offset
= ARMADA_37XX_NB_TBG_SEL_OFF
;
453 armada_3700_pm_dvfs_update_regs(load_level
, ®
, &offset
);
455 val
= index
<< offset
;
456 mask
= ARMADA_37XX_NB_TBG_SEL_MASK
<< offset
;
457 regmap_update_bits(base
, reg
, mask
, val
);
462 static unsigned long clk_pm_cpu_recalc_rate(struct clk_hw
*hw
,
463 unsigned long parent_rate
)
465 struct clk_pm_cpu
*pm_cpu
= to_clk_pm_cpu(hw
);
468 if (armada_3700_pm_dvfs_is_enabled(pm_cpu
->nb_pm_base
))
469 div
= armada_3700_pm_dvfs_get_cpu_div(pm_cpu
->nb_pm_base
);
471 div
= get_div(pm_cpu
->reg_div
, pm_cpu
->shift_div
);
472 return DIV_ROUND_UP_ULL((u64
)parent_rate
, div
);
475 static long clk_pm_cpu_round_rate(struct clk_hw
*hw
, unsigned long rate
,
476 unsigned long *parent_rate
)
478 struct clk_pm_cpu
*pm_cpu
= to_clk_pm_cpu(hw
);
479 struct regmap
*base
= pm_cpu
->nb_pm_base
;
480 unsigned int div
= *parent_rate
/ rate
;
481 unsigned int load_level
;
482 /* only available when DVFS is enabled */
483 if (!armada_3700_pm_dvfs_is_enabled(base
))
486 for (load_level
= 0; load_level
< LOAD_LEVEL_NR
; load_level
++) {
487 unsigned int reg
, val
, offset
= ARMADA_37XX_NB_TBG_DIV_OFF
;
489 armada_3700_pm_dvfs_update_regs(load_level
, ®
, &offset
);
491 regmap_read(base
, reg
, &val
);
494 val
&= ARMADA_37XX_NB_TBG_DIV_MASK
;
497 * We found a load level matching the target
498 * divider, switch to this load level and
501 return *parent_rate
/ div
;
504 /* We didn't find any valid divider */
509 * Switching the CPU from the L2 or L3 frequencies (300 and 200 Mhz
510 * respectively) to L0 frequency (1.2 Ghz) requires a significant
511 * amount of time to let VDD stabilize to the appropriate
512 * voltage. This amount of time is large enough that it cannot be
513 * covered by the hardware countdown register. Due to this, the CPU
514 * might start operating at L0 before the voltage is stabilized,
515 * leading to CPU stalls.
517 * To work around this problem, we prevent switching directly from the
518 * L2/L3 frequencies to the L0 frequency, and instead switch to the L1
519 * frequency in-between. The sequence therefore becomes:
520 * 1. First switch from L2/L3(200/300MHz) to L1(600MHZ)
521 * 2. Sleep 20ms for stabling VDD voltage
522 * 3. Then switch from L1(600MHZ) to L0(1200Mhz).
524 static void clk_pm_cpu_set_rate_wa(unsigned long rate
, struct regmap
*base
)
526 unsigned int cur_level
;
528 if (rate
!= 1200 * 1000 * 1000)
531 regmap_read(base
, ARMADA_37XX_NB_CPU_LOAD
, &cur_level
);
532 cur_level
&= ARMADA_37XX_NB_CPU_LOAD_MASK
;
533 if (cur_level
<= ARMADA_37XX_DVFS_LOAD_1
)
536 regmap_update_bits(base
, ARMADA_37XX_NB_CPU_LOAD
,
537 ARMADA_37XX_NB_CPU_LOAD_MASK
,
538 ARMADA_37XX_DVFS_LOAD_1
);
542 static int clk_pm_cpu_set_rate(struct clk_hw
*hw
, unsigned long rate
,
543 unsigned long parent_rate
)
545 struct clk_pm_cpu
*pm_cpu
= to_clk_pm_cpu(hw
);
546 struct regmap
*base
= pm_cpu
->nb_pm_base
;
547 unsigned int div
= parent_rate
/ rate
;
548 unsigned int load_level
;
550 /* only available when DVFS is enabled */
551 if (!armada_3700_pm_dvfs_is_enabled(base
))
554 for (load_level
= 0; load_level
< LOAD_LEVEL_NR
; load_level
++) {
555 unsigned int reg
, mask
, val
,
556 offset
= ARMADA_37XX_NB_TBG_DIV_OFF
;
558 armada_3700_pm_dvfs_update_regs(load_level
, ®
, &offset
);
560 regmap_read(base
, reg
, &val
);
562 val
&= ARMADA_37XX_NB_TBG_DIV_MASK
;
566 * We found a load level matching the target
567 * divider, switch to this load level and
570 reg
= ARMADA_37XX_NB_CPU_LOAD
;
571 mask
= ARMADA_37XX_NB_CPU_LOAD_MASK
;
573 clk_pm_cpu_set_rate_wa(rate
, base
);
575 regmap_update_bits(base
, reg
, mask
, load_level
);
581 /* We didn't find any valid divider */
585 static const struct clk_ops clk_pm_cpu_ops
= {
586 .get_parent
= clk_pm_cpu_get_parent
,
587 .set_parent
= clk_pm_cpu_set_parent
,
588 .round_rate
= clk_pm_cpu_round_rate
,
589 .set_rate
= clk_pm_cpu_set_rate
,
590 .recalc_rate
= clk_pm_cpu_recalc_rate
,
593 static const struct of_device_id armada_3700_periph_clock_of_match
[] = {
594 { .compatible
= "marvell,armada-3700-periph-clock-nb",
596 { .compatible
= "marvell,armada-3700-periph-clock-sb",
601 static int armada_3700_add_composite_clk(const struct clk_periph_data
*data
,
602 void __iomem
*reg
, spinlock_t
*lock
,
603 struct device
*dev
, struct clk_hw
**hw
)
605 const struct clk_ops
*mux_ops
= NULL
, *gate_ops
= NULL
,
607 struct clk_hw
*mux_hw
= NULL
, *gate_hw
= NULL
, *rate_hw
= NULL
;
612 mux_hw
= data
->mux_hw
;
613 mux
= to_clk_mux(mux_hw
);
615 mux_ops
= mux_hw
->init
->ops
;
616 mux
->reg
= reg
+ (u64
)mux
->reg
;
620 struct clk_gate
*gate
;
622 gate_hw
= data
->gate_hw
;
623 gate
= to_clk_gate(gate_hw
);
625 gate_ops
= gate_hw
->init
->ops
;
626 gate
->reg
= reg
+ (u64
)gate
->reg
;
627 gate
->flags
= CLK_GATE_SET_TO_DISABLE
;
631 rate_hw
= data
->rate_hw
;
632 rate_ops
= rate_hw
->init
->ops
;
633 if (data
->is_double_div
) {
634 struct clk_double_div
*rate
;
636 rate
= to_clk_double_div(rate_hw
);
637 rate
->reg1
= reg
+ (u64
)rate
->reg1
;
638 rate
->reg2
= reg
+ (u64
)rate
->reg2
;
640 struct clk_divider
*rate
= to_clk_divider(rate_hw
);
641 const struct clk_div_table
*clkt
;
644 rate
->reg
= reg
+ (u64
)rate
->reg
;
645 for (clkt
= rate
->table
; clkt
->div
; clkt
++)
647 rate
->width
= order_base_2(table_size
);
652 if (data
->muxrate_hw
) {
653 struct clk_pm_cpu
*pmcpu_clk
;
654 struct clk_hw
*muxrate_hw
= data
->muxrate_hw
;
657 pmcpu_clk
= to_clk_pm_cpu(muxrate_hw
);
658 pmcpu_clk
->reg_mux
= reg
+ (u64
)pmcpu_clk
->reg_mux
;
659 pmcpu_clk
->reg_div
= reg
+ (u64
)pmcpu_clk
->reg_div
;
662 rate_hw
= muxrate_hw
;
663 mux_ops
= muxrate_hw
->init
->ops
;
664 rate_ops
= muxrate_hw
->init
->ops
;
666 map
= syscon_regmap_lookup_by_compatible(
667 "marvell,armada-3700-nb-pm");
668 pmcpu_clk
->nb_pm_base
= map
;
671 *hw
= clk_hw_register_composite(dev
, data
->name
, data
->parent_names
,
672 data
->num_parents
, mux_hw
,
673 mux_ops
, rate_hw
, rate_ops
,
674 gate_hw
, gate_ops
, CLK_IGNORE_UNUSED
);
676 return PTR_ERR_OR_ZERO(*hw
);
679 static int armada_3700_periph_clock_probe(struct platform_device
*pdev
)
681 struct clk_periph_driver_data
*driver_data
;
682 struct device_node
*np
= pdev
->dev
.of_node
;
683 const struct clk_periph_data
*data
;
684 struct device
*dev
= &pdev
->dev
;
685 int num_periph
= 0, i
, ret
;
686 struct resource
*res
;
689 data
= of_device_get_match_data(dev
);
693 while (data
[num_periph
].name
)
696 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
697 reg
= devm_ioremap_resource(dev
, res
);
701 driver_data
= devm_kzalloc(dev
, sizeof(*driver_data
), GFP_KERNEL
);
705 driver_data
->hw_data
= devm_kzalloc(dev
,
706 struct_size(driver_data
->hw_data
,
709 if (!driver_data
->hw_data
)
711 driver_data
->hw_data
->num
= num_periph
;
713 spin_lock_init(&driver_data
->lock
);
715 for (i
= 0; i
< num_periph
; i
++) {
716 struct clk_hw
**hw
= &driver_data
->hw_data
->hws
[i
];
718 if (armada_3700_add_composite_clk(&data
[i
], reg
,
719 &driver_data
->lock
, dev
, hw
))
720 dev_err(dev
, "Can't register periph clock %s\n",
724 ret
= of_clk_add_hw_provider(np
, of_clk_hw_onecell_get
,
725 driver_data
->hw_data
);
727 for (i
= 0; i
< num_periph
; i
++)
728 clk_hw_unregister(driver_data
->hw_data
->hws
[i
]);
732 platform_set_drvdata(pdev
, driver_data
);
736 static int armada_3700_periph_clock_remove(struct platform_device
*pdev
)
738 struct clk_periph_driver_data
*data
= platform_get_drvdata(pdev
);
739 struct clk_hw_onecell_data
*hw_data
= data
->hw_data
;
742 of_clk_del_provider(pdev
->dev
.of_node
);
744 for (i
= 0; i
< hw_data
->num
; i
++)
745 clk_hw_unregister(hw_data
->hws
[i
]);
750 static struct platform_driver armada_3700_periph_clock_driver
= {
751 .probe
= armada_3700_periph_clock_probe
,
752 .remove
= armada_3700_periph_clock_remove
,
754 .name
= "marvell-armada-3700-periph-clock",
755 .of_match_table
= armada_3700_periph_clock_of_match
,
759 builtin_platform_driver(armada_3700_periph_clock_driver
);