Linux 4.18.10
[linux/fpc-iii.git] / drivers / crypto / sunxi-ss / sun4i-ss-hash.c
bloba4b5ff2b72f874ff71726372942cae4d54cef570
1 /*
2 * sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC
4 * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
6 * This file add support for MD5 and SHA1.
8 * You could find the datasheet in Documentation/arm/sunxi/README
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 #include "sun4i-ss.h"
16 #include <linux/scatterlist.h>
18 /* This is a totally arbitrary value */
19 #define SS_TIMEOUT 100
21 int sun4i_hash_crainit(struct crypto_tfm *tfm)
23 struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
24 struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
25 struct sun4i_ss_alg_template *algt;
27 memset(op, 0, sizeof(struct sun4i_tfm_ctx));
29 algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
30 op->ss = algt->ss;
32 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
33 sizeof(struct sun4i_req_ctx));
34 return 0;
37 /* sun4i_hash_init: initialize request context */
38 int sun4i_hash_init(struct ahash_request *areq)
40 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
41 struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
42 struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
43 struct sun4i_ss_alg_template *algt;
45 memset(op, 0, sizeof(struct sun4i_req_ctx));
47 algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
48 op->mode = algt->mode;
50 return 0;
53 int sun4i_hash_export_md5(struct ahash_request *areq, void *out)
55 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
56 struct md5_state *octx = out;
57 int i;
59 octx->byte_count = op->byte_count + op->len;
61 memcpy(octx->block, op->buf, op->len);
63 if (op->byte_count) {
64 for (i = 0; i < 4; i++)
65 octx->hash[i] = op->hash[i];
66 } else {
67 octx->hash[0] = SHA1_H0;
68 octx->hash[1] = SHA1_H1;
69 octx->hash[2] = SHA1_H2;
70 octx->hash[3] = SHA1_H3;
73 return 0;
76 int sun4i_hash_import_md5(struct ahash_request *areq, const void *in)
78 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
79 const struct md5_state *ictx = in;
80 int i;
82 sun4i_hash_init(areq);
84 op->byte_count = ictx->byte_count & ~0x3F;
85 op->len = ictx->byte_count & 0x3F;
87 memcpy(op->buf, ictx->block, op->len);
89 for (i = 0; i < 4; i++)
90 op->hash[i] = ictx->hash[i];
92 return 0;
95 int sun4i_hash_export_sha1(struct ahash_request *areq, void *out)
97 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
98 struct sha1_state *octx = out;
99 int i;
101 octx->count = op->byte_count + op->len;
103 memcpy(octx->buffer, op->buf, op->len);
105 if (op->byte_count) {
106 for (i = 0; i < 5; i++)
107 octx->state[i] = op->hash[i];
108 } else {
109 octx->state[0] = SHA1_H0;
110 octx->state[1] = SHA1_H1;
111 octx->state[2] = SHA1_H2;
112 octx->state[3] = SHA1_H3;
113 octx->state[4] = SHA1_H4;
116 return 0;
119 int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in)
121 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
122 const struct sha1_state *ictx = in;
123 int i;
125 sun4i_hash_init(areq);
127 op->byte_count = ictx->count & ~0x3F;
128 op->len = ictx->count & 0x3F;
130 memcpy(op->buf, ictx->buffer, op->len);
132 for (i = 0; i < 5; i++)
133 op->hash[i] = ictx->state[i];
135 return 0;
138 #define SS_HASH_UPDATE 1
139 #define SS_HASH_FINAL 2
142 * sun4i_hash_update: update hash engine
144 * Could be used for both SHA1 and MD5
145 * Write data by step of 32bits and put then in the SS.
147 * Since we cannot leave partial data and hash state in the engine,
148 * we need to get the hash state at the end of this function.
149 * We can get the hash state every 64 bytes
151 * So the first work is to get the number of bytes to write to SS modulo 64
152 * The extra bytes will go to a temporary buffer op->buf storing op->len bytes
154 * So at the begin of update()
155 * if op->len + areq->nbytes < 64
156 * => all data will be written to wait buffer (op->buf) and end=0
157 * if not, write all data from op->buf to the device and position end to
158 * complete to 64bytes
160 * example 1:
161 * update1 60o => op->len=60
162 * update2 60o => need one more word to have 64 bytes
163 * end=4
164 * so write all data from op->buf and one word of SGs
165 * write remaining data in op->buf
166 * final state op->len=56
168 static int sun4i_hash(struct ahash_request *areq)
171 * i is the total bytes read from SGs, to be compared to areq->nbytes
172 * i is important because we cannot rely on SG length since the sum of
173 * SG->length could be greater than areq->nbytes
175 * end is the position when we need to stop writing to the device,
176 * to be compared to i
178 * in_i: advancement in the current SG
180 unsigned int i = 0, end, fill, min_fill, nwait, nbw = 0, j = 0, todo;
181 unsigned int in_i = 0;
182 u32 spaces, rx_cnt = SS_RX_DEFAULT, bf[32] = {0}, wb = 0, v, ivmode = 0;
183 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
184 struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
185 struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm);
186 struct sun4i_ss_ctx *ss = tfmctx->ss;
187 struct scatterlist *in_sg = areq->src;
188 struct sg_mapping_iter mi;
189 int in_r, err = 0;
190 size_t copied = 0;
192 dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x",
193 __func__, crypto_tfm_alg_name(areq->base.tfm),
194 op->byte_count, areq->nbytes, op->mode,
195 op->len, op->hash[0]);
197 if (unlikely(!areq->nbytes) && !(op->flags & SS_HASH_FINAL))
198 return 0;
200 /* protect against overflow */
201 if (unlikely(areq->nbytes > UINT_MAX - op->len)) {
202 dev_err(ss->dev, "Cannot process too large request\n");
203 return -EINVAL;
206 if (op->len + areq->nbytes < 64 && !(op->flags & SS_HASH_FINAL)) {
207 /* linearize data to op->buf */
208 copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
209 op->buf + op->len, areq->nbytes, 0);
210 op->len += copied;
211 return 0;
214 spin_lock_bh(&ss->slock);
217 * if some data have been processed before,
218 * we need to restore the partial hash state
220 if (op->byte_count) {
221 ivmode = SS_IV_ARBITRARY;
222 for (i = 0; i < 5; i++)
223 writel(op->hash[i], ss->base + SS_IV0 + i * 4);
225 /* Enable the device */
226 writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
228 if (!(op->flags & SS_HASH_UPDATE))
229 goto hash_final;
231 /* start of handling data */
232 if (!(op->flags & SS_HASH_FINAL)) {
233 end = ((areq->nbytes + op->len) / 64) * 64 - op->len;
235 if (end > areq->nbytes || areq->nbytes - end > 63) {
236 dev_err(ss->dev, "ERROR: Bound error %u %u\n",
237 end, areq->nbytes);
238 err = -EINVAL;
239 goto release_ss;
241 } else {
242 /* Since we have the flag final, we can go up to modulo 4 */
243 end = ((areq->nbytes + op->len) / 4) * 4 - op->len;
246 /* TODO if SGlen % 4 and !op->len then DMA */
247 i = 1;
248 while (in_sg && i == 1) {
249 if (in_sg->length % 4)
250 i = 0;
251 in_sg = sg_next(in_sg);
253 if (i == 1 && !op->len && areq->nbytes)
254 dev_dbg(ss->dev, "We can DMA\n");
256 i = 0;
257 sg_miter_start(&mi, areq->src, sg_nents(areq->src),
258 SG_MITER_FROM_SG | SG_MITER_ATOMIC);
259 sg_miter_next(&mi);
260 in_i = 0;
262 do {
264 * we need to linearize in two case:
265 * - the buffer is already used
266 * - the SG does not have enough byte remaining ( < 4)
268 if (op->len || (mi.length - in_i) < 4) {
270 * if we have entered here we have two reason to stop
271 * - the buffer is full
272 * - reach the end
274 while (op->len < 64 && i < end) {
275 /* how many bytes we can read from current SG */
276 in_r = min3(mi.length - in_i, end - i,
277 64 - op->len);
278 memcpy(op->buf + op->len, mi.addr + in_i, in_r);
279 op->len += in_r;
280 i += in_r;
281 in_i += in_r;
282 if (in_i == mi.length) {
283 sg_miter_next(&mi);
284 in_i = 0;
287 if (op->len > 3 && !(op->len % 4)) {
288 /* write buf to the device */
289 writesl(ss->base + SS_RXFIFO, op->buf,
290 op->len / 4);
291 op->byte_count += op->len;
292 op->len = 0;
295 if (mi.length - in_i > 3 && i < end) {
296 /* how many bytes we can read from current SG */
297 in_r = min3(mi.length - in_i, areq->nbytes - i,
298 ((mi.length - in_i) / 4) * 4);
299 /* how many bytes we can write in the device*/
300 todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4);
301 writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo);
302 op->byte_count += todo * 4;
303 i += todo * 4;
304 in_i += todo * 4;
305 rx_cnt -= todo;
306 if (!rx_cnt) {
307 spaces = readl(ss->base + SS_FCSR);
308 rx_cnt = SS_RXFIFO_SPACES(spaces);
310 if (in_i == mi.length) {
311 sg_miter_next(&mi);
312 in_i = 0;
315 } while (i < end);
318 * Now we have written to the device all that we can,
319 * store the remaining bytes in op->buf
321 if ((areq->nbytes - i) < 64) {
322 while (i < areq->nbytes && in_i < mi.length && op->len < 64) {
323 /* how many bytes we can read from current SG */
324 in_r = min3(mi.length - in_i, areq->nbytes - i,
325 64 - op->len);
326 memcpy(op->buf + op->len, mi.addr + in_i, in_r);
327 op->len += in_r;
328 i += in_r;
329 in_i += in_r;
330 if (in_i == mi.length) {
331 sg_miter_next(&mi);
332 in_i = 0;
337 sg_miter_stop(&mi);
340 * End of data process
341 * Now if we have the flag final go to finalize part
342 * If not, store the partial hash
344 if (op->flags & SS_HASH_FINAL)
345 goto hash_final;
347 writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
348 i = 0;
349 do {
350 v = readl(ss->base + SS_CTL);
351 i++;
352 } while (i < SS_TIMEOUT && (v & SS_DATA_END));
353 if (unlikely(i >= SS_TIMEOUT)) {
354 dev_err_ratelimited(ss->dev,
355 "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
356 i, SS_TIMEOUT, v, areq->nbytes);
357 err = -EIO;
358 goto release_ss;
362 * The datasheet isn't very clear about when to retrieve the digest. The
363 * bit SS_DATA_END is cleared when the engine has processed the data and
364 * when the digest is computed *but* it doesn't mean the digest is
365 * available in the digest registers. Hence the delay to be sure we can
366 * read it.
368 ndelay(1);
370 for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
371 op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
373 goto release_ss;
376 * hash_final: finalize hashing operation
378 * If we have some remaining bytes, we write them.
379 * Then ask the SS for finalizing the hashing operation
381 * I do not check RX FIFO size in this function since the size is 32
382 * after each enabling and this function neither write more than 32 words.
383 * If we come from the update part, we cannot have more than
384 * 3 remaining bytes to write and SS is fast enough to not care about it.
387 hash_final:
389 /* write the remaining words of the wait buffer */
390 if (op->len) {
391 nwait = op->len / 4;
392 if (nwait) {
393 writesl(ss->base + SS_RXFIFO, op->buf, nwait);
394 op->byte_count += 4 * nwait;
397 nbw = op->len - 4 * nwait;
398 if (nbw) {
399 wb = *(u32 *)(op->buf + nwait * 4);
400 wb &= GENMASK((nbw * 8) - 1, 0);
402 op->byte_count += nbw;
406 /* write the remaining bytes of the nbw buffer */
407 wb |= ((1 << 7) << (nbw * 8));
408 bf[j++] = wb;
411 * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
412 * I take the operations from other MD5/SHA1 implementations
415 /* last block size */
416 fill = 64 - (op->byte_count % 64);
417 min_fill = 2 * sizeof(u32) + (nbw ? 0 : sizeof(u32));
419 /* if we can't fill all data, jump to the next 64 block */
420 if (fill < min_fill)
421 fill += 64;
423 j += (fill - min_fill) / sizeof(u32);
425 /* write the length of data */
426 if (op->mode == SS_OP_SHA1) {
427 __be64 bits = cpu_to_be64(op->byte_count << 3);
428 bf[j++] = lower_32_bits(bits);
429 bf[j++] = upper_32_bits(bits);
430 } else {
431 __le64 bits = op->byte_count << 3;
432 bf[j++] = lower_32_bits(bits);
433 bf[j++] = upper_32_bits(bits);
435 writesl(ss->base + SS_RXFIFO, bf, j);
437 /* Tell the SS to stop the hashing */
438 writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
441 * Wait for SS to finish the hash.
442 * The timeout could happen only in case of bad overclocking
443 * or driver bug.
445 i = 0;
446 do {
447 v = readl(ss->base + SS_CTL);
448 i++;
449 } while (i < SS_TIMEOUT && (v & SS_DATA_END));
450 if (unlikely(i >= SS_TIMEOUT)) {
451 dev_err_ratelimited(ss->dev,
452 "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
453 i, SS_TIMEOUT, v, areq->nbytes);
454 err = -EIO;
455 goto release_ss;
459 * The datasheet isn't very clear about when to retrieve the digest. The
460 * bit SS_DATA_END is cleared when the engine has processed the data and
461 * when the digest is computed *but* it doesn't mean the digest is
462 * available in the digest registers. Hence the delay to be sure we can
463 * read it.
465 ndelay(1);
467 /* Get the hash from the device */
468 if (op->mode == SS_OP_SHA1) {
469 for (i = 0; i < 5; i++) {
470 v = cpu_to_be32(readl(ss->base + SS_MD0 + i * 4));
471 memcpy(areq->result + i * 4, &v, 4);
473 } else {
474 for (i = 0; i < 4; i++) {
475 v = readl(ss->base + SS_MD0 + i * 4);
476 memcpy(areq->result + i * 4, &v, 4);
480 release_ss:
481 writel(0, ss->base + SS_CTL);
482 spin_unlock_bh(&ss->slock);
483 return err;
486 int sun4i_hash_final(struct ahash_request *areq)
488 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
490 op->flags = SS_HASH_FINAL;
491 return sun4i_hash(areq);
494 int sun4i_hash_update(struct ahash_request *areq)
496 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
498 op->flags = SS_HASH_UPDATE;
499 return sun4i_hash(areq);
502 /* sun4i_hash_finup: finalize hashing operation after an update */
503 int sun4i_hash_finup(struct ahash_request *areq)
505 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
507 op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
508 return sun4i_hash(areq);
511 /* combo of init/update/final functions */
512 int sun4i_hash_digest(struct ahash_request *areq)
514 int err;
515 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
517 err = sun4i_hash_init(areq);
518 if (err)
519 return err;
521 op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
522 return sun4i_hash(areq);