2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 * Copyirght (c) 2017 Linaro Ltd.
6 * Author: Peter Pearse <peter.pearse@arm.com>
7 * Author: Linus Walleij <linus.walleij@linaro.org>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
19 * The full GNU General Public License is in this distribution in the file
22 * Documentation: ARM DDI 0196G == PL080
23 * Documentation: ARM DDI 0218E == PL081
24 * Documentation: S3C6410 User's Manual == PL080S
26 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29 * The PL080 has 8 channels available for simultaneous use, and the PL081
30 * has only two channels. So on these DMA controllers the number of channels
31 * and the number of incoming DMA signals are two totally different things.
32 * It is usually not possible to theoretically handle all physical signals,
33 * so a multiplexing scheme with possible denial of use is necessary.
35 * The PL080 has a dual bus master, PL081 has a single master.
37 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
38 * It differs in following aspects:
39 * - CH_CONFIG register at different offset,
40 * - separate CH_CONTROL2 register for transfer size,
41 * - bigger maximum transfer size,
42 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
43 * - no support for peripheral flow control.
45 * Memory to peripheral transfer may be visualized as
46 * Get data from memory to DMAC
48 * On burst request from peripheral
49 * Destination burst from DMAC to peripheral
51 * Raise terminal count interrupt
53 * For peripherals with a FIFO:
54 * Source burst size == half the depth of the peripheral FIFO
55 * Destination burst size == the depth of the peripheral FIFO
57 * (Bursts are irrelevant for mem to mem transfers - there are no burst
58 * signals, the DMA controller will simply facilitate its AHB master.)
60 * ASSUMES default (little) endianness for DMA transfers
62 * The PL08x has two flow control settings:
63 * - DMAC flow control: the transfer size defines the number of transfers
64 * which occur for the current LLI entry, and the DMAC raises TC at the
65 * end of every LLI entry. Observed behaviour shows the DMAC listening
66 * to both the BREQ and SREQ signals (contrary to documented),
67 * transferring data if either is active. The LBREQ and LSREQ signals
70 * - Peripheral flow control: the transfer size is ignored (and should be
71 * zero). The data is transferred from the current LLI entry, until
72 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
73 * will then move to the next LLI entry. Unsupported by PL080S.
75 #include <linux/amba/bus.h>
76 #include <linux/amba/pl08x.h>
77 #include <linux/debugfs.h>
78 #include <linux/delay.h>
79 #include <linux/device.h>
80 #include <linux/dmaengine.h>
81 #include <linux/dmapool.h>
82 #include <linux/dma-mapping.h>
83 #include <linux/export.h>
84 #include <linux/init.h>
85 #include <linux/interrupt.h>
86 #include <linux/module.h>
88 #include <linux/of_dma.h>
89 #include <linux/pm_runtime.h>
90 #include <linux/seq_file.h>
91 #include <linux/slab.h>
92 #include <linux/amba/pl080.h>
94 #include "dmaengine.h"
97 #define DRIVER_NAME "pl08xdmac"
99 #define PL80X_DMA_BUSWIDTHS \
100 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
101 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
102 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
103 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
105 static struct amba_driver pl08x_amba_driver
;
106 struct pl08x_driver_data
;
109 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
110 * @config_offset: offset to the configuration register
111 * @channels: the number of channels available in this variant
112 * @signals: the number of request signals available from the hardware
113 * @dualmaster: whether this version supports dual AHB masters or not.
114 * @nomadik: whether this variant is a ST Microelectronics Nomadik, where the
115 * channels have Nomadik security extension bits that need to be checked
116 * for permission before use and some registers are missing
117 * @pl080s: whether this variant is a Samsung PL080S, which has separate
118 * register and LLI word for transfer size.
119 * @ftdmac020: whether this variant is a Faraday Technology FTDMAC020
120 * @max_transfer_size: the maximum single element transfer size for this
131 u32 max_transfer_size
;
135 * struct pl08x_bus_data - information of source or destination
136 * busses for a transfer
137 * @addr: current address
138 * @maxwidth: the maximum width of a transfer on this bus
139 * @buswidth: the width of this bus in bytes: 1, 2 or 4
141 struct pl08x_bus_data
{
147 #define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
150 * struct pl08x_phy_chan - holder for the physical channels
151 * @id: physical index to this channel
152 * @base: memory base address for this physical channel
153 * @reg_config: configuration address for this physical channel
154 * @reg_control: control address for this physical channel
155 * @reg_src: transfer source address register
156 * @reg_dst: transfer destination address register
157 * @reg_lli: transfer LLI address register
158 * @reg_busy: if the variant has a special per-channel busy register,
159 * this contains a pointer to it
160 * @lock: a lock to use when altering an instance of this struct
161 * @serving: the virtual channel currently being served by this physical
163 * @locked: channel unavailable for the system, e.g. dedicated to secure
165 * @ftdmac020: channel is on a FTDMAC020
166 * @pl080s: channel is on a PL08s
168 struct pl08x_phy_chan
{
171 void __iomem
*reg_config
;
172 void __iomem
*reg_control
;
173 void __iomem
*reg_src
;
174 void __iomem
*reg_dst
;
175 void __iomem
*reg_lli
;
176 void __iomem
*reg_busy
;
178 struct pl08x_dma_chan
*serving
;
185 * struct pl08x_sg - structure containing data per sg
186 * @src_addr: src address of sg
187 * @dst_addr: dst address of sg
188 * @len: transfer len in bytes
189 * @node: node for txd's dsg_list
195 struct list_head node
;
199 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
200 * @vd: virtual DMA descriptor
201 * @dsg_list: list of children sg's
202 * @llis_bus: DMA memory address (physical) start for the LLIs
203 * @llis_va: virtual memory address start for the LLIs
204 * @cctl: control reg values for current txd
205 * @ccfg: config reg values for current txd
206 * @done: this marks completed descriptors, which should not have their
208 * @cyclic: indicate cyclic transfers
211 struct virt_dma_desc vd
;
212 struct list_head dsg_list
;
215 /* Default cctl value for LLIs */
218 * Settings to be put into the physical channel when we
219 * trigger this txd. Other registers are in llis_va[0].
227 * enum pl08x_dma_chan_state - holds the PL08x specific virtual channel
229 * @PL08X_CHAN_IDLE: the channel is idle
230 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
231 * channel and is running a transfer on it
232 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
233 * channel, but the transfer is currently paused
234 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
235 * channel to become available (only pertains to memcpy channels)
237 enum pl08x_dma_chan_state
{
245 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
246 * @vc: wrappped virtual channel
247 * @phychan: the physical channel utilized by this channel, if there is one
248 * @name: name of channel
249 * @cd: channel platform data
250 * @cfg: slave configuration
251 * @at: active transaction on this channel
252 * @host: a pointer to the host (internal use)
253 * @state: whether the channel is idle, paused, running etc
254 * @slave: whether this channel is a device (slave) or for memcpy
255 * @signal: the physical DMA request signal which this channel is using
256 * @mux_use: count of descriptors using this DMA request signal setting
258 struct pl08x_dma_chan
{
259 struct virt_dma_chan vc
;
260 struct pl08x_phy_chan
*phychan
;
262 struct pl08x_channel_data
*cd
;
263 struct dma_slave_config cfg
;
264 struct pl08x_txd
*at
;
265 struct pl08x_driver_data
*host
;
266 enum pl08x_dma_chan_state state
;
273 * struct pl08x_driver_data - the local state holder for the PL08x
274 * @slave: optional slave engine for this instance
275 * @memcpy: memcpy engine for this instance
276 * @has_slave: the PL08x has a slave engine (routed signals)
277 * @base: virtual memory base (remapped) for the PL08x
278 * @adev: the corresponding AMBA (PrimeCell) bus entry
279 * @vd: vendor data for this PL08x variant
280 * @pd: platform data passed in from the platform/machine
281 * @phy_chans: array of data for the physical channels
282 * @pool: a pool for the LLI descriptors
283 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
285 * @mem_buses: set to indicate memory transfers on AHB2.
286 * @lli_words: how many words are used in each LLI item for this variant
288 struct pl08x_driver_data
{
289 struct dma_device slave
;
290 struct dma_device memcpy
;
293 struct amba_device
*adev
;
294 const struct vendor_data
*vd
;
295 struct pl08x_platform_data
*pd
;
296 struct pl08x_phy_chan
*phy_chans
;
297 struct dma_pool
*pool
;
304 * PL08X specific defines
307 /* The order of words in an LLI. */
308 #define PL080_LLI_SRC 0
309 #define PL080_LLI_DST 1
310 #define PL080_LLI_LLI 2
311 #define PL080_LLI_CCTL 3
312 #define PL080S_LLI_CCTL2 4
314 /* Total words in an LLI. */
315 #define PL080_LLI_WORDS 4
316 #define PL080S_LLI_WORDS 8
319 * Number of LLIs in each LLI buffer allocated for one transfer
320 * (maximum times we call dma_pool_alloc on this pool without freeing)
322 #define MAX_NUM_TSFR_LLIS 512
323 #define PL08X_ALIGN 8
325 static inline struct pl08x_dma_chan
*to_pl08x_chan(struct dma_chan
*chan
)
327 return container_of(chan
, struct pl08x_dma_chan
, vc
.chan
);
330 static inline struct pl08x_txd
*to_pl08x_txd(struct dma_async_tx_descriptor
*tx
)
332 return container_of(tx
, struct pl08x_txd
, vd
.tx
);
338 * This gives us the DMA request input to the PL08x primecell which the
339 * peripheral described by the channel data will be routed to, possibly
340 * via a board/SoC specific external MUX. One important point to note
341 * here is that this does not depend on the physical channel.
343 static int pl08x_request_mux(struct pl08x_dma_chan
*plchan
)
345 const struct pl08x_platform_data
*pd
= plchan
->host
->pd
;
348 if (plchan
->mux_use
++ == 0 && pd
->get_xfer_signal
) {
349 ret
= pd
->get_xfer_signal(plchan
->cd
);
355 plchan
->signal
= ret
;
360 static void pl08x_release_mux(struct pl08x_dma_chan
*plchan
)
362 const struct pl08x_platform_data
*pd
= plchan
->host
->pd
;
364 if (plchan
->signal
>= 0) {
365 WARN_ON(plchan
->mux_use
== 0);
367 if (--plchan
->mux_use
== 0 && pd
->put_xfer_signal
) {
368 pd
->put_xfer_signal(plchan
->cd
, plchan
->signal
);
375 * Physical channel handling
378 /* Whether a certain channel is busy or not */
379 static int pl08x_phy_channel_busy(struct pl08x_phy_chan
*ch
)
383 /* If we have a special busy register, take a shortcut */
385 val
= readl(ch
->reg_busy
);
386 return !!(val
& BIT(ch
->id
));
388 val
= readl(ch
->reg_config
);
389 return val
& PL080_CONFIG_ACTIVE
;
393 * pl08x_write_lli() - Write an LLI into the DMA controller.
395 * The PL08x derivatives support linked lists, but the first item of the
396 * list containing the source, destination, control word and next LLI is
397 * ignored. Instead the driver has to write those values directly into the
398 * SRC, DST, LLI and control registers. On FTDMAC020 also the SIZE
399 * register need to be set up for the first transfer.
401 static void pl08x_write_lli(struct pl08x_driver_data
*pl08x
,
402 struct pl08x_phy_chan
*phychan
, const u32
*lli
, u32 ccfg
)
404 if (pl08x
->vd
->pl080s
)
405 dev_vdbg(&pl08x
->adev
->dev
,
406 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
407 "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
408 phychan
->id
, lli
[PL080_LLI_SRC
], lli
[PL080_LLI_DST
],
409 lli
[PL080_LLI_LLI
], lli
[PL080_LLI_CCTL
],
410 lli
[PL080S_LLI_CCTL2
], ccfg
);
412 dev_vdbg(&pl08x
->adev
->dev
,
413 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
414 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
415 phychan
->id
, lli
[PL080_LLI_SRC
], lli
[PL080_LLI_DST
],
416 lli
[PL080_LLI_LLI
], lli
[PL080_LLI_CCTL
], ccfg
);
418 writel_relaxed(lli
[PL080_LLI_SRC
], phychan
->reg_src
);
419 writel_relaxed(lli
[PL080_LLI_DST
], phychan
->reg_dst
);
420 writel_relaxed(lli
[PL080_LLI_LLI
], phychan
->reg_lli
);
423 * The FTMAC020 has a different layout in the CCTL word of the LLI
424 * and the CCTL register which is split in CSR and SIZE registers.
425 * Convert the LLI item CCTL into the proper values to write into
426 * the CSR and SIZE registers.
428 if (phychan
->ftdmac020
) {
429 u32 llictl
= lli
[PL080_LLI_CCTL
];
432 /* Write the transfer size (12 bits) to the size register */
433 writel_relaxed(llictl
& FTDMAC020_LLI_TRANSFER_SIZE_MASK
,
434 phychan
->base
+ FTDMAC020_CH_SIZE
);
436 * Then write the control bits 28..16 to the control register
437 * by shuffleing the bits around to where they are in the
438 * main register. The mapping is as follows:
439 * Bit 28: TC_MSK - mask on all except last LLI
440 * Bit 27..25: SRC_WIDTH
441 * Bit 24..22: DST_WIDTH
442 * Bit 21..20: SRCAD_CTRL
443 * Bit 19..17: DSTAD_CTRL
447 if (llictl
& FTDMAC020_LLI_TC_MSK
)
448 val
|= FTDMAC020_CH_CSR_TC_MSK
;
449 val
|= ((llictl
& FTDMAC020_LLI_SRC_WIDTH_MSK
) >>
450 (FTDMAC020_LLI_SRC_WIDTH_SHIFT
-
451 FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT
));
452 val
|= ((llictl
& FTDMAC020_LLI_DST_WIDTH_MSK
) >>
453 (FTDMAC020_LLI_DST_WIDTH_SHIFT
-
454 FTDMAC020_CH_CSR_DST_WIDTH_SHIFT
));
455 val
|= ((llictl
& FTDMAC020_LLI_SRCAD_CTL_MSK
) >>
456 (FTDMAC020_LLI_SRCAD_CTL_SHIFT
-
457 FTDMAC020_CH_CSR_SRCAD_CTL_SHIFT
));
458 val
|= ((llictl
& FTDMAC020_LLI_DSTAD_CTL_MSK
) >>
459 (FTDMAC020_LLI_DSTAD_CTL_SHIFT
-
460 FTDMAC020_CH_CSR_DSTAD_CTL_SHIFT
));
461 if (llictl
& FTDMAC020_LLI_SRC_SEL
)
462 val
|= FTDMAC020_CH_CSR_SRC_SEL
;
463 if (llictl
& FTDMAC020_LLI_DST_SEL
)
464 val
|= FTDMAC020_CH_CSR_DST_SEL
;
467 * Set up the bits that exist in the CSR but are not
468 * part the LLI, i.e. only gets written to the control
469 * register right here.
471 * FIXME: do not just handle memcpy, also handle slave DMA.
473 switch (pl08x
->pd
->memcpy_burst_size
) {
475 case PL08X_BURST_SZ_1
:
476 val
|= PL080_BSIZE_1
<<
477 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT
;
479 case PL08X_BURST_SZ_4
:
480 val
|= PL080_BSIZE_4
<<
481 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT
;
483 case PL08X_BURST_SZ_8
:
484 val
|= PL080_BSIZE_8
<<
485 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT
;
487 case PL08X_BURST_SZ_16
:
488 val
|= PL080_BSIZE_16
<<
489 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT
;
491 case PL08X_BURST_SZ_32
:
492 val
|= PL080_BSIZE_32
<<
493 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT
;
495 case PL08X_BURST_SZ_64
:
496 val
|= PL080_BSIZE_64
<<
497 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT
;
499 case PL08X_BURST_SZ_128
:
500 val
|= PL080_BSIZE_128
<<
501 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT
;
503 case PL08X_BURST_SZ_256
:
504 val
|= PL080_BSIZE_256
<<
505 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT
;
509 /* Protection flags */
510 if (pl08x
->pd
->memcpy_prot_buff
)
511 val
|= FTDMAC020_CH_CSR_PROT2
;
512 if (pl08x
->pd
->memcpy_prot_cache
)
513 val
|= FTDMAC020_CH_CSR_PROT3
;
514 /* We are the kernel, so we are in privileged mode */
515 val
|= FTDMAC020_CH_CSR_PROT1
;
517 writel_relaxed(val
, phychan
->reg_control
);
519 /* Bits are just identical */
520 writel_relaxed(lli
[PL080_LLI_CCTL
], phychan
->reg_control
);
523 /* Second control word on the PL080s */
524 if (pl08x
->vd
->pl080s
)
525 writel_relaxed(lli
[PL080S_LLI_CCTL2
],
526 phychan
->base
+ PL080S_CH_CONTROL2
);
528 writel(ccfg
, phychan
->reg_config
);
532 * Set the initial DMA register values i.e. those for the first LLI
533 * The next LLI pointer and the configuration interrupt bit have
534 * been set when the LLIs were constructed. Poke them into the hardware
535 * and start the transfer.
537 static void pl08x_start_next_txd(struct pl08x_dma_chan
*plchan
)
539 struct pl08x_driver_data
*pl08x
= plchan
->host
;
540 struct pl08x_phy_chan
*phychan
= plchan
->phychan
;
541 struct virt_dma_desc
*vd
= vchan_next_desc(&plchan
->vc
);
542 struct pl08x_txd
*txd
= to_pl08x_txd(&vd
->tx
);
545 list_del(&txd
->vd
.node
);
549 /* Wait for channel inactive */
550 while (pl08x_phy_channel_busy(phychan
))
553 pl08x_write_lli(pl08x
, phychan
, &txd
->llis_va
[0], txd
->ccfg
);
555 /* Enable the DMA channel */
556 /* Do not access config register until channel shows as disabled */
557 while (readl(pl08x
->base
+ PL080_EN_CHAN
) & BIT(phychan
->id
))
560 /* Do not access config register until channel shows as inactive */
561 if (phychan
->ftdmac020
) {
562 val
= readl(phychan
->reg_config
);
563 while (val
& FTDMAC020_CH_CFG_BUSY
)
564 val
= readl(phychan
->reg_config
);
566 val
= readl(phychan
->reg_control
);
567 while (val
& FTDMAC020_CH_CSR_EN
)
568 val
= readl(phychan
->reg_control
);
570 writel(val
| FTDMAC020_CH_CSR_EN
,
571 phychan
->reg_control
);
573 val
= readl(phychan
->reg_config
);
574 while ((val
& PL080_CONFIG_ACTIVE
) ||
575 (val
& PL080_CONFIG_ENABLE
))
576 val
= readl(phychan
->reg_config
);
578 writel(val
| PL080_CONFIG_ENABLE
, phychan
->reg_config
);
583 * Pause the channel by setting the HALT bit.
585 * For M->P transfers, pause the DMAC first and then stop the peripheral -
586 * the FIFO can only drain if the peripheral is still requesting data.
587 * (note: this can still timeout if the DMAC FIFO never drains of data.)
589 * For P->M transfers, disable the peripheral first to stop it filling
590 * the DMAC FIFO, and then pause the DMAC.
592 static void pl08x_pause_phy_chan(struct pl08x_phy_chan
*ch
)
598 /* Use the enable bit on the FTDMAC020 */
599 val
= readl(ch
->reg_control
);
600 val
&= ~FTDMAC020_CH_CSR_EN
;
601 writel(val
, ch
->reg_control
);
605 /* Set the HALT bit and wait for the FIFO to drain */
606 val
= readl(ch
->reg_config
);
607 val
|= PL080_CONFIG_HALT
;
608 writel(val
, ch
->reg_config
);
610 /* Wait for channel inactive */
611 for (timeout
= 1000; timeout
; timeout
--) {
612 if (!pl08x_phy_channel_busy(ch
))
616 if (pl08x_phy_channel_busy(ch
))
617 pr_err("pl08x: channel%u timeout waiting for pause\n", ch
->id
);
620 static void pl08x_resume_phy_chan(struct pl08x_phy_chan
*ch
)
624 /* Use the enable bit on the FTDMAC020 */
626 val
= readl(ch
->reg_control
);
627 val
|= FTDMAC020_CH_CSR_EN
;
628 writel(val
, ch
->reg_control
);
632 /* Clear the HALT bit */
633 val
= readl(ch
->reg_config
);
634 val
&= ~PL080_CONFIG_HALT
;
635 writel(val
, ch
->reg_config
);
639 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
640 * clears any pending interrupt status. This should not be used for
641 * an on-going transfer, but as a method of shutting down a channel
642 * (eg, when it's no longer used) or terminating a transfer.
644 static void pl08x_terminate_phy_chan(struct pl08x_driver_data
*pl08x
,
645 struct pl08x_phy_chan
*ch
)
649 /* The layout for the FTDMAC020 is different */
651 /* Disable all interrupts */
652 val
= readl(ch
->reg_config
);
653 val
|= (FTDMAC020_CH_CFG_INT_ABT_MASK
|
654 FTDMAC020_CH_CFG_INT_ERR_MASK
|
655 FTDMAC020_CH_CFG_INT_TC_MASK
);
656 writel(val
, ch
->reg_config
);
658 /* Abort and disable channel */
659 val
= readl(ch
->reg_control
);
660 val
&= ~FTDMAC020_CH_CSR_EN
;
661 val
|= FTDMAC020_CH_CSR_ABT
;
662 writel(val
, ch
->reg_control
);
664 /* Clear ABT and ERR interrupt flags */
665 writel(BIT(ch
->id
) | BIT(ch
->id
+ 16),
666 pl08x
->base
+ PL080_ERR_CLEAR
);
667 writel(BIT(ch
->id
), pl08x
->base
+ PL080_TC_CLEAR
);
672 val
= readl(ch
->reg_config
);
673 val
&= ~(PL080_CONFIG_ENABLE
| PL080_CONFIG_ERR_IRQ_MASK
|
674 PL080_CONFIG_TC_IRQ_MASK
);
675 writel(val
, ch
->reg_config
);
677 writel(BIT(ch
->id
), pl08x
->base
+ PL080_ERR_CLEAR
);
678 writel(BIT(ch
->id
), pl08x
->base
+ PL080_TC_CLEAR
);
681 static u32
get_bytes_in_phy_channel(struct pl08x_phy_chan
*ch
)
687 bytes
= readl(ch
->base
+ FTDMAC020_CH_SIZE
);
689 val
= readl(ch
->reg_control
);
690 val
&= FTDMAC020_CH_CSR_SRC_WIDTH_MSK
;
691 val
>>= FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT
;
692 } else if (ch
->pl080s
) {
693 val
= readl(ch
->base
+ PL080S_CH_CONTROL2
);
694 bytes
= val
& PL080S_CONTROL_TRANSFER_SIZE_MASK
;
696 val
= readl(ch
->reg_control
);
697 val
&= PL080_CONTROL_SWIDTH_MASK
;
698 val
>>= PL080_CONTROL_SWIDTH_SHIFT
;
701 val
= readl(ch
->reg_control
);
702 bytes
= val
& PL080_CONTROL_TRANSFER_SIZE_MASK
;
704 val
&= PL080_CONTROL_SWIDTH_MASK
;
705 val
>>= PL080_CONTROL_SWIDTH_SHIFT
;
709 case PL080_WIDTH_8BIT
:
711 case PL080_WIDTH_16BIT
:
714 case PL080_WIDTH_32BIT
:
721 static u32
get_bytes_in_lli(struct pl08x_phy_chan
*ch
, const u32
*llis_va
)
727 val
= llis_va
[PL080_LLI_CCTL
];
728 bytes
= val
& FTDMAC020_LLI_TRANSFER_SIZE_MASK
;
730 val
= llis_va
[PL080_LLI_CCTL
];
731 val
&= FTDMAC020_LLI_SRC_WIDTH_MSK
;
732 val
>>= FTDMAC020_LLI_SRC_WIDTH_SHIFT
;
733 } else if (ch
->pl080s
) {
734 val
= llis_va
[PL080S_LLI_CCTL2
];
735 bytes
= val
& PL080S_CONTROL_TRANSFER_SIZE_MASK
;
737 val
= llis_va
[PL080_LLI_CCTL
];
738 val
&= PL080_CONTROL_SWIDTH_MASK
;
739 val
>>= PL080_CONTROL_SWIDTH_SHIFT
;
742 val
= llis_va
[PL080_LLI_CCTL
];
743 bytes
= val
& PL080_CONTROL_TRANSFER_SIZE_MASK
;
745 val
&= PL080_CONTROL_SWIDTH_MASK
;
746 val
>>= PL080_CONTROL_SWIDTH_SHIFT
;
750 case PL080_WIDTH_8BIT
:
752 case PL080_WIDTH_16BIT
:
755 case PL080_WIDTH_32BIT
:
762 /* The channel should be paused when calling this */
763 static u32
pl08x_getbytes_chan(struct pl08x_dma_chan
*plchan
)
765 struct pl08x_driver_data
*pl08x
= plchan
->host
;
766 const u32
*llis_va
, *llis_va_limit
;
767 struct pl08x_phy_chan
*ch
;
769 struct pl08x_txd
*txd
;
774 ch
= plchan
->phychan
;
781 * Follow the LLIs to get the number of remaining
782 * bytes in the currently active transaction.
784 clli
= readl(ch
->reg_lli
) & ~PL080_LLI_LM_AHB2
;
786 /* First get the remaining bytes in the active transfer */
787 bytes
= get_bytes_in_phy_channel(ch
);
792 llis_va
= txd
->llis_va
;
793 llis_bus
= txd
->llis_bus
;
795 llis_max_words
= pl08x
->lli_words
* MAX_NUM_TSFR_LLIS
;
796 BUG_ON(clli
< llis_bus
|| clli
>= llis_bus
+
797 sizeof(u32
) * llis_max_words
);
800 * Locate the next LLI - as this is an array,
801 * it's simple maths to find.
803 llis_va
+= (clli
- llis_bus
) / sizeof(u32
);
805 llis_va_limit
= llis_va
+ llis_max_words
;
807 for (; llis_va
< llis_va_limit
; llis_va
+= pl08x
->lli_words
) {
808 bytes
+= get_bytes_in_lli(ch
, llis_va
);
811 * A LLI pointer going backward terminates the LLI list
813 if (llis_va
[PL080_LLI_LLI
] <= clli
)
821 * Allocate a physical channel for a virtual channel
823 * Try to locate a physical channel to be used for this transfer. If all
824 * are taken return NULL and the requester will have to cope by using
825 * some fallback PIO mode or retrying later.
827 static struct pl08x_phy_chan
*
828 pl08x_get_phy_channel(struct pl08x_driver_data
*pl08x
,
829 struct pl08x_dma_chan
*virt_chan
)
831 struct pl08x_phy_chan
*ch
= NULL
;
835 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
836 ch
= &pl08x
->phy_chans
[i
];
838 spin_lock_irqsave(&ch
->lock
, flags
);
840 if (!ch
->locked
&& !ch
->serving
) {
841 ch
->serving
= virt_chan
;
842 spin_unlock_irqrestore(&ch
->lock
, flags
);
846 spin_unlock_irqrestore(&ch
->lock
, flags
);
849 if (i
== pl08x
->vd
->channels
) {
850 /* No physical channel available, cope with it */
857 /* Mark the physical channel as free. Note, this write is atomic. */
858 static inline void pl08x_put_phy_channel(struct pl08x_driver_data
*pl08x
,
859 struct pl08x_phy_chan
*ch
)
865 * Try to allocate a physical channel. When successful, assign it to
866 * this virtual channel, and initiate the next descriptor. The
867 * virtual channel lock must be held at this point.
869 static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan
*plchan
)
871 struct pl08x_driver_data
*pl08x
= plchan
->host
;
872 struct pl08x_phy_chan
*ch
;
874 ch
= pl08x_get_phy_channel(pl08x
, plchan
);
876 dev_dbg(&pl08x
->adev
->dev
, "no physical channel available for xfer on %s\n", plchan
->name
);
877 plchan
->state
= PL08X_CHAN_WAITING
;
881 dev_dbg(&pl08x
->adev
->dev
, "allocated physical channel %d for xfer on %s\n",
882 ch
->id
, plchan
->name
);
884 plchan
->phychan
= ch
;
885 plchan
->state
= PL08X_CHAN_RUNNING
;
886 pl08x_start_next_txd(plchan
);
889 static void pl08x_phy_reassign_start(struct pl08x_phy_chan
*ch
,
890 struct pl08x_dma_chan
*plchan
)
892 struct pl08x_driver_data
*pl08x
= plchan
->host
;
894 dev_dbg(&pl08x
->adev
->dev
, "reassigned physical channel %d for xfer on %s\n",
895 ch
->id
, plchan
->name
);
898 * We do this without taking the lock; we're really only concerned
899 * about whether this pointer is NULL or not, and we're guaranteed
900 * that this will only be called when it _already_ is non-NULL.
902 ch
->serving
= plchan
;
903 plchan
->phychan
= ch
;
904 plchan
->state
= PL08X_CHAN_RUNNING
;
905 pl08x_start_next_txd(plchan
);
909 * Free a physical DMA channel, potentially reallocating it to another
910 * virtual channel if we have any pending.
912 static void pl08x_phy_free(struct pl08x_dma_chan
*plchan
)
914 struct pl08x_driver_data
*pl08x
= plchan
->host
;
915 struct pl08x_dma_chan
*p
, *next
;
920 /* Find a waiting virtual channel for the next transfer. */
921 list_for_each_entry(p
, &pl08x
->memcpy
.channels
, vc
.chan
.device_node
)
922 if (p
->state
== PL08X_CHAN_WAITING
) {
927 if (!next
&& pl08x
->has_slave
) {
928 list_for_each_entry(p
, &pl08x
->slave
.channels
, vc
.chan
.device_node
)
929 if (p
->state
== PL08X_CHAN_WAITING
) {
935 /* Ensure that the physical channel is stopped */
936 pl08x_terminate_phy_chan(pl08x
, plchan
->phychan
);
942 * Eww. We know this isn't going to deadlock
943 * but lockdep probably doesn't.
945 spin_lock(&next
->vc
.lock
);
946 /* Re-check the state now that we have the lock */
947 success
= next
->state
== PL08X_CHAN_WAITING
;
949 pl08x_phy_reassign_start(plchan
->phychan
, next
);
950 spin_unlock(&next
->vc
.lock
);
952 /* If the state changed, try to find another channel */
956 /* No more jobs, so free up the physical channel */
957 pl08x_put_phy_channel(pl08x
, plchan
->phychan
);
960 plchan
->phychan
= NULL
;
961 plchan
->state
= PL08X_CHAN_IDLE
;
968 static inline unsigned int
969 pl08x_get_bytes_for_lli(struct pl08x_driver_data
*pl08x
,
975 if (pl08x
->vd
->ftdmac020
) {
977 val
= (cctl
& FTDMAC020_LLI_SRC_WIDTH_MSK
) >>
978 FTDMAC020_LLI_SRC_WIDTH_SHIFT
;
980 val
= (cctl
& FTDMAC020_LLI_DST_WIDTH_MSK
) >>
981 FTDMAC020_LLI_DST_WIDTH_SHIFT
;
984 val
= (cctl
& PL080_CONTROL_SWIDTH_MASK
) >>
985 PL080_CONTROL_SWIDTH_SHIFT
;
987 val
= (cctl
& PL080_CONTROL_DWIDTH_MASK
) >>
988 PL080_CONTROL_DWIDTH_SHIFT
;
992 case PL080_WIDTH_8BIT
:
994 case PL080_WIDTH_16BIT
:
996 case PL080_WIDTH_32BIT
:
1005 static inline u32
pl08x_lli_control_bits(struct pl08x_driver_data
*pl08x
,
1007 u8 srcwidth
, u8 dstwidth
,
1013 * Remove all src, dst and transfer size bits, then set the
1014 * width and size according to the parameters. The bit offsets
1015 * are different in the FTDMAC020 so we need to accound for this.
1017 if (pl08x
->vd
->ftdmac020
) {
1018 retbits
&= ~FTDMAC020_LLI_DST_WIDTH_MSK
;
1019 retbits
&= ~FTDMAC020_LLI_SRC_WIDTH_MSK
;
1020 retbits
&= ~FTDMAC020_LLI_TRANSFER_SIZE_MASK
;
1024 retbits
|= PL080_WIDTH_8BIT
<<
1025 FTDMAC020_LLI_SRC_WIDTH_SHIFT
;
1028 retbits
|= PL080_WIDTH_16BIT
<<
1029 FTDMAC020_LLI_SRC_WIDTH_SHIFT
;
1032 retbits
|= PL080_WIDTH_32BIT
<<
1033 FTDMAC020_LLI_SRC_WIDTH_SHIFT
;
1042 retbits
|= PL080_WIDTH_8BIT
<<
1043 FTDMAC020_LLI_DST_WIDTH_SHIFT
;
1046 retbits
|= PL080_WIDTH_16BIT
<<
1047 FTDMAC020_LLI_DST_WIDTH_SHIFT
;
1050 retbits
|= PL080_WIDTH_32BIT
<<
1051 FTDMAC020_LLI_DST_WIDTH_SHIFT
;
1058 tsize
&= FTDMAC020_LLI_TRANSFER_SIZE_MASK
;
1059 retbits
|= tsize
<< FTDMAC020_LLI_TRANSFER_SIZE_SHIFT
;
1061 retbits
&= ~PL080_CONTROL_DWIDTH_MASK
;
1062 retbits
&= ~PL080_CONTROL_SWIDTH_MASK
;
1063 retbits
&= ~PL080_CONTROL_TRANSFER_SIZE_MASK
;
1067 retbits
|= PL080_WIDTH_8BIT
<<
1068 PL080_CONTROL_SWIDTH_SHIFT
;
1071 retbits
|= PL080_WIDTH_16BIT
<<
1072 PL080_CONTROL_SWIDTH_SHIFT
;
1075 retbits
|= PL080_WIDTH_32BIT
<<
1076 PL080_CONTROL_SWIDTH_SHIFT
;
1085 retbits
|= PL080_WIDTH_8BIT
<<
1086 PL080_CONTROL_DWIDTH_SHIFT
;
1089 retbits
|= PL080_WIDTH_16BIT
<<
1090 PL080_CONTROL_DWIDTH_SHIFT
;
1093 retbits
|= PL080_WIDTH_32BIT
<<
1094 PL080_CONTROL_DWIDTH_SHIFT
;
1101 tsize
&= PL080_CONTROL_TRANSFER_SIZE_MASK
;
1102 retbits
|= tsize
<< PL080_CONTROL_TRANSFER_SIZE_SHIFT
;
1108 struct pl08x_lli_build_data
{
1109 struct pl08x_txd
*txd
;
1110 struct pl08x_bus_data srcbus
;
1111 struct pl08x_bus_data dstbus
;
1117 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
1118 * victim in case src & dest are not similarly aligned. i.e. If after aligning
1119 * masters address with width requirements of transfer (by sending few byte by
1120 * byte data), slave is still not aligned, then its width will be reduced to
1122 * - prefers the destination bus if both available
1123 * - prefers bus with fixed address (i.e. peripheral)
1125 static void pl08x_choose_master_bus(struct pl08x_driver_data
*pl08x
,
1126 struct pl08x_lli_build_data
*bd
,
1127 struct pl08x_bus_data
**mbus
,
1128 struct pl08x_bus_data
**sbus
,
1135 * The FTDMAC020 only supports memory-to-memory transfer, so
1136 * source and destination always increase.
1138 if (pl08x
->vd
->ftdmac020
) {
1142 dst_incr
= !!(cctl
& PL080_CONTROL_DST_INCR
);
1143 src_incr
= !!(cctl
& PL080_CONTROL_SRC_INCR
);
1147 * If either bus is not advancing, i.e. it is a peripheral, that
1148 * one becomes master
1151 *mbus
= &bd
->dstbus
;
1152 *sbus
= &bd
->srcbus
;
1153 } else if (!src_incr
) {
1154 *mbus
= &bd
->srcbus
;
1155 *sbus
= &bd
->dstbus
;
1157 if (bd
->dstbus
.buswidth
>= bd
->srcbus
.buswidth
) {
1158 *mbus
= &bd
->dstbus
;
1159 *sbus
= &bd
->srcbus
;
1161 *mbus
= &bd
->srcbus
;
1162 *sbus
= &bd
->dstbus
;
1168 * Fills in one LLI for a certain transfer descriptor and advance the counter
1170 static void pl08x_fill_lli_for_desc(struct pl08x_driver_data
*pl08x
,
1171 struct pl08x_lli_build_data
*bd
,
1172 int num_llis
, int len
, u32 cctl
, u32 cctl2
)
1174 u32 offset
= num_llis
* pl08x
->lli_words
;
1175 u32
*llis_va
= bd
->txd
->llis_va
+ offset
;
1176 dma_addr_t llis_bus
= bd
->txd
->llis_bus
;
1178 BUG_ON(num_llis
>= MAX_NUM_TSFR_LLIS
);
1180 /* Advance the offset to next LLI. */
1181 offset
+= pl08x
->lli_words
;
1183 llis_va
[PL080_LLI_SRC
] = bd
->srcbus
.addr
;
1184 llis_va
[PL080_LLI_DST
] = bd
->dstbus
.addr
;
1185 llis_va
[PL080_LLI_LLI
] = (llis_bus
+ sizeof(u32
) * offset
);
1186 llis_va
[PL080_LLI_LLI
] |= bd
->lli_bus
;
1187 llis_va
[PL080_LLI_CCTL
] = cctl
;
1188 if (pl08x
->vd
->pl080s
)
1189 llis_va
[PL080S_LLI_CCTL2
] = cctl2
;
1191 if (pl08x
->vd
->ftdmac020
) {
1192 /* FIXME: only memcpy so far so both increase */
1193 bd
->srcbus
.addr
+= len
;
1194 bd
->dstbus
.addr
+= len
;
1196 if (cctl
& PL080_CONTROL_SRC_INCR
)
1197 bd
->srcbus
.addr
+= len
;
1198 if (cctl
& PL080_CONTROL_DST_INCR
)
1199 bd
->dstbus
.addr
+= len
;
1202 BUG_ON(bd
->remainder
< len
);
1204 bd
->remainder
-= len
;
1207 static inline void prep_byte_width_lli(struct pl08x_driver_data
*pl08x
,
1208 struct pl08x_lli_build_data
*bd
, u32
*cctl
, u32 len
,
1209 int num_llis
, size_t *total_bytes
)
1211 *cctl
= pl08x_lli_control_bits(pl08x
, *cctl
, 1, 1, len
);
1212 pl08x_fill_lli_for_desc(pl08x
, bd
, num_llis
, len
, *cctl
, len
);
1213 (*total_bytes
) += len
;
1217 static void pl08x_dump_lli(struct pl08x_driver_data
*pl08x
,
1218 const u32
*llis_va
, int num_llis
)
1222 if (pl08x
->vd
->pl080s
) {
1223 dev_vdbg(&pl08x
->adev
->dev
,
1224 "%-3s %-9s %-10s %-10s %-10s %-10s %s\n",
1225 "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
1226 for (i
= 0; i
< num_llis
; i
++) {
1227 dev_vdbg(&pl08x
->adev
->dev
,
1228 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
1229 i
, llis_va
, llis_va
[PL080_LLI_SRC
],
1230 llis_va
[PL080_LLI_DST
], llis_va
[PL080_LLI_LLI
],
1231 llis_va
[PL080_LLI_CCTL
],
1232 llis_va
[PL080S_LLI_CCTL2
]);
1233 llis_va
+= pl08x
->lli_words
;
1236 dev_vdbg(&pl08x
->adev
->dev
,
1237 "%-3s %-9s %-10s %-10s %-10s %s\n",
1238 "lli", "", "csrc", "cdst", "clli", "cctl");
1239 for (i
= 0; i
< num_llis
; i
++) {
1240 dev_vdbg(&pl08x
->adev
->dev
,
1241 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1242 i
, llis_va
, llis_va
[PL080_LLI_SRC
],
1243 llis_va
[PL080_LLI_DST
], llis_va
[PL080_LLI_LLI
],
1244 llis_va
[PL080_LLI_CCTL
]);
1245 llis_va
+= pl08x
->lli_words
;
1250 static inline void pl08x_dump_lli(struct pl08x_driver_data
*pl08x
,
1251 const u32
*llis_va
, int num_llis
) {}
1255 * This fills in the table of LLIs for the transfer descriptor
1256 * Note that we assume we never have to change the burst sizes
1257 * Return 0 for error
1259 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data
*pl08x
,
1260 struct pl08x_txd
*txd
)
1262 struct pl08x_bus_data
*mbus
, *sbus
;
1263 struct pl08x_lli_build_data bd
;
1265 u32 cctl
, early_bytes
= 0;
1266 size_t max_bytes_per_lli
, total_bytes
;
1267 u32
*llis_va
, *last_lli
;
1268 struct pl08x_sg
*dsg
;
1270 txd
->llis_va
= dma_pool_alloc(pl08x
->pool
, GFP_NOWAIT
, &txd
->llis_bus
);
1271 if (!txd
->llis_va
) {
1272 dev_err(&pl08x
->adev
->dev
, "%s no memory for llis\n", __func__
);
1277 bd
.lli_bus
= (pl08x
->lli_buses
& PL08X_AHB2
) ? PL080_LLI_LM_AHB2
: 0;
1280 /* Find maximum width of the source bus */
1281 bd
.srcbus
.maxwidth
= pl08x_get_bytes_for_lli(pl08x
, cctl
, true);
1283 /* Find maximum width of the destination bus */
1284 bd
.dstbus
.maxwidth
= pl08x_get_bytes_for_lli(pl08x
, cctl
, false);
1286 list_for_each_entry(dsg
, &txd
->dsg_list
, node
) {
1290 bd
.srcbus
.addr
= dsg
->src_addr
;
1291 bd
.dstbus
.addr
= dsg
->dst_addr
;
1292 bd
.remainder
= dsg
->len
;
1293 bd
.srcbus
.buswidth
= bd
.srcbus
.maxwidth
;
1294 bd
.dstbus
.buswidth
= bd
.dstbus
.maxwidth
;
1296 pl08x_choose_master_bus(pl08x
, &bd
, &mbus
, &sbus
, cctl
);
1298 dev_vdbg(&pl08x
->adev
->dev
,
1299 "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
1300 (u64
)bd
.srcbus
.addr
,
1301 cctl
& PL080_CONTROL_SRC_INCR
? "+" : "",
1303 (u64
)bd
.dstbus
.addr
,
1304 cctl
& PL080_CONTROL_DST_INCR
? "+" : "",
1307 dev_vdbg(&pl08x
->adev
->dev
, "mbus=%s sbus=%s\n",
1308 mbus
== &bd
.srcbus
? "src" : "dst",
1309 sbus
== &bd
.srcbus
? "src" : "dst");
1312 * Zero length is only allowed if all these requirements are
1314 * - flow controller is peripheral.
1315 * - src.addr is aligned to src.width
1316 * - dst.addr is aligned to dst.width
1318 * sg_len == 1 should be true, as there can be two cases here:
1320 * - Memory addresses are contiguous and are not scattered.
1321 * Here, Only one sg will be passed by user driver, with
1322 * memory address and zero length. We pass this to controller
1323 * and after the transfer it will receive the last burst
1324 * request from peripheral and so transfer finishes.
1326 * - Memory addresses are scattered and are not contiguous.
1327 * Here, Obviously as DMA controller doesn't know when a lli's
1328 * transfer gets over, it can't load next lli. So in this
1329 * case, there has to be an assumption that only one lli is
1330 * supported. Thus, we can't have scattered addresses.
1332 if (!bd
.remainder
) {
1335 /* FTDMAC020 only does memory-to-memory */
1336 if (pl08x
->vd
->ftdmac020
)
1337 fc
= PL080_FLOW_MEM2MEM
;
1339 fc
= (txd
->ccfg
& PL080_CONFIG_FLOW_CONTROL_MASK
) >>
1340 PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1341 if (!((fc
>= PL080_FLOW_SRC2DST_DST
) &&
1342 (fc
<= PL080_FLOW_SRC2DST_SRC
))) {
1343 dev_err(&pl08x
->adev
->dev
, "%s sg len can't be zero",
1348 if (!IS_BUS_ALIGNED(&bd
.srcbus
) ||
1349 !IS_BUS_ALIGNED(&bd
.dstbus
)) {
1350 dev_err(&pl08x
->adev
->dev
,
1351 "%s src & dst address must be aligned to src"
1352 " & dst width if peripheral is flow controller",
1357 cctl
= pl08x_lli_control_bits(pl08x
, cctl
,
1358 bd
.srcbus
.buswidth
, bd
.dstbus
.buswidth
,
1360 pl08x_fill_lli_for_desc(pl08x
, &bd
, num_llis
++,
1366 * Send byte by byte for following cases
1367 * - Less than a bus width available
1368 * - until master bus is aligned
1370 if (bd
.remainder
< mbus
->buswidth
)
1371 early_bytes
= bd
.remainder
;
1372 else if (!IS_BUS_ALIGNED(mbus
)) {
1373 early_bytes
= mbus
->buswidth
-
1374 (mbus
->addr
& (mbus
->buswidth
- 1));
1375 if ((bd
.remainder
- early_bytes
) < mbus
->buswidth
)
1376 early_bytes
= bd
.remainder
;
1380 dev_vdbg(&pl08x
->adev
->dev
,
1381 "%s byte width LLIs (remain 0x%08zx)\n",
1382 __func__
, bd
.remainder
);
1383 prep_byte_width_lli(pl08x
, &bd
, &cctl
, early_bytes
,
1384 num_llis
++, &total_bytes
);
1389 * Master now aligned
1390 * - if slave is not then we must set its width down
1392 if (!IS_BUS_ALIGNED(sbus
)) {
1393 dev_dbg(&pl08x
->adev
->dev
,
1394 "%s set down bus width to one byte\n",
1401 * Bytes transferred = tsize * src width, not
1404 max_bytes_per_lli
= bd
.srcbus
.buswidth
*
1405 pl08x
->vd
->max_transfer_size
;
1406 dev_vdbg(&pl08x
->adev
->dev
,
1407 "%s max bytes per lli = %zu\n",
1408 __func__
, max_bytes_per_lli
);
1411 * Make largest possible LLIs until less than one bus
1414 while (bd
.remainder
> (mbus
->buswidth
- 1)) {
1415 size_t lli_len
, tsize
, width
;
1418 * If enough left try to send max possible,
1419 * otherwise try to send the remainder
1421 lli_len
= min(bd
.remainder
, max_bytes_per_lli
);
1424 * Check against maximum bus alignment:
1425 * Calculate actual transfer size in relation to
1426 * bus width an get a maximum remainder of the
1427 * highest bus width - 1
1429 width
= max(mbus
->buswidth
, sbus
->buswidth
);
1430 lli_len
= (lli_len
/ width
) * width
;
1431 tsize
= lli_len
/ bd
.srcbus
.buswidth
;
1433 dev_vdbg(&pl08x
->adev
->dev
,
1434 "%s fill lli with single lli chunk of "
1435 "size 0x%08zx (remainder 0x%08zx)\n",
1436 __func__
, lli_len
, bd
.remainder
);
1438 cctl
= pl08x_lli_control_bits(pl08x
, cctl
,
1439 bd
.srcbus
.buswidth
, bd
.dstbus
.buswidth
,
1441 pl08x_fill_lli_for_desc(pl08x
, &bd
, num_llis
++,
1442 lli_len
, cctl
, tsize
);
1443 total_bytes
+= lli_len
;
1447 * Send any odd bytes
1450 dev_vdbg(&pl08x
->adev
->dev
,
1451 "%s align with boundary, send odd bytes (remain %zu)\n",
1452 __func__
, bd
.remainder
);
1453 prep_byte_width_lli(pl08x
, &bd
, &cctl
,
1454 bd
.remainder
, num_llis
++, &total_bytes
);
1458 if (total_bytes
!= dsg
->len
) {
1459 dev_err(&pl08x
->adev
->dev
,
1460 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1461 __func__
, total_bytes
, dsg
->len
);
1465 if (num_llis
>= MAX_NUM_TSFR_LLIS
) {
1466 dev_err(&pl08x
->adev
->dev
,
1467 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1468 __func__
, MAX_NUM_TSFR_LLIS
);
1473 llis_va
= txd
->llis_va
;
1474 last_lli
= llis_va
+ (num_llis
- 1) * pl08x
->lli_words
;
1477 /* Link back to the first LLI. */
1478 last_lli
[PL080_LLI_LLI
] = txd
->llis_bus
| bd
.lli_bus
;
1480 /* The final LLI terminates the LLI. */
1481 last_lli
[PL080_LLI_LLI
] = 0;
1482 /* The final LLI element shall also fire an interrupt. */
1483 if (pl08x
->vd
->ftdmac020
)
1484 last_lli
[PL080_LLI_CCTL
] &= ~FTDMAC020_LLI_TC_MSK
;
1486 last_lli
[PL080_LLI_CCTL
] |= PL080_CONTROL_TC_IRQ_EN
;
1489 pl08x_dump_lli(pl08x
, llis_va
, num_llis
);
1494 static void pl08x_free_txd(struct pl08x_driver_data
*pl08x
,
1495 struct pl08x_txd
*txd
)
1497 struct pl08x_sg
*dsg
, *_dsg
;
1500 dma_pool_free(pl08x
->pool
, txd
->llis_va
, txd
->llis_bus
);
1502 list_for_each_entry_safe(dsg
, _dsg
, &txd
->dsg_list
, node
) {
1503 list_del(&dsg
->node
);
1510 static void pl08x_desc_free(struct virt_dma_desc
*vd
)
1512 struct pl08x_txd
*txd
= to_pl08x_txd(&vd
->tx
);
1513 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(vd
->tx
.chan
);
1515 dma_descriptor_unmap(&vd
->tx
);
1517 pl08x_release_mux(plchan
);
1519 pl08x_free_txd(plchan
->host
, txd
);
1522 static void pl08x_free_txd_list(struct pl08x_driver_data
*pl08x
,
1523 struct pl08x_dma_chan
*plchan
)
1527 vchan_get_all_descriptors(&plchan
->vc
, &head
);
1528 vchan_dma_desc_free_list(&plchan
->vc
, &head
);
1532 * The DMA ENGINE API
1534 static void pl08x_free_chan_resources(struct dma_chan
*chan
)
1536 /* Ensure all queued descriptors are freed */
1537 vchan_free_chan_resources(to_virt_chan(chan
));
1540 static struct dma_async_tx_descriptor
*pl08x_prep_dma_interrupt(
1541 struct dma_chan
*chan
, unsigned long flags
)
1543 struct dma_async_tx_descriptor
*retval
= NULL
;
1549 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1550 * If slaves are relying on interrupts to signal completion this function
1551 * must not be called with interrupts disabled.
1553 static enum dma_status
pl08x_dma_tx_status(struct dma_chan
*chan
,
1554 dma_cookie_t cookie
, struct dma_tx_state
*txstate
)
1556 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1557 struct virt_dma_desc
*vd
;
1558 unsigned long flags
;
1559 enum dma_status ret
;
1562 ret
= dma_cookie_status(chan
, cookie
, txstate
);
1563 if (ret
== DMA_COMPLETE
)
1567 * There's no point calculating the residue if there's
1568 * no txstate to store the value.
1571 if (plchan
->state
== PL08X_CHAN_PAUSED
)
1576 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
1577 ret
= dma_cookie_status(chan
, cookie
, txstate
);
1578 if (ret
!= DMA_COMPLETE
) {
1579 vd
= vchan_find_desc(&plchan
->vc
, cookie
);
1581 /* On the issued list, so hasn't been processed yet */
1582 struct pl08x_txd
*txd
= to_pl08x_txd(&vd
->tx
);
1583 struct pl08x_sg
*dsg
;
1585 list_for_each_entry(dsg
, &txd
->dsg_list
, node
)
1588 bytes
= pl08x_getbytes_chan(plchan
);
1591 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1594 * This cookie not complete yet
1595 * Get number of bytes left in the active transactions and queue
1597 dma_set_residue(txstate
, bytes
);
1599 if (plchan
->state
== PL08X_CHAN_PAUSED
&& ret
== DMA_IN_PROGRESS
)
1602 /* Whether waiting or running, we're in progress */
1606 /* PrimeCell DMA extension */
1607 struct burst_table
{
1612 static const struct burst_table burst_sizes
[] = {
1615 .reg
= PL080_BSIZE_256
,
1619 .reg
= PL080_BSIZE_128
,
1623 .reg
= PL080_BSIZE_64
,
1627 .reg
= PL080_BSIZE_32
,
1631 .reg
= PL080_BSIZE_16
,
1635 .reg
= PL080_BSIZE_8
,
1639 .reg
= PL080_BSIZE_4
,
1643 .reg
= PL080_BSIZE_1
,
1648 * Given the source and destination available bus masks, select which
1649 * will be routed to each port. We try to have source and destination
1650 * on separate ports, but always respect the allowable settings.
1652 static u32
pl08x_select_bus(bool ftdmac020
, u8 src
, u8 dst
)
1658 /* The FTDMAC020 use different bits to indicate src/dst bus */
1660 dst_ahb2
= FTDMAC020_LLI_DST_SEL
;
1661 src_ahb2
= FTDMAC020_LLI_SRC_SEL
;
1663 dst_ahb2
= PL080_CONTROL_DST_AHB2
;
1664 src_ahb2
= PL080_CONTROL_SRC_AHB2
;
1667 if (!(dst
& PL08X_AHB1
) || ((dst
& PL08X_AHB2
) && (src
& PL08X_AHB1
)))
1669 if (!(src
& PL08X_AHB1
) || ((src
& PL08X_AHB2
) && !(dst
& PL08X_AHB2
)))
1675 static u32
pl08x_cctl(u32 cctl
)
1677 cctl
&= ~(PL080_CONTROL_SRC_AHB2
| PL080_CONTROL_DST_AHB2
|
1678 PL080_CONTROL_SRC_INCR
| PL080_CONTROL_DST_INCR
|
1679 PL080_CONTROL_PROT_MASK
);
1681 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1682 return cctl
| PL080_CONTROL_PROT_SYS
;
1685 static u32
pl08x_width(enum dma_slave_buswidth width
)
1688 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
1689 return PL080_WIDTH_8BIT
;
1690 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
1691 return PL080_WIDTH_16BIT
;
1692 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
1693 return PL080_WIDTH_32BIT
;
1699 static u32
pl08x_burst(u32 maxburst
)
1703 for (i
= 0; i
< ARRAY_SIZE(burst_sizes
); i
++)
1704 if (burst_sizes
[i
].burstwords
<= maxburst
)
1707 return burst_sizes
[i
].reg
;
1710 static u32
pl08x_get_cctl(struct pl08x_dma_chan
*plchan
,
1711 enum dma_slave_buswidth addr_width
, u32 maxburst
)
1713 u32 width
, burst
, cctl
= 0;
1715 width
= pl08x_width(addr_width
);
1719 cctl
|= width
<< PL080_CONTROL_SWIDTH_SHIFT
;
1720 cctl
|= width
<< PL080_CONTROL_DWIDTH_SHIFT
;
1723 * If this channel will only request single transfers, set this
1724 * down to ONE element. Also select one element if no maxburst
1727 if (plchan
->cd
->single
)
1730 burst
= pl08x_burst(maxburst
);
1731 cctl
|= burst
<< PL080_CONTROL_SB_SIZE_SHIFT
;
1732 cctl
|= burst
<< PL080_CONTROL_DB_SIZE_SHIFT
;
1734 return pl08x_cctl(cctl
);
1738 * Slave transactions callback to the slave device to allow
1739 * synchronization of slave DMA signals with the DMAC enable
1741 static void pl08x_issue_pending(struct dma_chan
*chan
)
1743 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1744 unsigned long flags
;
1746 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
1747 if (vchan_issue_pending(&plchan
->vc
)) {
1748 if (!plchan
->phychan
&& plchan
->state
!= PL08X_CHAN_WAITING
)
1749 pl08x_phy_alloc_and_start(plchan
);
1751 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1754 static struct pl08x_txd
*pl08x_get_txd(struct pl08x_dma_chan
*plchan
)
1756 struct pl08x_txd
*txd
= kzalloc(sizeof(*txd
), GFP_NOWAIT
);
1759 INIT_LIST_HEAD(&txd
->dsg_list
);
1763 static u32
pl08x_memcpy_cctl(struct pl08x_driver_data
*pl08x
)
1768 switch (pl08x
->pd
->memcpy_burst_size
) {
1770 dev_err(&pl08x
->adev
->dev
,
1771 "illegal burst size for memcpy, set to 1\n");
1773 case PL08X_BURST_SZ_1
:
1774 cctl
|= PL080_BSIZE_1
<< PL080_CONTROL_SB_SIZE_SHIFT
|
1775 PL080_BSIZE_1
<< PL080_CONTROL_DB_SIZE_SHIFT
;
1777 case PL08X_BURST_SZ_4
:
1778 cctl
|= PL080_BSIZE_4
<< PL080_CONTROL_SB_SIZE_SHIFT
|
1779 PL080_BSIZE_4
<< PL080_CONTROL_DB_SIZE_SHIFT
;
1781 case PL08X_BURST_SZ_8
:
1782 cctl
|= PL080_BSIZE_8
<< PL080_CONTROL_SB_SIZE_SHIFT
|
1783 PL080_BSIZE_8
<< PL080_CONTROL_DB_SIZE_SHIFT
;
1785 case PL08X_BURST_SZ_16
:
1786 cctl
|= PL080_BSIZE_16
<< PL080_CONTROL_SB_SIZE_SHIFT
|
1787 PL080_BSIZE_16
<< PL080_CONTROL_DB_SIZE_SHIFT
;
1789 case PL08X_BURST_SZ_32
:
1790 cctl
|= PL080_BSIZE_32
<< PL080_CONTROL_SB_SIZE_SHIFT
|
1791 PL080_BSIZE_32
<< PL080_CONTROL_DB_SIZE_SHIFT
;
1793 case PL08X_BURST_SZ_64
:
1794 cctl
|= PL080_BSIZE_64
<< PL080_CONTROL_SB_SIZE_SHIFT
|
1795 PL080_BSIZE_64
<< PL080_CONTROL_DB_SIZE_SHIFT
;
1797 case PL08X_BURST_SZ_128
:
1798 cctl
|= PL080_BSIZE_128
<< PL080_CONTROL_SB_SIZE_SHIFT
|
1799 PL080_BSIZE_128
<< PL080_CONTROL_DB_SIZE_SHIFT
;
1801 case PL08X_BURST_SZ_256
:
1802 cctl
|= PL080_BSIZE_256
<< PL080_CONTROL_SB_SIZE_SHIFT
|
1803 PL080_BSIZE_256
<< PL080_CONTROL_DB_SIZE_SHIFT
;
1807 switch (pl08x
->pd
->memcpy_bus_width
) {
1809 dev_err(&pl08x
->adev
->dev
,
1810 "illegal bus width for memcpy, set to 8 bits\n");
1812 case PL08X_BUS_WIDTH_8_BITS
:
1813 cctl
|= PL080_WIDTH_8BIT
<< PL080_CONTROL_SWIDTH_SHIFT
|
1814 PL080_WIDTH_8BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
1816 case PL08X_BUS_WIDTH_16_BITS
:
1817 cctl
|= PL080_WIDTH_16BIT
<< PL080_CONTROL_SWIDTH_SHIFT
|
1818 PL080_WIDTH_16BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
1820 case PL08X_BUS_WIDTH_32_BITS
:
1821 cctl
|= PL080_WIDTH_32BIT
<< PL080_CONTROL_SWIDTH_SHIFT
|
1822 PL080_WIDTH_32BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
1826 /* Protection flags */
1827 if (pl08x
->pd
->memcpy_prot_buff
)
1828 cctl
|= PL080_CONTROL_PROT_BUFF
;
1829 if (pl08x
->pd
->memcpy_prot_cache
)
1830 cctl
|= PL080_CONTROL_PROT_CACHE
;
1832 /* We are the kernel, so we are in privileged mode */
1833 cctl
|= PL080_CONTROL_PROT_SYS
;
1835 /* Both to be incremented or the code will break */
1836 cctl
|= PL080_CONTROL_SRC_INCR
| PL080_CONTROL_DST_INCR
;
1838 if (pl08x
->vd
->dualmaster
)
1839 cctl
|= pl08x_select_bus(false,
1846 static u32
pl08x_ftdmac020_memcpy_cctl(struct pl08x_driver_data
*pl08x
)
1851 switch (pl08x
->pd
->memcpy_bus_width
) {
1853 dev_err(&pl08x
->adev
->dev
,
1854 "illegal bus width for memcpy, set to 8 bits\n");
1856 case PL08X_BUS_WIDTH_8_BITS
:
1857 cctl
|= PL080_WIDTH_8BIT
<< FTDMAC020_LLI_SRC_WIDTH_SHIFT
|
1858 PL080_WIDTH_8BIT
<< FTDMAC020_LLI_DST_WIDTH_SHIFT
;
1860 case PL08X_BUS_WIDTH_16_BITS
:
1861 cctl
|= PL080_WIDTH_16BIT
<< FTDMAC020_LLI_SRC_WIDTH_SHIFT
|
1862 PL080_WIDTH_16BIT
<< FTDMAC020_LLI_DST_WIDTH_SHIFT
;
1864 case PL08X_BUS_WIDTH_32_BITS
:
1865 cctl
|= PL080_WIDTH_32BIT
<< FTDMAC020_LLI_SRC_WIDTH_SHIFT
|
1866 PL080_WIDTH_32BIT
<< FTDMAC020_LLI_DST_WIDTH_SHIFT
;
1871 * By default mask the TC IRQ on all LLIs, it will be unmasked on
1872 * the last LLI item by other code.
1874 cctl
|= FTDMAC020_LLI_TC_MSK
;
1877 * Both to be incremented so leave bits FTDMAC020_LLI_SRCAD_CTL
1878 * and FTDMAC020_LLI_DSTAD_CTL as zero
1880 if (pl08x
->vd
->dualmaster
)
1881 cctl
|= pl08x_select_bus(true,
1889 * Initialize a descriptor to be used by memcpy submit
1891 static struct dma_async_tx_descriptor
*pl08x_prep_dma_memcpy(
1892 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
1893 size_t len
, unsigned long flags
)
1895 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1896 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1897 struct pl08x_txd
*txd
;
1898 struct pl08x_sg
*dsg
;
1901 txd
= pl08x_get_txd(plchan
);
1903 dev_err(&pl08x
->adev
->dev
,
1904 "%s no memory for descriptor\n", __func__
);
1908 dsg
= kzalloc(sizeof(struct pl08x_sg
), GFP_NOWAIT
);
1910 pl08x_free_txd(pl08x
, txd
);
1913 list_add_tail(&dsg
->node
, &txd
->dsg_list
);
1915 dsg
->src_addr
= src
;
1916 dsg
->dst_addr
= dest
;
1918 if (pl08x
->vd
->ftdmac020
) {
1919 /* Writing CCFG zero ENABLES all interrupts */
1921 txd
->cctl
= pl08x_ftdmac020_memcpy_cctl(pl08x
);
1923 txd
->ccfg
= PL080_CONFIG_ERR_IRQ_MASK
|
1924 PL080_CONFIG_TC_IRQ_MASK
|
1925 PL080_FLOW_MEM2MEM
<< PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1926 txd
->cctl
= pl08x_memcpy_cctl(pl08x
);
1929 ret
= pl08x_fill_llis_for_desc(plchan
->host
, txd
);
1931 pl08x_free_txd(pl08x
, txd
);
1935 return vchan_tx_prep(&plchan
->vc
, &txd
->vd
, flags
);
1938 static struct pl08x_txd
*pl08x_init_txd(
1939 struct dma_chan
*chan
,
1940 enum dma_transfer_direction direction
,
1941 dma_addr_t
*slave_addr
)
1943 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1944 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1945 struct pl08x_txd
*txd
;
1946 enum dma_slave_buswidth addr_width
;
1948 u8 src_buses
, dst_buses
;
1951 txd
= pl08x_get_txd(plchan
);
1953 dev_err(&pl08x
->adev
->dev
, "%s no txd\n", __func__
);
1958 * Set up addresses, the PrimeCell configured address
1959 * will take precedence since this may configure the
1960 * channel target address dynamically at runtime.
1962 if (direction
== DMA_MEM_TO_DEV
) {
1963 cctl
= PL080_CONTROL_SRC_INCR
;
1964 *slave_addr
= plchan
->cfg
.dst_addr
;
1965 addr_width
= plchan
->cfg
.dst_addr_width
;
1966 maxburst
= plchan
->cfg
.dst_maxburst
;
1967 src_buses
= pl08x
->mem_buses
;
1968 dst_buses
= plchan
->cd
->periph_buses
;
1969 } else if (direction
== DMA_DEV_TO_MEM
) {
1970 cctl
= PL080_CONTROL_DST_INCR
;
1971 *slave_addr
= plchan
->cfg
.src_addr
;
1972 addr_width
= plchan
->cfg
.src_addr_width
;
1973 maxburst
= plchan
->cfg
.src_maxburst
;
1974 src_buses
= plchan
->cd
->periph_buses
;
1975 dst_buses
= pl08x
->mem_buses
;
1977 pl08x_free_txd(pl08x
, txd
);
1978 dev_err(&pl08x
->adev
->dev
,
1979 "%s direction unsupported\n", __func__
);
1983 cctl
|= pl08x_get_cctl(plchan
, addr_width
, maxburst
);
1985 pl08x_free_txd(pl08x
, txd
);
1986 dev_err(&pl08x
->adev
->dev
,
1987 "DMA slave configuration botched?\n");
1991 txd
->cctl
= cctl
| pl08x_select_bus(false, src_buses
, dst_buses
);
1993 if (plchan
->cfg
.device_fc
)
1994 tmp
= (direction
== DMA_MEM_TO_DEV
) ? PL080_FLOW_MEM2PER_PER
:
1995 PL080_FLOW_PER2MEM_PER
;
1997 tmp
= (direction
== DMA_MEM_TO_DEV
) ? PL080_FLOW_MEM2PER
:
2000 txd
->ccfg
= PL080_CONFIG_ERR_IRQ_MASK
|
2001 PL080_CONFIG_TC_IRQ_MASK
|
2002 tmp
<< PL080_CONFIG_FLOW_CONTROL_SHIFT
;
2004 ret
= pl08x_request_mux(plchan
);
2006 pl08x_free_txd(pl08x
, txd
);
2007 dev_dbg(&pl08x
->adev
->dev
,
2008 "unable to mux for transfer on %s due to platform restrictions\n",
2013 dev_dbg(&pl08x
->adev
->dev
, "allocated DMA request signal %d for xfer on %s\n",
2014 plchan
->signal
, plchan
->name
);
2016 /* Assign the flow control signal to this channel */
2017 if (direction
== DMA_MEM_TO_DEV
)
2018 txd
->ccfg
|= plchan
->signal
<< PL080_CONFIG_DST_SEL_SHIFT
;
2020 txd
->ccfg
|= plchan
->signal
<< PL080_CONFIG_SRC_SEL_SHIFT
;
2025 static int pl08x_tx_add_sg(struct pl08x_txd
*txd
,
2026 enum dma_transfer_direction direction
,
2027 dma_addr_t slave_addr
,
2028 dma_addr_t buf_addr
,
2031 struct pl08x_sg
*dsg
;
2033 dsg
= kzalloc(sizeof(struct pl08x_sg
), GFP_NOWAIT
);
2037 list_add_tail(&dsg
->node
, &txd
->dsg_list
);
2040 if (direction
== DMA_MEM_TO_DEV
) {
2041 dsg
->src_addr
= buf_addr
;
2042 dsg
->dst_addr
= slave_addr
;
2044 dsg
->src_addr
= slave_addr
;
2045 dsg
->dst_addr
= buf_addr
;
2051 static struct dma_async_tx_descriptor
*pl08x_prep_slave_sg(
2052 struct dma_chan
*chan
, struct scatterlist
*sgl
,
2053 unsigned int sg_len
, enum dma_transfer_direction direction
,
2054 unsigned long flags
, void *context
)
2056 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
2057 struct pl08x_driver_data
*pl08x
= plchan
->host
;
2058 struct pl08x_txd
*txd
;
2059 struct scatterlist
*sg
;
2061 dma_addr_t slave_addr
;
2063 dev_dbg(&pl08x
->adev
->dev
, "%s prepare transaction of %d bytes from %s\n",
2064 __func__
, sg_dma_len(sgl
), plchan
->name
);
2066 txd
= pl08x_init_txd(chan
, direction
, &slave_addr
);
2070 for_each_sg(sgl
, sg
, sg_len
, tmp
) {
2071 ret
= pl08x_tx_add_sg(txd
, direction
, slave_addr
,
2075 pl08x_release_mux(plchan
);
2076 pl08x_free_txd(pl08x
, txd
);
2077 dev_err(&pl08x
->adev
->dev
, "%s no mem for pl080 sg\n",
2083 ret
= pl08x_fill_llis_for_desc(plchan
->host
, txd
);
2085 pl08x_release_mux(plchan
);
2086 pl08x_free_txd(pl08x
, txd
);
2090 return vchan_tx_prep(&plchan
->vc
, &txd
->vd
, flags
);
2093 static struct dma_async_tx_descriptor
*pl08x_prep_dma_cyclic(
2094 struct dma_chan
*chan
, dma_addr_t buf_addr
, size_t buf_len
,
2095 size_t period_len
, enum dma_transfer_direction direction
,
2096 unsigned long flags
)
2098 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
2099 struct pl08x_driver_data
*pl08x
= plchan
->host
;
2100 struct pl08x_txd
*txd
;
2102 dma_addr_t slave_addr
;
2104 dev_dbg(&pl08x
->adev
->dev
,
2105 "%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
2106 __func__
, period_len
, buf_len
,
2107 direction
== DMA_MEM_TO_DEV
? "to" : "from",
2110 txd
= pl08x_init_txd(chan
, direction
, &slave_addr
);
2115 txd
->cctl
|= PL080_CONTROL_TC_IRQ_EN
;
2116 for (tmp
= 0; tmp
< buf_len
; tmp
+= period_len
) {
2117 ret
= pl08x_tx_add_sg(txd
, direction
, slave_addr
,
2118 buf_addr
+ tmp
, period_len
);
2120 pl08x_release_mux(plchan
);
2121 pl08x_free_txd(pl08x
, txd
);
2126 ret
= pl08x_fill_llis_for_desc(plchan
->host
, txd
);
2128 pl08x_release_mux(plchan
);
2129 pl08x_free_txd(pl08x
, txd
);
2133 return vchan_tx_prep(&plchan
->vc
, &txd
->vd
, flags
);
2136 static int pl08x_config(struct dma_chan
*chan
,
2137 struct dma_slave_config
*config
)
2139 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
2140 struct pl08x_driver_data
*pl08x
= plchan
->host
;
2145 /* Reject definitely invalid configurations */
2146 if (config
->src_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
||
2147 config
->dst_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
)
2150 if (config
->device_fc
&& pl08x
->vd
->pl080s
) {
2151 dev_err(&pl08x
->adev
->dev
,
2152 "%s: PL080S does not support peripheral flow control\n",
2157 plchan
->cfg
= *config
;
2162 static int pl08x_terminate_all(struct dma_chan
*chan
)
2164 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
2165 struct pl08x_driver_data
*pl08x
= plchan
->host
;
2166 unsigned long flags
;
2168 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
2169 if (!plchan
->phychan
&& !plchan
->at
) {
2170 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
2174 plchan
->state
= PL08X_CHAN_IDLE
;
2176 if (plchan
->phychan
) {
2178 * Mark physical channel as free and free any slave
2181 pl08x_phy_free(plchan
);
2183 /* Dequeue jobs and free LLIs */
2185 vchan_terminate_vdesc(&plchan
->at
->vd
);
2188 /* Dequeue jobs not yet fired as well */
2189 pl08x_free_txd_list(pl08x
, plchan
);
2191 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
2196 static void pl08x_synchronize(struct dma_chan
*chan
)
2198 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
2200 vchan_synchronize(&plchan
->vc
);
2203 static int pl08x_pause(struct dma_chan
*chan
)
2205 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
2206 unsigned long flags
;
2209 * Anything succeeds on channels with no physical allocation and
2210 * no queued transfers.
2212 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
2213 if (!plchan
->phychan
&& !plchan
->at
) {
2214 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
2218 pl08x_pause_phy_chan(plchan
->phychan
);
2219 plchan
->state
= PL08X_CHAN_PAUSED
;
2221 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
2226 static int pl08x_resume(struct dma_chan
*chan
)
2228 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
2229 unsigned long flags
;
2232 * Anything succeeds on channels with no physical allocation and
2233 * no queued transfers.
2235 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
2236 if (!plchan
->phychan
&& !plchan
->at
) {
2237 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
2241 pl08x_resume_phy_chan(plchan
->phychan
);
2242 plchan
->state
= PL08X_CHAN_RUNNING
;
2244 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
2249 bool pl08x_filter_id(struct dma_chan
*chan
, void *chan_id
)
2251 struct pl08x_dma_chan
*plchan
;
2252 char *name
= chan_id
;
2254 /* Reject channels for devices not bound to this driver */
2255 if (chan
->device
->dev
->driver
!= &pl08x_amba_driver
.drv
)
2258 plchan
= to_pl08x_chan(chan
);
2260 /* Check that the channel is not taken! */
2261 if (!strcmp(plchan
->name
, name
))
2266 EXPORT_SYMBOL_GPL(pl08x_filter_id
);
2268 static bool pl08x_filter_fn(struct dma_chan
*chan
, void *chan_id
)
2270 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
2272 return plchan
->cd
== chan_id
;
2276 * Just check that the device is there and active
2277 * TODO: turn this bit on/off depending on the number of physical channels
2278 * actually used, if it is zero... well shut it off. That will save some
2279 * power. Cut the clock at the same time.
2281 static void pl08x_ensure_on(struct pl08x_driver_data
*pl08x
)
2283 /* The Nomadik variant does not have the config register */
2284 if (pl08x
->vd
->nomadik
)
2286 /* The FTDMAC020 variant does this in another register */
2287 if (pl08x
->vd
->ftdmac020
) {
2288 writel(PL080_CONFIG_ENABLE
, pl08x
->base
+ FTDMAC020_CSR
);
2291 writel(PL080_CONFIG_ENABLE
, pl08x
->base
+ PL080_CONFIG
);
2294 static irqreturn_t
pl08x_irq(int irq
, void *dev
)
2296 struct pl08x_driver_data
*pl08x
= dev
;
2297 u32 mask
= 0, err
, tc
, i
;
2299 /* check & clear - ERR & TC interrupts */
2300 err
= readl(pl08x
->base
+ PL080_ERR_STATUS
);
2302 dev_err(&pl08x
->adev
->dev
, "%s error interrupt, register value 0x%08x\n",
2304 writel(err
, pl08x
->base
+ PL080_ERR_CLEAR
);
2306 tc
= readl(pl08x
->base
+ PL080_TC_STATUS
);
2308 writel(tc
, pl08x
->base
+ PL080_TC_CLEAR
);
2313 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
2314 if ((BIT(i
) & err
) || (BIT(i
) & tc
)) {
2315 /* Locate physical channel */
2316 struct pl08x_phy_chan
*phychan
= &pl08x
->phy_chans
[i
];
2317 struct pl08x_dma_chan
*plchan
= phychan
->serving
;
2318 struct pl08x_txd
*tx
;
2321 dev_err(&pl08x
->adev
->dev
,
2322 "%s Error TC interrupt on unused channel: 0x%08x\n",
2327 spin_lock(&plchan
->vc
.lock
);
2329 if (tx
&& tx
->cyclic
) {
2330 vchan_cyclic_callback(&tx
->vd
);
2334 * This descriptor is done, release its mux
2337 pl08x_release_mux(plchan
);
2339 vchan_cookie_complete(&tx
->vd
);
2342 * And start the next descriptor (if any),
2343 * otherwise free this channel.
2345 if (vchan_next_desc(&plchan
->vc
))
2346 pl08x_start_next_txd(plchan
);
2348 pl08x_phy_free(plchan
);
2350 spin_unlock(&plchan
->vc
.lock
);
2356 return mask
? IRQ_HANDLED
: IRQ_NONE
;
2359 static void pl08x_dma_slave_init(struct pl08x_dma_chan
*chan
)
2362 chan
->name
= chan
->cd
->bus_id
;
2363 chan
->cfg
.src_addr
= chan
->cd
->addr
;
2364 chan
->cfg
.dst_addr
= chan
->cd
->addr
;
2368 * Initialise the DMAC memcpy/slave channels.
2369 * Make a local wrapper to hold required data
2371 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data
*pl08x
,
2372 struct dma_device
*dmadev
, unsigned int channels
, bool slave
)
2374 struct pl08x_dma_chan
*chan
;
2377 INIT_LIST_HEAD(&dmadev
->channels
);
2380 * Register as many many memcpy as we have physical channels,
2381 * we won't always be able to use all but the code will have
2382 * to cope with that situation.
2384 for (i
= 0; i
< channels
; i
++) {
2385 chan
= kzalloc(sizeof(*chan
), GFP_KERNEL
);
2390 chan
->state
= PL08X_CHAN_IDLE
;
2394 chan
->cd
= &pl08x
->pd
->slave_channels
[i
];
2396 * Some implementations have muxed signals, whereas some
2397 * use a mux in front of the signals and need dynamic
2398 * assignment of signals.
2401 pl08x_dma_slave_init(chan
);
2403 chan
->cd
= kzalloc(sizeof(*chan
->cd
), GFP_KERNEL
);
2408 chan
->cd
->bus_id
= "memcpy";
2409 chan
->cd
->periph_buses
= pl08x
->pd
->mem_buses
;
2410 chan
->name
= kasprintf(GFP_KERNEL
, "memcpy%d", i
);
2417 dev_dbg(&pl08x
->adev
->dev
,
2418 "initialize virtual channel \"%s\"\n",
2421 chan
->vc
.desc_free
= pl08x_desc_free
;
2422 vchan_init(&chan
->vc
, dmadev
);
2424 dev_info(&pl08x
->adev
->dev
, "initialized %d virtual %s channels\n",
2425 i
, slave
? "slave" : "memcpy");
2429 static void pl08x_free_virtual_channels(struct dma_device
*dmadev
)
2431 struct pl08x_dma_chan
*chan
= NULL
;
2432 struct pl08x_dma_chan
*next
;
2434 list_for_each_entry_safe(chan
,
2435 next
, &dmadev
->channels
, vc
.chan
.device_node
) {
2436 list_del(&chan
->vc
.chan
.device_node
);
2441 #ifdef CONFIG_DEBUG_FS
2442 static const char *pl08x_state_str(enum pl08x_dma_chan_state state
)
2445 case PL08X_CHAN_IDLE
:
2447 case PL08X_CHAN_RUNNING
:
2449 case PL08X_CHAN_PAUSED
:
2451 case PL08X_CHAN_WAITING
:
2456 return "UNKNOWN STATE";
2459 static int pl08x_debugfs_show(struct seq_file
*s
, void *data
)
2461 struct pl08x_driver_data
*pl08x
= s
->private;
2462 struct pl08x_dma_chan
*chan
;
2463 struct pl08x_phy_chan
*ch
;
2464 unsigned long flags
;
2467 seq_printf(s
, "PL08x physical channels:\n");
2468 seq_printf(s
, "CHANNEL:\tUSER:\n");
2469 seq_printf(s
, "--------\t-----\n");
2470 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
2471 struct pl08x_dma_chan
*virt_chan
;
2473 ch
= &pl08x
->phy_chans
[i
];
2475 spin_lock_irqsave(&ch
->lock
, flags
);
2476 virt_chan
= ch
->serving
;
2478 seq_printf(s
, "%d\t\t%s%s\n",
2480 virt_chan
? virt_chan
->name
: "(none)",
2481 ch
->locked
? " LOCKED" : "");
2483 spin_unlock_irqrestore(&ch
->lock
, flags
);
2486 seq_printf(s
, "\nPL08x virtual memcpy channels:\n");
2487 seq_printf(s
, "CHANNEL:\tSTATE:\n");
2488 seq_printf(s
, "--------\t------\n");
2489 list_for_each_entry(chan
, &pl08x
->memcpy
.channels
, vc
.chan
.device_node
) {
2490 seq_printf(s
, "%s\t\t%s\n", chan
->name
,
2491 pl08x_state_str(chan
->state
));
2494 if (pl08x
->has_slave
) {
2495 seq_printf(s
, "\nPL08x virtual slave channels:\n");
2496 seq_printf(s
, "CHANNEL:\tSTATE:\n");
2497 seq_printf(s
, "--------\t------\n");
2498 list_for_each_entry(chan
, &pl08x
->slave
.channels
,
2499 vc
.chan
.device_node
) {
2500 seq_printf(s
, "%s\t\t%s\n", chan
->name
,
2501 pl08x_state_str(chan
->state
));
2508 static int pl08x_debugfs_open(struct inode
*inode
, struct file
*file
)
2510 return single_open(file
, pl08x_debugfs_show
, inode
->i_private
);
2513 static const struct file_operations pl08x_debugfs_operations
= {
2514 .open
= pl08x_debugfs_open
,
2516 .llseek
= seq_lseek
,
2517 .release
= single_release
,
2520 static void init_pl08x_debugfs(struct pl08x_driver_data
*pl08x
)
2522 /* Expose a simple debugfs interface to view all clocks */
2523 (void) debugfs_create_file(dev_name(&pl08x
->adev
->dev
),
2524 S_IFREG
| S_IRUGO
, NULL
, pl08x
,
2525 &pl08x_debugfs_operations
);
2529 static inline void init_pl08x_debugfs(struct pl08x_driver_data
*pl08x
)
2535 static struct dma_chan
*pl08x_find_chan_id(struct pl08x_driver_data
*pl08x
,
2538 struct pl08x_dma_chan
*chan
;
2540 /* Trying to get a slave channel from something with no slave support */
2541 if (!pl08x
->has_slave
)
2544 list_for_each_entry(chan
, &pl08x
->slave
.channels
, vc
.chan
.device_node
) {
2545 if (chan
->signal
== id
)
2546 return &chan
->vc
.chan
;
2552 static struct dma_chan
*pl08x_of_xlate(struct of_phandle_args
*dma_spec
,
2553 struct of_dma
*ofdma
)
2555 struct pl08x_driver_data
*pl08x
= ofdma
->of_dma_data
;
2556 struct dma_chan
*dma_chan
;
2557 struct pl08x_dma_chan
*plchan
;
2562 if (dma_spec
->args_count
!= 2) {
2563 dev_err(&pl08x
->adev
->dev
,
2564 "DMA channel translation requires two cells\n");
2568 dma_chan
= pl08x_find_chan_id(pl08x
, dma_spec
->args
[0]);
2570 dev_err(&pl08x
->adev
->dev
,
2571 "DMA slave channel not found\n");
2575 plchan
= to_pl08x_chan(dma_chan
);
2576 dev_dbg(&pl08x
->adev
->dev
,
2577 "translated channel for signal %d\n",
2580 /* Augment channel data for applicable AHB buses */
2581 plchan
->cd
->periph_buses
= dma_spec
->args
[1];
2582 return dma_get_slave_channel(dma_chan
);
2585 static int pl08x_of_probe(struct amba_device
*adev
,
2586 struct pl08x_driver_data
*pl08x
,
2587 struct device_node
*np
)
2589 struct pl08x_platform_data
*pd
;
2590 struct pl08x_channel_data
*chanp
= NULL
;
2595 pd
= devm_kzalloc(&adev
->dev
, sizeof(*pd
), GFP_KERNEL
);
2599 /* Eligible bus masters for fetching LLIs */
2600 if (of_property_read_bool(np
, "lli-bus-interface-ahb1"))
2601 pd
->lli_buses
|= PL08X_AHB1
;
2602 if (of_property_read_bool(np
, "lli-bus-interface-ahb2"))
2603 pd
->lli_buses
|= PL08X_AHB2
;
2604 if (!pd
->lli_buses
) {
2605 dev_info(&adev
->dev
, "no bus masters for LLIs stated, assume all\n");
2606 pd
->lli_buses
|= PL08X_AHB1
| PL08X_AHB2
;
2609 /* Eligible bus masters for memory access */
2610 if (of_property_read_bool(np
, "mem-bus-interface-ahb1"))
2611 pd
->mem_buses
|= PL08X_AHB1
;
2612 if (of_property_read_bool(np
, "mem-bus-interface-ahb2"))
2613 pd
->mem_buses
|= PL08X_AHB2
;
2614 if (!pd
->mem_buses
) {
2615 dev_info(&adev
->dev
, "no bus masters for memory stated, assume all\n");
2616 pd
->mem_buses
|= PL08X_AHB1
| PL08X_AHB2
;
2619 /* Parse the memcpy channel properties */
2620 ret
= of_property_read_u32(np
, "memcpy-burst-size", &val
);
2622 dev_info(&adev
->dev
, "no memcpy burst size specified, using 1 byte\n");
2627 dev_err(&adev
->dev
, "illegal burst size for memcpy, set to 1\n");
2630 pd
->memcpy_burst_size
= PL08X_BURST_SZ_1
;
2633 pd
->memcpy_burst_size
= PL08X_BURST_SZ_4
;
2636 pd
->memcpy_burst_size
= PL08X_BURST_SZ_8
;
2639 pd
->memcpy_burst_size
= PL08X_BURST_SZ_16
;
2642 pd
->memcpy_burst_size
= PL08X_BURST_SZ_32
;
2645 pd
->memcpy_burst_size
= PL08X_BURST_SZ_64
;
2648 pd
->memcpy_burst_size
= PL08X_BURST_SZ_128
;
2651 pd
->memcpy_burst_size
= PL08X_BURST_SZ_256
;
2655 ret
= of_property_read_u32(np
, "memcpy-bus-width", &val
);
2657 dev_info(&adev
->dev
, "no memcpy bus width specified, using 8 bits\n");
2662 dev_err(&adev
->dev
, "illegal bus width for memcpy, set to 8 bits\n");
2665 pd
->memcpy_bus_width
= PL08X_BUS_WIDTH_8_BITS
;
2668 pd
->memcpy_bus_width
= PL08X_BUS_WIDTH_16_BITS
;
2671 pd
->memcpy_bus_width
= PL08X_BUS_WIDTH_32_BITS
;
2676 * Allocate channel data for all possible slave channels (one
2677 * for each possible signal), channels will then be allocated
2678 * for a device and have it's AHB interfaces set up at
2681 if (pl08x
->vd
->signals
) {
2682 chanp
= devm_kcalloc(&adev
->dev
,
2684 sizeof(struct pl08x_channel_data
),
2689 pd
->slave_channels
= chanp
;
2690 for (i
= 0; i
< pl08x
->vd
->signals
; i
++) {
2692 * chanp->periph_buses will be assigned at translation
2694 chanp
->bus_id
= kasprintf(GFP_KERNEL
, "slave%d", i
);
2697 pd
->num_slave_channels
= pl08x
->vd
->signals
;
2702 return of_dma_controller_register(adev
->dev
.of_node
, pl08x_of_xlate
,
2706 static inline int pl08x_of_probe(struct amba_device
*adev
,
2707 struct pl08x_driver_data
*pl08x
,
2708 struct device_node
*np
)
2714 static int pl08x_probe(struct amba_device
*adev
, const struct amba_id
*id
)
2716 struct pl08x_driver_data
*pl08x
;
2717 struct vendor_data
*vd
= id
->data
;
2718 struct device_node
*np
= adev
->dev
.of_node
;
2723 ret
= amba_request_regions(adev
, NULL
);
2727 /* Ensure that we can do DMA */
2728 ret
= dma_set_mask_and_coherent(&adev
->dev
, DMA_BIT_MASK(32));
2732 /* Create the driver state holder */
2733 pl08x
= kzalloc(sizeof(*pl08x
), GFP_KERNEL
);
2739 /* Assign useful pointers to the driver state */
2743 pl08x
->base
= ioremap(adev
->res
.start
, resource_size(&adev
->res
));
2746 goto out_no_ioremap
;
2749 if (vd
->ftdmac020
) {
2752 val
= readl(pl08x
->base
+ FTDMAC020_REVISION
);
2753 dev_info(&pl08x
->adev
->dev
, "FTDMAC020 %d.%d rel %d\n",
2754 (val
>> 16) & 0xff, (val
>> 8) & 0xff, val
& 0xff);
2755 val
= readl(pl08x
->base
+ FTDMAC020_FEATURE
);
2756 dev_info(&pl08x
->adev
->dev
, "FTDMAC020 %d channels, "
2757 "%s built-in bridge, %s, %s linked lists\n",
2759 (val
& BIT(10)) ? "no" : "has",
2760 (val
& BIT(9)) ? "AHB0 and AHB1" : "AHB0",
2761 (val
& BIT(8)) ? "supports" : "does not support");
2763 /* Vendor data from feature register */
2764 if (!(val
& BIT(8)))
2765 dev_warn(&pl08x
->adev
->dev
,
2766 "linked lists not supported, required\n");
2767 vd
->channels
= (val
>> 12) & 0x0f;
2768 vd
->dualmaster
= !!(val
& BIT(9));
2771 /* Initialize memcpy engine */
2772 dma_cap_set(DMA_MEMCPY
, pl08x
->memcpy
.cap_mask
);
2773 pl08x
->memcpy
.dev
= &adev
->dev
;
2774 pl08x
->memcpy
.device_free_chan_resources
= pl08x_free_chan_resources
;
2775 pl08x
->memcpy
.device_prep_dma_memcpy
= pl08x_prep_dma_memcpy
;
2776 pl08x
->memcpy
.device_prep_dma_interrupt
= pl08x_prep_dma_interrupt
;
2777 pl08x
->memcpy
.device_tx_status
= pl08x_dma_tx_status
;
2778 pl08x
->memcpy
.device_issue_pending
= pl08x_issue_pending
;
2779 pl08x
->memcpy
.device_config
= pl08x_config
;
2780 pl08x
->memcpy
.device_pause
= pl08x_pause
;
2781 pl08x
->memcpy
.device_resume
= pl08x_resume
;
2782 pl08x
->memcpy
.device_terminate_all
= pl08x_terminate_all
;
2783 pl08x
->memcpy
.device_synchronize
= pl08x_synchronize
;
2784 pl08x
->memcpy
.src_addr_widths
= PL80X_DMA_BUSWIDTHS
;
2785 pl08x
->memcpy
.dst_addr_widths
= PL80X_DMA_BUSWIDTHS
;
2786 pl08x
->memcpy
.directions
= BIT(DMA_MEM_TO_MEM
);
2787 pl08x
->memcpy
.residue_granularity
= DMA_RESIDUE_GRANULARITY_SEGMENT
;
2789 pl08x
->memcpy
.copy_align
= DMAENGINE_ALIGN_4_BYTES
;
2793 * Initialize slave engine, if the block has no signals, that means
2794 * we have no slave support.
2797 pl08x
->has_slave
= true;
2798 dma_cap_set(DMA_SLAVE
, pl08x
->slave
.cap_mask
);
2799 dma_cap_set(DMA_CYCLIC
, pl08x
->slave
.cap_mask
);
2800 pl08x
->slave
.dev
= &adev
->dev
;
2801 pl08x
->slave
.device_free_chan_resources
=
2802 pl08x_free_chan_resources
;
2803 pl08x
->slave
.device_prep_dma_interrupt
=
2804 pl08x_prep_dma_interrupt
;
2805 pl08x
->slave
.device_tx_status
= pl08x_dma_tx_status
;
2806 pl08x
->slave
.device_issue_pending
= pl08x_issue_pending
;
2807 pl08x
->slave
.device_prep_slave_sg
= pl08x_prep_slave_sg
;
2808 pl08x
->slave
.device_prep_dma_cyclic
= pl08x_prep_dma_cyclic
;
2809 pl08x
->slave
.device_config
= pl08x_config
;
2810 pl08x
->slave
.device_pause
= pl08x_pause
;
2811 pl08x
->slave
.device_resume
= pl08x_resume
;
2812 pl08x
->slave
.device_terminate_all
= pl08x_terminate_all
;
2813 pl08x
->slave
.device_synchronize
= pl08x_synchronize
;
2814 pl08x
->slave
.src_addr_widths
= PL80X_DMA_BUSWIDTHS
;
2815 pl08x
->slave
.dst_addr_widths
= PL80X_DMA_BUSWIDTHS
;
2816 pl08x
->slave
.directions
=
2817 BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
);
2818 pl08x
->slave
.residue_granularity
=
2819 DMA_RESIDUE_GRANULARITY_SEGMENT
;
2822 /* Get the platform data */
2823 pl08x
->pd
= dev_get_platdata(&adev
->dev
);
2826 ret
= pl08x_of_probe(adev
, pl08x
, np
);
2828 goto out_no_platdata
;
2830 dev_err(&adev
->dev
, "no platform data supplied\n");
2832 goto out_no_platdata
;
2835 pl08x
->slave
.filter
.map
= pl08x
->pd
->slave_map
;
2836 pl08x
->slave
.filter
.mapcnt
= pl08x
->pd
->slave_map_len
;
2837 pl08x
->slave
.filter
.fn
= pl08x_filter_fn
;
2840 /* By default, AHB1 only. If dualmaster, from platform */
2841 pl08x
->lli_buses
= PL08X_AHB1
;
2842 pl08x
->mem_buses
= PL08X_AHB1
;
2843 if (pl08x
->vd
->dualmaster
) {
2844 pl08x
->lli_buses
= pl08x
->pd
->lli_buses
;
2845 pl08x
->mem_buses
= pl08x
->pd
->mem_buses
;
2849 pl08x
->lli_words
= PL080S_LLI_WORDS
;
2851 pl08x
->lli_words
= PL080_LLI_WORDS
;
2852 tsfr_size
= MAX_NUM_TSFR_LLIS
* pl08x
->lli_words
* sizeof(u32
);
2854 /* A DMA memory pool for LLIs, align on 1-byte boundary */
2855 pl08x
->pool
= dma_pool_create(DRIVER_NAME
, &pl08x
->adev
->dev
,
2856 tsfr_size
, PL08X_ALIGN
, 0);
2859 goto out_no_lli_pool
;
2862 /* Turn on the PL08x */
2863 pl08x_ensure_on(pl08x
);
2865 /* Clear any pending interrupts */
2867 /* This variant has error IRQs in bits 16-19 */
2868 writel(0x0000FFFF, pl08x
->base
+ PL080_ERR_CLEAR
);
2870 writel(0x000000FF, pl08x
->base
+ PL080_ERR_CLEAR
);
2871 writel(0x000000FF, pl08x
->base
+ PL080_TC_CLEAR
);
2873 /* Attach the interrupt handler */
2874 ret
= request_irq(adev
->irq
[0], pl08x_irq
, 0, DRIVER_NAME
, pl08x
);
2876 dev_err(&adev
->dev
, "%s failed to request interrupt %d\n",
2877 __func__
, adev
->irq
[0]);
2881 /* Initialize physical channels */
2882 pl08x
->phy_chans
= kzalloc((vd
->channels
* sizeof(*pl08x
->phy_chans
)),
2884 if (!pl08x
->phy_chans
) {
2886 goto out_no_phychans
;
2889 for (i
= 0; i
< vd
->channels
; i
++) {
2890 struct pl08x_phy_chan
*ch
= &pl08x
->phy_chans
[i
];
2893 ch
->base
= pl08x
->base
+ PL080_Cx_BASE(i
);
2894 if (vd
->ftdmac020
) {
2895 /* FTDMA020 has a special channel busy register */
2896 ch
->reg_busy
= ch
->base
+ FTDMAC020_CH_BUSY
;
2897 ch
->reg_config
= ch
->base
+ FTDMAC020_CH_CFG
;
2898 ch
->reg_control
= ch
->base
+ FTDMAC020_CH_CSR
;
2899 ch
->reg_src
= ch
->base
+ FTDMAC020_CH_SRC_ADDR
;
2900 ch
->reg_dst
= ch
->base
+ FTDMAC020_CH_DST_ADDR
;
2901 ch
->reg_lli
= ch
->base
+ FTDMAC020_CH_LLP
;
2902 ch
->ftdmac020
= true;
2904 ch
->reg_config
= ch
->base
+ vd
->config_offset
;
2905 ch
->reg_control
= ch
->base
+ PL080_CH_CONTROL
;
2906 ch
->reg_src
= ch
->base
+ PL080_CH_SRC_ADDR
;
2907 ch
->reg_dst
= ch
->base
+ PL080_CH_DST_ADDR
;
2908 ch
->reg_lli
= ch
->base
+ PL080_CH_LLI
;
2913 spin_lock_init(&ch
->lock
);
2916 * Nomadik variants can have channels that are locked
2917 * down for the secure world only. Lock up these channels
2918 * by perpetually serving a dummy virtual channel.
2923 val
= readl(ch
->reg_config
);
2924 if (val
& (PL080N_CONFIG_ITPROT
| PL080N_CONFIG_SECPROT
)) {
2925 dev_info(&adev
->dev
, "physical channel %d reserved for secure access only\n", i
);
2930 dev_dbg(&adev
->dev
, "physical channel %d is %s\n",
2931 i
, pl08x_phy_channel_busy(ch
) ? "BUSY" : "FREE");
2934 /* Register as many memcpy channels as there are physical channels */
2935 ret
= pl08x_dma_init_virtual_channels(pl08x
, &pl08x
->memcpy
,
2936 pl08x
->vd
->channels
, false);
2938 dev_warn(&pl08x
->adev
->dev
,
2939 "%s failed to enumerate memcpy channels - %d\n",
2944 /* Register slave channels */
2945 if (pl08x
->has_slave
) {
2946 ret
= pl08x_dma_init_virtual_channels(pl08x
, &pl08x
->slave
,
2947 pl08x
->pd
->num_slave_channels
, true);
2949 dev_warn(&pl08x
->adev
->dev
,
2950 "%s failed to enumerate slave channels - %d\n",
2956 ret
= dma_async_device_register(&pl08x
->memcpy
);
2958 dev_warn(&pl08x
->adev
->dev
,
2959 "%s failed to register memcpy as an async device - %d\n",
2961 goto out_no_memcpy_reg
;
2964 if (pl08x
->has_slave
) {
2965 ret
= dma_async_device_register(&pl08x
->slave
);
2967 dev_warn(&pl08x
->adev
->dev
,
2968 "%s failed to register slave as an async device - %d\n",
2970 goto out_no_slave_reg
;
2974 amba_set_drvdata(adev
, pl08x
);
2975 init_pl08x_debugfs(pl08x
);
2976 dev_info(&pl08x
->adev
->dev
, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2977 amba_part(adev
), pl08x
->vd
->pl080s
? "s" : "", amba_rev(adev
),
2978 (unsigned long long)adev
->res
.start
, adev
->irq
[0]);
2983 dma_async_device_unregister(&pl08x
->memcpy
);
2985 if (pl08x
->has_slave
)
2986 pl08x_free_virtual_channels(&pl08x
->slave
);
2988 pl08x_free_virtual_channels(&pl08x
->memcpy
);
2990 kfree(pl08x
->phy_chans
);
2992 free_irq(adev
->irq
[0], pl08x
);
2994 dma_pool_destroy(pl08x
->pool
);
2997 iounmap(pl08x
->base
);
3001 amba_release_regions(adev
);
3005 /* PL080 has 8 channels and the PL080 have just 2 */
3006 static struct vendor_data vendor_pl080
= {
3007 .config_offset
= PL080_CH_CONFIG
,
3011 .max_transfer_size
= PL080_CONTROL_TRANSFER_SIZE_MASK
,
3014 static struct vendor_data vendor_nomadik
= {
3015 .config_offset
= PL080_CH_CONFIG
,
3020 .max_transfer_size
= PL080_CONTROL_TRANSFER_SIZE_MASK
,
3023 static struct vendor_data vendor_pl080s
= {
3024 .config_offset
= PL080S_CH_CONFIG
,
3028 .max_transfer_size
= PL080S_CONTROL_TRANSFER_SIZE_MASK
,
3031 static struct vendor_data vendor_pl081
= {
3032 .config_offset
= PL080_CH_CONFIG
,
3035 .dualmaster
= false,
3036 .max_transfer_size
= PL080_CONTROL_TRANSFER_SIZE_MASK
,
3039 static struct vendor_data vendor_ftdmac020
= {
3040 .config_offset
= PL080_CH_CONFIG
,
3042 .max_transfer_size
= PL080_CONTROL_TRANSFER_SIZE_MASK
,
3045 static const struct amba_id pl08x_ids
[] = {
3046 /* Samsung PL080S variant */
3050 .data
= &vendor_pl080s
,
3056 .data
= &vendor_pl080
,
3062 .data
= &vendor_pl081
,
3064 /* Nomadik 8815 PL080 variant */
3068 .data
= &vendor_nomadik
,
3070 /* Faraday Technology FTDMAC020 */
3074 .data
= &vendor_ftdmac020
,
3079 MODULE_DEVICE_TABLE(amba
, pl08x_ids
);
3081 static struct amba_driver pl08x_amba_driver
= {
3082 .drv
.name
= DRIVER_NAME
,
3083 .id_table
= pl08x_ids
,
3084 .probe
= pl08x_probe
,
3087 static int __init
pl08x_init(void)
3090 retval
= amba_driver_register(&pl08x_amba_driver
);
3092 printk(KERN_WARNING DRIVER_NAME
3093 "failed to register as an AMBA device (%d)\n",
3097 subsys_initcall(pl08x_init
);