Linux 4.18.10
[linux/fpc-iii.git] / drivers / dma / fsl_raid.c
blob493dc6c59d1dcc29e6ba80b70e1622f9790b1cbe
1 /*
2 * drivers/dma/fsl_raid.c
4 * Freescale RAID Engine device driver
6 * Author:
7 * Harninder Rai <harninder.rai@freescale.com>
8 * Naveen Burmi <naveenburmi@freescale.com>
10 * Rewrite:
11 * Xuelin Shi <xuelin.shi@freescale.com>
13 * Copyright (c) 2010-2014 Freescale Semiconductor, Inc.
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions are met:
17 * * Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * * Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * * Neither the name of Freescale Semiconductor nor the
23 * names of its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written permission.
26 * ALTERNATIVELY, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") as published by the Free Software
28 * Foundation, either version 2 of that License or (at your option) any
29 * later version.
31 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
32 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
33 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
34 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
35 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
36 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
38 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
40 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 * Theory of operation:
44 * General capabilities:
45 * RAID Engine (RE) block is capable of offloading XOR, memcpy and P/Q
46 * calculations required in RAID5 and RAID6 operations. RE driver
47 * registers with Linux's ASYNC layer as dma driver. RE hardware
48 * maintains strict ordering of the requests through chained
49 * command queueing.
51 * Data flow:
52 * Software RAID layer of Linux (MD layer) maintains RAID partitions,
53 * strips, stripes etc. It sends requests to the underlying ASYNC layer
54 * which further passes it to RE driver. ASYNC layer decides which request
55 * goes to which job ring of RE hardware. For every request processed by
56 * RAID Engine, driver gets an interrupt unless coalescing is set. The
57 * per job ring interrupt handler checks the status register for errors,
58 * clears the interrupt and leave the post interrupt processing to the irq
59 * thread.
61 #include <linux/interrupt.h>
62 #include <linux/module.h>
63 #include <linux/of_irq.h>
64 #include <linux/of_address.h>
65 #include <linux/of_platform.h>
66 #include <linux/dma-mapping.h>
67 #include <linux/dmapool.h>
68 #include <linux/dmaengine.h>
69 #include <linux/io.h>
70 #include <linux/spinlock.h>
71 #include <linux/slab.h>
73 #include "dmaengine.h"
74 #include "fsl_raid.h"
76 #define FSL_RE_MAX_XOR_SRCS 16
77 #define FSL_RE_MAX_PQ_SRCS 16
78 #define FSL_RE_MIN_DESCS 256
79 #define FSL_RE_MAX_DESCS (4 * FSL_RE_MIN_DESCS)
80 #define FSL_RE_FRAME_FORMAT 0x1
81 #define FSL_RE_MAX_DATA_LEN (1024*1024)
83 #define to_fsl_re_dma_desc(tx) container_of(tx, struct fsl_re_desc, async_tx)
85 /* Add descriptors into per chan software queue - submit_q */
86 static dma_cookie_t fsl_re_tx_submit(struct dma_async_tx_descriptor *tx)
88 struct fsl_re_desc *desc;
89 struct fsl_re_chan *re_chan;
90 dma_cookie_t cookie;
91 unsigned long flags;
93 desc = to_fsl_re_dma_desc(tx);
94 re_chan = container_of(tx->chan, struct fsl_re_chan, chan);
96 spin_lock_irqsave(&re_chan->desc_lock, flags);
97 cookie = dma_cookie_assign(tx);
98 list_add_tail(&desc->node, &re_chan->submit_q);
99 spin_unlock_irqrestore(&re_chan->desc_lock, flags);
101 return cookie;
104 /* Copy descriptor from per chan software queue into hardware job ring */
105 static void fsl_re_issue_pending(struct dma_chan *chan)
107 struct fsl_re_chan *re_chan;
108 int avail;
109 struct fsl_re_desc *desc, *_desc;
110 unsigned long flags;
112 re_chan = container_of(chan, struct fsl_re_chan, chan);
114 spin_lock_irqsave(&re_chan->desc_lock, flags);
115 avail = FSL_RE_SLOT_AVAIL(
116 in_be32(&re_chan->jrregs->inbring_slot_avail));
118 list_for_each_entry_safe(desc, _desc, &re_chan->submit_q, node) {
119 if (!avail)
120 break;
122 list_move_tail(&desc->node, &re_chan->active_q);
124 memcpy(&re_chan->inb_ring_virt_addr[re_chan->inb_count],
125 &desc->hwdesc, sizeof(struct fsl_re_hw_desc));
127 re_chan->inb_count = (re_chan->inb_count + 1) &
128 FSL_RE_RING_SIZE_MASK;
129 out_be32(&re_chan->jrregs->inbring_add_job, FSL_RE_ADD_JOB(1));
130 avail--;
132 spin_unlock_irqrestore(&re_chan->desc_lock, flags);
135 static void fsl_re_desc_done(struct fsl_re_desc *desc)
137 dma_cookie_complete(&desc->async_tx);
138 dma_descriptor_unmap(&desc->async_tx);
139 dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL);
142 static void fsl_re_cleanup_descs(struct fsl_re_chan *re_chan)
144 struct fsl_re_desc *desc, *_desc;
145 unsigned long flags;
147 spin_lock_irqsave(&re_chan->desc_lock, flags);
148 list_for_each_entry_safe(desc, _desc, &re_chan->ack_q, node) {
149 if (async_tx_test_ack(&desc->async_tx))
150 list_move_tail(&desc->node, &re_chan->free_q);
152 spin_unlock_irqrestore(&re_chan->desc_lock, flags);
154 fsl_re_issue_pending(&re_chan->chan);
157 static void fsl_re_dequeue(unsigned long data)
159 struct fsl_re_chan *re_chan;
160 struct fsl_re_desc *desc, *_desc;
161 struct fsl_re_hw_desc *hwdesc;
162 unsigned long flags;
163 unsigned int count, oub_count;
164 int found;
166 re_chan = dev_get_drvdata((struct device *)data);
168 fsl_re_cleanup_descs(re_chan);
170 spin_lock_irqsave(&re_chan->desc_lock, flags);
171 count = FSL_RE_SLOT_FULL(in_be32(&re_chan->jrregs->oubring_slot_full));
172 while (count--) {
173 found = 0;
174 hwdesc = &re_chan->oub_ring_virt_addr[re_chan->oub_count];
175 list_for_each_entry_safe(desc, _desc, &re_chan->active_q,
176 node) {
177 /* compare the hw dma addr to find the completed */
178 if (desc->hwdesc.lbea32 == hwdesc->lbea32 &&
179 desc->hwdesc.addr_low == hwdesc->addr_low) {
180 found = 1;
181 break;
185 if (found) {
186 fsl_re_desc_done(desc);
187 list_move_tail(&desc->node, &re_chan->ack_q);
188 } else {
189 dev_err(re_chan->dev,
190 "found hwdesc not in sw queue, discard it\n");
193 oub_count = (re_chan->oub_count + 1) & FSL_RE_RING_SIZE_MASK;
194 re_chan->oub_count = oub_count;
196 out_be32(&re_chan->jrregs->oubring_job_rmvd,
197 FSL_RE_RMVD_JOB(1));
199 spin_unlock_irqrestore(&re_chan->desc_lock, flags);
202 /* Per Job Ring interrupt handler */
203 static irqreturn_t fsl_re_isr(int irq, void *data)
205 struct fsl_re_chan *re_chan;
206 u32 irqstate, status;
208 re_chan = dev_get_drvdata((struct device *)data);
210 irqstate = in_be32(&re_chan->jrregs->jr_interrupt_status);
211 if (!irqstate)
212 return IRQ_NONE;
215 * There's no way in upper layer (read MD layer) to recover from
216 * error conditions except restart everything. In long term we
217 * need to do something more than just crashing
219 if (irqstate & FSL_RE_ERROR) {
220 status = in_be32(&re_chan->jrregs->jr_status);
221 dev_err(re_chan->dev, "chan error irqstate: %x, status: %x\n",
222 irqstate, status);
225 /* Clear interrupt */
226 out_be32(&re_chan->jrregs->jr_interrupt_status, FSL_RE_CLR_INTR);
228 tasklet_schedule(&re_chan->irqtask);
230 return IRQ_HANDLED;
233 static enum dma_status fsl_re_tx_status(struct dma_chan *chan,
234 dma_cookie_t cookie,
235 struct dma_tx_state *txstate)
237 return dma_cookie_status(chan, cookie, txstate);
240 static void fill_cfd_frame(struct fsl_re_cmpnd_frame *cf, u8 index,
241 size_t length, dma_addr_t addr, bool final)
243 u32 efrl = length & FSL_RE_CF_LENGTH_MASK;
245 efrl |= final << FSL_RE_CF_FINAL_SHIFT;
246 cf[index].efrl32 = efrl;
247 cf[index].addr_high = upper_32_bits(addr);
248 cf[index].addr_low = lower_32_bits(addr);
251 static struct fsl_re_desc *fsl_re_init_desc(struct fsl_re_chan *re_chan,
252 struct fsl_re_desc *desc,
253 void *cf, dma_addr_t paddr)
255 desc->re_chan = re_chan;
256 desc->async_tx.tx_submit = fsl_re_tx_submit;
257 dma_async_tx_descriptor_init(&desc->async_tx, &re_chan->chan);
258 INIT_LIST_HEAD(&desc->node);
260 desc->hwdesc.fmt32 = FSL_RE_FRAME_FORMAT << FSL_RE_HWDESC_FMT_SHIFT;
261 desc->hwdesc.lbea32 = upper_32_bits(paddr);
262 desc->hwdesc.addr_low = lower_32_bits(paddr);
263 desc->cf_addr = cf;
264 desc->cf_paddr = paddr;
266 desc->cdb_addr = (void *)(cf + FSL_RE_CF_DESC_SIZE);
267 desc->cdb_paddr = paddr + FSL_RE_CF_DESC_SIZE;
269 return desc;
272 static struct fsl_re_desc *fsl_re_chan_alloc_desc(struct fsl_re_chan *re_chan,
273 unsigned long flags)
275 struct fsl_re_desc *desc = NULL;
276 void *cf;
277 dma_addr_t paddr;
278 unsigned long lock_flag;
280 fsl_re_cleanup_descs(re_chan);
282 spin_lock_irqsave(&re_chan->desc_lock, lock_flag);
283 if (!list_empty(&re_chan->free_q)) {
284 /* take one desc from free_q */
285 desc = list_first_entry(&re_chan->free_q,
286 struct fsl_re_desc, node);
287 list_del(&desc->node);
289 desc->async_tx.flags = flags;
291 spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag);
293 if (!desc) {
294 desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
295 if (!desc)
296 return NULL;
298 cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_NOWAIT,
299 &paddr);
300 if (!cf) {
301 kfree(desc);
302 return NULL;
305 desc = fsl_re_init_desc(re_chan, desc, cf, paddr);
306 desc->async_tx.flags = flags;
308 spin_lock_irqsave(&re_chan->desc_lock, lock_flag);
309 re_chan->alloc_count++;
310 spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag);
313 return desc;
316 static struct dma_async_tx_descriptor *fsl_re_prep_dma_genq(
317 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
318 unsigned int src_cnt, const unsigned char *scf, size_t len,
319 unsigned long flags)
321 struct fsl_re_chan *re_chan;
322 struct fsl_re_desc *desc;
323 struct fsl_re_xor_cdb *xor;
324 struct fsl_re_cmpnd_frame *cf;
325 u32 cdb;
326 unsigned int i, j;
327 unsigned int save_src_cnt = src_cnt;
328 int cont_q = 0;
330 re_chan = container_of(chan, struct fsl_re_chan, chan);
331 if (len > FSL_RE_MAX_DATA_LEN) {
332 dev_err(re_chan->dev, "genq tx length %zu, max length %d\n",
333 len, FSL_RE_MAX_DATA_LEN);
334 return NULL;
337 desc = fsl_re_chan_alloc_desc(re_chan, flags);
338 if (desc <= 0)
339 return NULL;
341 if (scf && (flags & DMA_PREP_CONTINUE)) {
342 cont_q = 1;
343 src_cnt += 1;
346 /* Filling xor CDB */
347 cdb = FSL_RE_XOR_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
348 cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT;
349 cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
350 cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT;
351 cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
352 xor = desc->cdb_addr;
353 xor->cdb32 = cdb;
355 if (scf) {
356 /* compute q = src0*coef0^src1*coef1^..., * is GF(8) mult */
357 for (i = 0; i < save_src_cnt; i++)
358 xor->gfm[i] = scf[i];
359 if (cont_q)
360 xor->gfm[i++] = 1;
361 } else {
362 /* compute P, that is XOR all srcs */
363 for (i = 0; i < src_cnt; i++)
364 xor->gfm[i] = 1;
367 /* Filling frame 0 of compound frame descriptor with CDB */
368 cf = desc->cf_addr;
369 fill_cfd_frame(cf, 0, sizeof(*xor), desc->cdb_paddr, 0);
371 /* Fill CFD's 1st frame with dest buffer */
372 fill_cfd_frame(cf, 1, len, dest, 0);
374 /* Fill CFD's rest of the frames with source buffers */
375 for (i = 2, j = 0; j < save_src_cnt; i++, j++)
376 fill_cfd_frame(cf, i, len, src[j], 0);
378 if (cont_q)
379 fill_cfd_frame(cf, i++, len, dest, 0);
381 /* Setting the final bit in the last source buffer frame in CFD */
382 cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT;
384 return &desc->async_tx;
388 * Prep function for P parity calculation.In RAID Engine terminology,
389 * XOR calculation is called GenQ calculation done through GenQ command
391 static struct dma_async_tx_descriptor *fsl_re_prep_dma_xor(
392 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
393 unsigned int src_cnt, size_t len, unsigned long flags)
395 /* NULL let genq take all coef as 1 */
396 return fsl_re_prep_dma_genq(chan, dest, src, src_cnt, NULL, len, flags);
400 * Prep function for P/Q parity calculation.In RAID Engine terminology,
401 * P/Q calculation is called GenQQ done through GenQQ command
403 static struct dma_async_tx_descriptor *fsl_re_prep_dma_pq(
404 struct dma_chan *chan, dma_addr_t *dest, dma_addr_t *src,
405 unsigned int src_cnt, const unsigned char *scf, size_t len,
406 unsigned long flags)
408 struct fsl_re_chan *re_chan;
409 struct fsl_re_desc *desc;
410 struct fsl_re_pq_cdb *pq;
411 struct fsl_re_cmpnd_frame *cf;
412 u32 cdb;
413 u8 *p;
414 int gfmq_len, i, j;
415 unsigned int save_src_cnt = src_cnt;
417 re_chan = container_of(chan, struct fsl_re_chan, chan);
418 if (len > FSL_RE_MAX_DATA_LEN) {
419 dev_err(re_chan->dev, "pq tx length is %zu, max length is %d\n",
420 len, FSL_RE_MAX_DATA_LEN);
421 return NULL;
425 * RE requires at least 2 sources, if given only one source, we pass the
426 * second source same as the first one.
427 * With only one source, generating P is meaningless, only generate Q.
429 if (src_cnt == 1) {
430 struct dma_async_tx_descriptor *tx;
431 dma_addr_t dma_src[2];
432 unsigned char coef[2];
434 dma_src[0] = *src;
435 coef[0] = *scf;
436 dma_src[1] = *src;
437 coef[1] = 0;
438 tx = fsl_re_prep_dma_genq(chan, dest[1], dma_src, 2, coef, len,
439 flags);
440 if (tx)
441 desc = to_fsl_re_dma_desc(tx);
443 return tx;
447 * During RAID6 array creation, Linux's MD layer gets P and Q
448 * calculated separately in two steps. But our RAID Engine has
449 * the capability to calculate both P and Q with a single command
450 * Hence to merge well with MD layer, we need to provide a hook
451 * here and call re_jq_prep_dma_genq() function
454 if (flags & DMA_PREP_PQ_DISABLE_P)
455 return fsl_re_prep_dma_genq(chan, dest[1], src, src_cnt,
456 scf, len, flags);
458 if (flags & DMA_PREP_CONTINUE)
459 src_cnt += 3;
461 desc = fsl_re_chan_alloc_desc(re_chan, flags);
462 if (desc <= 0)
463 return NULL;
465 /* Filling GenQQ CDB */
466 cdb = FSL_RE_PQ_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
467 cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT;
468 cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
469 cdb |= FSL_RE_BUFFER_OUTPUT << FSL_RE_CDB_BUFFER_SHIFT;
470 cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
472 pq = desc->cdb_addr;
473 pq->cdb32 = cdb;
475 p = pq->gfm_q1;
476 /* Init gfm_q1[] */
477 for (i = 0; i < src_cnt; i++)
478 p[i] = 1;
480 /* Align gfm[] to 32bit */
481 gfmq_len = ALIGN(src_cnt, 4);
483 /* Init gfm_q2[] */
484 p += gfmq_len;
485 for (i = 0; i < src_cnt; i++)
486 p[i] = scf[i];
488 /* Filling frame 0 of compound frame descriptor with CDB */
489 cf = desc->cf_addr;
490 fill_cfd_frame(cf, 0, sizeof(struct fsl_re_pq_cdb), desc->cdb_paddr, 0);
492 /* Fill CFD's 1st & 2nd frame with dest buffers */
493 for (i = 1, j = 0; i < 3; i++, j++)
494 fill_cfd_frame(cf, i, len, dest[j], 0);
496 /* Fill CFD's rest of the frames with source buffers */
497 for (i = 3, j = 0; j < save_src_cnt; i++, j++)
498 fill_cfd_frame(cf, i, len, src[j], 0);
500 /* PQ computation continuation */
501 if (flags & DMA_PREP_CONTINUE) {
502 if (src_cnt - save_src_cnt == 3) {
503 p[save_src_cnt] = 0;
504 p[save_src_cnt + 1] = 0;
505 p[save_src_cnt + 2] = 1;
506 fill_cfd_frame(cf, i++, len, dest[0], 0);
507 fill_cfd_frame(cf, i++, len, dest[1], 0);
508 fill_cfd_frame(cf, i++, len, dest[1], 0);
509 } else {
510 dev_err(re_chan->dev, "PQ tx continuation error!\n");
511 return NULL;
515 /* Setting the final bit in the last source buffer frame in CFD */
516 cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT;
518 return &desc->async_tx;
522 * Prep function for memcpy. In RAID Engine, memcpy is done through MOVE
523 * command. Logic of this function will need to be modified once multipage
524 * support is added in Linux's MD/ASYNC Layer
526 static struct dma_async_tx_descriptor *fsl_re_prep_dma_memcpy(
527 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
528 size_t len, unsigned long flags)
530 struct fsl_re_chan *re_chan;
531 struct fsl_re_desc *desc;
532 size_t length;
533 struct fsl_re_cmpnd_frame *cf;
534 struct fsl_re_move_cdb *move;
535 u32 cdb;
537 re_chan = container_of(chan, struct fsl_re_chan, chan);
539 if (len > FSL_RE_MAX_DATA_LEN) {
540 dev_err(re_chan->dev, "cp tx length is %zu, max length is %d\n",
541 len, FSL_RE_MAX_DATA_LEN);
542 return NULL;
545 desc = fsl_re_chan_alloc_desc(re_chan, flags);
546 if (desc <= 0)
547 return NULL;
549 /* Filling move CDB */
550 cdb = FSL_RE_MOVE_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
551 cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
552 cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT;
553 cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
555 move = desc->cdb_addr;
556 move->cdb32 = cdb;
558 /* Filling frame 0 of CFD with move CDB */
559 cf = desc->cf_addr;
560 fill_cfd_frame(cf, 0, sizeof(*move), desc->cdb_paddr, 0);
562 length = min_t(size_t, len, FSL_RE_MAX_DATA_LEN);
564 /* Fill CFD's 1st frame with dest buffer */
565 fill_cfd_frame(cf, 1, length, dest, 0);
567 /* Fill CFD's 2nd frame with src buffer */
568 fill_cfd_frame(cf, 2, length, src, 1);
570 return &desc->async_tx;
573 static int fsl_re_alloc_chan_resources(struct dma_chan *chan)
575 struct fsl_re_chan *re_chan;
576 struct fsl_re_desc *desc;
577 void *cf;
578 dma_addr_t paddr;
579 int i;
581 re_chan = container_of(chan, struct fsl_re_chan, chan);
582 for (i = 0; i < FSL_RE_MIN_DESCS; i++) {
583 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
584 if (!desc)
585 break;
587 cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_KERNEL,
588 &paddr);
589 if (!cf) {
590 kfree(desc);
591 break;
594 INIT_LIST_HEAD(&desc->node);
595 fsl_re_init_desc(re_chan, desc, cf, paddr);
597 list_add_tail(&desc->node, &re_chan->free_q);
598 re_chan->alloc_count++;
600 return re_chan->alloc_count;
603 static void fsl_re_free_chan_resources(struct dma_chan *chan)
605 struct fsl_re_chan *re_chan;
606 struct fsl_re_desc *desc;
608 re_chan = container_of(chan, struct fsl_re_chan, chan);
609 while (re_chan->alloc_count--) {
610 desc = list_first_entry(&re_chan->free_q,
611 struct fsl_re_desc,
612 node);
614 list_del(&desc->node);
615 dma_pool_free(re_chan->re_dev->cf_desc_pool, desc->cf_addr,
616 desc->cf_paddr);
617 kfree(desc);
620 if (!list_empty(&re_chan->free_q))
621 dev_err(re_chan->dev, "chan resource cannot be cleaned!\n");
624 static int fsl_re_chan_probe(struct platform_device *ofdev,
625 struct device_node *np, u8 q, u32 off)
627 struct device *dev, *chandev;
628 struct fsl_re_drv_private *re_priv;
629 struct fsl_re_chan *chan;
630 struct dma_device *dma_dev;
631 u32 ptr;
632 u32 status;
633 int ret = 0, rc;
634 struct platform_device *chan_ofdev;
636 dev = &ofdev->dev;
637 re_priv = dev_get_drvdata(dev);
638 dma_dev = &re_priv->dma_dev;
640 chan = devm_kzalloc(dev, sizeof(*chan), GFP_KERNEL);
641 if (!chan)
642 return -ENOMEM;
644 /* create platform device for chan node */
645 chan_ofdev = of_platform_device_create(np, NULL, dev);
646 if (!chan_ofdev) {
647 dev_err(dev, "Not able to create ofdev for jr %d\n", q);
648 ret = -EINVAL;
649 goto err_free;
652 /* read reg property from dts */
653 rc = of_property_read_u32(np, "reg", &ptr);
654 if (rc) {
655 dev_err(dev, "Reg property not found in jr %d\n", q);
656 ret = -ENODEV;
657 goto err_free;
660 chan->jrregs = (struct fsl_re_chan_cfg *)((u8 *)re_priv->re_regs +
661 off + ptr);
663 /* read irq property from dts */
664 chan->irq = irq_of_parse_and_map(np, 0);
665 if (!chan->irq) {
666 dev_err(dev, "No IRQ defined for JR %d\n", q);
667 ret = -ENODEV;
668 goto err_free;
671 snprintf(chan->name, sizeof(chan->name), "re_jr%02d", q);
673 chandev = &chan_ofdev->dev;
674 tasklet_init(&chan->irqtask, fsl_re_dequeue, (unsigned long)chandev);
676 ret = request_irq(chan->irq, fsl_re_isr, 0, chan->name, chandev);
677 if (ret) {
678 dev_err(dev, "Unable to register interrupt for JR %d\n", q);
679 ret = -EINVAL;
680 goto err_free;
683 re_priv->re_jrs[q] = chan;
684 chan->chan.device = dma_dev;
685 chan->chan.private = chan;
686 chan->dev = chandev;
687 chan->re_dev = re_priv;
689 spin_lock_init(&chan->desc_lock);
690 INIT_LIST_HEAD(&chan->ack_q);
691 INIT_LIST_HEAD(&chan->active_q);
692 INIT_LIST_HEAD(&chan->submit_q);
693 INIT_LIST_HEAD(&chan->free_q);
695 chan->inb_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool,
696 GFP_KERNEL, &chan->inb_phys_addr);
697 if (!chan->inb_ring_virt_addr) {
698 dev_err(dev, "No dma memory for inb_ring_virt_addr\n");
699 ret = -ENOMEM;
700 goto err_free;
703 chan->oub_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool,
704 GFP_KERNEL, &chan->oub_phys_addr);
705 if (!chan->oub_ring_virt_addr) {
706 dev_err(dev, "No dma memory for oub_ring_virt_addr\n");
707 ret = -ENOMEM;
708 goto err_free_1;
711 /* Program the Inbound/Outbound ring base addresses and size */
712 out_be32(&chan->jrregs->inbring_base_h,
713 chan->inb_phys_addr & FSL_RE_ADDR_BIT_MASK);
714 out_be32(&chan->jrregs->oubring_base_h,
715 chan->oub_phys_addr & FSL_RE_ADDR_BIT_MASK);
716 out_be32(&chan->jrregs->inbring_base_l,
717 chan->inb_phys_addr >> FSL_RE_ADDR_BIT_SHIFT);
718 out_be32(&chan->jrregs->oubring_base_l,
719 chan->oub_phys_addr >> FSL_RE_ADDR_BIT_SHIFT);
720 out_be32(&chan->jrregs->inbring_size,
721 FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT);
722 out_be32(&chan->jrregs->oubring_size,
723 FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT);
725 /* Read LIODN value from u-boot */
726 status = in_be32(&chan->jrregs->jr_config_1) & FSL_RE_REG_LIODN_MASK;
728 /* Program the CFG reg */
729 out_be32(&chan->jrregs->jr_config_1,
730 FSL_RE_CFG1_CBSI | FSL_RE_CFG1_CBS0 | status);
732 dev_set_drvdata(chandev, chan);
734 /* Enable RE/CHAN */
735 out_be32(&chan->jrregs->jr_command, FSL_RE_ENABLE);
737 return 0;
739 err_free_1:
740 dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr,
741 chan->inb_phys_addr);
742 err_free:
743 return ret;
746 /* Probe function for RAID Engine */
747 static int fsl_re_probe(struct platform_device *ofdev)
749 struct fsl_re_drv_private *re_priv;
750 struct device_node *np;
751 struct device_node *child;
752 u32 off;
753 u8 ridx = 0;
754 struct dma_device *dma_dev;
755 struct resource *res;
756 int rc;
757 struct device *dev = &ofdev->dev;
759 re_priv = devm_kzalloc(dev, sizeof(*re_priv), GFP_KERNEL);
760 if (!re_priv)
761 return -ENOMEM;
763 res = platform_get_resource(ofdev, IORESOURCE_MEM, 0);
764 if (!res)
765 return -ENODEV;
767 /* IOMAP the entire RAID Engine region */
768 re_priv->re_regs = devm_ioremap(dev, res->start, resource_size(res));
769 if (!re_priv->re_regs)
770 return -EBUSY;
772 /* Program the RE mode */
773 out_be32(&re_priv->re_regs->global_config, FSL_RE_NON_DPAA_MODE);
775 /* Program Galois Field polynomial */
776 out_be32(&re_priv->re_regs->galois_field_config, FSL_RE_GFM_POLY);
778 dev_info(dev, "version %x, mode %x, gfp %x\n",
779 in_be32(&re_priv->re_regs->re_version_id),
780 in_be32(&re_priv->re_regs->global_config),
781 in_be32(&re_priv->re_regs->galois_field_config));
783 dma_dev = &re_priv->dma_dev;
784 dma_dev->dev = dev;
785 INIT_LIST_HEAD(&dma_dev->channels);
786 dma_set_mask(dev, DMA_BIT_MASK(40));
788 dma_dev->device_alloc_chan_resources = fsl_re_alloc_chan_resources;
789 dma_dev->device_tx_status = fsl_re_tx_status;
790 dma_dev->device_issue_pending = fsl_re_issue_pending;
792 dma_dev->max_xor = FSL_RE_MAX_XOR_SRCS;
793 dma_dev->device_prep_dma_xor = fsl_re_prep_dma_xor;
794 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
796 dma_dev->max_pq = FSL_RE_MAX_PQ_SRCS;
797 dma_dev->device_prep_dma_pq = fsl_re_prep_dma_pq;
798 dma_cap_set(DMA_PQ, dma_dev->cap_mask);
800 dma_dev->device_prep_dma_memcpy = fsl_re_prep_dma_memcpy;
801 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
803 dma_dev->device_free_chan_resources = fsl_re_free_chan_resources;
805 re_priv->total_chans = 0;
807 re_priv->cf_desc_pool = dmam_pool_create("fsl_re_cf_desc_pool", dev,
808 FSL_RE_CF_CDB_SIZE,
809 FSL_RE_CF_CDB_ALIGN, 0);
811 if (!re_priv->cf_desc_pool) {
812 dev_err(dev, "No memory for fsl re_cf desc pool\n");
813 return -ENOMEM;
816 re_priv->hw_desc_pool = dmam_pool_create("fsl_re_hw_desc_pool", dev,
817 sizeof(struct fsl_re_hw_desc) * FSL_RE_RING_SIZE,
818 FSL_RE_FRAME_ALIGN, 0);
819 if (!re_priv->hw_desc_pool) {
820 dev_err(dev, "No memory for fsl re_hw desc pool\n");
821 return -ENOMEM;
824 dev_set_drvdata(dev, re_priv);
826 /* Parse Device tree to find out the total number of JQs present */
827 for_each_compatible_node(np, NULL, "fsl,raideng-v1.0-job-queue") {
828 rc = of_property_read_u32(np, "reg", &off);
829 if (rc) {
830 dev_err(dev, "Reg property not found in JQ node\n");
831 of_node_put(np);
832 return -ENODEV;
834 /* Find out the Job Rings present under each JQ */
835 for_each_child_of_node(np, child) {
836 rc = of_device_is_compatible(child,
837 "fsl,raideng-v1.0-job-ring");
838 if (rc) {
839 fsl_re_chan_probe(ofdev, child, ridx++, off);
840 re_priv->total_chans++;
845 dma_async_device_register(dma_dev);
847 return 0;
850 static void fsl_re_remove_chan(struct fsl_re_chan *chan)
852 tasklet_kill(&chan->irqtask);
854 dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr,
855 chan->inb_phys_addr);
857 dma_pool_free(chan->re_dev->hw_desc_pool, chan->oub_ring_virt_addr,
858 chan->oub_phys_addr);
861 static int fsl_re_remove(struct platform_device *ofdev)
863 struct fsl_re_drv_private *re_priv;
864 struct device *dev;
865 int i;
867 dev = &ofdev->dev;
868 re_priv = dev_get_drvdata(dev);
870 /* Cleanup chan related memory areas */
871 for (i = 0; i < re_priv->total_chans; i++)
872 fsl_re_remove_chan(re_priv->re_jrs[i]);
874 /* Unregister the driver */
875 dma_async_device_unregister(&re_priv->dma_dev);
877 return 0;
880 static const struct of_device_id fsl_re_ids[] = {
881 { .compatible = "fsl,raideng-v1.0", },
884 MODULE_DEVICE_TABLE(of, fsl_re_ids);
886 static struct platform_driver fsl_re_driver = {
887 .driver = {
888 .name = "fsl-raideng",
889 .of_match_table = fsl_re_ids,
891 .probe = fsl_re_probe,
892 .remove = fsl_re_remove,
895 module_platform_driver(fsl_re_driver);
897 MODULE_AUTHOR("Harninder Rai <harninder.rai@freescale.com>");
898 MODULE_LICENSE("GPL v2");
899 MODULE_DESCRIPTION("Freescale RAID Engine Device Driver");