Linux 4.18.10
[linux/fpc-iii.git] / drivers / dma / imx-sdma.c
blobf077992635c2ff8e3b03b16803495a9909b0b8db
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 #include <linux/semaphore.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/slab.h>
29 #include <linux/platform_device.h>
30 #include <linux/dmaengine.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_device.h>
34 #include <linux/of_dma.h>
36 #include <asm/irq.h>
37 #include <linux/platform_data/dma-imx-sdma.h>
38 #include <linux/platform_data/dma-imx.h>
39 #include <linux/regmap.h>
40 #include <linux/mfd/syscon.h>
41 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
43 #include "dmaengine.h"
45 /* SDMA registers */
46 #define SDMA_H_C0PTR 0x000
47 #define SDMA_H_INTR 0x004
48 #define SDMA_H_STATSTOP 0x008
49 #define SDMA_H_START 0x00c
50 #define SDMA_H_EVTOVR 0x010
51 #define SDMA_H_DSPOVR 0x014
52 #define SDMA_H_HOSTOVR 0x018
53 #define SDMA_H_EVTPEND 0x01c
54 #define SDMA_H_DSPENBL 0x020
55 #define SDMA_H_RESET 0x024
56 #define SDMA_H_EVTERR 0x028
57 #define SDMA_H_INTRMSK 0x02c
58 #define SDMA_H_PSW 0x030
59 #define SDMA_H_EVTERRDBG 0x034
60 #define SDMA_H_CONFIG 0x038
61 #define SDMA_ONCE_ENB 0x040
62 #define SDMA_ONCE_DATA 0x044
63 #define SDMA_ONCE_INSTR 0x048
64 #define SDMA_ONCE_STAT 0x04c
65 #define SDMA_ONCE_CMD 0x050
66 #define SDMA_EVT_MIRROR 0x054
67 #define SDMA_ILLINSTADDR 0x058
68 #define SDMA_CHN0ADDR 0x05c
69 #define SDMA_ONCE_RTB 0x060
70 #define SDMA_XTRIG_CONF1 0x070
71 #define SDMA_XTRIG_CONF2 0x074
72 #define SDMA_CHNENBL0_IMX35 0x200
73 #define SDMA_CHNENBL0_IMX31 0x080
74 #define SDMA_CHNPRI_0 0x100
77 * Buffer descriptor status values.
79 #define BD_DONE 0x01
80 #define BD_WRAP 0x02
81 #define BD_CONT 0x04
82 #define BD_INTR 0x08
83 #define BD_RROR 0x10
84 #define BD_LAST 0x20
85 #define BD_EXTD 0x80
88 * Data Node descriptor status values.
90 #define DND_END_OF_FRAME 0x80
91 #define DND_END_OF_XFER 0x40
92 #define DND_DONE 0x20
93 #define DND_UNUSED 0x01
96 * IPCV2 descriptor status values.
98 #define BD_IPCV2_END_OF_FRAME 0x40
100 #define IPCV2_MAX_NODES 50
102 * Error bit set in the CCB status field by the SDMA,
103 * in setbd routine, in case of a transfer error
105 #define DATA_ERROR 0x10000000
108 * Buffer descriptor commands.
110 #define C0_ADDR 0x01
111 #define C0_LOAD 0x02
112 #define C0_DUMP 0x03
113 #define C0_SETCTX 0x07
114 #define C0_GETCTX 0x03
115 #define C0_SETDM 0x01
116 #define C0_SETPM 0x04
117 #define C0_GETDM 0x02
118 #define C0_GETPM 0x08
120 * Change endianness indicator in the BD command field
122 #define CHANGE_ENDIANNESS 0x80
125 * p_2_p watermark_level description
126 * Bits Name Description
127 * 0-7 Lower WML Lower watermark level
128 * 8 PS 1: Pad Swallowing
129 * 0: No Pad Swallowing
130 * 9 PA 1: Pad Adding
131 * 0: No Pad Adding
132 * 10 SPDIF If this bit is set both source
133 * and destination are on SPBA
134 * 11 Source Bit(SP) 1: Source on SPBA
135 * 0: Source on AIPS
136 * 12 Destination Bit(DP) 1: Destination on SPBA
137 * 0: Destination on AIPS
138 * 13-15 --------- MUST BE 0
139 * 16-23 Higher WML HWML
140 * 24-27 N Total number of samples after
141 * which Pad adding/Swallowing
142 * must be done. It must be odd.
143 * 28 Lower WML Event(LWE) SDMA events reg to check for
144 * LWML event mask
145 * 0: LWE in EVENTS register
146 * 1: LWE in EVENTS2 register
147 * 29 Higher WML Event(HWE) SDMA events reg to check for
148 * HWML event mask
149 * 0: HWE in EVENTS register
150 * 1: HWE in EVENTS2 register
151 * 30 --------- MUST BE 0
152 * 31 CONT 1: Amount of samples to be
153 * transferred is unknown and
154 * script will keep on
155 * transferring samples as long as
156 * both events are detected and
157 * script must be manually stopped
158 * by the application
159 * 0: The amount of samples to be
160 * transferred is equal to the
161 * count field of mode word
163 #define SDMA_WATERMARK_LEVEL_LWML 0xFF
164 #define SDMA_WATERMARK_LEVEL_PS BIT(8)
165 #define SDMA_WATERMARK_LEVEL_PA BIT(9)
166 #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10)
167 #define SDMA_WATERMARK_LEVEL_SP BIT(11)
168 #define SDMA_WATERMARK_LEVEL_DP BIT(12)
169 #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16)
170 #define SDMA_WATERMARK_LEVEL_LWE BIT(28)
171 #define SDMA_WATERMARK_LEVEL_HWE BIT(29)
172 #define SDMA_WATERMARK_LEVEL_CONT BIT(31)
174 #define SDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
175 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
176 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
178 #define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \
179 BIT(DMA_MEM_TO_DEV) | \
180 BIT(DMA_DEV_TO_DEV))
183 * Mode/Count of data node descriptors - IPCv2
185 struct sdma_mode_count {
186 u32 count : 16; /* size of the buffer pointed by this BD */
187 u32 status : 8; /* E,R,I,C,W,D status bits stored here */
188 u32 command : 8; /* command mostly used for channel 0 */
192 * Buffer descriptor
194 struct sdma_buffer_descriptor {
195 struct sdma_mode_count mode;
196 u32 buffer_addr; /* address of the buffer described */
197 u32 ext_buffer_addr; /* extended buffer address */
198 } __attribute__ ((packed));
201 * struct sdma_channel_control - Channel control Block
203 * @current_bd_ptr current buffer descriptor processed
204 * @base_bd_ptr first element of buffer descriptor array
205 * @unused padding. The SDMA engine expects an array of 128 byte
206 * control blocks
208 struct sdma_channel_control {
209 u32 current_bd_ptr;
210 u32 base_bd_ptr;
211 u32 unused[2];
212 } __attribute__ ((packed));
215 * struct sdma_state_registers - SDMA context for a channel
217 * @pc: program counter
218 * @t: test bit: status of arithmetic & test instruction
219 * @rpc: return program counter
220 * @sf: source fault while loading data
221 * @spc: loop start program counter
222 * @df: destination fault while storing data
223 * @epc: loop end program counter
224 * @lm: loop mode
226 struct sdma_state_registers {
227 u32 pc :14;
228 u32 unused1: 1;
229 u32 t : 1;
230 u32 rpc :14;
231 u32 unused0: 1;
232 u32 sf : 1;
233 u32 spc :14;
234 u32 unused2: 1;
235 u32 df : 1;
236 u32 epc :14;
237 u32 lm : 2;
238 } __attribute__ ((packed));
241 * struct sdma_context_data - sdma context specific to a channel
243 * @channel_state: channel state bits
244 * @gReg: general registers
245 * @mda: burst dma destination address register
246 * @msa: burst dma source address register
247 * @ms: burst dma status register
248 * @md: burst dma data register
249 * @pda: peripheral dma destination address register
250 * @psa: peripheral dma source address register
251 * @ps: peripheral dma status register
252 * @pd: peripheral dma data register
253 * @ca: CRC polynomial register
254 * @cs: CRC accumulator register
255 * @dda: dedicated core destination address register
256 * @dsa: dedicated core source address register
257 * @ds: dedicated core status register
258 * @dd: dedicated core data register
260 struct sdma_context_data {
261 struct sdma_state_registers channel_state;
262 u32 gReg[8];
263 u32 mda;
264 u32 msa;
265 u32 ms;
266 u32 md;
267 u32 pda;
268 u32 psa;
269 u32 ps;
270 u32 pd;
271 u32 ca;
272 u32 cs;
273 u32 dda;
274 u32 dsa;
275 u32 ds;
276 u32 dd;
277 u32 scratch0;
278 u32 scratch1;
279 u32 scratch2;
280 u32 scratch3;
281 u32 scratch4;
282 u32 scratch5;
283 u32 scratch6;
284 u32 scratch7;
285 } __attribute__ ((packed));
287 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
289 struct sdma_engine;
292 * struct sdma_channel - housekeeping for a SDMA channel
294 * @sdma pointer to the SDMA engine for this channel
295 * @channel the channel number, matches dmaengine chan_id + 1
296 * @direction transfer type. Needed for setting SDMA script
297 * @peripheral_type Peripheral type. Needed for setting SDMA script
298 * @event_id0 aka dma request line
299 * @event_id1 for channels that use 2 events
300 * @word_size peripheral access size
301 * @buf_tail ID of the buffer that was processed
302 * @buf_ptail ID of the previous buffer that was processed
303 * @num_bd max NUM_BD. number of descriptors currently handling
305 struct sdma_channel {
306 struct sdma_engine *sdma;
307 unsigned int channel;
308 enum dma_transfer_direction direction;
309 enum sdma_peripheral_type peripheral_type;
310 unsigned int event_id0;
311 unsigned int event_id1;
312 enum dma_slave_buswidth word_size;
313 unsigned int buf_tail;
314 unsigned int buf_ptail;
315 unsigned int num_bd;
316 unsigned int period_len;
317 struct sdma_buffer_descriptor *bd;
318 dma_addr_t bd_phys;
319 unsigned int pc_from_device, pc_to_device;
320 unsigned int device_to_device;
321 unsigned long flags;
322 dma_addr_t per_address, per_address2;
323 unsigned long event_mask[2];
324 unsigned long watermark_level;
325 u32 shp_addr, per_addr;
326 struct dma_chan chan;
327 spinlock_t lock;
328 struct dma_async_tx_descriptor desc;
329 enum dma_status status;
330 unsigned int chn_count;
331 unsigned int chn_real_count;
332 struct tasklet_struct tasklet;
333 struct imx_dma_data data;
334 bool enabled;
337 #define IMX_DMA_SG_LOOP BIT(0)
339 #define MAX_DMA_CHANNELS 32
340 #define MXC_SDMA_DEFAULT_PRIORITY 1
341 #define MXC_SDMA_MIN_PRIORITY 1
342 #define MXC_SDMA_MAX_PRIORITY 7
344 #define SDMA_FIRMWARE_MAGIC 0x414d4453
347 * struct sdma_firmware_header - Layout of the firmware image
349 * @magic "SDMA"
350 * @version_major increased whenever layout of struct sdma_script_start_addrs
351 * changes.
352 * @version_minor firmware minor version (for binary compatible changes)
353 * @script_addrs_start offset of struct sdma_script_start_addrs in this image
354 * @num_script_addrs Number of script addresses in this image
355 * @ram_code_start offset of SDMA ram image in this firmware image
356 * @ram_code_size size of SDMA ram image
357 * @script_addrs Stores the start address of the SDMA scripts
358 * (in SDMA memory space)
360 struct sdma_firmware_header {
361 u32 magic;
362 u32 version_major;
363 u32 version_minor;
364 u32 script_addrs_start;
365 u32 num_script_addrs;
366 u32 ram_code_start;
367 u32 ram_code_size;
370 struct sdma_driver_data {
371 int chnenbl0;
372 int num_events;
373 struct sdma_script_start_addrs *script_addrs;
376 struct sdma_engine {
377 struct device *dev;
378 struct device_dma_parameters dma_parms;
379 struct sdma_channel channel[MAX_DMA_CHANNELS];
380 struct sdma_channel_control *channel_control;
381 void __iomem *regs;
382 struct sdma_context_data *context;
383 dma_addr_t context_phys;
384 struct dma_device dma_device;
385 struct clk *clk_ipg;
386 struct clk *clk_ahb;
387 spinlock_t channel_0_lock;
388 u32 script_number;
389 struct sdma_script_start_addrs *script_addrs;
390 const struct sdma_driver_data *drvdata;
391 u32 spba_start_addr;
392 u32 spba_end_addr;
393 unsigned int irq;
396 static struct sdma_driver_data sdma_imx31 = {
397 .chnenbl0 = SDMA_CHNENBL0_IMX31,
398 .num_events = 32,
401 static struct sdma_script_start_addrs sdma_script_imx25 = {
402 .ap_2_ap_addr = 729,
403 .uart_2_mcu_addr = 904,
404 .per_2_app_addr = 1255,
405 .mcu_2_app_addr = 834,
406 .uartsh_2_mcu_addr = 1120,
407 .per_2_shp_addr = 1329,
408 .mcu_2_shp_addr = 1048,
409 .ata_2_mcu_addr = 1560,
410 .mcu_2_ata_addr = 1479,
411 .app_2_per_addr = 1189,
412 .app_2_mcu_addr = 770,
413 .shp_2_per_addr = 1407,
414 .shp_2_mcu_addr = 979,
417 static struct sdma_driver_data sdma_imx25 = {
418 .chnenbl0 = SDMA_CHNENBL0_IMX35,
419 .num_events = 48,
420 .script_addrs = &sdma_script_imx25,
423 static struct sdma_driver_data sdma_imx35 = {
424 .chnenbl0 = SDMA_CHNENBL0_IMX35,
425 .num_events = 48,
428 static struct sdma_script_start_addrs sdma_script_imx51 = {
429 .ap_2_ap_addr = 642,
430 .uart_2_mcu_addr = 817,
431 .mcu_2_app_addr = 747,
432 .mcu_2_shp_addr = 961,
433 .ata_2_mcu_addr = 1473,
434 .mcu_2_ata_addr = 1392,
435 .app_2_per_addr = 1033,
436 .app_2_mcu_addr = 683,
437 .shp_2_per_addr = 1251,
438 .shp_2_mcu_addr = 892,
441 static struct sdma_driver_data sdma_imx51 = {
442 .chnenbl0 = SDMA_CHNENBL0_IMX35,
443 .num_events = 48,
444 .script_addrs = &sdma_script_imx51,
447 static struct sdma_script_start_addrs sdma_script_imx53 = {
448 .ap_2_ap_addr = 642,
449 .app_2_mcu_addr = 683,
450 .mcu_2_app_addr = 747,
451 .uart_2_mcu_addr = 817,
452 .shp_2_mcu_addr = 891,
453 .mcu_2_shp_addr = 960,
454 .uartsh_2_mcu_addr = 1032,
455 .spdif_2_mcu_addr = 1100,
456 .mcu_2_spdif_addr = 1134,
457 .firi_2_mcu_addr = 1193,
458 .mcu_2_firi_addr = 1290,
461 static struct sdma_driver_data sdma_imx53 = {
462 .chnenbl0 = SDMA_CHNENBL0_IMX35,
463 .num_events = 48,
464 .script_addrs = &sdma_script_imx53,
467 static struct sdma_script_start_addrs sdma_script_imx6q = {
468 .ap_2_ap_addr = 642,
469 .uart_2_mcu_addr = 817,
470 .mcu_2_app_addr = 747,
471 .per_2_per_addr = 6331,
472 .uartsh_2_mcu_addr = 1032,
473 .mcu_2_shp_addr = 960,
474 .app_2_mcu_addr = 683,
475 .shp_2_mcu_addr = 891,
476 .spdif_2_mcu_addr = 1100,
477 .mcu_2_spdif_addr = 1134,
480 static struct sdma_driver_data sdma_imx6q = {
481 .chnenbl0 = SDMA_CHNENBL0_IMX35,
482 .num_events = 48,
483 .script_addrs = &sdma_script_imx6q,
486 static struct sdma_script_start_addrs sdma_script_imx7d = {
487 .ap_2_ap_addr = 644,
488 .uart_2_mcu_addr = 819,
489 .mcu_2_app_addr = 749,
490 .uartsh_2_mcu_addr = 1034,
491 .mcu_2_shp_addr = 962,
492 .app_2_mcu_addr = 685,
493 .shp_2_mcu_addr = 893,
494 .spdif_2_mcu_addr = 1102,
495 .mcu_2_spdif_addr = 1136,
498 static struct sdma_driver_data sdma_imx7d = {
499 .chnenbl0 = SDMA_CHNENBL0_IMX35,
500 .num_events = 48,
501 .script_addrs = &sdma_script_imx7d,
504 static const struct platform_device_id sdma_devtypes[] = {
506 .name = "imx25-sdma",
507 .driver_data = (unsigned long)&sdma_imx25,
508 }, {
509 .name = "imx31-sdma",
510 .driver_data = (unsigned long)&sdma_imx31,
511 }, {
512 .name = "imx35-sdma",
513 .driver_data = (unsigned long)&sdma_imx35,
514 }, {
515 .name = "imx51-sdma",
516 .driver_data = (unsigned long)&sdma_imx51,
517 }, {
518 .name = "imx53-sdma",
519 .driver_data = (unsigned long)&sdma_imx53,
520 }, {
521 .name = "imx6q-sdma",
522 .driver_data = (unsigned long)&sdma_imx6q,
523 }, {
524 .name = "imx7d-sdma",
525 .driver_data = (unsigned long)&sdma_imx7d,
526 }, {
527 /* sentinel */
530 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
532 static const struct of_device_id sdma_dt_ids[] = {
533 { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
534 { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
535 { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
536 { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
537 { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
538 { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
539 { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
540 { /* sentinel */ }
542 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
544 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
545 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
546 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
547 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
549 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
551 u32 chnenbl0 = sdma->drvdata->chnenbl0;
552 return chnenbl0 + event * 4;
555 static int sdma_config_ownership(struct sdma_channel *sdmac,
556 bool event_override, bool mcu_override, bool dsp_override)
558 struct sdma_engine *sdma = sdmac->sdma;
559 int channel = sdmac->channel;
560 unsigned long evt, mcu, dsp;
562 if (event_override && mcu_override && dsp_override)
563 return -EINVAL;
565 evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
566 mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
567 dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
569 if (dsp_override)
570 __clear_bit(channel, &dsp);
571 else
572 __set_bit(channel, &dsp);
574 if (event_override)
575 __clear_bit(channel, &evt);
576 else
577 __set_bit(channel, &evt);
579 if (mcu_override)
580 __clear_bit(channel, &mcu);
581 else
582 __set_bit(channel, &mcu);
584 writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
585 writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
586 writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
588 return 0;
591 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
593 unsigned long flags;
594 struct sdma_channel *sdmac = &sdma->channel[channel];
596 writel(BIT(channel), sdma->regs + SDMA_H_START);
598 spin_lock_irqsave(&sdmac->lock, flags);
599 sdmac->enabled = true;
600 spin_unlock_irqrestore(&sdmac->lock, flags);
604 * sdma_run_channel0 - run a channel and wait till it's done
606 static int sdma_run_channel0(struct sdma_engine *sdma)
608 int ret;
609 u32 reg;
611 sdma_enable_channel(sdma, 0);
613 ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
614 reg, !(reg & 1), 1, 500);
615 if (ret)
616 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
618 /* Set bits of CONFIG register with dynamic context switching */
619 if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
620 writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
622 return ret;
625 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
626 u32 address)
628 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
629 void *buf_virt;
630 dma_addr_t buf_phys;
631 int ret;
632 unsigned long flags;
634 buf_virt = dma_alloc_coherent(NULL,
635 size,
636 &buf_phys, GFP_KERNEL);
637 if (!buf_virt) {
638 return -ENOMEM;
641 spin_lock_irqsave(&sdma->channel_0_lock, flags);
643 bd0->mode.command = C0_SETPM;
644 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
645 bd0->mode.count = size / 2;
646 bd0->buffer_addr = buf_phys;
647 bd0->ext_buffer_addr = address;
649 memcpy(buf_virt, buf, size);
651 ret = sdma_run_channel0(sdma);
653 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
655 dma_free_coherent(NULL, size, buf_virt, buf_phys);
657 return ret;
660 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
662 struct sdma_engine *sdma = sdmac->sdma;
663 int channel = sdmac->channel;
664 unsigned long val;
665 u32 chnenbl = chnenbl_ofs(sdma, event);
667 val = readl_relaxed(sdma->regs + chnenbl);
668 __set_bit(channel, &val);
669 writel_relaxed(val, sdma->regs + chnenbl);
672 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
674 struct sdma_engine *sdma = sdmac->sdma;
675 int channel = sdmac->channel;
676 u32 chnenbl = chnenbl_ofs(sdma, event);
677 unsigned long val;
679 val = readl_relaxed(sdma->regs + chnenbl);
680 __clear_bit(channel, &val);
681 writel_relaxed(val, sdma->regs + chnenbl);
684 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
686 struct sdma_buffer_descriptor *bd;
687 int error = 0;
688 enum dma_status old_status = sdmac->status;
689 unsigned long flags;
691 spin_lock_irqsave(&sdmac->lock, flags);
692 if (!sdmac->enabled) {
693 spin_unlock_irqrestore(&sdmac->lock, flags);
694 return;
696 spin_unlock_irqrestore(&sdmac->lock, flags);
699 * loop mode. Iterate over descriptors, re-setup them and
700 * call callback function.
702 while (1) {
703 bd = &sdmac->bd[sdmac->buf_tail];
705 if (bd->mode.status & BD_DONE)
706 break;
708 if (bd->mode.status & BD_RROR) {
709 bd->mode.status &= ~BD_RROR;
710 sdmac->status = DMA_ERROR;
711 error = -EIO;
715 * We use bd->mode.count to calculate the residue, since contains
716 * the number of bytes present in the current buffer descriptor.
719 sdmac->chn_real_count = bd->mode.count;
720 bd->mode.status |= BD_DONE;
721 bd->mode.count = sdmac->period_len;
722 sdmac->buf_ptail = sdmac->buf_tail;
723 sdmac->buf_tail = (sdmac->buf_tail + 1) % sdmac->num_bd;
726 * The callback is called from the interrupt context in order
727 * to reduce latency and to avoid the risk of altering the
728 * SDMA transaction status by the time the client tasklet is
729 * executed.
732 dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
734 if (error)
735 sdmac->status = old_status;
739 static void mxc_sdma_handle_channel_normal(unsigned long data)
741 struct sdma_channel *sdmac = (struct sdma_channel *) data;
742 struct sdma_buffer_descriptor *bd;
743 int i, error = 0;
745 sdmac->chn_real_count = 0;
747 * non loop mode. Iterate over all descriptors, collect
748 * errors and call callback function
750 for (i = 0; i < sdmac->num_bd; i++) {
751 bd = &sdmac->bd[i];
753 if (bd->mode.status & (BD_DONE | BD_RROR))
754 error = -EIO;
755 sdmac->chn_real_count += bd->mode.count;
758 if (error)
759 sdmac->status = DMA_ERROR;
760 else
761 sdmac->status = DMA_COMPLETE;
763 dma_cookie_complete(&sdmac->desc);
765 dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
768 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
770 struct sdma_engine *sdma = dev_id;
771 unsigned long stat;
773 stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
774 writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
775 /* channel 0 is special and not handled here, see run_channel0() */
776 stat &= ~1;
778 while (stat) {
779 int channel = fls(stat) - 1;
780 struct sdma_channel *sdmac = &sdma->channel[channel];
782 if (sdmac->flags & IMX_DMA_SG_LOOP)
783 sdma_update_channel_loop(sdmac);
784 else
785 tasklet_schedule(&sdmac->tasklet);
787 __clear_bit(channel, &stat);
790 return IRQ_HANDLED;
794 * sets the pc of SDMA script according to the peripheral type
796 static void sdma_get_pc(struct sdma_channel *sdmac,
797 enum sdma_peripheral_type peripheral_type)
799 struct sdma_engine *sdma = sdmac->sdma;
800 int per_2_emi = 0, emi_2_per = 0;
802 * These are needed once we start to support transfers between
803 * two peripherals or memory-to-memory transfers
805 int per_2_per = 0;
807 sdmac->pc_from_device = 0;
808 sdmac->pc_to_device = 0;
809 sdmac->device_to_device = 0;
811 switch (peripheral_type) {
812 case IMX_DMATYPE_MEMORY:
813 break;
814 case IMX_DMATYPE_DSP:
815 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
816 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
817 break;
818 case IMX_DMATYPE_FIRI:
819 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
820 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
821 break;
822 case IMX_DMATYPE_UART:
823 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
824 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
825 break;
826 case IMX_DMATYPE_UART_SP:
827 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
828 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
829 break;
830 case IMX_DMATYPE_ATA:
831 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
832 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
833 break;
834 case IMX_DMATYPE_CSPI:
835 case IMX_DMATYPE_EXT:
836 case IMX_DMATYPE_SSI:
837 case IMX_DMATYPE_SAI:
838 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
839 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
840 break;
841 case IMX_DMATYPE_SSI_DUAL:
842 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
843 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
844 break;
845 case IMX_DMATYPE_SSI_SP:
846 case IMX_DMATYPE_MMC:
847 case IMX_DMATYPE_SDHC:
848 case IMX_DMATYPE_CSPI_SP:
849 case IMX_DMATYPE_ESAI:
850 case IMX_DMATYPE_MSHC_SP:
851 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
852 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
853 break;
854 case IMX_DMATYPE_ASRC:
855 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
856 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
857 per_2_per = sdma->script_addrs->per_2_per_addr;
858 break;
859 case IMX_DMATYPE_ASRC_SP:
860 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
861 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
862 per_2_per = sdma->script_addrs->per_2_per_addr;
863 break;
864 case IMX_DMATYPE_MSHC:
865 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
866 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
867 break;
868 case IMX_DMATYPE_CCM:
869 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
870 break;
871 case IMX_DMATYPE_SPDIF:
872 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
873 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
874 break;
875 case IMX_DMATYPE_IPU_MEMORY:
876 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
877 break;
878 default:
879 break;
882 sdmac->pc_from_device = per_2_emi;
883 sdmac->pc_to_device = emi_2_per;
884 sdmac->device_to_device = per_2_per;
887 static int sdma_load_context(struct sdma_channel *sdmac)
889 struct sdma_engine *sdma = sdmac->sdma;
890 int channel = sdmac->channel;
891 int load_address;
892 struct sdma_context_data *context = sdma->context;
893 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
894 int ret;
895 unsigned long flags;
897 if (sdmac->direction == DMA_DEV_TO_MEM)
898 load_address = sdmac->pc_from_device;
899 else if (sdmac->direction == DMA_DEV_TO_DEV)
900 load_address = sdmac->device_to_device;
901 else
902 load_address = sdmac->pc_to_device;
904 if (load_address < 0)
905 return load_address;
907 dev_dbg(sdma->dev, "load_address = %d\n", load_address);
908 dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
909 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
910 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
911 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
912 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
914 spin_lock_irqsave(&sdma->channel_0_lock, flags);
916 memset(context, 0, sizeof(*context));
917 context->channel_state.pc = load_address;
919 /* Send by context the event mask,base address for peripheral
920 * and watermark level
922 context->gReg[0] = sdmac->event_mask[1];
923 context->gReg[1] = sdmac->event_mask[0];
924 context->gReg[2] = sdmac->per_addr;
925 context->gReg[6] = sdmac->shp_addr;
926 context->gReg[7] = sdmac->watermark_level;
928 bd0->mode.command = C0_SETDM;
929 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
930 bd0->mode.count = sizeof(*context) / 4;
931 bd0->buffer_addr = sdma->context_phys;
932 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
933 ret = sdma_run_channel0(sdma);
935 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
937 return ret;
940 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
942 return container_of(chan, struct sdma_channel, chan);
945 static int sdma_disable_channel(struct dma_chan *chan)
947 struct sdma_channel *sdmac = to_sdma_chan(chan);
948 struct sdma_engine *sdma = sdmac->sdma;
949 int channel = sdmac->channel;
950 unsigned long flags;
952 writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
953 sdmac->status = DMA_ERROR;
955 spin_lock_irqsave(&sdmac->lock, flags);
956 sdmac->enabled = false;
957 spin_unlock_irqrestore(&sdmac->lock, flags);
959 return 0;
962 static int sdma_disable_channel_with_delay(struct dma_chan *chan)
964 sdma_disable_channel(chan);
967 * According to NXP R&D team a delay of one BD SDMA cost time
968 * (maximum is 1ms) should be added after disable of the channel
969 * bit, to ensure SDMA core has really been stopped after SDMA
970 * clients call .device_terminate_all.
972 mdelay(1);
974 return 0;
977 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
979 struct sdma_engine *sdma = sdmac->sdma;
981 int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
982 int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
984 set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
985 set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
987 if (sdmac->event_id0 > 31)
988 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
990 if (sdmac->event_id1 > 31)
991 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
994 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
995 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
996 * r0(event_mask[1]) and r1(event_mask[0]).
998 if (lwml > hwml) {
999 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1000 SDMA_WATERMARK_LEVEL_HWML);
1001 sdmac->watermark_level |= hwml;
1002 sdmac->watermark_level |= lwml << 16;
1003 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1006 if (sdmac->per_address2 >= sdma->spba_start_addr &&
1007 sdmac->per_address2 <= sdma->spba_end_addr)
1008 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1010 if (sdmac->per_address >= sdma->spba_start_addr &&
1011 sdmac->per_address <= sdma->spba_end_addr)
1012 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1014 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1017 static int sdma_config_channel(struct dma_chan *chan)
1019 struct sdma_channel *sdmac = to_sdma_chan(chan);
1020 int ret;
1022 sdma_disable_channel(chan);
1024 sdmac->event_mask[0] = 0;
1025 sdmac->event_mask[1] = 0;
1026 sdmac->shp_addr = 0;
1027 sdmac->per_addr = 0;
1029 if (sdmac->event_id0) {
1030 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1031 return -EINVAL;
1032 sdma_event_enable(sdmac, sdmac->event_id0);
1035 if (sdmac->event_id1) {
1036 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1037 return -EINVAL;
1038 sdma_event_enable(sdmac, sdmac->event_id1);
1041 switch (sdmac->peripheral_type) {
1042 case IMX_DMATYPE_DSP:
1043 sdma_config_ownership(sdmac, false, true, true);
1044 break;
1045 case IMX_DMATYPE_MEMORY:
1046 sdma_config_ownership(sdmac, false, true, false);
1047 break;
1048 default:
1049 sdma_config_ownership(sdmac, true, true, false);
1050 break;
1053 sdma_get_pc(sdmac, sdmac->peripheral_type);
1055 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1056 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1057 /* Handle multiple event channels differently */
1058 if (sdmac->event_id1) {
1059 if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1060 sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1061 sdma_set_watermarklevel_for_p2p(sdmac);
1062 } else
1063 __set_bit(sdmac->event_id0, sdmac->event_mask);
1065 /* Address */
1066 sdmac->shp_addr = sdmac->per_address;
1067 sdmac->per_addr = sdmac->per_address2;
1068 } else {
1069 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1072 ret = sdma_load_context(sdmac);
1074 return ret;
1077 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1078 unsigned int priority)
1080 struct sdma_engine *sdma = sdmac->sdma;
1081 int channel = sdmac->channel;
1083 if (priority < MXC_SDMA_MIN_PRIORITY
1084 || priority > MXC_SDMA_MAX_PRIORITY) {
1085 return -EINVAL;
1088 writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1090 return 0;
1093 static int sdma_request_channel(struct sdma_channel *sdmac)
1095 struct sdma_engine *sdma = sdmac->sdma;
1096 int channel = sdmac->channel;
1097 int ret = -EBUSY;
1099 sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
1100 GFP_KERNEL);
1101 if (!sdmac->bd) {
1102 ret = -ENOMEM;
1103 goto out;
1106 sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
1107 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1109 sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
1110 return 0;
1111 out:
1113 return ret;
1116 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
1118 unsigned long flags;
1119 struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
1120 dma_cookie_t cookie;
1122 spin_lock_irqsave(&sdmac->lock, flags);
1124 cookie = dma_cookie_assign(tx);
1126 spin_unlock_irqrestore(&sdmac->lock, flags);
1128 return cookie;
1131 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1133 struct sdma_channel *sdmac = to_sdma_chan(chan);
1134 struct imx_dma_data *data = chan->private;
1135 int prio, ret;
1137 if (!data)
1138 return -EINVAL;
1140 switch (data->priority) {
1141 case DMA_PRIO_HIGH:
1142 prio = 3;
1143 break;
1144 case DMA_PRIO_MEDIUM:
1145 prio = 2;
1146 break;
1147 case DMA_PRIO_LOW:
1148 default:
1149 prio = 1;
1150 break;
1153 sdmac->peripheral_type = data->peripheral_type;
1154 sdmac->event_id0 = data->dma_request;
1155 sdmac->event_id1 = data->dma_request2;
1157 ret = clk_enable(sdmac->sdma->clk_ipg);
1158 if (ret)
1159 return ret;
1160 ret = clk_enable(sdmac->sdma->clk_ahb);
1161 if (ret)
1162 goto disable_clk_ipg;
1164 ret = sdma_request_channel(sdmac);
1165 if (ret)
1166 goto disable_clk_ahb;
1168 ret = sdma_set_channel_priority(sdmac, prio);
1169 if (ret)
1170 goto disable_clk_ahb;
1172 dma_async_tx_descriptor_init(&sdmac->desc, chan);
1173 sdmac->desc.tx_submit = sdma_tx_submit;
1174 /* txd.flags will be overwritten in prep funcs */
1175 sdmac->desc.flags = DMA_CTRL_ACK;
1177 return 0;
1179 disable_clk_ahb:
1180 clk_disable(sdmac->sdma->clk_ahb);
1181 disable_clk_ipg:
1182 clk_disable(sdmac->sdma->clk_ipg);
1183 return ret;
1186 static void sdma_free_chan_resources(struct dma_chan *chan)
1188 struct sdma_channel *sdmac = to_sdma_chan(chan);
1189 struct sdma_engine *sdma = sdmac->sdma;
1191 sdma_disable_channel(chan);
1193 if (sdmac->event_id0)
1194 sdma_event_disable(sdmac, sdmac->event_id0);
1195 if (sdmac->event_id1)
1196 sdma_event_disable(sdmac, sdmac->event_id1);
1198 sdmac->event_id0 = 0;
1199 sdmac->event_id1 = 0;
1201 sdma_set_channel_priority(sdmac, 0);
1203 dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1205 clk_disable(sdma->clk_ipg);
1206 clk_disable(sdma->clk_ahb);
1209 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1210 struct dma_chan *chan, struct scatterlist *sgl,
1211 unsigned int sg_len, enum dma_transfer_direction direction,
1212 unsigned long flags, void *context)
1214 struct sdma_channel *sdmac = to_sdma_chan(chan);
1215 struct sdma_engine *sdma = sdmac->sdma;
1216 int ret, i, count;
1217 int channel = sdmac->channel;
1218 struct scatterlist *sg;
1220 if (sdmac->status == DMA_IN_PROGRESS)
1221 return NULL;
1222 sdmac->status = DMA_IN_PROGRESS;
1224 sdmac->flags = 0;
1226 sdmac->buf_tail = 0;
1227 sdmac->buf_ptail = 0;
1228 sdmac->chn_real_count = 0;
1230 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1231 sg_len, channel);
1233 sdmac->direction = direction;
1234 ret = sdma_load_context(sdmac);
1235 if (ret)
1236 goto err_out;
1238 if (sg_len > NUM_BD) {
1239 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1240 channel, sg_len, NUM_BD);
1241 ret = -EINVAL;
1242 goto err_out;
1245 sdmac->chn_count = 0;
1246 for_each_sg(sgl, sg, sg_len, i) {
1247 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1248 int param;
1250 bd->buffer_addr = sg->dma_address;
1252 count = sg_dma_len(sg);
1254 if (count > 0xffff) {
1255 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1256 channel, count, 0xffff);
1257 ret = -EINVAL;
1258 goto err_out;
1261 bd->mode.count = count;
1262 sdmac->chn_count += count;
1264 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1265 ret = -EINVAL;
1266 goto err_out;
1269 switch (sdmac->word_size) {
1270 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1271 bd->mode.command = 0;
1272 if (count & 3 || sg->dma_address & 3)
1273 return NULL;
1274 break;
1275 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1276 bd->mode.command = 2;
1277 if (count & 1 || sg->dma_address & 1)
1278 return NULL;
1279 break;
1280 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1281 bd->mode.command = 1;
1282 break;
1283 default:
1284 return NULL;
1287 param = BD_DONE | BD_EXTD | BD_CONT;
1289 if (i + 1 == sg_len) {
1290 param |= BD_INTR;
1291 param |= BD_LAST;
1292 param &= ~BD_CONT;
1295 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1296 i, count, (u64)sg->dma_address,
1297 param & BD_WRAP ? "wrap" : "",
1298 param & BD_INTR ? " intr" : "");
1300 bd->mode.status = param;
1303 sdmac->num_bd = sg_len;
1304 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1306 return &sdmac->desc;
1307 err_out:
1308 sdmac->status = DMA_ERROR;
1309 return NULL;
1312 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1313 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1314 size_t period_len, enum dma_transfer_direction direction,
1315 unsigned long flags)
1317 struct sdma_channel *sdmac = to_sdma_chan(chan);
1318 struct sdma_engine *sdma = sdmac->sdma;
1319 int num_periods = buf_len / period_len;
1320 int channel = sdmac->channel;
1321 int ret, i = 0, buf = 0;
1323 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1325 if (sdmac->status == DMA_IN_PROGRESS)
1326 return NULL;
1328 sdmac->status = DMA_IN_PROGRESS;
1330 sdmac->buf_tail = 0;
1331 sdmac->buf_ptail = 0;
1332 sdmac->chn_real_count = 0;
1333 sdmac->period_len = period_len;
1335 sdmac->flags |= IMX_DMA_SG_LOOP;
1336 sdmac->direction = direction;
1337 ret = sdma_load_context(sdmac);
1338 if (ret)
1339 goto err_out;
1341 if (num_periods > NUM_BD) {
1342 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1343 channel, num_periods, NUM_BD);
1344 goto err_out;
1347 if (period_len > 0xffff) {
1348 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1349 channel, period_len, 0xffff);
1350 goto err_out;
1353 while (buf < buf_len) {
1354 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1355 int param;
1357 bd->buffer_addr = dma_addr;
1359 bd->mode.count = period_len;
1361 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1362 goto err_out;
1363 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1364 bd->mode.command = 0;
1365 else
1366 bd->mode.command = sdmac->word_size;
1368 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1369 if (i + 1 == num_periods)
1370 param |= BD_WRAP;
1372 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1373 i, period_len, (u64)dma_addr,
1374 param & BD_WRAP ? "wrap" : "",
1375 param & BD_INTR ? " intr" : "");
1377 bd->mode.status = param;
1379 dma_addr += period_len;
1380 buf += period_len;
1382 i++;
1385 sdmac->num_bd = num_periods;
1386 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1388 return &sdmac->desc;
1389 err_out:
1390 sdmac->status = DMA_ERROR;
1391 return NULL;
1394 static int sdma_config(struct dma_chan *chan,
1395 struct dma_slave_config *dmaengine_cfg)
1397 struct sdma_channel *sdmac = to_sdma_chan(chan);
1399 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1400 sdmac->per_address = dmaengine_cfg->src_addr;
1401 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1402 dmaengine_cfg->src_addr_width;
1403 sdmac->word_size = dmaengine_cfg->src_addr_width;
1404 } else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
1405 sdmac->per_address2 = dmaengine_cfg->src_addr;
1406 sdmac->per_address = dmaengine_cfg->dst_addr;
1407 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1408 SDMA_WATERMARK_LEVEL_LWML;
1409 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1410 SDMA_WATERMARK_LEVEL_HWML;
1411 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1412 } else {
1413 sdmac->per_address = dmaengine_cfg->dst_addr;
1414 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1415 dmaengine_cfg->dst_addr_width;
1416 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1418 sdmac->direction = dmaengine_cfg->direction;
1419 return sdma_config_channel(chan);
1422 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1423 dma_cookie_t cookie,
1424 struct dma_tx_state *txstate)
1426 struct sdma_channel *sdmac = to_sdma_chan(chan);
1427 u32 residue;
1429 if (sdmac->flags & IMX_DMA_SG_LOOP)
1430 residue = (sdmac->num_bd - sdmac->buf_ptail) *
1431 sdmac->period_len - sdmac->chn_real_count;
1432 else
1433 residue = sdmac->chn_count - sdmac->chn_real_count;
1435 dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1436 residue);
1438 return sdmac->status;
1441 static void sdma_issue_pending(struct dma_chan *chan)
1443 struct sdma_channel *sdmac = to_sdma_chan(chan);
1444 struct sdma_engine *sdma = sdmac->sdma;
1446 if (sdmac->status == DMA_IN_PROGRESS)
1447 sdma_enable_channel(sdma, sdmac->channel);
1450 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1451 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1452 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1453 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1455 static void sdma_add_scripts(struct sdma_engine *sdma,
1456 const struct sdma_script_start_addrs *addr)
1458 s32 *addr_arr = (u32 *)addr;
1459 s32 *saddr_arr = (u32 *)sdma->script_addrs;
1460 int i;
1462 /* use the default firmware in ROM if missing external firmware */
1463 if (!sdma->script_number)
1464 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1466 for (i = 0; i < sdma->script_number; i++)
1467 if (addr_arr[i] > 0)
1468 saddr_arr[i] = addr_arr[i];
1471 static void sdma_load_firmware(const struct firmware *fw, void *context)
1473 struct sdma_engine *sdma = context;
1474 const struct sdma_firmware_header *header;
1475 const struct sdma_script_start_addrs *addr;
1476 unsigned short *ram_code;
1478 if (!fw) {
1479 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1480 /* In this case we just use the ROM firmware. */
1481 return;
1484 if (fw->size < sizeof(*header))
1485 goto err_firmware;
1487 header = (struct sdma_firmware_header *)fw->data;
1489 if (header->magic != SDMA_FIRMWARE_MAGIC)
1490 goto err_firmware;
1491 if (header->ram_code_start + header->ram_code_size > fw->size)
1492 goto err_firmware;
1493 switch (header->version_major) {
1494 case 1:
1495 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1496 break;
1497 case 2:
1498 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1499 break;
1500 case 3:
1501 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1502 break;
1503 case 4:
1504 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1505 break;
1506 default:
1507 dev_err(sdma->dev, "unknown firmware version\n");
1508 goto err_firmware;
1511 addr = (void *)header + header->script_addrs_start;
1512 ram_code = (void *)header + header->ram_code_start;
1514 clk_enable(sdma->clk_ipg);
1515 clk_enable(sdma->clk_ahb);
1516 /* download the RAM image for SDMA */
1517 sdma_load_script(sdma, ram_code,
1518 header->ram_code_size,
1519 addr->ram_code_start_addr);
1520 clk_disable(sdma->clk_ipg);
1521 clk_disable(sdma->clk_ahb);
1523 sdma_add_scripts(sdma, addr);
1525 dev_info(sdma->dev, "loaded firmware %d.%d\n",
1526 header->version_major,
1527 header->version_minor);
1529 err_firmware:
1530 release_firmware(fw);
1533 #define EVENT_REMAP_CELLS 3
1535 static int sdma_event_remap(struct sdma_engine *sdma)
1537 struct device_node *np = sdma->dev->of_node;
1538 struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1539 struct property *event_remap;
1540 struct regmap *gpr;
1541 char propname[] = "fsl,sdma-event-remap";
1542 u32 reg, val, shift, num_map, i;
1543 int ret = 0;
1545 if (IS_ERR(np) || IS_ERR(gpr_np))
1546 goto out;
1548 event_remap = of_find_property(np, propname, NULL);
1549 num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1550 if (!num_map) {
1551 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1552 goto out;
1553 } else if (num_map % EVENT_REMAP_CELLS) {
1554 dev_err(sdma->dev, "the property %s must modulo %d\n",
1555 propname, EVENT_REMAP_CELLS);
1556 ret = -EINVAL;
1557 goto out;
1560 gpr = syscon_node_to_regmap(gpr_np);
1561 if (IS_ERR(gpr)) {
1562 dev_err(sdma->dev, "failed to get gpr regmap\n");
1563 ret = PTR_ERR(gpr);
1564 goto out;
1567 for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1568 ret = of_property_read_u32_index(np, propname, i, &reg);
1569 if (ret) {
1570 dev_err(sdma->dev, "failed to read property %s index %d\n",
1571 propname, i);
1572 goto out;
1575 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1576 if (ret) {
1577 dev_err(sdma->dev, "failed to read property %s index %d\n",
1578 propname, i + 1);
1579 goto out;
1582 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1583 if (ret) {
1584 dev_err(sdma->dev, "failed to read property %s index %d\n",
1585 propname, i + 2);
1586 goto out;
1589 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1592 out:
1593 if (!IS_ERR(gpr_np))
1594 of_node_put(gpr_np);
1596 return ret;
1599 static int sdma_get_firmware(struct sdma_engine *sdma,
1600 const char *fw_name)
1602 int ret;
1604 ret = request_firmware_nowait(THIS_MODULE,
1605 FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1606 GFP_KERNEL, sdma, sdma_load_firmware);
1608 return ret;
1611 static int sdma_init(struct sdma_engine *sdma)
1613 int i, ret;
1614 dma_addr_t ccb_phys;
1616 ret = clk_enable(sdma->clk_ipg);
1617 if (ret)
1618 return ret;
1619 ret = clk_enable(sdma->clk_ahb);
1620 if (ret)
1621 goto disable_clk_ipg;
1623 /* Be sure SDMA has not started yet */
1624 writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1626 sdma->channel_control = dma_alloc_coherent(NULL,
1627 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1628 sizeof(struct sdma_context_data),
1629 &ccb_phys, GFP_KERNEL);
1631 if (!sdma->channel_control) {
1632 ret = -ENOMEM;
1633 goto err_dma_alloc;
1636 sdma->context = (void *)sdma->channel_control +
1637 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1638 sdma->context_phys = ccb_phys +
1639 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1641 /* Zero-out the CCB structures array just allocated */
1642 memset(sdma->channel_control, 0,
1643 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1645 /* disable all channels */
1646 for (i = 0; i < sdma->drvdata->num_events; i++)
1647 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1649 /* All channels have priority 0 */
1650 for (i = 0; i < MAX_DMA_CHANNELS; i++)
1651 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1653 ret = sdma_request_channel(&sdma->channel[0]);
1654 if (ret)
1655 goto err_dma_alloc;
1657 sdma_config_ownership(&sdma->channel[0], false, true, false);
1659 /* Set Command Channel (Channel Zero) */
1660 writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1662 /* Set bits of CONFIG register but with static context switching */
1663 /* FIXME: Check whether to set ACR bit depending on clock ratios */
1664 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1666 writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1668 /* Initializes channel's priorities */
1669 sdma_set_channel_priority(&sdma->channel[0], 7);
1671 clk_disable(sdma->clk_ipg);
1672 clk_disable(sdma->clk_ahb);
1674 return 0;
1676 err_dma_alloc:
1677 clk_disable(sdma->clk_ahb);
1678 disable_clk_ipg:
1679 clk_disable(sdma->clk_ipg);
1680 dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1681 return ret;
1684 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1686 struct sdma_channel *sdmac = to_sdma_chan(chan);
1687 struct imx_dma_data *data = fn_param;
1689 if (!imx_dma_is_general_purpose(chan))
1690 return false;
1692 sdmac->data = *data;
1693 chan->private = &sdmac->data;
1695 return true;
1698 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1699 struct of_dma *ofdma)
1701 struct sdma_engine *sdma = ofdma->of_dma_data;
1702 dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1703 struct imx_dma_data data;
1705 if (dma_spec->args_count != 3)
1706 return NULL;
1708 data.dma_request = dma_spec->args[0];
1709 data.peripheral_type = dma_spec->args[1];
1710 data.priority = dma_spec->args[2];
1712 * init dma_request2 to zero, which is not used by the dts.
1713 * For P2P, dma_request2 is init from dma_request_channel(),
1714 * chan->private will point to the imx_dma_data, and in
1715 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1716 * be set to sdmac->event_id1.
1718 data.dma_request2 = 0;
1720 return dma_request_channel(mask, sdma_filter_fn, &data);
1723 static int sdma_probe(struct platform_device *pdev)
1725 const struct of_device_id *of_id =
1726 of_match_device(sdma_dt_ids, &pdev->dev);
1727 struct device_node *np = pdev->dev.of_node;
1728 struct device_node *spba_bus;
1729 const char *fw_name;
1730 int ret;
1731 int irq;
1732 struct resource *iores;
1733 struct resource spba_res;
1734 struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1735 int i;
1736 struct sdma_engine *sdma;
1737 s32 *saddr_arr;
1738 const struct sdma_driver_data *drvdata = NULL;
1740 if (of_id)
1741 drvdata = of_id->data;
1742 else if (pdev->id_entry)
1743 drvdata = (void *)pdev->id_entry->driver_data;
1745 if (!drvdata) {
1746 dev_err(&pdev->dev, "unable to find driver data\n");
1747 return -EINVAL;
1750 ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1751 if (ret)
1752 return ret;
1754 sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1755 if (!sdma)
1756 return -ENOMEM;
1758 spin_lock_init(&sdma->channel_0_lock);
1760 sdma->dev = &pdev->dev;
1761 sdma->drvdata = drvdata;
1763 irq = platform_get_irq(pdev, 0);
1764 if (irq < 0)
1765 return irq;
1767 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1768 sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1769 if (IS_ERR(sdma->regs))
1770 return PTR_ERR(sdma->regs);
1772 sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1773 if (IS_ERR(sdma->clk_ipg))
1774 return PTR_ERR(sdma->clk_ipg);
1776 sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1777 if (IS_ERR(sdma->clk_ahb))
1778 return PTR_ERR(sdma->clk_ahb);
1780 ret = clk_prepare(sdma->clk_ipg);
1781 if (ret)
1782 return ret;
1784 ret = clk_prepare(sdma->clk_ahb);
1785 if (ret)
1786 goto err_clk;
1788 ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
1789 sdma);
1790 if (ret)
1791 goto err_irq;
1793 sdma->irq = irq;
1795 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1796 if (!sdma->script_addrs) {
1797 ret = -ENOMEM;
1798 goto err_irq;
1801 /* initially no scripts available */
1802 saddr_arr = (s32 *)sdma->script_addrs;
1803 for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1804 saddr_arr[i] = -EINVAL;
1806 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1807 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1809 INIT_LIST_HEAD(&sdma->dma_device.channels);
1810 /* Initialize channel parameters */
1811 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1812 struct sdma_channel *sdmac = &sdma->channel[i];
1814 sdmac->sdma = sdma;
1815 spin_lock_init(&sdmac->lock);
1817 sdmac->chan.device = &sdma->dma_device;
1818 dma_cookie_init(&sdmac->chan);
1819 sdmac->channel = i;
1821 tasklet_init(&sdmac->tasklet, mxc_sdma_handle_channel_normal,
1822 (unsigned long) sdmac);
1824 * Add the channel to the DMAC list. Do not add channel 0 though
1825 * because we need it internally in the SDMA driver. This also means
1826 * that channel 0 in dmaengine counting matches sdma channel 1.
1828 if (i)
1829 list_add_tail(&sdmac->chan.device_node,
1830 &sdma->dma_device.channels);
1833 ret = sdma_init(sdma);
1834 if (ret)
1835 goto err_init;
1837 ret = sdma_event_remap(sdma);
1838 if (ret)
1839 goto err_init;
1841 if (sdma->drvdata->script_addrs)
1842 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1843 if (pdata && pdata->script_addrs)
1844 sdma_add_scripts(sdma, pdata->script_addrs);
1846 if (pdata) {
1847 ret = sdma_get_firmware(sdma, pdata->fw_name);
1848 if (ret)
1849 dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1850 } else {
1852 * Because that device tree does not encode ROM script address,
1853 * the RAM script in firmware is mandatory for device tree
1854 * probe, otherwise it fails.
1856 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1857 &fw_name);
1858 if (ret)
1859 dev_warn(&pdev->dev, "failed to get firmware name\n");
1860 else {
1861 ret = sdma_get_firmware(sdma, fw_name);
1862 if (ret)
1863 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1867 sdma->dma_device.dev = &pdev->dev;
1869 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1870 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1871 sdma->dma_device.device_tx_status = sdma_tx_status;
1872 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1873 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1874 sdma->dma_device.device_config = sdma_config;
1875 sdma->dma_device.device_terminate_all = sdma_disable_channel_with_delay;
1876 sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
1877 sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
1878 sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
1879 sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1880 sdma->dma_device.device_issue_pending = sdma_issue_pending;
1881 sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1882 dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1884 platform_set_drvdata(pdev, sdma);
1886 ret = dma_async_device_register(&sdma->dma_device);
1887 if (ret) {
1888 dev_err(&pdev->dev, "unable to register\n");
1889 goto err_init;
1892 if (np) {
1893 ret = of_dma_controller_register(np, sdma_xlate, sdma);
1894 if (ret) {
1895 dev_err(&pdev->dev, "failed to register controller\n");
1896 goto err_register;
1899 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
1900 ret = of_address_to_resource(spba_bus, 0, &spba_res);
1901 if (!ret) {
1902 sdma->spba_start_addr = spba_res.start;
1903 sdma->spba_end_addr = spba_res.end;
1905 of_node_put(spba_bus);
1908 return 0;
1910 err_register:
1911 dma_async_device_unregister(&sdma->dma_device);
1912 err_init:
1913 kfree(sdma->script_addrs);
1914 err_irq:
1915 clk_unprepare(sdma->clk_ahb);
1916 err_clk:
1917 clk_unprepare(sdma->clk_ipg);
1918 return ret;
1921 static int sdma_remove(struct platform_device *pdev)
1923 struct sdma_engine *sdma = platform_get_drvdata(pdev);
1924 int i;
1926 devm_free_irq(&pdev->dev, sdma->irq, sdma);
1927 dma_async_device_unregister(&sdma->dma_device);
1928 kfree(sdma->script_addrs);
1929 clk_unprepare(sdma->clk_ahb);
1930 clk_unprepare(sdma->clk_ipg);
1931 /* Kill the tasklet */
1932 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1933 struct sdma_channel *sdmac = &sdma->channel[i];
1935 tasklet_kill(&sdmac->tasklet);
1938 platform_set_drvdata(pdev, NULL);
1939 return 0;
1942 static struct platform_driver sdma_driver = {
1943 .driver = {
1944 .name = "imx-sdma",
1945 .of_match_table = sdma_dt_ids,
1947 .id_table = sdma_devtypes,
1948 .remove = sdma_remove,
1949 .probe = sdma_probe,
1952 module_platform_driver(sdma_driver);
1954 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1955 MODULE_DESCRIPTION("i.MX SDMA driver");
1956 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
1957 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
1958 #endif
1959 #if IS_ENABLED(CONFIG_SOC_IMX7D)
1960 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
1961 #endif
1962 MODULE_LICENSE("GPL");