Linux 4.18.10
[linux/fpc-iii.git] / drivers / dma / ppc4xx / adma.c
blob4cf0d4d0cecfb92175610461d5c984592017fd70
1 /*
2 * Copyright (C) 2006-2009 DENX Software Engineering.
4 * Author: Yuri Tikhonov <yur@emcraft.com>
6 * Further porting to arch/powerpc by
7 * Anatolij Gustschin <agust@denx.de>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
12 * any later version.
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
19 * The full GNU General Public License is included in this distribution in the
20 * file called COPYING.
24 * This driver supports the asynchrounous DMA copy and RAID engines available
25 * on the AMCC PPC440SPe Processors.
26 * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
27 * ADMA driver written by D.Williams.
30 #include <linux/init.h>
31 #include <linux/module.h>
32 #include <linux/async_tx.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/spinlock.h>
36 #include <linux/interrupt.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39 #include <linux/proc_fs.h>
40 #include <linux/of.h>
41 #include <linux/of_address.h>
42 #include <linux/of_irq.h>
43 #include <linux/of_platform.h>
44 #include <asm/dcr.h>
45 #include <asm/dcr-regs.h>
46 #include "adma.h"
47 #include "../dmaengine.h"
49 enum ppc_adma_init_code {
50 PPC_ADMA_INIT_OK = 0,
51 PPC_ADMA_INIT_MEMRES,
52 PPC_ADMA_INIT_MEMREG,
53 PPC_ADMA_INIT_ALLOC,
54 PPC_ADMA_INIT_COHERENT,
55 PPC_ADMA_INIT_CHANNEL,
56 PPC_ADMA_INIT_IRQ1,
57 PPC_ADMA_INIT_IRQ2,
58 PPC_ADMA_INIT_REGISTER
61 static char *ppc_adma_errors[] = {
62 [PPC_ADMA_INIT_OK] = "ok",
63 [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
64 [PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
65 [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
66 "structure",
67 [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
68 "hardware descriptors",
69 [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
70 [PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
71 [PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
72 [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
75 static enum ppc_adma_init_code
76 ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
78 struct ppc_dma_chan_ref {
79 struct dma_chan *chan;
80 struct list_head node;
83 /* The list of channels exported by ppc440spe ADMA */
84 struct list_head
85 ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
87 /* This flag is set when want to refetch the xor chain in the interrupt
88 * handler
90 static u32 do_xor_refetch;
92 /* Pointer to DMA0, DMA1 CP/CS FIFO */
93 static void *ppc440spe_dma_fifo_buf;
95 /* Pointers to last submitted to DMA0, DMA1 CDBs */
96 static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
97 static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
99 /* Pointer to last linked and submitted xor CB */
100 static struct ppc440spe_adma_desc_slot *xor_last_linked;
101 static struct ppc440spe_adma_desc_slot *xor_last_submit;
103 /* This array is used in data-check operations for storing a pattern */
104 static char ppc440spe_qword[16];
106 static atomic_t ppc440spe_adma_err_irq_ref;
107 static dcr_host_t ppc440spe_mq_dcr_host;
108 static unsigned int ppc440spe_mq_dcr_len;
110 /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
111 * the block size in transactions, then we do not allow to activate more than
112 * only one RXOR transactions simultaneously. So use this var to store
113 * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
114 * set) or not (PPC440SPE_RXOR_RUN is clear).
116 static unsigned long ppc440spe_rxor_state;
118 /* These are used in enable & check routines
120 static u32 ppc440spe_r6_enabled;
121 static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
122 static struct completion ppc440spe_r6_test_comp;
124 static int ppc440spe_adma_dma2rxor_prep_src(
125 struct ppc440spe_adma_desc_slot *desc,
126 struct ppc440spe_rxor *cursor, int index,
127 int src_cnt, u32 addr);
128 static void ppc440spe_adma_dma2rxor_set_src(
129 struct ppc440spe_adma_desc_slot *desc,
130 int index, dma_addr_t addr);
131 static void ppc440spe_adma_dma2rxor_set_mult(
132 struct ppc440spe_adma_desc_slot *desc,
133 int index, u8 mult);
135 #ifdef ADMA_LL_DEBUG
136 #define ADMA_LL_DBG(x) ({ if (1) x; 0; })
137 #else
138 #define ADMA_LL_DBG(x) ({ if (0) x; 0; })
139 #endif
141 static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
143 struct dma_cdb *cdb;
144 struct xor_cb *cb;
145 int i;
147 switch (chan->device->id) {
148 case 0:
149 case 1:
150 cdb = block;
152 pr_debug("CDB at %p [%d]:\n"
153 "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
154 "\t sg1u 0x%08x sg1l 0x%08x\n"
155 "\t sg2u 0x%08x sg2l 0x%08x\n"
156 "\t sg3u 0x%08x sg3l 0x%08x\n",
157 cdb, chan->device->id,
158 cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
159 le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
160 le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
161 le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
163 break;
164 case 2:
165 cb = block;
167 pr_debug("CB at %p [%d]:\n"
168 "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
169 "\t cbtah 0x%08x cbtal 0x%08x\n"
170 "\t cblah 0x%08x cblal 0x%08x\n",
171 cb, chan->device->id,
172 cb->cbc, cb->cbbc, cb->cbs,
173 cb->cbtah, cb->cbtal,
174 cb->cblah, cb->cblal);
175 for (i = 0; i < 16; i++) {
176 if (i && !cb->ops[i].h && !cb->ops[i].l)
177 continue;
178 pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
179 i, cb->ops[i].h, cb->ops[i].l);
181 break;
185 static void print_cb_list(struct ppc440spe_adma_chan *chan,
186 struct ppc440spe_adma_desc_slot *iter)
188 for (; iter; iter = iter->hw_next)
189 print_cb(chan, iter->hw_desc);
192 static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
193 unsigned int src_cnt)
195 int i;
197 pr_debug("\n%s(%d):\nsrc: ", __func__, id);
198 for (i = 0; i < src_cnt; i++)
199 pr_debug("\t0x%016llx ", src[i]);
200 pr_debug("dst:\n\t0x%016llx\n", dst);
203 static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
204 unsigned int src_cnt)
206 int i;
208 pr_debug("\n%s(%d):\nsrc: ", __func__, id);
209 for (i = 0; i < src_cnt; i++)
210 pr_debug("\t0x%016llx ", src[i]);
211 pr_debug("dst: ");
212 for (i = 0; i < 2; i++)
213 pr_debug("\t0x%016llx ", dst[i]);
216 static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
217 unsigned int src_cnt,
218 const unsigned char *scf)
220 int i;
222 pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
223 if (scf) {
224 for (i = 0; i < src_cnt; i++)
225 pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
226 } else {
227 for (i = 0; i < src_cnt; i++)
228 pr_debug("\t0x%016llx(no) ", src[i]);
231 pr_debug("dst: ");
232 for (i = 0; i < 2; i++)
233 pr_debug("\t0x%016llx ", src[src_cnt + i]);
236 /******************************************************************************
237 * Command (Descriptor) Blocks low-level routines
238 ******************************************************************************/
240 * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
241 * pseudo operation
243 static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
244 struct ppc440spe_adma_chan *chan)
246 struct xor_cb *p;
248 switch (chan->device->id) {
249 case PPC440SPE_XOR_ID:
250 p = desc->hw_desc;
251 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
252 /* NOP with Command Block Complete Enable */
253 p->cbc = XOR_CBCR_CBCE_BIT;
254 break;
255 case PPC440SPE_DMA0_ID:
256 case PPC440SPE_DMA1_ID:
257 memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
258 /* NOP with interrupt */
259 set_bit(PPC440SPE_DESC_INT, &desc->flags);
260 break;
261 default:
262 printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
263 __func__);
264 break;
269 * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
270 * pseudo operation
272 static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
274 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
275 desc->hw_next = NULL;
276 desc->src_cnt = 0;
277 desc->dst_cnt = 1;
281 * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
283 static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
284 int src_cnt, unsigned long flags)
286 struct xor_cb *hw_desc = desc->hw_desc;
288 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
289 desc->hw_next = NULL;
290 desc->src_cnt = src_cnt;
291 desc->dst_cnt = 1;
293 hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
294 if (flags & DMA_PREP_INTERRUPT)
295 /* Enable interrupt on completion */
296 hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
300 * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
301 * operation in DMA2 controller
303 static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
304 int dst_cnt, int src_cnt, unsigned long flags)
306 struct xor_cb *hw_desc = desc->hw_desc;
308 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
309 desc->hw_next = NULL;
310 desc->src_cnt = src_cnt;
311 desc->dst_cnt = dst_cnt;
312 memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
313 desc->descs_per_op = 0;
315 hw_desc->cbc = XOR_CBCR_TGT_BIT;
316 if (flags & DMA_PREP_INTERRUPT)
317 /* Enable interrupt on completion */
318 hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
321 #define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE
322 #define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1)
323 #define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1)
326 * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
327 * with DMA0/1
329 static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
330 int dst_cnt, int src_cnt, unsigned long flags,
331 unsigned long op)
333 struct dma_cdb *hw_desc;
334 struct ppc440spe_adma_desc_slot *iter;
335 u8 dopc;
337 /* Common initialization of a PQ descriptors chain */
338 set_bits(op, &desc->flags);
339 desc->src_cnt = src_cnt;
340 desc->dst_cnt = dst_cnt;
342 /* WXOR MULTICAST if both P and Q are being computed
343 * MV_SG1_SG2 if Q only
345 dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
346 DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
348 list_for_each_entry(iter, &desc->group_list, chain_node) {
349 hw_desc = iter->hw_desc;
350 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
352 if (likely(!list_is_last(&iter->chain_node,
353 &desc->group_list))) {
354 /* set 'next' pointer */
355 iter->hw_next = list_entry(iter->chain_node.next,
356 struct ppc440spe_adma_desc_slot, chain_node);
357 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
358 } else {
359 /* this is the last descriptor.
360 * this slot will be pasted from ADMA level
361 * each time it wants to configure parameters
362 * of the transaction (src, dst, ...)
364 iter->hw_next = NULL;
365 if (flags & DMA_PREP_INTERRUPT)
366 set_bit(PPC440SPE_DESC_INT, &iter->flags);
367 else
368 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
372 /* Set OPS depending on WXOR/RXOR type of operation */
373 if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
374 /* This is a WXOR only chain:
375 * - first descriptors are for zeroing destinations
376 * if PPC440SPE_ZERO_P/Q set;
377 * - descriptors remained are for GF-XOR operations.
379 iter = list_first_entry(&desc->group_list,
380 struct ppc440spe_adma_desc_slot,
381 chain_node);
383 if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
384 hw_desc = iter->hw_desc;
385 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
386 iter = list_first_entry(&iter->chain_node,
387 struct ppc440spe_adma_desc_slot,
388 chain_node);
391 if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
392 hw_desc = iter->hw_desc;
393 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
394 iter = list_first_entry(&iter->chain_node,
395 struct ppc440spe_adma_desc_slot,
396 chain_node);
399 list_for_each_entry_from(iter, &desc->group_list, chain_node) {
400 hw_desc = iter->hw_desc;
401 hw_desc->opc = dopc;
403 } else {
404 /* This is either RXOR-only or mixed RXOR/WXOR */
406 /* The first 1 or 2 slots in chain are always RXOR,
407 * if need to calculate P & Q, then there are two
408 * RXOR slots; if only P or only Q, then there is one
410 iter = list_first_entry(&desc->group_list,
411 struct ppc440spe_adma_desc_slot,
412 chain_node);
413 hw_desc = iter->hw_desc;
414 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
416 if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
417 iter = list_first_entry(&iter->chain_node,
418 struct ppc440spe_adma_desc_slot,
419 chain_node);
420 hw_desc = iter->hw_desc;
421 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
424 /* The remaining descs (if any) are WXORs */
425 if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
426 iter = list_first_entry(&iter->chain_node,
427 struct ppc440spe_adma_desc_slot,
428 chain_node);
429 list_for_each_entry_from(iter, &desc->group_list,
430 chain_node) {
431 hw_desc = iter->hw_desc;
432 hw_desc->opc = dopc;
439 * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
440 * for PQ_ZERO_SUM operation
442 static void ppc440spe_desc_init_dma01pqzero_sum(
443 struct ppc440spe_adma_desc_slot *desc,
444 int dst_cnt, int src_cnt)
446 struct dma_cdb *hw_desc;
447 struct ppc440spe_adma_desc_slot *iter;
448 int i = 0;
449 u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
450 DMA_CDB_OPC_MV_SG1_SG2;
452 * Initialize starting from 2nd or 3rd descriptor dependent
453 * on dst_cnt. First one or two slots are for cloning P
454 * and/or Q to chan->pdest and/or chan->qdest as we have
455 * to preserve original P/Q.
457 iter = list_first_entry(&desc->group_list,
458 struct ppc440spe_adma_desc_slot, chain_node);
459 iter = list_entry(iter->chain_node.next,
460 struct ppc440spe_adma_desc_slot, chain_node);
462 if (dst_cnt > 1) {
463 iter = list_entry(iter->chain_node.next,
464 struct ppc440spe_adma_desc_slot, chain_node);
466 /* initialize each source descriptor in chain */
467 list_for_each_entry_from(iter, &desc->group_list, chain_node) {
468 hw_desc = iter->hw_desc;
469 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
470 iter->src_cnt = 0;
471 iter->dst_cnt = 0;
473 /* This is a ZERO_SUM operation:
474 * - <src_cnt> descriptors starting from 2nd or 3rd
475 * descriptor are for GF-XOR operations;
476 * - remaining <dst_cnt> descriptors are for checking the result
478 if (i++ < src_cnt)
479 /* MV_SG1_SG2 if only Q is being verified
480 * MULTICAST if both P and Q are being verified
482 hw_desc->opc = dopc;
483 else
484 /* DMA_CDB_OPC_DCHECK128 operation */
485 hw_desc->opc = DMA_CDB_OPC_DCHECK128;
487 if (likely(!list_is_last(&iter->chain_node,
488 &desc->group_list))) {
489 /* set 'next' pointer */
490 iter->hw_next = list_entry(iter->chain_node.next,
491 struct ppc440spe_adma_desc_slot,
492 chain_node);
493 } else {
494 /* this is the last descriptor.
495 * this slot will be pasted from ADMA level
496 * each time it wants to configure parameters
497 * of the transaction (src, dst, ...)
499 iter->hw_next = NULL;
500 /* always enable interrupt generation since we get
501 * the status of pqzero from the handler
503 set_bit(PPC440SPE_DESC_INT, &iter->flags);
506 desc->src_cnt = src_cnt;
507 desc->dst_cnt = dst_cnt;
511 * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
513 static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
514 unsigned long flags)
516 struct dma_cdb *hw_desc = desc->hw_desc;
518 memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
519 desc->hw_next = NULL;
520 desc->src_cnt = 1;
521 desc->dst_cnt = 1;
523 if (flags & DMA_PREP_INTERRUPT)
524 set_bit(PPC440SPE_DESC_INT, &desc->flags);
525 else
526 clear_bit(PPC440SPE_DESC_INT, &desc->flags);
528 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
532 * ppc440spe_desc_set_src_addr - set source address into the descriptor
534 static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
535 struct ppc440spe_adma_chan *chan,
536 int src_idx, dma_addr_t addrh,
537 dma_addr_t addrl)
539 struct dma_cdb *dma_hw_desc;
540 struct xor_cb *xor_hw_desc;
541 phys_addr_t addr64, tmplow, tmphi;
543 switch (chan->device->id) {
544 case PPC440SPE_DMA0_ID:
545 case PPC440SPE_DMA1_ID:
546 if (!addrh) {
547 addr64 = addrl;
548 tmphi = (addr64 >> 32);
549 tmplow = (addr64 & 0xFFFFFFFF);
550 } else {
551 tmphi = addrh;
552 tmplow = addrl;
554 dma_hw_desc = desc->hw_desc;
555 dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
556 dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
557 break;
558 case PPC440SPE_XOR_ID:
559 xor_hw_desc = desc->hw_desc;
560 xor_hw_desc->ops[src_idx].l = addrl;
561 xor_hw_desc->ops[src_idx].h |= addrh;
562 break;
567 * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
569 static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
570 struct ppc440spe_adma_chan *chan, u32 mult_index,
571 int sg_index, unsigned char mult_value)
573 struct dma_cdb *dma_hw_desc;
574 struct xor_cb *xor_hw_desc;
575 u32 *psgu;
577 switch (chan->device->id) {
578 case PPC440SPE_DMA0_ID:
579 case PPC440SPE_DMA1_ID:
580 dma_hw_desc = desc->hw_desc;
582 switch (sg_index) {
583 /* for RXOR operations set multiplier
584 * into source cued address
586 case DMA_CDB_SG_SRC:
587 psgu = &dma_hw_desc->sg1u;
588 break;
589 /* for WXOR operations set multiplier
590 * into destination cued address(es)
592 case DMA_CDB_SG_DST1:
593 psgu = &dma_hw_desc->sg2u;
594 break;
595 case DMA_CDB_SG_DST2:
596 psgu = &dma_hw_desc->sg3u;
597 break;
598 default:
599 BUG();
602 *psgu |= cpu_to_le32(mult_value << mult_index);
603 break;
604 case PPC440SPE_XOR_ID:
605 xor_hw_desc = desc->hw_desc;
606 break;
607 default:
608 BUG();
613 * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
615 static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
616 struct ppc440spe_adma_chan *chan,
617 dma_addr_t addrh, dma_addr_t addrl,
618 u32 dst_idx)
620 struct dma_cdb *dma_hw_desc;
621 struct xor_cb *xor_hw_desc;
622 phys_addr_t addr64, tmphi, tmplow;
623 u32 *psgu, *psgl;
625 switch (chan->device->id) {
626 case PPC440SPE_DMA0_ID:
627 case PPC440SPE_DMA1_ID:
628 if (!addrh) {
629 addr64 = addrl;
630 tmphi = (addr64 >> 32);
631 tmplow = (addr64 & 0xFFFFFFFF);
632 } else {
633 tmphi = addrh;
634 tmplow = addrl;
636 dma_hw_desc = desc->hw_desc;
638 psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
639 psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
641 *psgl = cpu_to_le32((u32)tmplow);
642 *psgu |= cpu_to_le32((u32)tmphi);
643 break;
644 case PPC440SPE_XOR_ID:
645 xor_hw_desc = desc->hw_desc;
646 xor_hw_desc->cbtal = addrl;
647 xor_hw_desc->cbtah |= addrh;
648 break;
653 * ppc440spe_desc_set_byte_count - set number of data bytes involved
654 * into the operation
656 static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
657 struct ppc440spe_adma_chan *chan,
658 u32 byte_count)
660 struct dma_cdb *dma_hw_desc;
661 struct xor_cb *xor_hw_desc;
663 switch (chan->device->id) {
664 case PPC440SPE_DMA0_ID:
665 case PPC440SPE_DMA1_ID:
666 dma_hw_desc = desc->hw_desc;
667 dma_hw_desc->cnt = cpu_to_le32(byte_count);
668 break;
669 case PPC440SPE_XOR_ID:
670 xor_hw_desc = desc->hw_desc;
671 xor_hw_desc->cbbc = byte_count;
672 break;
677 * ppc440spe_desc_set_rxor_block_size - set RXOR block size
679 static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
681 /* assume that byte_count is aligned on the 512-boundary;
682 * thus write it directly to the register (bits 23:31 are
683 * reserved there).
685 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
689 * ppc440spe_desc_set_dcheck - set CHECK pattern
691 static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
692 struct ppc440spe_adma_chan *chan, u8 *qword)
694 struct dma_cdb *dma_hw_desc;
696 switch (chan->device->id) {
697 case PPC440SPE_DMA0_ID:
698 case PPC440SPE_DMA1_ID:
699 dma_hw_desc = desc->hw_desc;
700 iowrite32(qword[0], &dma_hw_desc->sg3l);
701 iowrite32(qword[4], &dma_hw_desc->sg3u);
702 iowrite32(qword[8], &dma_hw_desc->sg2l);
703 iowrite32(qword[12], &dma_hw_desc->sg2u);
704 break;
705 default:
706 BUG();
711 * ppc440spe_xor_set_link - set link address in xor CB
713 static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
714 struct ppc440spe_adma_desc_slot *next_desc)
716 struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
718 if (unlikely(!next_desc || !(next_desc->phys))) {
719 printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
720 __func__, next_desc,
721 next_desc ? next_desc->phys : 0);
722 BUG();
725 xor_hw_desc->cbs = 0;
726 xor_hw_desc->cblal = next_desc->phys;
727 xor_hw_desc->cblah = 0;
728 xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
732 * ppc440spe_desc_set_link - set the address of descriptor following this
733 * descriptor in chain
735 static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
736 struct ppc440spe_adma_desc_slot *prev_desc,
737 struct ppc440spe_adma_desc_slot *next_desc)
739 unsigned long flags;
740 struct ppc440spe_adma_desc_slot *tail = next_desc;
742 if (unlikely(!prev_desc || !next_desc ||
743 (prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
744 /* If previous next is overwritten something is wrong.
745 * though we may refetch from append to initiate list
746 * processing; in this case - it's ok.
748 printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
749 "prev->hw_next=0x%p\n", __func__, prev_desc,
750 next_desc, prev_desc ? prev_desc->hw_next : 0);
751 BUG();
754 local_irq_save(flags);
756 /* do s/w chaining both for DMA and XOR descriptors */
757 prev_desc->hw_next = next_desc;
759 switch (chan->device->id) {
760 case PPC440SPE_DMA0_ID:
761 case PPC440SPE_DMA1_ID:
762 break;
763 case PPC440SPE_XOR_ID:
764 /* bind descriptor to the chain */
765 while (tail->hw_next)
766 tail = tail->hw_next;
767 xor_last_linked = tail;
769 if (prev_desc == xor_last_submit)
770 /* do not link to the last submitted CB */
771 break;
772 ppc440spe_xor_set_link(prev_desc, next_desc);
773 break;
776 local_irq_restore(flags);
780 * ppc440spe_desc_get_link - get the address of the descriptor that
781 * follows this one
783 static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
784 struct ppc440spe_adma_chan *chan)
786 if (!desc->hw_next)
787 return 0;
789 return desc->hw_next->phys;
793 * ppc440spe_desc_is_aligned - check alignment
795 static inline int ppc440spe_desc_is_aligned(
796 struct ppc440spe_adma_desc_slot *desc, int num_slots)
798 return (desc->idx & (num_slots - 1)) ? 0 : 1;
802 * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
803 * XOR operation
805 static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
806 int *slots_per_op)
808 int slot_cnt;
810 /* each XOR descriptor provides up to 16 source operands */
811 slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
813 if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
814 return slot_cnt;
816 printk(KERN_ERR "%s: len %d > max %d !!\n",
817 __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
818 BUG();
819 return slot_cnt;
823 * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
824 * DMA2 PQ operation
826 static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
827 int src_cnt, size_t len)
829 signed long long order = 0;
830 int state = 0;
831 int addr_count = 0;
832 int i;
833 for (i = 1; i < src_cnt; i++) {
834 dma_addr_t cur_addr = srcs[i];
835 dma_addr_t old_addr = srcs[i-1];
836 switch (state) {
837 case 0:
838 if (cur_addr == old_addr + len) {
839 /* direct RXOR */
840 order = 1;
841 state = 1;
842 if (i == src_cnt-1)
843 addr_count++;
844 } else if (old_addr == cur_addr + len) {
845 /* reverse RXOR */
846 order = -1;
847 state = 1;
848 if (i == src_cnt-1)
849 addr_count++;
850 } else {
851 state = 3;
853 break;
854 case 1:
855 if (i == src_cnt-2 || (order == -1
856 && cur_addr != old_addr - len)) {
857 order = 0;
858 state = 0;
859 addr_count++;
860 } else if (cur_addr == old_addr + len*order) {
861 state = 2;
862 if (i == src_cnt-1)
863 addr_count++;
864 } else if (cur_addr == old_addr + 2*len) {
865 state = 2;
866 if (i == src_cnt-1)
867 addr_count++;
868 } else if (cur_addr == old_addr + 3*len) {
869 state = 2;
870 if (i == src_cnt-1)
871 addr_count++;
872 } else {
873 order = 0;
874 state = 0;
875 addr_count++;
877 break;
878 case 2:
879 order = 0;
880 state = 0;
881 addr_count++;
882 break;
884 if (state == 3)
885 break;
887 if (src_cnt <= 1 || (state != 1 && state != 2)) {
888 pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
889 __func__, src_cnt, state, addr_count, order);
890 for (i = 0; i < src_cnt; i++)
891 pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
892 BUG();
895 return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
899 /******************************************************************************
900 * ADMA channel low-level routines
901 ******************************************************************************/
903 static u32
904 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
905 static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
908 * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
910 static void ppc440spe_adma_device_clear_eot_status(
911 struct ppc440spe_adma_chan *chan)
913 struct dma_regs *dma_reg;
914 struct xor_regs *xor_reg;
915 u8 *p = chan->device->dma_desc_pool_virt;
916 struct dma_cdb *cdb;
917 u32 rv, i;
919 switch (chan->device->id) {
920 case PPC440SPE_DMA0_ID:
921 case PPC440SPE_DMA1_ID:
922 /* read FIFO to ack */
923 dma_reg = chan->device->dma_reg;
924 while ((rv = ioread32(&dma_reg->csfpl))) {
925 i = rv & DMA_CDB_ADDR_MSK;
926 cdb = (struct dma_cdb *)&p[i -
927 (u32)chan->device->dma_desc_pool];
929 /* Clear opcode to ack. This is necessary for
930 * ZeroSum operations only
932 cdb->opc = 0;
934 if (test_bit(PPC440SPE_RXOR_RUN,
935 &ppc440spe_rxor_state)) {
936 /* probably this is a completed RXOR op,
937 * get pointer to CDB using the fact that
938 * physical and virtual addresses of CDB
939 * in pools have the same offsets
941 if (le32_to_cpu(cdb->sg1u) &
942 DMA_CUED_XOR_BASE) {
943 /* this is a RXOR */
944 clear_bit(PPC440SPE_RXOR_RUN,
945 &ppc440spe_rxor_state);
949 if (rv & DMA_CDB_STATUS_MSK) {
950 /* ZeroSum check failed
952 struct ppc440spe_adma_desc_slot *iter;
953 dma_addr_t phys = rv & ~DMA_CDB_MSK;
956 * Update the status of corresponding
957 * descriptor.
959 list_for_each_entry(iter, &chan->chain,
960 chain_node) {
961 if (iter->phys == phys)
962 break;
965 * if cannot find the corresponding
966 * slot it's a bug
968 BUG_ON(&iter->chain_node == &chan->chain);
970 if (iter->xor_check_result) {
971 if (test_bit(PPC440SPE_DESC_PCHECK,
972 &iter->flags)) {
973 *iter->xor_check_result |=
974 SUM_CHECK_P_RESULT;
975 } else
976 if (test_bit(PPC440SPE_DESC_QCHECK,
977 &iter->flags)) {
978 *iter->xor_check_result |=
979 SUM_CHECK_Q_RESULT;
980 } else
981 BUG();
986 rv = ioread32(&dma_reg->dsts);
987 if (rv) {
988 pr_err("DMA%d err status: 0x%x\n",
989 chan->device->id, rv);
990 /* write back to clear */
991 iowrite32(rv, &dma_reg->dsts);
993 break;
994 case PPC440SPE_XOR_ID:
995 /* reset status bits to ack */
996 xor_reg = chan->device->xor_reg;
997 rv = ioread32be(&xor_reg->sr);
998 iowrite32be(rv, &xor_reg->sr);
1000 if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
1001 if (rv & XOR_IE_RPTIE_BIT) {
1002 /* Read PLB Timeout Error.
1003 * Try to resubmit the CB
1005 u32 val = ioread32be(&xor_reg->ccbalr);
1007 iowrite32be(val, &xor_reg->cblalr);
1009 val = ioread32be(&xor_reg->crsr);
1010 iowrite32be(val | XOR_CRSR_XAE_BIT,
1011 &xor_reg->crsr);
1012 } else
1013 pr_err("XOR ERR 0x%x status\n", rv);
1014 break;
1017 /* if the XORcore is idle, but there are unprocessed CBs
1018 * then refetch the s/w chain here
1020 if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
1021 do_xor_refetch)
1022 ppc440spe_chan_append(chan);
1023 break;
1028 * ppc440spe_chan_is_busy - get the channel status
1030 static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
1032 struct dma_regs *dma_reg;
1033 struct xor_regs *xor_reg;
1034 int busy = 0;
1036 switch (chan->device->id) {
1037 case PPC440SPE_DMA0_ID:
1038 case PPC440SPE_DMA1_ID:
1039 dma_reg = chan->device->dma_reg;
1040 /* if command FIFO's head and tail pointers are equal and
1041 * status tail is the same as command, then channel is free
1043 if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
1044 ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
1045 busy = 1;
1046 break;
1047 case PPC440SPE_XOR_ID:
1048 /* use the special status bit for the XORcore
1050 xor_reg = chan->device->xor_reg;
1051 busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
1052 break;
1055 return busy;
1059 * ppc440spe_chan_set_first_xor_descriptor - init XORcore chain
1061 static void ppc440spe_chan_set_first_xor_descriptor(
1062 struct ppc440spe_adma_chan *chan,
1063 struct ppc440spe_adma_desc_slot *next_desc)
1065 struct xor_regs *xor_reg = chan->device->xor_reg;
1067 if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
1068 printk(KERN_INFO "%s: Warn: XORcore is running "
1069 "when try to set the first CDB!\n",
1070 __func__);
1072 xor_last_submit = xor_last_linked = next_desc;
1074 iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
1076 iowrite32be(next_desc->phys, &xor_reg->cblalr);
1077 iowrite32be(0, &xor_reg->cblahr);
1078 iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
1079 &xor_reg->cbcr);
1081 chan->hw_chain_inited = 1;
1085 * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
1086 * called with irqs disabled
1088 static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
1089 struct ppc440spe_adma_desc_slot *desc)
1091 u32 pcdb;
1092 struct dma_regs *dma_reg = chan->device->dma_reg;
1094 pcdb = desc->phys;
1095 if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
1096 pcdb |= DMA_CDB_NO_INT;
1098 chan_last_sub[chan->device->id] = desc;
1100 ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
1102 iowrite32(pcdb, &dma_reg->cpfpl);
1106 * ppc440spe_chan_append - update the h/w chain in the channel
1108 static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
1110 struct xor_regs *xor_reg;
1111 struct ppc440spe_adma_desc_slot *iter;
1112 struct xor_cb *xcb;
1113 u32 cur_desc;
1114 unsigned long flags;
1116 local_irq_save(flags);
1118 switch (chan->device->id) {
1119 case PPC440SPE_DMA0_ID:
1120 case PPC440SPE_DMA1_ID:
1121 cur_desc = ppc440spe_chan_get_current_descriptor(chan);
1123 if (likely(cur_desc)) {
1124 iter = chan_last_sub[chan->device->id];
1125 BUG_ON(!iter);
1126 } else {
1127 /* first peer */
1128 iter = chan_first_cdb[chan->device->id];
1129 BUG_ON(!iter);
1130 ppc440spe_dma_put_desc(chan, iter);
1131 chan->hw_chain_inited = 1;
1134 /* is there something new to append */
1135 if (!iter->hw_next)
1136 break;
1138 /* flush descriptors from the s/w queue to fifo */
1139 list_for_each_entry_continue(iter, &chan->chain, chain_node) {
1140 ppc440spe_dma_put_desc(chan, iter);
1141 if (!iter->hw_next)
1142 break;
1144 break;
1145 case PPC440SPE_XOR_ID:
1146 /* update h/w links and refetch */
1147 if (!xor_last_submit->hw_next)
1148 break;
1150 xor_reg = chan->device->xor_reg;
1151 /* the last linked CDB has to generate an interrupt
1152 * that we'd be able to append the next lists to h/w
1153 * regardless of the XOR engine state at the moment of
1154 * appending of these next lists
1156 xcb = xor_last_linked->hw_desc;
1157 xcb->cbc |= XOR_CBCR_CBCE_BIT;
1159 if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
1160 /* XORcore is idle. Refetch now */
1161 do_xor_refetch = 0;
1162 ppc440spe_xor_set_link(xor_last_submit,
1163 xor_last_submit->hw_next);
1165 ADMA_LL_DBG(print_cb_list(chan,
1166 xor_last_submit->hw_next));
1168 xor_last_submit = xor_last_linked;
1169 iowrite32be(ioread32be(&xor_reg->crsr) |
1170 XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
1171 &xor_reg->crsr);
1172 } else {
1173 /* XORcore is running. Refetch later in the handler */
1174 do_xor_refetch = 1;
1177 break;
1180 local_irq_restore(flags);
1184 * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
1186 static u32
1187 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
1189 struct dma_regs *dma_reg;
1190 struct xor_regs *xor_reg;
1192 if (unlikely(!chan->hw_chain_inited))
1193 /* h/w descriptor chain is not initialized yet */
1194 return 0;
1196 switch (chan->device->id) {
1197 case PPC440SPE_DMA0_ID:
1198 case PPC440SPE_DMA1_ID:
1199 dma_reg = chan->device->dma_reg;
1200 return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
1201 case PPC440SPE_XOR_ID:
1202 xor_reg = chan->device->xor_reg;
1203 return ioread32be(&xor_reg->ccbalr);
1205 return 0;
1209 * ppc440spe_chan_run - enable the channel
1211 static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
1213 struct xor_regs *xor_reg;
1215 switch (chan->device->id) {
1216 case PPC440SPE_DMA0_ID:
1217 case PPC440SPE_DMA1_ID:
1218 /* DMAs are always enabled, do nothing */
1219 break;
1220 case PPC440SPE_XOR_ID:
1221 /* drain write buffer */
1222 xor_reg = chan->device->xor_reg;
1224 /* fetch descriptor pointed to in <link> */
1225 iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
1226 &xor_reg->crsr);
1227 break;
1231 /******************************************************************************
1232 * ADMA device level
1233 ******************************************************************************/
1235 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
1236 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
1238 static dma_cookie_t
1239 ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
1241 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
1242 dma_addr_t addr, int index);
1243 static void
1244 ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
1245 dma_addr_t addr, int index);
1247 static void
1248 ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
1249 dma_addr_t *paddr, unsigned long flags);
1250 static void
1251 ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
1252 dma_addr_t addr, int index);
1253 static void
1254 ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
1255 unsigned char mult, int index, int dst_pos);
1256 static void
1257 ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
1258 dma_addr_t paddr, dma_addr_t qaddr);
1260 static struct page *ppc440spe_rxor_srcs[32];
1263 * ppc440spe_can_rxor - check if the operands may be processed with RXOR
1265 static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
1267 int i, order = 0, state = 0;
1268 int idx = 0;
1270 if (unlikely(!(src_cnt > 1)))
1271 return 0;
1273 BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
1275 /* Skip holes in the source list before checking */
1276 for (i = 0; i < src_cnt; i++) {
1277 if (!srcs[i])
1278 continue;
1279 ppc440spe_rxor_srcs[idx++] = srcs[i];
1281 src_cnt = idx;
1283 for (i = 1; i < src_cnt; i++) {
1284 char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
1285 char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
1287 switch (state) {
1288 case 0:
1289 if (cur_addr == old_addr + len) {
1290 /* direct RXOR */
1291 order = 1;
1292 state = 1;
1293 } else if (old_addr == cur_addr + len) {
1294 /* reverse RXOR */
1295 order = -1;
1296 state = 1;
1297 } else
1298 goto out;
1299 break;
1300 case 1:
1301 if ((i == src_cnt - 2) ||
1302 (order == -1 && cur_addr != old_addr - len)) {
1303 order = 0;
1304 state = 0;
1305 } else if ((cur_addr == old_addr + len * order) ||
1306 (cur_addr == old_addr + 2 * len) ||
1307 (cur_addr == old_addr + 3 * len)) {
1308 state = 2;
1309 } else {
1310 order = 0;
1311 state = 0;
1313 break;
1314 case 2:
1315 order = 0;
1316 state = 0;
1317 break;
1321 out:
1322 if (state == 1 || state == 2)
1323 return 1;
1325 return 0;
1329 * ppc440spe_adma_device_estimate - estimate the efficiency of processing
1330 * the operation given on this channel. It's assumed that 'chan' is
1331 * capable to process 'cap' type of operation.
1332 * @chan: channel to use
1333 * @cap: type of transaction
1334 * @dst_lst: array of destination pointers
1335 * @dst_cnt: number of destination operands
1336 * @src_lst: array of source pointers
1337 * @src_cnt: number of source operands
1338 * @src_sz: size of each source operand
1340 static int ppc440spe_adma_estimate(struct dma_chan *chan,
1341 enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
1342 struct page **src_lst, int src_cnt, size_t src_sz)
1344 int ef = 1;
1346 if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
1347 /* If RAID-6 capabilities were not activated don't try
1348 * to use them
1350 if (unlikely(!ppc440spe_r6_enabled))
1351 return -1;
1353 /* In the current implementation of ppc440spe ADMA driver it
1354 * makes sense to pick out only pq case, because it may be
1355 * processed:
1356 * (1) either using Biskup method on DMA2;
1357 * (2) or on DMA0/1.
1358 * Thus we give a favour to (1) if the sources are suitable;
1359 * else let it be processed on one of the DMA0/1 engines.
1360 * In the sum_product case where destination is also the
1361 * source process it on DMA0/1 only.
1363 if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
1365 if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
1366 ef = 0; /* sum_product case, process on DMA0/1 */
1367 else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
1368 ef = 3; /* override (DMA0/1 + idle) */
1369 else
1370 ef = 0; /* can't process on DMA2 if !rxor */
1373 /* channel idleness increases the priority */
1374 if (likely(ef) &&
1375 !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
1376 ef++;
1378 return ef;
1381 struct dma_chan *
1382 ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
1383 struct page **dst_lst, int dst_cnt, struct page **src_lst,
1384 int src_cnt, size_t src_sz)
1386 struct dma_chan *best_chan = NULL;
1387 struct ppc_dma_chan_ref *ref;
1388 int best_rank = -1;
1390 if (unlikely(!src_sz))
1391 return NULL;
1392 if (src_sz > PAGE_SIZE) {
1394 * should a user of the api ever pass > PAGE_SIZE requests
1395 * we sort out cases where temporary page-sized buffers
1396 * are used.
1398 switch (cap) {
1399 case DMA_PQ:
1400 if (src_cnt == 1 && dst_lst[1] == src_lst[0])
1401 return NULL;
1402 if (src_cnt == 2 && dst_lst[1] == src_lst[1])
1403 return NULL;
1404 break;
1405 case DMA_PQ_VAL:
1406 case DMA_XOR_VAL:
1407 return NULL;
1408 default:
1409 break;
1413 list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
1414 if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
1415 int rank;
1417 rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
1418 dst_cnt, src_lst, src_cnt, src_sz);
1419 if (rank > best_rank) {
1420 best_rank = rank;
1421 best_chan = ref->chan;
1426 return best_chan;
1428 EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
1431 * ppc440spe_get_group_entry - get group entry with index idx
1432 * @tdesc: is the last allocated slot in the group.
1434 static struct ppc440spe_adma_desc_slot *
1435 ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
1437 struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
1438 int i = 0;
1440 if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
1441 printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
1442 __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
1443 BUG();
1446 list_for_each_entry(iter, &tdesc->group_list, chain_node) {
1447 if (i++ == entry_idx)
1448 break;
1450 return iter;
1454 * ppc440spe_adma_free_slots - flags descriptor slots for reuse
1455 * @slot: Slot to free
1456 * Caller must hold &ppc440spe_chan->lock while calling this function
1458 static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
1459 struct ppc440spe_adma_chan *chan)
1461 int stride = slot->slots_per_op;
1463 while (stride--) {
1464 slot->slots_per_op = 0;
1465 slot = list_entry(slot->slot_node.next,
1466 struct ppc440spe_adma_desc_slot,
1467 slot_node);
1472 * ppc440spe_adma_run_tx_complete_actions - call functions to be called
1473 * upon completion
1475 static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
1476 struct ppc440spe_adma_desc_slot *desc,
1477 struct ppc440spe_adma_chan *chan,
1478 dma_cookie_t cookie)
1480 BUG_ON(desc->async_tx.cookie < 0);
1481 if (desc->async_tx.cookie > 0) {
1482 cookie = desc->async_tx.cookie;
1483 desc->async_tx.cookie = 0;
1485 dma_descriptor_unmap(&desc->async_tx);
1486 /* call the callback (must not sleep or submit new
1487 * operations to this channel)
1489 dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL);
1492 /* run dependent operations */
1493 dma_run_dependencies(&desc->async_tx);
1495 return cookie;
1499 * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
1501 static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
1502 struct ppc440spe_adma_chan *chan)
1504 /* the client is allowed to attach dependent operations
1505 * until 'ack' is set
1507 if (!async_tx_test_ack(&desc->async_tx))
1508 return 0;
1510 /* leave the last descriptor in the chain
1511 * so we can append to it
1513 if (list_is_last(&desc->chain_node, &chan->chain) ||
1514 desc->phys == ppc440spe_chan_get_current_descriptor(chan))
1515 return 1;
1517 if (chan->device->id != PPC440SPE_XOR_ID) {
1518 /* our DMA interrupt handler clears opc field of
1519 * each processed descriptor. For all types of
1520 * operations except for ZeroSum we do not actually
1521 * need ack from the interrupt handler. ZeroSum is a
1522 * special case since the result of this operation
1523 * is available from the handler only, so if we see
1524 * such type of descriptor (which is unprocessed yet)
1525 * then leave it in chain.
1527 struct dma_cdb *cdb = desc->hw_desc;
1528 if (cdb->opc == DMA_CDB_OPC_DCHECK128)
1529 return 1;
1532 dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
1533 desc->phys, desc->idx, desc->slots_per_op);
1535 list_del(&desc->chain_node);
1536 ppc440spe_adma_free_slots(desc, chan);
1537 return 0;
1541 * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
1542 * which runs through the channel CDBs list until reach the descriptor
1543 * currently processed. When routine determines that all CDBs of group
1544 * are completed then corresponding callbacks (if any) are called and slots
1545 * are freed.
1547 static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1549 struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
1550 dma_cookie_t cookie = 0;
1551 u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
1552 int busy = ppc440spe_chan_is_busy(chan);
1553 int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
1555 dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
1556 chan->device->id, __func__);
1558 if (!current_desc) {
1559 /* There were no transactions yet, so
1560 * nothing to clean
1562 return;
1565 /* free completed slots from the chain starting with
1566 * the oldest descriptor
1568 list_for_each_entry_safe(iter, _iter, &chan->chain,
1569 chain_node) {
1570 dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
1571 "busy: %d this_desc: %#llx next_desc: %#x "
1572 "cur: %#x ack: %d\n",
1573 iter->async_tx.cookie, iter->idx, busy, iter->phys,
1574 ppc440spe_desc_get_link(iter, chan), current_desc,
1575 async_tx_test_ack(&iter->async_tx));
1576 prefetch(_iter);
1577 prefetch(&_iter->async_tx);
1579 /* do not advance past the current descriptor loaded into the
1580 * hardware channel,subsequent descriptors are either in process
1581 * or have not been submitted
1583 if (seen_current)
1584 break;
1586 /* stop the search if we reach the current descriptor and the
1587 * channel is busy, or if it appears that the current descriptor
1588 * needs to be re-read (i.e. has been appended to)
1590 if (iter->phys == current_desc) {
1591 BUG_ON(seen_current++);
1592 if (busy || ppc440spe_desc_get_link(iter, chan)) {
1593 /* not all descriptors of the group have
1594 * been completed; exit.
1596 break;
1600 /* detect the start of a group transaction */
1601 if (!slot_cnt && !slots_per_op) {
1602 slot_cnt = iter->slot_cnt;
1603 slots_per_op = iter->slots_per_op;
1604 if (slot_cnt <= slots_per_op) {
1605 slot_cnt = 0;
1606 slots_per_op = 0;
1610 if (slot_cnt) {
1611 if (!group_start)
1612 group_start = iter;
1613 slot_cnt -= slots_per_op;
1616 /* all the members of a group are complete */
1617 if (slots_per_op != 0 && slot_cnt == 0) {
1618 struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
1619 int end_of_chain = 0;
1621 /* clean up the group */
1622 slot_cnt = group_start->slot_cnt;
1623 grp_iter = group_start;
1624 list_for_each_entry_safe_from(grp_iter, _grp_iter,
1625 &chan->chain, chain_node) {
1627 cookie = ppc440spe_adma_run_tx_complete_actions(
1628 grp_iter, chan, cookie);
1630 slot_cnt -= slots_per_op;
1631 end_of_chain = ppc440spe_adma_clean_slot(
1632 grp_iter, chan);
1633 if (end_of_chain && slot_cnt) {
1634 /* Should wait for ZeroSum completion */
1635 if (cookie > 0)
1636 chan->common.completed_cookie = cookie;
1637 return;
1640 if (slot_cnt == 0 || end_of_chain)
1641 break;
1644 /* the group should be complete at this point */
1645 BUG_ON(slot_cnt);
1647 slots_per_op = 0;
1648 group_start = NULL;
1649 if (end_of_chain)
1650 break;
1651 else
1652 continue;
1653 } else if (slots_per_op) /* wait for group completion */
1654 continue;
1656 cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
1657 cookie);
1659 if (ppc440spe_adma_clean_slot(iter, chan))
1660 break;
1663 BUG_ON(!seen_current);
1665 if (cookie > 0) {
1666 chan->common.completed_cookie = cookie;
1667 pr_debug("\tcompleted cookie %d\n", cookie);
1673 * ppc440spe_adma_tasklet - clean up watch-dog initiator
1675 static void ppc440spe_adma_tasklet(unsigned long data)
1677 struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data;
1679 spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
1680 __ppc440spe_adma_slot_cleanup(chan);
1681 spin_unlock(&chan->lock);
1685 * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
1687 static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1689 spin_lock_bh(&chan->lock);
1690 __ppc440spe_adma_slot_cleanup(chan);
1691 spin_unlock_bh(&chan->lock);
1695 * ppc440spe_adma_alloc_slots - allocate free slots (if any)
1697 static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
1698 struct ppc440spe_adma_chan *chan, int num_slots,
1699 int slots_per_op)
1701 struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
1702 struct ppc440spe_adma_desc_slot *alloc_start = NULL;
1703 struct list_head chain = LIST_HEAD_INIT(chain);
1704 int slots_found, retry = 0;
1707 BUG_ON(!num_slots || !slots_per_op);
1708 /* start search from the last allocated descrtiptor
1709 * if a contiguous allocation can not be found start searching
1710 * from the beginning of the list
1712 retry:
1713 slots_found = 0;
1714 if (retry == 0)
1715 iter = chan->last_used;
1716 else
1717 iter = list_entry(&chan->all_slots,
1718 struct ppc440spe_adma_desc_slot,
1719 slot_node);
1720 list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
1721 slot_node) {
1722 prefetch(_iter);
1723 prefetch(&_iter->async_tx);
1724 if (iter->slots_per_op) {
1725 slots_found = 0;
1726 continue;
1729 /* start the allocation if the slot is correctly aligned */
1730 if (!slots_found++)
1731 alloc_start = iter;
1733 if (slots_found == num_slots) {
1734 struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
1735 struct ppc440spe_adma_desc_slot *last_used = NULL;
1737 iter = alloc_start;
1738 while (num_slots) {
1739 int i;
1740 /* pre-ack all but the last descriptor */
1741 if (num_slots != slots_per_op)
1742 async_tx_ack(&iter->async_tx);
1744 list_add_tail(&iter->chain_node, &chain);
1745 alloc_tail = iter;
1746 iter->async_tx.cookie = 0;
1747 iter->hw_next = NULL;
1748 iter->flags = 0;
1749 iter->slot_cnt = num_slots;
1750 iter->xor_check_result = NULL;
1751 for (i = 0; i < slots_per_op; i++) {
1752 iter->slots_per_op = slots_per_op - i;
1753 last_used = iter;
1754 iter = list_entry(iter->slot_node.next,
1755 struct ppc440spe_adma_desc_slot,
1756 slot_node);
1758 num_slots -= slots_per_op;
1760 alloc_tail->group_head = alloc_start;
1761 alloc_tail->async_tx.cookie = -EBUSY;
1762 list_splice(&chain, &alloc_tail->group_list);
1763 chan->last_used = last_used;
1764 return alloc_tail;
1767 if (!retry++)
1768 goto retry;
1770 /* try to free some slots if the allocation fails */
1771 tasklet_schedule(&chan->irq_tasklet);
1772 return NULL;
1776 * ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots
1778 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
1780 struct ppc440spe_adma_chan *ppc440spe_chan;
1781 struct ppc440spe_adma_desc_slot *slot = NULL;
1782 char *hw_desc;
1783 int i, db_sz;
1784 int init;
1786 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1787 init = ppc440spe_chan->slots_allocated ? 0 : 1;
1788 chan->chan_id = ppc440spe_chan->device->id;
1790 /* Allocate descriptor slots */
1791 i = ppc440spe_chan->slots_allocated;
1792 if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
1793 db_sz = sizeof(struct dma_cdb);
1794 else
1795 db_sz = sizeof(struct xor_cb);
1797 for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
1798 slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
1799 GFP_KERNEL);
1800 if (!slot) {
1801 printk(KERN_INFO "SPE ADMA Channel only initialized"
1802 " %d descriptor slots", i--);
1803 break;
1806 hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
1807 slot->hw_desc = (void *) &hw_desc[i * db_sz];
1808 dma_async_tx_descriptor_init(&slot->async_tx, chan);
1809 slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
1810 INIT_LIST_HEAD(&slot->chain_node);
1811 INIT_LIST_HEAD(&slot->slot_node);
1812 INIT_LIST_HEAD(&slot->group_list);
1813 slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
1814 slot->idx = i;
1816 spin_lock_bh(&ppc440spe_chan->lock);
1817 ppc440spe_chan->slots_allocated++;
1818 list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
1819 spin_unlock_bh(&ppc440spe_chan->lock);
1822 if (i && !ppc440spe_chan->last_used) {
1823 ppc440spe_chan->last_used =
1824 list_entry(ppc440spe_chan->all_slots.next,
1825 struct ppc440spe_adma_desc_slot,
1826 slot_node);
1829 dev_dbg(ppc440spe_chan->device->common.dev,
1830 "ppc440spe adma%d: allocated %d descriptor slots\n",
1831 ppc440spe_chan->device->id, i);
1833 /* initialize the channel and the chain with a null operation */
1834 if (init) {
1835 switch (ppc440spe_chan->device->id) {
1836 case PPC440SPE_DMA0_ID:
1837 case PPC440SPE_DMA1_ID:
1838 ppc440spe_chan->hw_chain_inited = 0;
1839 /* Use WXOR for self-testing */
1840 if (!ppc440spe_r6_tchan)
1841 ppc440spe_r6_tchan = ppc440spe_chan;
1842 break;
1843 case PPC440SPE_XOR_ID:
1844 ppc440spe_chan_start_null_xor(ppc440spe_chan);
1845 break;
1846 default:
1847 BUG();
1849 ppc440spe_chan->needs_unmap = 1;
1852 return (i > 0) ? i : -ENOMEM;
1856 * ppc440spe_rxor_set_region_data -
1858 static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
1859 u8 xor_arg_no, u32 mask)
1861 struct xor_cb *xcb = desc->hw_desc;
1863 xcb->ops[xor_arg_no].h |= mask;
1867 * ppc440spe_rxor_set_src -
1869 static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
1870 u8 xor_arg_no, dma_addr_t addr)
1872 struct xor_cb *xcb = desc->hw_desc;
1874 xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
1875 xcb->ops[xor_arg_no].l = addr;
1879 * ppc440spe_rxor_set_mult -
1881 static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
1882 u8 xor_arg_no, u8 idx, u8 mult)
1884 struct xor_cb *xcb = desc->hw_desc;
1886 xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
1890 * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
1891 * has been achieved
1893 static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
1895 dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
1896 chan->device->id, chan->pending);
1898 if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
1899 chan->pending = 0;
1900 ppc440spe_chan_append(chan);
1905 * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
1906 * (it's not necessary that descriptors will be submitted to the h/w
1907 * chains too right now)
1909 static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
1911 struct ppc440spe_adma_desc_slot *sw_desc;
1912 struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
1913 struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
1914 int slot_cnt;
1915 int slots_per_op;
1916 dma_cookie_t cookie;
1918 sw_desc = tx_to_ppc440spe_adma_slot(tx);
1920 group_start = sw_desc->group_head;
1921 slot_cnt = group_start->slot_cnt;
1922 slots_per_op = group_start->slots_per_op;
1924 spin_lock_bh(&chan->lock);
1925 cookie = dma_cookie_assign(tx);
1927 if (unlikely(list_empty(&chan->chain))) {
1928 /* first peer */
1929 list_splice_init(&sw_desc->group_list, &chan->chain);
1930 chan_first_cdb[chan->device->id] = group_start;
1931 } else {
1932 /* isn't first peer, bind CDBs to chain */
1933 old_chain_tail = list_entry(chan->chain.prev,
1934 struct ppc440spe_adma_desc_slot,
1935 chain_node);
1936 list_splice_init(&sw_desc->group_list,
1937 &old_chain_tail->chain_node);
1938 /* fix up the hardware chain */
1939 ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
1942 /* increment the pending count by the number of operations */
1943 chan->pending += slot_cnt / slots_per_op;
1944 ppc440spe_adma_check_threshold(chan);
1945 spin_unlock_bh(&chan->lock);
1947 dev_dbg(chan->device->common.dev,
1948 "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
1949 chan->device->id, __func__,
1950 sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
1952 return cookie;
1956 * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
1958 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
1959 struct dma_chan *chan, unsigned long flags)
1961 struct ppc440spe_adma_chan *ppc440spe_chan;
1962 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
1963 int slot_cnt, slots_per_op;
1965 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1967 dev_dbg(ppc440spe_chan->device->common.dev,
1968 "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
1969 __func__);
1971 spin_lock_bh(&ppc440spe_chan->lock);
1972 slot_cnt = slots_per_op = 1;
1973 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
1974 slots_per_op);
1975 if (sw_desc) {
1976 group_start = sw_desc->group_head;
1977 ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
1978 group_start->unmap_len = 0;
1979 sw_desc->async_tx.flags = flags;
1981 spin_unlock_bh(&ppc440spe_chan->lock);
1983 return sw_desc ? &sw_desc->async_tx : NULL;
1987 * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
1989 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
1990 struct dma_chan *chan, dma_addr_t dma_dest,
1991 dma_addr_t dma_src, size_t len, unsigned long flags)
1993 struct ppc440spe_adma_chan *ppc440spe_chan;
1994 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
1995 int slot_cnt, slots_per_op;
1997 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1999 if (unlikely(!len))
2000 return NULL;
2002 BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
2004 spin_lock_bh(&ppc440spe_chan->lock);
2006 dev_dbg(ppc440spe_chan->device->common.dev,
2007 "ppc440spe adma%d: %s len: %u int_en %d\n",
2008 ppc440spe_chan->device->id, __func__, len,
2009 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2010 slot_cnt = slots_per_op = 1;
2011 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2012 slots_per_op);
2013 if (sw_desc) {
2014 group_start = sw_desc->group_head;
2015 ppc440spe_desc_init_memcpy(group_start, flags);
2016 ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2017 ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
2018 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2019 sw_desc->unmap_len = len;
2020 sw_desc->async_tx.flags = flags;
2022 spin_unlock_bh(&ppc440spe_chan->lock);
2024 return sw_desc ? &sw_desc->async_tx : NULL;
2028 * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
2030 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
2031 struct dma_chan *chan, dma_addr_t dma_dest,
2032 dma_addr_t *dma_src, u32 src_cnt, size_t len,
2033 unsigned long flags)
2035 struct ppc440spe_adma_chan *ppc440spe_chan;
2036 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2037 int slot_cnt, slots_per_op;
2039 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2041 ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
2042 dma_dest, dma_src, src_cnt));
2043 if (unlikely(!len))
2044 return NULL;
2045 BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2047 dev_dbg(ppc440spe_chan->device->common.dev,
2048 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2049 ppc440spe_chan->device->id, __func__, src_cnt, len,
2050 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2052 spin_lock_bh(&ppc440spe_chan->lock);
2053 slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
2054 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2055 slots_per_op);
2056 if (sw_desc) {
2057 group_start = sw_desc->group_head;
2058 ppc440spe_desc_init_xor(group_start, src_cnt, flags);
2059 ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2060 while (src_cnt--)
2061 ppc440spe_adma_memcpy_xor_set_src(group_start,
2062 dma_src[src_cnt], src_cnt);
2063 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2064 sw_desc->unmap_len = len;
2065 sw_desc->async_tx.flags = flags;
2067 spin_unlock_bh(&ppc440spe_chan->lock);
2069 return sw_desc ? &sw_desc->async_tx : NULL;
2072 static inline void
2073 ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
2074 int src_cnt);
2075 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
2078 * ppc440spe_adma_init_dma2rxor_slot -
2080 static void ppc440spe_adma_init_dma2rxor_slot(
2081 struct ppc440spe_adma_desc_slot *desc,
2082 dma_addr_t *src, int src_cnt)
2084 int i;
2086 /* initialize CDB */
2087 for (i = 0; i < src_cnt; i++) {
2088 ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
2089 desc->src_cnt, (u32)src[i]);
2094 * ppc440spe_dma01_prep_mult -
2095 * for Q operation where destination is also the source
2097 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
2098 struct ppc440spe_adma_chan *ppc440spe_chan,
2099 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2100 const unsigned char *scf, size_t len, unsigned long flags)
2102 struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2103 unsigned long op = 0;
2104 int slot_cnt;
2106 set_bit(PPC440SPE_DESC_WXOR, &op);
2107 slot_cnt = 2;
2109 spin_lock_bh(&ppc440spe_chan->lock);
2111 /* use WXOR, each descriptor occupies one slot */
2112 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2113 if (sw_desc) {
2114 struct ppc440spe_adma_chan *chan;
2115 struct ppc440spe_adma_desc_slot *iter;
2116 struct dma_cdb *hw_desc;
2118 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2119 set_bits(op, &sw_desc->flags);
2120 sw_desc->src_cnt = src_cnt;
2121 sw_desc->dst_cnt = dst_cnt;
2122 /* First descriptor, zero data in the destination and copy it
2123 * to q page using MULTICAST transfer.
2125 iter = list_first_entry(&sw_desc->group_list,
2126 struct ppc440spe_adma_desc_slot,
2127 chain_node);
2128 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2129 /* set 'next' pointer */
2130 iter->hw_next = list_entry(iter->chain_node.next,
2131 struct ppc440spe_adma_desc_slot,
2132 chain_node);
2133 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2134 hw_desc = iter->hw_desc;
2135 hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2137 ppc440spe_desc_set_dest_addr(iter, chan,
2138 DMA_CUED_XOR_BASE, dst[0], 0);
2139 ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
2140 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2141 src[0]);
2142 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2143 iter->unmap_len = len;
2146 * Second descriptor, multiply data from the q page
2147 * and store the result in real destination.
2149 iter = list_first_entry(&iter->chain_node,
2150 struct ppc440spe_adma_desc_slot,
2151 chain_node);
2152 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2153 iter->hw_next = NULL;
2154 if (flags & DMA_PREP_INTERRUPT)
2155 set_bit(PPC440SPE_DESC_INT, &iter->flags);
2156 else
2157 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2159 hw_desc = iter->hw_desc;
2160 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2161 ppc440spe_desc_set_src_addr(iter, chan, 0,
2162 DMA_CUED_XOR_HB, dst[1]);
2163 ppc440spe_desc_set_dest_addr(iter, chan,
2164 DMA_CUED_XOR_BASE, dst[0], 0);
2166 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2167 DMA_CDB_SG_DST1, scf[0]);
2168 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2169 iter->unmap_len = len;
2170 sw_desc->async_tx.flags = flags;
2173 spin_unlock_bh(&ppc440spe_chan->lock);
2175 return sw_desc;
2179 * ppc440spe_dma01_prep_sum_product -
2180 * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
2181 * the source.
2183 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
2184 struct ppc440spe_adma_chan *ppc440spe_chan,
2185 dma_addr_t *dst, dma_addr_t *src, int src_cnt,
2186 const unsigned char *scf, size_t len, unsigned long flags)
2188 struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2189 unsigned long op = 0;
2190 int slot_cnt;
2192 set_bit(PPC440SPE_DESC_WXOR, &op);
2193 slot_cnt = 3;
2195 spin_lock_bh(&ppc440spe_chan->lock);
2197 /* WXOR, each descriptor occupies one slot */
2198 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2199 if (sw_desc) {
2200 struct ppc440spe_adma_chan *chan;
2201 struct ppc440spe_adma_desc_slot *iter;
2202 struct dma_cdb *hw_desc;
2204 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2205 set_bits(op, &sw_desc->flags);
2206 sw_desc->src_cnt = src_cnt;
2207 sw_desc->dst_cnt = 1;
2208 /* 1st descriptor, src[1] data to q page and zero destination */
2209 iter = list_first_entry(&sw_desc->group_list,
2210 struct ppc440spe_adma_desc_slot,
2211 chain_node);
2212 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2213 iter->hw_next = list_entry(iter->chain_node.next,
2214 struct ppc440spe_adma_desc_slot,
2215 chain_node);
2216 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2217 hw_desc = iter->hw_desc;
2218 hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2220 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2221 *dst, 0);
2222 ppc440spe_desc_set_dest_addr(iter, chan, 0,
2223 ppc440spe_chan->qdest, 1);
2224 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2225 src[1]);
2226 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2227 iter->unmap_len = len;
2229 /* 2nd descriptor, multiply src[1] data and store the
2230 * result in destination */
2231 iter = list_first_entry(&iter->chain_node,
2232 struct ppc440spe_adma_desc_slot,
2233 chain_node);
2234 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2235 /* set 'next' pointer */
2236 iter->hw_next = list_entry(iter->chain_node.next,
2237 struct ppc440spe_adma_desc_slot,
2238 chain_node);
2239 if (flags & DMA_PREP_INTERRUPT)
2240 set_bit(PPC440SPE_DESC_INT, &iter->flags);
2241 else
2242 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2244 hw_desc = iter->hw_desc;
2245 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2246 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2247 ppc440spe_chan->qdest);
2248 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2249 *dst, 0);
2250 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2251 DMA_CDB_SG_DST1, scf[1]);
2252 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2253 iter->unmap_len = len;
2256 * 3rd descriptor, multiply src[0] data and xor it
2257 * with destination
2259 iter = list_first_entry(&iter->chain_node,
2260 struct ppc440spe_adma_desc_slot,
2261 chain_node);
2262 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2263 iter->hw_next = NULL;
2264 if (flags & DMA_PREP_INTERRUPT)
2265 set_bit(PPC440SPE_DESC_INT, &iter->flags);
2266 else
2267 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2269 hw_desc = iter->hw_desc;
2270 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2271 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2272 src[0]);
2273 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2274 *dst, 0);
2275 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2276 DMA_CDB_SG_DST1, scf[0]);
2277 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2278 iter->unmap_len = len;
2279 sw_desc->async_tx.flags = flags;
2282 spin_unlock_bh(&ppc440spe_chan->lock);
2284 return sw_desc;
2287 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
2288 struct ppc440spe_adma_chan *ppc440spe_chan,
2289 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2290 const unsigned char *scf, size_t len, unsigned long flags)
2292 int slot_cnt;
2293 struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2294 unsigned long op = 0;
2295 unsigned char mult = 1;
2297 pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2298 __func__, dst_cnt, src_cnt, len);
2299 /* select operations WXOR/RXOR depending on the
2300 * source addresses of operators and the number
2301 * of destinations (RXOR support only Q-parity calculations)
2303 set_bit(PPC440SPE_DESC_WXOR, &op);
2304 if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
2305 /* no active RXOR;
2306 * do RXOR if:
2307 * - there are more than 1 source,
2308 * - len is aligned on 512-byte boundary,
2309 * - source addresses fit to one of 4 possible regions.
2311 if (src_cnt > 1 &&
2312 !(len & MQ0_CF2H_RXOR_BS_MASK) &&
2313 (src[0] + len) == src[1]) {
2314 /* may do RXOR R1 R2 */
2315 set_bit(PPC440SPE_DESC_RXOR, &op);
2316 if (src_cnt != 2) {
2317 /* may try to enhance region of RXOR */
2318 if ((src[1] + len) == src[2]) {
2319 /* do RXOR R1 R2 R3 */
2320 set_bit(PPC440SPE_DESC_RXOR123,
2321 &op);
2322 } else if ((src[1] + len * 2) == src[2]) {
2323 /* do RXOR R1 R2 R4 */
2324 set_bit(PPC440SPE_DESC_RXOR124, &op);
2325 } else if ((src[1] + len * 3) == src[2]) {
2326 /* do RXOR R1 R2 R5 */
2327 set_bit(PPC440SPE_DESC_RXOR125,
2328 &op);
2329 } else {
2330 /* do RXOR R1 R2 */
2331 set_bit(PPC440SPE_DESC_RXOR12,
2332 &op);
2334 } else {
2335 /* do RXOR R1 R2 */
2336 set_bit(PPC440SPE_DESC_RXOR12, &op);
2340 if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2341 /* can not do this operation with RXOR */
2342 clear_bit(PPC440SPE_RXOR_RUN,
2343 &ppc440spe_rxor_state);
2344 } else {
2345 /* can do; set block size right now */
2346 ppc440spe_desc_set_rxor_block_size(len);
2350 /* Number of necessary slots depends on operation type selected */
2351 if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2352 /* This is a WXOR only chain. Need descriptors for each
2353 * source to GF-XOR them with WXOR, and need descriptors
2354 * for each destination to zero them with WXOR
2356 slot_cnt = src_cnt;
2358 if (flags & DMA_PREP_ZERO_P) {
2359 slot_cnt++;
2360 set_bit(PPC440SPE_ZERO_P, &op);
2362 if (flags & DMA_PREP_ZERO_Q) {
2363 slot_cnt++;
2364 set_bit(PPC440SPE_ZERO_Q, &op);
2366 } else {
2367 /* Need 1/2 descriptor for RXOR operation, and
2368 * need (src_cnt - (2 or 3)) for WXOR of sources
2369 * remained (if any)
2371 slot_cnt = dst_cnt;
2373 if (flags & DMA_PREP_ZERO_P)
2374 set_bit(PPC440SPE_ZERO_P, &op);
2375 if (flags & DMA_PREP_ZERO_Q)
2376 set_bit(PPC440SPE_ZERO_Q, &op);
2378 if (test_bit(PPC440SPE_DESC_RXOR12, &op))
2379 slot_cnt += src_cnt - 2;
2380 else
2381 slot_cnt += src_cnt - 3;
2383 /* Thus we have either RXOR only chain or
2384 * mixed RXOR/WXOR
2386 if (slot_cnt == dst_cnt)
2387 /* RXOR only chain */
2388 clear_bit(PPC440SPE_DESC_WXOR, &op);
2391 spin_lock_bh(&ppc440spe_chan->lock);
2392 /* for both RXOR/WXOR each descriptor occupies one slot */
2393 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2394 if (sw_desc) {
2395 ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
2396 flags, op);
2398 /* setup dst/src/mult */
2399 pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
2400 __func__, dst[0], dst[1]);
2401 ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2402 while (src_cnt--) {
2403 ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2404 src_cnt);
2406 /* NOTE: "Multi = 0 is equivalent to = 1" as it
2407 * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
2408 * doesn't work for RXOR with DMA0/1! Instead, multi=0
2409 * leads to zeroing source data after RXOR.
2410 * So, for P case set-up mult=1 explicitly.
2412 if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2413 mult = scf[src_cnt];
2414 ppc440spe_adma_pq_set_src_mult(sw_desc,
2415 mult, src_cnt, dst_cnt - 1);
2418 /* Setup byte count foreach slot just allocated */
2419 sw_desc->async_tx.flags = flags;
2420 list_for_each_entry(iter, &sw_desc->group_list,
2421 chain_node) {
2422 ppc440spe_desc_set_byte_count(iter,
2423 ppc440spe_chan, len);
2424 iter->unmap_len = len;
2427 spin_unlock_bh(&ppc440spe_chan->lock);
2429 return sw_desc;
2432 static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
2433 struct ppc440spe_adma_chan *ppc440spe_chan,
2434 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2435 const unsigned char *scf, size_t len, unsigned long flags)
2437 int slot_cnt, descs_per_op;
2438 struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2439 unsigned long op = 0;
2440 unsigned char mult = 1;
2442 BUG_ON(!dst_cnt);
2443 /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2444 __func__, dst_cnt, src_cnt, len);*/
2446 spin_lock_bh(&ppc440spe_chan->lock);
2447 descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
2448 if (descs_per_op < 0) {
2449 spin_unlock_bh(&ppc440spe_chan->lock);
2450 return NULL;
2453 /* depending on number of sources we have 1 or 2 RXOR chains */
2454 slot_cnt = descs_per_op * dst_cnt;
2456 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2457 if (sw_desc) {
2458 op = slot_cnt;
2459 sw_desc->async_tx.flags = flags;
2460 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2461 ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
2462 --op ? 0 : flags);
2463 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2464 len);
2465 iter->unmap_len = len;
2467 ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
2468 iter->rxor_cursor.len = len;
2469 iter->descs_per_op = descs_per_op;
2471 op = 0;
2472 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2473 op++;
2474 if (op % descs_per_op == 0)
2475 ppc440spe_adma_init_dma2rxor_slot(iter, src,
2476 src_cnt);
2477 if (likely(!list_is_last(&iter->chain_node,
2478 &sw_desc->group_list))) {
2479 /* set 'next' pointer */
2480 iter->hw_next =
2481 list_entry(iter->chain_node.next,
2482 struct ppc440spe_adma_desc_slot,
2483 chain_node);
2484 ppc440spe_xor_set_link(iter, iter->hw_next);
2485 } else {
2486 /* this is the last descriptor. */
2487 iter->hw_next = NULL;
2491 /* fixup head descriptor */
2492 sw_desc->dst_cnt = dst_cnt;
2493 if (flags & DMA_PREP_ZERO_P)
2494 set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
2495 if (flags & DMA_PREP_ZERO_Q)
2496 set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
2498 /* setup dst/src/mult */
2499 ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2501 while (src_cnt--) {
2502 /* handle descriptors (if dst_cnt == 2) inside
2503 * the ppc440spe_adma_pq_set_srcxxx() functions
2505 ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2506 src_cnt);
2507 if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2508 mult = scf[src_cnt];
2509 ppc440spe_adma_pq_set_src_mult(sw_desc,
2510 mult, src_cnt, dst_cnt - 1);
2513 spin_unlock_bh(&ppc440spe_chan->lock);
2514 ppc440spe_desc_set_rxor_block_size(len);
2515 return sw_desc;
2519 * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
2521 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
2522 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
2523 unsigned int src_cnt, const unsigned char *scf,
2524 size_t len, unsigned long flags)
2526 struct ppc440spe_adma_chan *ppc440spe_chan;
2527 struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2528 int dst_cnt = 0;
2530 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2532 ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
2533 dst, src, src_cnt));
2534 BUG_ON(!len);
2535 BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2536 BUG_ON(!src_cnt);
2538 if (src_cnt == 1 && dst[1] == src[0]) {
2539 dma_addr_t dest[2];
2541 /* dst[1] is real destination (Q) */
2542 dest[0] = dst[1];
2543 /* this is the page to multicast source data to */
2544 dest[1] = ppc440spe_chan->qdest;
2545 sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
2546 dest, 2, src, src_cnt, scf, len, flags);
2547 return sw_desc ? &sw_desc->async_tx : NULL;
2550 if (src_cnt == 2 && dst[1] == src[1]) {
2551 sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
2552 &dst[1], src, 2, scf, len, flags);
2553 return sw_desc ? &sw_desc->async_tx : NULL;
2556 if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
2557 BUG_ON(!dst[0]);
2558 dst_cnt++;
2559 flags |= DMA_PREP_ZERO_P;
2562 if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
2563 BUG_ON(!dst[1]);
2564 dst_cnt++;
2565 flags |= DMA_PREP_ZERO_Q;
2568 BUG_ON(!dst_cnt);
2570 dev_dbg(ppc440spe_chan->device->common.dev,
2571 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2572 ppc440spe_chan->device->id, __func__, src_cnt, len,
2573 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2575 switch (ppc440spe_chan->device->id) {
2576 case PPC440SPE_DMA0_ID:
2577 case PPC440SPE_DMA1_ID:
2578 sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
2579 dst, dst_cnt, src, src_cnt, scf,
2580 len, flags);
2581 break;
2583 case PPC440SPE_XOR_ID:
2584 sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
2585 dst, dst_cnt, src, src_cnt, scf,
2586 len, flags);
2587 break;
2590 return sw_desc ? &sw_desc->async_tx : NULL;
2594 * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
2595 * a PQ_ZERO_SUM operation
2597 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
2598 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
2599 unsigned int src_cnt, const unsigned char *scf, size_t len,
2600 enum sum_check_flags *pqres, unsigned long flags)
2602 struct ppc440spe_adma_chan *ppc440spe_chan;
2603 struct ppc440spe_adma_desc_slot *sw_desc, *iter;
2604 dma_addr_t pdest, qdest;
2605 int slot_cnt, slots_per_op, idst, dst_cnt;
2607 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2609 if (flags & DMA_PREP_PQ_DISABLE_P)
2610 pdest = 0;
2611 else
2612 pdest = pq[0];
2614 if (flags & DMA_PREP_PQ_DISABLE_Q)
2615 qdest = 0;
2616 else
2617 qdest = pq[1];
2619 ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
2620 src, src_cnt, scf));
2622 /* Always use WXOR for P/Q calculations (two destinations).
2623 * Need 1 or 2 extra slots to verify results are zero.
2625 idst = dst_cnt = (pdest && qdest) ? 2 : 1;
2627 /* One additional slot per destination to clone P/Q
2628 * before calculation (we have to preserve destinations).
2630 slot_cnt = src_cnt + dst_cnt * 2;
2631 slots_per_op = 1;
2633 spin_lock_bh(&ppc440spe_chan->lock);
2634 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2635 slots_per_op);
2636 if (sw_desc) {
2637 ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
2639 /* Setup byte count for each slot just allocated */
2640 sw_desc->async_tx.flags = flags;
2641 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2642 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2643 len);
2644 iter->unmap_len = len;
2647 if (pdest) {
2648 struct dma_cdb *hw_desc;
2649 struct ppc440spe_adma_chan *chan;
2651 iter = sw_desc->group_head;
2652 chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2653 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2654 iter->hw_next = list_entry(iter->chain_node.next,
2655 struct ppc440spe_adma_desc_slot,
2656 chain_node);
2657 hw_desc = iter->hw_desc;
2658 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2659 iter->src_cnt = 0;
2660 iter->dst_cnt = 0;
2661 ppc440spe_desc_set_dest_addr(iter, chan, 0,
2662 ppc440spe_chan->pdest, 0);
2663 ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
2664 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2665 len);
2666 iter->unmap_len = 0;
2667 /* override pdest to preserve original P */
2668 pdest = ppc440spe_chan->pdest;
2670 if (qdest) {
2671 struct dma_cdb *hw_desc;
2672 struct ppc440spe_adma_chan *chan;
2674 iter = list_first_entry(&sw_desc->group_list,
2675 struct ppc440spe_adma_desc_slot,
2676 chain_node);
2677 chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2679 if (pdest) {
2680 iter = list_entry(iter->chain_node.next,
2681 struct ppc440spe_adma_desc_slot,
2682 chain_node);
2685 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2686 iter->hw_next = list_entry(iter->chain_node.next,
2687 struct ppc440spe_adma_desc_slot,
2688 chain_node);
2689 hw_desc = iter->hw_desc;
2690 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2691 iter->src_cnt = 0;
2692 iter->dst_cnt = 0;
2693 ppc440spe_desc_set_dest_addr(iter, chan, 0,
2694 ppc440spe_chan->qdest, 0);
2695 ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
2696 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2697 len);
2698 iter->unmap_len = 0;
2699 /* override qdest to preserve original Q */
2700 qdest = ppc440spe_chan->qdest;
2703 /* Setup destinations for P/Q ops */
2704 ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
2706 /* Setup zero QWORDs into DCHECK CDBs */
2707 idst = dst_cnt;
2708 list_for_each_entry_reverse(iter, &sw_desc->group_list,
2709 chain_node) {
2711 * The last CDB corresponds to Q-parity check,
2712 * the one before last CDB corresponds
2713 * P-parity check
2715 if (idst == DMA_DEST_MAX_NUM) {
2716 if (idst == dst_cnt) {
2717 set_bit(PPC440SPE_DESC_QCHECK,
2718 &iter->flags);
2719 } else {
2720 set_bit(PPC440SPE_DESC_PCHECK,
2721 &iter->flags);
2723 } else {
2724 if (qdest) {
2725 set_bit(PPC440SPE_DESC_QCHECK,
2726 &iter->flags);
2727 } else {
2728 set_bit(PPC440SPE_DESC_PCHECK,
2729 &iter->flags);
2732 iter->xor_check_result = pqres;
2735 * set it to zero, if check fail then result will
2736 * be updated
2738 *iter->xor_check_result = 0;
2739 ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
2740 ppc440spe_qword);
2742 if (!(--dst_cnt))
2743 break;
2746 /* Setup sources and mults for P/Q ops */
2747 list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
2748 chain_node) {
2749 struct ppc440spe_adma_chan *chan;
2750 u32 mult_dst;
2752 chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2753 ppc440spe_desc_set_src_addr(iter, chan, 0,
2754 DMA_CUED_XOR_HB,
2755 src[src_cnt - 1]);
2756 if (qdest) {
2757 mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
2758 DMA_CDB_SG_DST1;
2759 ppc440spe_desc_set_src_mult(iter, chan,
2760 DMA_CUED_MULT1_OFF,
2761 mult_dst,
2762 scf[src_cnt - 1]);
2764 if (!(--src_cnt))
2765 break;
2768 spin_unlock_bh(&ppc440spe_chan->lock);
2769 return sw_desc ? &sw_desc->async_tx : NULL;
2773 * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
2774 * XOR ZERO_SUM operation
2776 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
2777 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
2778 size_t len, enum sum_check_flags *result, unsigned long flags)
2780 struct dma_async_tx_descriptor *tx;
2781 dma_addr_t pq[2];
2783 /* validate P, disable Q */
2784 pq[0] = src[0];
2785 pq[1] = 0;
2786 flags |= DMA_PREP_PQ_DISABLE_Q;
2788 tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
2789 src_cnt - 1, 0, len,
2790 result, flags);
2791 return tx;
2795 * ppc440spe_adma_set_dest - set destination address into descriptor
2797 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
2798 dma_addr_t addr, int index)
2800 struct ppc440spe_adma_chan *chan;
2802 BUG_ON(index >= sw_desc->dst_cnt);
2804 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2806 switch (chan->device->id) {
2807 case PPC440SPE_DMA0_ID:
2808 case PPC440SPE_DMA1_ID:
2809 /* to do: support transfers lengths >
2810 * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
2812 ppc440spe_desc_set_dest_addr(sw_desc->group_head,
2813 chan, 0, addr, index);
2814 break;
2815 case PPC440SPE_XOR_ID:
2816 sw_desc = ppc440spe_get_group_entry(sw_desc, index);
2817 ppc440spe_desc_set_dest_addr(sw_desc,
2818 chan, 0, addr, index);
2819 break;
2823 static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
2824 struct ppc440spe_adma_chan *chan, dma_addr_t addr)
2826 /* To clear destinations update the descriptor
2827 * (P or Q depending on index) as follows:
2828 * addr is destination (0 corresponds to SG2):
2830 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
2832 /* ... and the addr is source: */
2833 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
2835 /* addr is always SG2 then the mult is always DST1 */
2836 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2837 DMA_CDB_SG_DST1, 1);
2841 * ppc440spe_adma_pq_set_dest - set destination address into descriptor
2842 * for the PQXOR operation
2844 static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
2845 dma_addr_t *addrs, unsigned long flags)
2847 struct ppc440spe_adma_desc_slot *iter;
2848 struct ppc440spe_adma_chan *chan;
2849 dma_addr_t paddr, qaddr;
2850 dma_addr_t addr = 0, ppath, qpath;
2851 int index = 0, i;
2853 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2855 if (flags & DMA_PREP_PQ_DISABLE_P)
2856 paddr = 0;
2857 else
2858 paddr = addrs[0];
2860 if (flags & DMA_PREP_PQ_DISABLE_Q)
2861 qaddr = 0;
2862 else
2863 qaddr = addrs[1];
2865 if (!paddr || !qaddr)
2866 addr = paddr ? paddr : qaddr;
2868 switch (chan->device->id) {
2869 case PPC440SPE_DMA0_ID:
2870 case PPC440SPE_DMA1_ID:
2871 /* walk through the WXOR source list and set P/Q-destinations
2872 * for each slot:
2874 if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
2875 /* This is WXOR-only chain; may have 1/2 zero descs */
2876 if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
2877 index++;
2878 if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
2879 index++;
2881 iter = ppc440spe_get_group_entry(sw_desc, index);
2882 if (addr) {
2883 /* one destination */
2884 list_for_each_entry_from(iter,
2885 &sw_desc->group_list, chain_node)
2886 ppc440spe_desc_set_dest_addr(iter, chan,
2887 DMA_CUED_XOR_BASE, addr, 0);
2888 } else {
2889 /* two destinations */
2890 list_for_each_entry_from(iter,
2891 &sw_desc->group_list, chain_node) {
2892 ppc440spe_desc_set_dest_addr(iter, chan,
2893 DMA_CUED_XOR_BASE, paddr, 0);
2894 ppc440spe_desc_set_dest_addr(iter, chan,
2895 DMA_CUED_XOR_BASE, qaddr, 1);
2899 if (index) {
2900 /* To clear destinations update the descriptor
2901 * (1st,2nd, or both depending on flags)
2903 index = 0;
2904 if (test_bit(PPC440SPE_ZERO_P,
2905 &sw_desc->flags)) {
2906 iter = ppc440spe_get_group_entry(
2907 sw_desc, index++);
2908 ppc440spe_adma_pq_zero_op(iter, chan,
2909 paddr);
2912 if (test_bit(PPC440SPE_ZERO_Q,
2913 &sw_desc->flags)) {
2914 iter = ppc440spe_get_group_entry(
2915 sw_desc, index++);
2916 ppc440spe_adma_pq_zero_op(iter, chan,
2917 qaddr);
2920 return;
2922 } else {
2923 /* This is RXOR-only or RXOR/WXOR mixed chain */
2925 /* If we want to include destination into calculations,
2926 * then make dest addresses cued with mult=1 (XOR).
2928 ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
2929 DMA_CUED_XOR_HB :
2930 DMA_CUED_XOR_BASE |
2931 (1 << DMA_CUED_MULT1_OFF);
2932 qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
2933 DMA_CUED_XOR_HB :
2934 DMA_CUED_XOR_BASE |
2935 (1 << DMA_CUED_MULT1_OFF);
2937 /* Setup destination(s) in RXOR slot(s) */
2938 iter = ppc440spe_get_group_entry(sw_desc, index++);
2939 ppc440spe_desc_set_dest_addr(iter, chan,
2940 paddr ? ppath : qpath,
2941 paddr ? paddr : qaddr, 0);
2942 if (!addr) {
2943 /* two destinations */
2944 iter = ppc440spe_get_group_entry(sw_desc,
2945 index++);
2946 ppc440spe_desc_set_dest_addr(iter, chan,
2947 qpath, qaddr, 0);
2950 if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
2951 /* Setup destination(s) in remaining WXOR
2952 * slots
2954 iter = ppc440spe_get_group_entry(sw_desc,
2955 index);
2956 if (addr) {
2957 /* one destination */
2958 list_for_each_entry_from(iter,
2959 &sw_desc->group_list,
2960 chain_node)
2961 ppc440spe_desc_set_dest_addr(
2962 iter, chan,
2963 DMA_CUED_XOR_BASE,
2964 addr, 0);
2966 } else {
2967 /* two destinations */
2968 list_for_each_entry_from(iter,
2969 &sw_desc->group_list,
2970 chain_node) {
2971 ppc440spe_desc_set_dest_addr(
2972 iter, chan,
2973 DMA_CUED_XOR_BASE,
2974 paddr, 0);
2975 ppc440spe_desc_set_dest_addr(
2976 iter, chan,
2977 DMA_CUED_XOR_BASE,
2978 qaddr, 1);
2984 break;
2986 case PPC440SPE_XOR_ID:
2987 /* DMA2 descriptors have only 1 destination, so there are
2988 * two chains - one for each dest.
2989 * If we want to include destination into calculations,
2990 * then make dest addresses cued with mult=1 (XOR).
2992 ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
2993 DMA_CUED_XOR_HB :
2994 DMA_CUED_XOR_BASE |
2995 (1 << DMA_CUED_MULT1_OFF);
2997 qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
2998 DMA_CUED_XOR_HB :
2999 DMA_CUED_XOR_BASE |
3000 (1 << DMA_CUED_MULT1_OFF);
3002 iter = ppc440spe_get_group_entry(sw_desc, 0);
3003 for (i = 0; i < sw_desc->descs_per_op; i++) {
3004 ppc440spe_desc_set_dest_addr(iter, chan,
3005 paddr ? ppath : qpath,
3006 paddr ? paddr : qaddr, 0);
3007 iter = list_entry(iter->chain_node.next,
3008 struct ppc440spe_adma_desc_slot,
3009 chain_node);
3012 if (!addr) {
3013 /* Two destinations; setup Q here */
3014 iter = ppc440spe_get_group_entry(sw_desc,
3015 sw_desc->descs_per_op);
3016 for (i = 0; i < sw_desc->descs_per_op; i++) {
3017 ppc440spe_desc_set_dest_addr(iter,
3018 chan, qpath, qaddr, 0);
3019 iter = list_entry(iter->chain_node.next,
3020 struct ppc440spe_adma_desc_slot,
3021 chain_node);
3025 break;
3030 * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
3031 * for the PQ_ZERO_SUM operation
3033 static void ppc440spe_adma_pqzero_sum_set_dest(
3034 struct ppc440spe_adma_desc_slot *sw_desc,
3035 dma_addr_t paddr, dma_addr_t qaddr)
3037 struct ppc440spe_adma_desc_slot *iter, *end;
3038 struct ppc440spe_adma_chan *chan;
3039 dma_addr_t addr = 0;
3040 int idx;
3042 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3044 /* walk through the WXOR source list and set P/Q-destinations
3045 * for each slot
3047 idx = (paddr && qaddr) ? 2 : 1;
3048 /* set end */
3049 list_for_each_entry_reverse(end, &sw_desc->group_list,
3050 chain_node) {
3051 if (!(--idx))
3052 break;
3054 /* set start */
3055 idx = (paddr && qaddr) ? 2 : 1;
3056 iter = ppc440spe_get_group_entry(sw_desc, idx);
3058 if (paddr && qaddr) {
3059 /* two destinations */
3060 list_for_each_entry_from(iter, &sw_desc->group_list,
3061 chain_node) {
3062 if (unlikely(iter == end))
3063 break;
3064 ppc440spe_desc_set_dest_addr(iter, chan,
3065 DMA_CUED_XOR_BASE, paddr, 0);
3066 ppc440spe_desc_set_dest_addr(iter, chan,
3067 DMA_CUED_XOR_BASE, qaddr, 1);
3069 } else {
3070 /* one destination */
3071 addr = paddr ? paddr : qaddr;
3072 list_for_each_entry_from(iter, &sw_desc->group_list,
3073 chain_node) {
3074 if (unlikely(iter == end))
3075 break;
3076 ppc440spe_desc_set_dest_addr(iter, chan,
3077 DMA_CUED_XOR_BASE, addr, 0);
3081 /* The remaining descriptors are DATACHECK. These have no need in
3082 * destination. Actually, these destinations are used there
3083 * as sources for check operation. So, set addr as source.
3085 ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
3087 if (!addr) {
3088 end = list_entry(end->chain_node.next,
3089 struct ppc440spe_adma_desc_slot, chain_node);
3090 ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
3095 * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
3097 static inline void ppc440spe_desc_set_xor_src_cnt(
3098 struct ppc440spe_adma_desc_slot *desc,
3099 int src_cnt)
3101 struct xor_cb *hw_desc = desc->hw_desc;
3103 hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
3104 hw_desc->cbc |= src_cnt;
3108 * ppc440spe_adma_pq_set_src - set source address into descriptor
3110 static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
3111 dma_addr_t addr, int index)
3113 struct ppc440spe_adma_chan *chan;
3114 dma_addr_t haddr = 0;
3115 struct ppc440spe_adma_desc_slot *iter = NULL;
3117 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3119 switch (chan->device->id) {
3120 case PPC440SPE_DMA0_ID:
3121 case PPC440SPE_DMA1_ID:
3122 /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
3124 if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3125 /* RXOR-only or RXOR/WXOR operation */
3126 int iskip = test_bit(PPC440SPE_DESC_RXOR12,
3127 &sw_desc->flags) ? 2 : 3;
3129 if (index == 0) {
3130 /* 1st slot (RXOR) */
3131 /* setup sources region (R1-2-3, R1-2-4,
3132 * or R1-2-5)
3134 if (test_bit(PPC440SPE_DESC_RXOR12,
3135 &sw_desc->flags))
3136 haddr = DMA_RXOR12 <<
3137 DMA_CUED_REGION_OFF;
3138 else if (test_bit(PPC440SPE_DESC_RXOR123,
3139 &sw_desc->flags))
3140 haddr = DMA_RXOR123 <<
3141 DMA_CUED_REGION_OFF;
3142 else if (test_bit(PPC440SPE_DESC_RXOR124,
3143 &sw_desc->flags))
3144 haddr = DMA_RXOR124 <<
3145 DMA_CUED_REGION_OFF;
3146 else if (test_bit(PPC440SPE_DESC_RXOR125,
3147 &sw_desc->flags))
3148 haddr = DMA_RXOR125 <<
3149 DMA_CUED_REGION_OFF;
3150 else
3151 BUG();
3152 haddr |= DMA_CUED_XOR_BASE;
3153 iter = ppc440spe_get_group_entry(sw_desc, 0);
3154 } else if (index < iskip) {
3155 /* 1st slot (RXOR)
3156 * shall actually set source address only once
3157 * instead of first <iskip>
3159 iter = NULL;
3160 } else {
3161 /* 2nd/3d and next slots (WXOR);
3162 * skip first slot with RXOR
3164 haddr = DMA_CUED_XOR_HB;
3165 iter = ppc440spe_get_group_entry(sw_desc,
3166 index - iskip + sw_desc->dst_cnt);
3168 } else {
3169 int znum = 0;
3171 /* WXOR-only operation; skip first slots with
3172 * zeroing destinations
3174 if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3175 znum++;
3176 if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3177 znum++;
3179 haddr = DMA_CUED_XOR_HB;
3180 iter = ppc440spe_get_group_entry(sw_desc,
3181 index + znum);
3184 if (likely(iter)) {
3185 ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
3187 if (!index &&
3188 test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
3189 sw_desc->dst_cnt == 2) {
3190 /* if we have two destinations for RXOR, then
3191 * setup source in the second descr too
3193 iter = ppc440spe_get_group_entry(sw_desc, 1);
3194 ppc440spe_desc_set_src_addr(iter, chan, 0,
3195 haddr, addr);
3198 break;
3200 case PPC440SPE_XOR_ID:
3201 /* DMA2 may do Biskup */
3202 iter = sw_desc->group_head;
3203 if (iter->dst_cnt == 2) {
3204 /* both P & Q calculations required; set P src here */
3205 ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3207 /* this is for Q */
3208 iter = ppc440spe_get_group_entry(sw_desc,
3209 sw_desc->descs_per_op);
3211 ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3212 break;
3217 * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
3219 static void ppc440spe_adma_memcpy_xor_set_src(
3220 struct ppc440spe_adma_desc_slot *sw_desc,
3221 dma_addr_t addr, int index)
3223 struct ppc440spe_adma_chan *chan;
3225 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3226 sw_desc = sw_desc->group_head;
3228 if (likely(sw_desc))
3229 ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
3233 * ppc440spe_adma_dma2rxor_inc_addr -
3235 static void ppc440spe_adma_dma2rxor_inc_addr(
3236 struct ppc440spe_adma_desc_slot *desc,
3237 struct ppc440spe_rxor *cursor, int index, int src_cnt)
3239 cursor->addr_count++;
3240 if (index == src_cnt - 1) {
3241 ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3242 } else if (cursor->addr_count == XOR_MAX_OPS) {
3243 ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3244 cursor->addr_count = 0;
3245 cursor->desc_count++;
3250 * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
3252 static int ppc440spe_adma_dma2rxor_prep_src(
3253 struct ppc440spe_adma_desc_slot *hdesc,
3254 struct ppc440spe_rxor *cursor, int index,
3255 int src_cnt, u32 addr)
3257 int rval = 0;
3258 u32 sign;
3259 struct ppc440spe_adma_desc_slot *desc = hdesc;
3260 int i;
3262 for (i = 0; i < cursor->desc_count; i++) {
3263 desc = list_entry(hdesc->chain_node.next,
3264 struct ppc440spe_adma_desc_slot,
3265 chain_node);
3268 switch (cursor->state) {
3269 case 0:
3270 if (addr == cursor->addrl + cursor->len) {
3271 /* direct RXOR */
3272 cursor->state = 1;
3273 cursor->xor_count++;
3274 if (index == src_cnt-1) {
3275 ppc440spe_rxor_set_region(desc,
3276 cursor->addr_count,
3277 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3278 ppc440spe_adma_dma2rxor_inc_addr(
3279 desc, cursor, index, src_cnt);
3281 } else if (cursor->addrl == addr + cursor->len) {
3282 /* reverse RXOR */
3283 cursor->state = 1;
3284 cursor->xor_count++;
3285 set_bit(cursor->addr_count, &desc->reverse_flags[0]);
3286 if (index == src_cnt-1) {
3287 ppc440spe_rxor_set_region(desc,
3288 cursor->addr_count,
3289 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3290 ppc440spe_adma_dma2rxor_inc_addr(
3291 desc, cursor, index, src_cnt);
3293 } else {
3294 printk(KERN_ERR "Cannot build "
3295 "DMA2 RXOR command block.\n");
3296 BUG();
3298 break;
3299 case 1:
3300 sign = test_bit(cursor->addr_count,
3301 desc->reverse_flags)
3302 ? -1 : 1;
3303 if (index == src_cnt-2 || (sign == -1
3304 && addr != cursor->addrl - 2*cursor->len)) {
3305 cursor->state = 0;
3306 cursor->xor_count = 1;
3307 cursor->addrl = addr;
3308 ppc440spe_rxor_set_region(desc,
3309 cursor->addr_count,
3310 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3311 ppc440spe_adma_dma2rxor_inc_addr(
3312 desc, cursor, index, src_cnt);
3313 } else if (addr == cursor->addrl + 2*sign*cursor->len) {
3314 cursor->state = 2;
3315 cursor->xor_count = 0;
3316 ppc440spe_rxor_set_region(desc,
3317 cursor->addr_count,
3318 DMA_RXOR123 << DMA_CUED_REGION_OFF);
3319 if (index == src_cnt-1) {
3320 ppc440spe_adma_dma2rxor_inc_addr(
3321 desc, cursor, index, src_cnt);
3323 } else if (addr == cursor->addrl + 3*cursor->len) {
3324 cursor->state = 2;
3325 cursor->xor_count = 0;
3326 ppc440spe_rxor_set_region(desc,
3327 cursor->addr_count,
3328 DMA_RXOR124 << DMA_CUED_REGION_OFF);
3329 if (index == src_cnt-1) {
3330 ppc440spe_adma_dma2rxor_inc_addr(
3331 desc, cursor, index, src_cnt);
3333 } else if (addr == cursor->addrl + 4*cursor->len) {
3334 cursor->state = 2;
3335 cursor->xor_count = 0;
3336 ppc440spe_rxor_set_region(desc,
3337 cursor->addr_count,
3338 DMA_RXOR125 << DMA_CUED_REGION_OFF);
3339 if (index == src_cnt-1) {
3340 ppc440spe_adma_dma2rxor_inc_addr(
3341 desc, cursor, index, src_cnt);
3343 } else {
3344 cursor->state = 0;
3345 cursor->xor_count = 1;
3346 cursor->addrl = addr;
3347 ppc440spe_rxor_set_region(desc,
3348 cursor->addr_count,
3349 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3350 ppc440spe_adma_dma2rxor_inc_addr(
3351 desc, cursor, index, src_cnt);
3353 break;
3354 case 2:
3355 cursor->state = 0;
3356 cursor->addrl = addr;
3357 cursor->xor_count++;
3358 if (index) {
3359 ppc440spe_adma_dma2rxor_inc_addr(
3360 desc, cursor, index, src_cnt);
3362 break;
3365 return rval;
3369 * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
3370 * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3372 static void ppc440spe_adma_dma2rxor_set_src(
3373 struct ppc440spe_adma_desc_slot *desc,
3374 int index, dma_addr_t addr)
3376 struct xor_cb *xcb = desc->hw_desc;
3377 int k = 0, op = 0, lop = 0;
3379 /* get the RXOR operand which corresponds to index addr */
3380 while (op <= index) {
3381 lop = op;
3382 if (k == XOR_MAX_OPS) {
3383 k = 0;
3384 desc = list_entry(desc->chain_node.next,
3385 struct ppc440spe_adma_desc_slot, chain_node);
3386 xcb = desc->hw_desc;
3389 if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3390 (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3391 op += 2;
3392 else
3393 op += 3;
3396 BUG_ON(k < 1);
3398 if (test_bit(k-1, desc->reverse_flags)) {
3399 /* reverse operand order; put last op in RXOR group */
3400 if (index == op - 1)
3401 ppc440spe_rxor_set_src(desc, k - 1, addr);
3402 } else {
3403 /* direct operand order; put first op in RXOR group */
3404 if (index == lop)
3405 ppc440spe_rxor_set_src(desc, k - 1, addr);
3410 * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
3411 * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3413 static void ppc440spe_adma_dma2rxor_set_mult(
3414 struct ppc440spe_adma_desc_slot *desc,
3415 int index, u8 mult)
3417 struct xor_cb *xcb = desc->hw_desc;
3418 int k = 0, op = 0, lop = 0;
3420 /* get the RXOR operand which corresponds to index mult */
3421 while (op <= index) {
3422 lop = op;
3423 if (k == XOR_MAX_OPS) {
3424 k = 0;
3425 desc = list_entry(desc->chain_node.next,
3426 struct ppc440spe_adma_desc_slot,
3427 chain_node);
3428 xcb = desc->hw_desc;
3431 if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3432 (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3433 op += 2;
3434 else
3435 op += 3;
3438 BUG_ON(k < 1);
3439 if (test_bit(k-1, desc->reverse_flags)) {
3440 /* reverse order */
3441 ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
3442 } else {
3443 /* direct order */
3444 ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
3449 * ppc440spe_init_rxor_cursor -
3451 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
3453 memset(cursor, 0, sizeof(struct ppc440spe_rxor));
3454 cursor->state = 2;
3458 * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
3459 * descriptor for the PQXOR operation
3461 static void ppc440spe_adma_pq_set_src_mult(
3462 struct ppc440spe_adma_desc_slot *sw_desc,
3463 unsigned char mult, int index, int dst_pos)
3465 struct ppc440spe_adma_chan *chan;
3466 u32 mult_idx, mult_dst;
3467 struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
3469 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3471 switch (chan->device->id) {
3472 case PPC440SPE_DMA0_ID:
3473 case PPC440SPE_DMA1_ID:
3474 if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3475 int region = test_bit(PPC440SPE_DESC_RXOR12,
3476 &sw_desc->flags) ? 2 : 3;
3478 if (index < region) {
3479 /* RXOR multipliers */
3480 iter = ppc440spe_get_group_entry(sw_desc,
3481 sw_desc->dst_cnt - 1);
3482 if (sw_desc->dst_cnt == 2)
3483 iter1 = ppc440spe_get_group_entry(
3484 sw_desc, 0);
3486 mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
3487 mult_dst = DMA_CDB_SG_SRC;
3488 } else {
3489 /* WXOR multiplier */
3490 iter = ppc440spe_get_group_entry(sw_desc,
3491 index - region +
3492 sw_desc->dst_cnt);
3493 mult_idx = DMA_CUED_MULT1_OFF;
3494 mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
3495 DMA_CDB_SG_DST1;
3497 } else {
3498 int znum = 0;
3500 /* WXOR-only;
3501 * skip first slots with destinations (if ZERO_DST has
3502 * place)
3504 if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3505 znum++;
3506 if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3507 znum++;
3509 iter = ppc440spe_get_group_entry(sw_desc, index + znum);
3510 mult_idx = DMA_CUED_MULT1_OFF;
3511 mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
3514 if (likely(iter)) {
3515 ppc440spe_desc_set_src_mult(iter, chan,
3516 mult_idx, mult_dst, mult);
3518 if (unlikely(iter1)) {
3519 /* if we have two destinations for RXOR, then
3520 * we've just set Q mult. Set-up P now.
3522 ppc440spe_desc_set_src_mult(iter1, chan,
3523 mult_idx, mult_dst, 1);
3527 break;
3529 case PPC440SPE_XOR_ID:
3530 iter = sw_desc->group_head;
3531 if (sw_desc->dst_cnt == 2) {
3532 /* both P & Q calculations required; set P mult here */
3533 ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
3535 /* and then set Q mult */
3536 iter = ppc440spe_get_group_entry(sw_desc,
3537 sw_desc->descs_per_op);
3539 ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
3540 break;
3545 * ppc440spe_adma_free_chan_resources - free the resources allocated
3547 static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
3549 struct ppc440spe_adma_chan *ppc440spe_chan;
3550 struct ppc440spe_adma_desc_slot *iter, *_iter;
3551 int in_use_descs = 0;
3553 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3554 ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3556 spin_lock_bh(&ppc440spe_chan->lock);
3557 list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
3558 chain_node) {
3559 in_use_descs++;
3560 list_del(&iter->chain_node);
3562 list_for_each_entry_safe_reverse(iter, _iter,
3563 &ppc440spe_chan->all_slots, slot_node) {
3564 list_del(&iter->slot_node);
3565 kfree(iter);
3566 ppc440spe_chan->slots_allocated--;
3568 ppc440spe_chan->last_used = NULL;
3570 dev_dbg(ppc440spe_chan->device->common.dev,
3571 "ppc440spe adma%d %s slots_allocated %d\n",
3572 ppc440spe_chan->device->id,
3573 __func__, ppc440spe_chan->slots_allocated);
3574 spin_unlock_bh(&ppc440spe_chan->lock);
3576 /* one is ok since we left it on there on purpose */
3577 if (in_use_descs > 1)
3578 printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
3579 in_use_descs - 1);
3583 * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
3584 * @chan: ADMA channel handle
3585 * @cookie: ADMA transaction identifier
3586 * @txstate: a holder for the current state of the channel
3588 static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
3589 dma_cookie_t cookie, struct dma_tx_state *txstate)
3591 struct ppc440spe_adma_chan *ppc440spe_chan;
3592 enum dma_status ret;
3594 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3595 ret = dma_cookie_status(chan, cookie, txstate);
3596 if (ret == DMA_COMPLETE)
3597 return ret;
3599 ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3601 return dma_cookie_status(chan, cookie, txstate);
3605 * ppc440spe_adma_eot_handler - end of transfer interrupt handler
3607 static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
3609 struct ppc440spe_adma_chan *chan = data;
3611 dev_dbg(chan->device->common.dev,
3612 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3614 tasklet_schedule(&chan->irq_tasklet);
3615 ppc440spe_adma_device_clear_eot_status(chan);
3617 return IRQ_HANDLED;
3621 * ppc440spe_adma_err_handler - DMA error interrupt handler;
3622 * do the same things as a eot handler
3624 static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
3626 struct ppc440spe_adma_chan *chan = data;
3628 dev_dbg(chan->device->common.dev,
3629 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3631 tasklet_schedule(&chan->irq_tasklet);
3632 ppc440spe_adma_device_clear_eot_status(chan);
3634 return IRQ_HANDLED;
3638 * ppc440spe_test_callback - called when test operation has been done
3640 static void ppc440spe_test_callback(void *unused)
3642 complete(&ppc440spe_r6_test_comp);
3646 * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
3648 static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
3650 struct ppc440spe_adma_chan *ppc440spe_chan;
3652 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3653 dev_dbg(ppc440spe_chan->device->common.dev,
3654 "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
3655 __func__, ppc440spe_chan->pending);
3657 if (ppc440spe_chan->pending) {
3658 ppc440spe_chan->pending = 0;
3659 ppc440spe_chan_append(ppc440spe_chan);
3664 * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
3665 * use FIFOs (as opposite to chains used in XOR) so this is a XOR
3666 * specific operation)
3668 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
3670 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
3671 dma_cookie_t cookie;
3672 int slot_cnt, slots_per_op;
3674 dev_dbg(chan->device->common.dev,
3675 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3677 spin_lock_bh(&chan->lock);
3678 slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
3679 sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
3680 if (sw_desc) {
3681 group_start = sw_desc->group_head;
3682 list_splice_init(&sw_desc->group_list, &chan->chain);
3683 async_tx_ack(&sw_desc->async_tx);
3684 ppc440spe_desc_init_null_xor(group_start);
3686 cookie = dma_cookie_assign(&sw_desc->async_tx);
3688 /* initialize the completed cookie to be less than
3689 * the most recently used cookie
3691 chan->common.completed_cookie = cookie - 1;
3693 /* channel should not be busy */
3694 BUG_ON(ppc440spe_chan_is_busy(chan));
3696 /* set the descriptor address */
3697 ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
3699 /* run the descriptor */
3700 ppc440spe_chan_run(chan);
3701 } else
3702 printk(KERN_ERR "ppc440spe adma%d"
3703 " failed to allocate null descriptor\n",
3704 chan->device->id);
3705 spin_unlock_bh(&chan->lock);
3709 * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
3710 * For this we just perform one WXOR operation with the same source
3711 * and destination addresses, the GF-multiplier is 1; so if RAID-6
3712 * capabilities are enabled then we'll get src/dst filled with zero.
3714 static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
3716 struct ppc440spe_adma_desc_slot *sw_desc, *iter;
3717 struct page *pg;
3718 char *a;
3719 dma_addr_t dma_addr, addrs[2];
3720 unsigned long op = 0;
3721 int rval = 0;
3723 set_bit(PPC440SPE_DESC_WXOR, &op);
3725 pg = alloc_page(GFP_KERNEL);
3726 if (!pg)
3727 return -ENOMEM;
3729 spin_lock_bh(&chan->lock);
3730 sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
3731 if (sw_desc) {
3732 /* 1 src, 1 dsr, int_ena, WXOR */
3733 ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
3734 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
3735 ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
3736 iter->unmap_len = PAGE_SIZE;
3738 } else {
3739 rval = -EFAULT;
3740 spin_unlock_bh(&chan->lock);
3741 goto exit;
3743 spin_unlock_bh(&chan->lock);
3745 /* Fill the test page with ones */
3746 memset(page_address(pg), 0xFF, PAGE_SIZE);
3747 dma_addr = dma_map_page(chan->device->dev, pg, 0,
3748 PAGE_SIZE, DMA_BIDIRECTIONAL);
3750 /* Setup addresses */
3751 ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
3752 ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
3753 addrs[0] = dma_addr;
3754 addrs[1] = 0;
3755 ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
3757 async_tx_ack(&sw_desc->async_tx);
3758 sw_desc->async_tx.callback = ppc440spe_test_callback;
3759 sw_desc->async_tx.callback_param = NULL;
3761 init_completion(&ppc440spe_r6_test_comp);
3763 ppc440spe_adma_tx_submit(&sw_desc->async_tx);
3764 ppc440spe_adma_issue_pending(&chan->common);
3766 wait_for_completion(&ppc440spe_r6_test_comp);
3768 /* Now check if the test page is zeroed */
3769 a = page_address(pg);
3770 if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
3771 /* page is zero - RAID-6 enabled */
3772 rval = 0;
3773 } else {
3774 /* RAID-6 was not enabled */
3775 rval = -EINVAL;
3777 exit:
3778 __free_page(pg);
3779 return rval;
3782 static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
3784 switch (adev->id) {
3785 case PPC440SPE_DMA0_ID:
3786 case PPC440SPE_DMA1_ID:
3787 dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
3788 dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
3789 dma_cap_set(DMA_PQ, adev->common.cap_mask);
3790 dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
3791 dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
3792 break;
3793 case PPC440SPE_XOR_ID:
3794 dma_cap_set(DMA_XOR, adev->common.cap_mask);
3795 dma_cap_set(DMA_PQ, adev->common.cap_mask);
3796 dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
3797 adev->common.cap_mask = adev->common.cap_mask;
3798 break;
3801 /* Set base routines */
3802 adev->common.device_alloc_chan_resources =
3803 ppc440spe_adma_alloc_chan_resources;
3804 adev->common.device_free_chan_resources =
3805 ppc440spe_adma_free_chan_resources;
3806 adev->common.device_tx_status = ppc440spe_adma_tx_status;
3807 adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
3809 /* Set prep routines based on capability */
3810 if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
3811 adev->common.device_prep_dma_memcpy =
3812 ppc440spe_adma_prep_dma_memcpy;
3814 if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
3815 adev->common.max_xor = XOR_MAX_OPS;
3816 adev->common.device_prep_dma_xor =
3817 ppc440spe_adma_prep_dma_xor;
3819 if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
3820 switch (adev->id) {
3821 case PPC440SPE_DMA0_ID:
3822 dma_set_maxpq(&adev->common,
3823 DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
3824 break;
3825 case PPC440SPE_DMA1_ID:
3826 dma_set_maxpq(&adev->common,
3827 DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
3828 break;
3829 case PPC440SPE_XOR_ID:
3830 adev->common.max_pq = XOR_MAX_OPS * 3;
3831 break;
3833 adev->common.device_prep_dma_pq =
3834 ppc440spe_adma_prep_dma_pq;
3836 if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
3837 switch (adev->id) {
3838 case PPC440SPE_DMA0_ID:
3839 adev->common.max_pq = DMA0_FIFO_SIZE /
3840 sizeof(struct dma_cdb);
3841 break;
3842 case PPC440SPE_DMA1_ID:
3843 adev->common.max_pq = DMA1_FIFO_SIZE /
3844 sizeof(struct dma_cdb);
3845 break;
3847 adev->common.device_prep_dma_pq_val =
3848 ppc440spe_adma_prep_dma_pqzero_sum;
3850 if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
3851 switch (adev->id) {
3852 case PPC440SPE_DMA0_ID:
3853 adev->common.max_xor = DMA0_FIFO_SIZE /
3854 sizeof(struct dma_cdb);
3855 break;
3856 case PPC440SPE_DMA1_ID:
3857 adev->common.max_xor = DMA1_FIFO_SIZE /
3858 sizeof(struct dma_cdb);
3859 break;
3861 adev->common.device_prep_dma_xor_val =
3862 ppc440spe_adma_prep_dma_xor_zero_sum;
3864 if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
3865 adev->common.device_prep_dma_interrupt =
3866 ppc440spe_adma_prep_dma_interrupt;
3868 pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
3869 "( %s%s%s%s%s%s)\n",
3870 dev_name(adev->dev),
3871 dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
3872 dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
3873 dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
3874 dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
3875 dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
3876 dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
3879 static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
3880 struct ppc440spe_adma_chan *chan,
3881 int *initcode)
3883 struct platform_device *ofdev;
3884 struct device_node *np;
3885 int ret;
3887 ofdev = container_of(adev->dev, struct platform_device, dev);
3888 np = ofdev->dev.of_node;
3889 if (adev->id != PPC440SPE_XOR_ID) {
3890 adev->err_irq = irq_of_parse_and_map(np, 1);
3891 if (!adev->err_irq) {
3892 dev_warn(adev->dev, "no err irq resource?\n");
3893 *initcode = PPC_ADMA_INIT_IRQ2;
3894 adev->err_irq = -ENXIO;
3895 } else
3896 atomic_inc(&ppc440spe_adma_err_irq_ref);
3897 } else {
3898 adev->err_irq = -ENXIO;
3901 adev->irq = irq_of_parse_and_map(np, 0);
3902 if (!adev->irq) {
3903 dev_err(adev->dev, "no irq resource\n");
3904 *initcode = PPC_ADMA_INIT_IRQ1;
3905 ret = -ENXIO;
3906 goto err_irq_map;
3908 dev_dbg(adev->dev, "irq %d, err irq %d\n",
3909 adev->irq, adev->err_irq);
3911 ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
3912 0, dev_driver_string(adev->dev), chan);
3913 if (ret) {
3914 dev_err(adev->dev, "can't request irq %d\n",
3915 adev->irq);
3916 *initcode = PPC_ADMA_INIT_IRQ1;
3917 ret = -EIO;
3918 goto err_req1;
3921 /* only DMA engines have a separate error IRQ
3922 * so it's Ok if err_irq < 0 in XOR engine case.
3924 if (adev->err_irq > 0) {
3925 /* both DMA engines share common error IRQ */
3926 ret = request_irq(adev->err_irq,
3927 ppc440spe_adma_err_handler,
3928 IRQF_SHARED,
3929 dev_driver_string(adev->dev),
3930 chan);
3931 if (ret) {
3932 dev_err(adev->dev, "can't request irq %d\n",
3933 adev->err_irq);
3934 *initcode = PPC_ADMA_INIT_IRQ2;
3935 ret = -EIO;
3936 goto err_req2;
3940 if (adev->id == PPC440SPE_XOR_ID) {
3941 /* enable XOR engine interrupts */
3942 iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
3943 XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
3944 &adev->xor_reg->ier);
3945 } else {
3946 u32 mask, enable;
3948 np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
3949 if (!np) {
3950 pr_err("%s: can't find I2O device tree node\n",
3951 __func__);
3952 ret = -ENODEV;
3953 goto err_req2;
3955 adev->i2o_reg = of_iomap(np, 0);
3956 if (!adev->i2o_reg) {
3957 pr_err("%s: failed to map I2O registers\n", __func__);
3958 of_node_put(np);
3959 ret = -EINVAL;
3960 goto err_req2;
3962 of_node_put(np);
3963 /* Unmask 'CS FIFO Attention' interrupts and
3964 * enable generating interrupts on errors
3966 enable = (adev->id == PPC440SPE_DMA0_ID) ?
3967 ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
3968 ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
3969 mask = ioread32(&adev->i2o_reg->iopim) & enable;
3970 iowrite32(mask, &adev->i2o_reg->iopim);
3972 return 0;
3974 err_req2:
3975 free_irq(adev->irq, chan);
3976 err_req1:
3977 irq_dispose_mapping(adev->irq);
3978 err_irq_map:
3979 if (adev->err_irq > 0) {
3980 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
3981 irq_dispose_mapping(adev->err_irq);
3983 return ret;
3986 static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
3987 struct ppc440spe_adma_chan *chan)
3989 u32 mask, disable;
3991 if (adev->id == PPC440SPE_XOR_ID) {
3992 /* disable XOR engine interrupts */
3993 mask = ioread32be(&adev->xor_reg->ier);
3994 mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
3995 XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
3996 iowrite32be(mask, &adev->xor_reg->ier);
3997 } else {
3998 /* disable DMAx engine interrupts */
3999 disable = (adev->id == PPC440SPE_DMA0_ID) ?
4000 (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
4001 (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
4002 mask = ioread32(&adev->i2o_reg->iopim) | disable;
4003 iowrite32(mask, &adev->i2o_reg->iopim);
4005 free_irq(adev->irq, chan);
4006 irq_dispose_mapping(adev->irq);
4007 if (adev->err_irq > 0) {
4008 free_irq(adev->err_irq, chan);
4009 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
4010 irq_dispose_mapping(adev->err_irq);
4011 iounmap(adev->i2o_reg);
4017 * ppc440spe_adma_probe - probe the asynch device
4019 static int ppc440spe_adma_probe(struct platform_device *ofdev)
4021 struct device_node *np = ofdev->dev.of_node;
4022 struct resource res;
4023 struct ppc440spe_adma_device *adev;
4024 struct ppc440spe_adma_chan *chan;
4025 struct ppc_dma_chan_ref *ref, *_ref;
4026 int ret = 0, initcode = PPC_ADMA_INIT_OK;
4027 const u32 *idx;
4028 int len;
4029 void *regs;
4030 u32 id, pool_size;
4032 if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
4033 id = PPC440SPE_XOR_ID;
4034 /* As far as the XOR engine is concerned, it does not
4035 * use FIFOs but uses linked list. So there is no dependency
4036 * between pool size to allocate and the engine configuration.
4038 pool_size = PAGE_SIZE << 1;
4039 } else {
4040 /* it is DMA0 or DMA1 */
4041 idx = of_get_property(np, "cell-index", &len);
4042 if (!idx || (len != sizeof(u32))) {
4043 dev_err(&ofdev->dev, "Device node %pOF has missing "
4044 "or invalid cell-index property\n",
4045 np);
4046 return -EINVAL;
4048 id = *idx;
4049 /* DMA0,1 engines use FIFO to maintain CDBs, so we
4050 * should allocate the pool accordingly to size of this
4051 * FIFO. Thus, the pool size depends on the FIFO depth:
4052 * how much CDBs pointers the FIFO may contain then so
4053 * much CDBs we should provide in the pool.
4054 * That is
4055 * CDB size = 32B;
4056 * CDBs number = (DMA0_FIFO_SIZE >> 3);
4057 * Pool size = CDBs number * CDB size =
4058 * = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
4060 pool_size = (id == PPC440SPE_DMA0_ID) ?
4061 DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4062 pool_size <<= 2;
4065 if (of_address_to_resource(np, 0, &res)) {
4066 dev_err(&ofdev->dev, "failed to get memory resource\n");
4067 initcode = PPC_ADMA_INIT_MEMRES;
4068 ret = -ENODEV;
4069 goto out;
4072 if (!request_mem_region(res.start, resource_size(&res),
4073 dev_driver_string(&ofdev->dev))) {
4074 dev_err(&ofdev->dev, "failed to request memory region %pR\n",
4075 &res);
4076 initcode = PPC_ADMA_INIT_MEMREG;
4077 ret = -EBUSY;
4078 goto out;
4081 /* create a device */
4082 adev = kzalloc(sizeof(*adev), GFP_KERNEL);
4083 if (!adev) {
4084 initcode = PPC_ADMA_INIT_ALLOC;
4085 ret = -ENOMEM;
4086 goto err_adev_alloc;
4089 adev->id = id;
4090 adev->pool_size = pool_size;
4091 /* allocate coherent memory for hardware descriptors */
4092 adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
4093 adev->pool_size, &adev->dma_desc_pool,
4094 GFP_KERNEL);
4095 if (adev->dma_desc_pool_virt == NULL) {
4096 dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
4097 "memory for hardware descriptors\n",
4098 adev->pool_size);
4099 initcode = PPC_ADMA_INIT_COHERENT;
4100 ret = -ENOMEM;
4101 goto err_dma_alloc;
4103 dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
4104 adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
4106 regs = ioremap(res.start, resource_size(&res));
4107 if (!regs) {
4108 dev_err(&ofdev->dev, "failed to ioremap regs!\n");
4109 ret = -ENOMEM;
4110 goto err_regs_alloc;
4113 if (adev->id == PPC440SPE_XOR_ID) {
4114 adev->xor_reg = regs;
4115 /* Reset XOR */
4116 iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
4117 iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
4118 } else {
4119 size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
4120 DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4121 adev->dma_reg = regs;
4122 /* DMAx_FIFO_SIZE is defined in bytes,
4123 * <fsiz> - is defined in number of CDB pointers (8byte).
4124 * DMA FIFO Length = CSlength + CPlength, where
4125 * CSlength = CPlength = (fsiz + 1) * 8.
4127 iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
4128 &adev->dma_reg->fsiz);
4129 /* Configure DMA engine */
4130 iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
4131 &adev->dma_reg->cfg);
4132 /* Clear Status */
4133 iowrite32(~0, &adev->dma_reg->dsts);
4136 adev->dev = &ofdev->dev;
4137 adev->common.dev = &ofdev->dev;
4138 INIT_LIST_HEAD(&adev->common.channels);
4139 platform_set_drvdata(ofdev, adev);
4141 /* create a channel */
4142 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
4143 if (!chan) {
4144 initcode = PPC_ADMA_INIT_CHANNEL;
4145 ret = -ENOMEM;
4146 goto err_chan_alloc;
4149 spin_lock_init(&chan->lock);
4150 INIT_LIST_HEAD(&chan->chain);
4151 INIT_LIST_HEAD(&chan->all_slots);
4152 chan->device = adev;
4153 chan->common.device = &adev->common;
4154 dma_cookie_init(&chan->common);
4155 list_add_tail(&chan->common.device_node, &adev->common.channels);
4156 tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet,
4157 (unsigned long)chan);
4159 /* allocate and map helper pages for async validation or
4160 * async_mult/async_sum_product operations on DMA0/1.
4162 if (adev->id != PPC440SPE_XOR_ID) {
4163 chan->pdest_page = alloc_page(GFP_KERNEL);
4164 chan->qdest_page = alloc_page(GFP_KERNEL);
4165 if (!chan->pdest_page ||
4166 !chan->qdest_page) {
4167 if (chan->pdest_page)
4168 __free_page(chan->pdest_page);
4169 if (chan->qdest_page)
4170 __free_page(chan->qdest_page);
4171 ret = -ENOMEM;
4172 goto err_page_alloc;
4174 chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
4175 PAGE_SIZE, DMA_BIDIRECTIONAL);
4176 chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
4177 PAGE_SIZE, DMA_BIDIRECTIONAL);
4180 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
4181 if (ref) {
4182 ref->chan = &chan->common;
4183 INIT_LIST_HEAD(&ref->node);
4184 list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
4185 } else {
4186 dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
4187 ret = -ENOMEM;
4188 goto err_ref_alloc;
4191 ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
4192 if (ret)
4193 goto err_irq;
4195 ppc440spe_adma_init_capabilities(adev);
4197 ret = dma_async_device_register(&adev->common);
4198 if (ret) {
4199 initcode = PPC_ADMA_INIT_REGISTER;
4200 dev_err(&ofdev->dev, "failed to register dma device\n");
4201 goto err_dev_reg;
4204 goto out;
4206 err_dev_reg:
4207 ppc440spe_adma_release_irqs(adev, chan);
4208 err_irq:
4209 list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
4210 if (chan == to_ppc440spe_adma_chan(ref->chan)) {
4211 list_del(&ref->node);
4212 kfree(ref);
4215 err_ref_alloc:
4216 if (adev->id != PPC440SPE_XOR_ID) {
4217 dma_unmap_page(&ofdev->dev, chan->pdest,
4218 PAGE_SIZE, DMA_BIDIRECTIONAL);
4219 dma_unmap_page(&ofdev->dev, chan->qdest,
4220 PAGE_SIZE, DMA_BIDIRECTIONAL);
4221 __free_page(chan->pdest_page);
4222 __free_page(chan->qdest_page);
4224 err_page_alloc:
4225 kfree(chan);
4226 err_chan_alloc:
4227 if (adev->id == PPC440SPE_XOR_ID)
4228 iounmap(adev->xor_reg);
4229 else
4230 iounmap(adev->dma_reg);
4231 err_regs_alloc:
4232 dma_free_coherent(adev->dev, adev->pool_size,
4233 adev->dma_desc_pool_virt,
4234 adev->dma_desc_pool);
4235 err_dma_alloc:
4236 kfree(adev);
4237 err_adev_alloc:
4238 release_mem_region(res.start, resource_size(&res));
4239 out:
4240 if (id < PPC440SPE_ADMA_ENGINES_NUM)
4241 ppc440spe_adma_devices[id] = initcode;
4243 return ret;
4247 * ppc440spe_adma_remove - remove the asynch device
4249 static int ppc440spe_adma_remove(struct platform_device *ofdev)
4251 struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev);
4252 struct device_node *np = ofdev->dev.of_node;
4253 struct resource res;
4254 struct dma_chan *chan, *_chan;
4255 struct ppc_dma_chan_ref *ref, *_ref;
4256 struct ppc440spe_adma_chan *ppc440spe_chan;
4258 if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
4259 ppc440spe_adma_devices[adev->id] = -1;
4261 dma_async_device_unregister(&adev->common);
4263 list_for_each_entry_safe(chan, _chan, &adev->common.channels,
4264 device_node) {
4265 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
4266 ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
4267 tasklet_kill(&ppc440spe_chan->irq_tasklet);
4268 if (adev->id != PPC440SPE_XOR_ID) {
4269 dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
4270 PAGE_SIZE, DMA_BIDIRECTIONAL);
4271 dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
4272 PAGE_SIZE, DMA_BIDIRECTIONAL);
4273 __free_page(ppc440spe_chan->pdest_page);
4274 __free_page(ppc440spe_chan->qdest_page);
4276 list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
4277 node) {
4278 if (ppc440spe_chan ==
4279 to_ppc440spe_adma_chan(ref->chan)) {
4280 list_del(&ref->node);
4281 kfree(ref);
4284 list_del(&chan->device_node);
4285 kfree(ppc440spe_chan);
4288 dma_free_coherent(adev->dev, adev->pool_size,
4289 adev->dma_desc_pool_virt, adev->dma_desc_pool);
4290 if (adev->id == PPC440SPE_XOR_ID)
4291 iounmap(adev->xor_reg);
4292 else
4293 iounmap(adev->dma_reg);
4294 of_address_to_resource(np, 0, &res);
4295 release_mem_region(res.start, resource_size(&res));
4296 kfree(adev);
4297 return 0;
4301 * /sys driver interface to enable h/w RAID-6 capabilities
4302 * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
4303 * directory are "devices", "enable" and "poly".
4304 * "devices" shows available engines.
4305 * "enable" is used to enable RAID-6 capabilities or to check
4306 * whether these has been activated.
4307 * "poly" allows setting/checking used polynomial (for PPC440SPe only).
4310 static ssize_t devices_show(struct device_driver *dev, char *buf)
4312 ssize_t size = 0;
4313 int i;
4315 for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
4316 if (ppc440spe_adma_devices[i] == -1)
4317 continue;
4318 size += snprintf(buf + size, PAGE_SIZE - size,
4319 "PPC440SP(E)-ADMA.%d: %s\n", i,
4320 ppc_adma_errors[ppc440spe_adma_devices[i]]);
4322 return size;
4324 static DRIVER_ATTR_RO(devices);
4326 static ssize_t enable_show(struct device_driver *dev, char *buf)
4328 return snprintf(buf, PAGE_SIZE,
4329 "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
4330 ppc440spe_r6_enabled ? "EN" : "DIS");
4333 static ssize_t enable_store(struct device_driver *dev, const char *buf,
4334 size_t count)
4336 unsigned long val;
4338 if (!count || count > 11)
4339 return -EINVAL;
4341 if (!ppc440spe_r6_tchan)
4342 return -EFAULT;
4344 /* Write a key */
4345 sscanf(buf, "%lx", &val);
4346 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
4347 isync();
4349 /* Verify whether it really works now */
4350 if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
4351 pr_info("PPC440SP(e) RAID-6 has been activated "
4352 "successfully\n");
4353 ppc440spe_r6_enabled = 1;
4354 } else {
4355 pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
4356 " Error key ?\n");
4357 ppc440spe_r6_enabled = 0;
4359 return count;
4361 static DRIVER_ATTR_RW(enable);
4363 static ssize_t poly_store(struct device_driver *dev, char *buf)
4365 ssize_t size = 0;
4366 u32 reg;
4368 #ifdef CONFIG_440SP
4369 /* 440SP has fixed polynomial */
4370 reg = 0x4d;
4371 #else
4372 reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4373 reg >>= MQ0_CFBHL_POLY;
4374 reg &= 0xFF;
4375 #endif
4377 size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
4378 "uses 0x1%02x polynomial.\n", reg);
4379 return size;
4382 static ssize_t poly_store(struct device_driver *dev, const char *buf,
4383 size_t count)
4385 unsigned long reg, val;
4387 #ifdef CONFIG_440SP
4388 /* 440SP uses default 0x14D polynomial only */
4389 return -EINVAL;
4390 #endif
4392 if (!count || count > 6)
4393 return -EINVAL;
4395 /* e.g., 0x14D or 0x11D */
4396 sscanf(buf, "%lx", &val);
4398 if (val & ~0x1FF)
4399 return -EINVAL;
4401 val &= 0xFF;
4402 reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4403 reg &= ~(0xFF << MQ0_CFBHL_POLY);
4404 reg |= val << MQ0_CFBHL_POLY;
4405 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
4407 return count;
4409 static DRIVER_ATTR_RW(poly);
4412 * Common initialisation for RAID engines; allocate memory for
4413 * DMAx FIFOs, perform configuration common for all DMA engines.
4414 * Further DMA engine specific configuration is done at probe time.
4416 static int ppc440spe_configure_raid_devices(void)
4418 struct device_node *np;
4419 struct resource i2o_res;
4420 struct i2o_regs __iomem *i2o_reg;
4421 dcr_host_t i2o_dcr_host;
4422 unsigned int dcr_base, dcr_len;
4423 int i, ret;
4425 np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4426 if (!np) {
4427 pr_err("%s: can't find I2O device tree node\n",
4428 __func__);
4429 return -ENODEV;
4432 if (of_address_to_resource(np, 0, &i2o_res)) {
4433 of_node_put(np);
4434 return -EINVAL;
4437 i2o_reg = of_iomap(np, 0);
4438 if (!i2o_reg) {
4439 pr_err("%s: failed to map I2O registers\n", __func__);
4440 of_node_put(np);
4441 return -EINVAL;
4444 /* Get I2O DCRs base */
4445 dcr_base = dcr_resource_start(np, 0);
4446 dcr_len = dcr_resource_len(np, 0);
4447 if (!dcr_base && !dcr_len) {
4448 pr_err("%pOF: can't get DCR registers base/len!\n", np);
4449 of_node_put(np);
4450 iounmap(i2o_reg);
4451 return -ENODEV;
4454 i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
4455 if (!DCR_MAP_OK(i2o_dcr_host)) {
4456 pr_err("%pOF: failed to map DCRs!\n", np);
4457 of_node_put(np);
4458 iounmap(i2o_reg);
4459 return -ENODEV;
4461 of_node_put(np);
4463 /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
4464 * the base address of FIFO memory space.
4465 * Actually we need twice more physical memory than programmed in the
4466 * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
4468 ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
4469 GFP_KERNEL);
4470 if (!ppc440spe_dma_fifo_buf) {
4471 pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
4472 iounmap(i2o_reg);
4473 dcr_unmap(i2o_dcr_host, dcr_len);
4474 return -ENOMEM;
4478 * Configure h/w
4480 /* Reset I2O/DMA */
4481 mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
4482 mtdcri(SDR0, DCRN_SDR0_SRST, 0);
4484 /* Setup the base address of mmaped registers */
4485 dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
4486 dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
4487 I2O_REG_ENABLE);
4488 dcr_unmap(i2o_dcr_host, dcr_len);
4490 /* Setup FIFO memory space base address */
4491 iowrite32(0, &i2o_reg->ifbah);
4492 iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
4494 /* set zero FIFO size for I2O, so the whole
4495 * ppc440spe_dma_fifo_buf is used by DMAs.
4496 * DMAx_FIFOs will be configured while probe.
4498 iowrite32(0, &i2o_reg->ifsiz);
4499 iounmap(i2o_reg);
4501 /* To prepare WXOR/RXOR functionality we need access to
4502 * Memory Queue Module DCRs (finally it will be enabled
4503 * via /sys interface of the ppc440spe ADMA driver).
4505 np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
4506 if (!np) {
4507 pr_err("%s: can't find MQ device tree node\n",
4508 __func__);
4509 ret = -ENODEV;
4510 goto out_free;
4513 /* Get MQ DCRs base */
4514 dcr_base = dcr_resource_start(np, 0);
4515 dcr_len = dcr_resource_len(np, 0);
4516 if (!dcr_base && !dcr_len) {
4517 pr_err("%pOF: can't get DCR registers base/len!\n", np);
4518 ret = -ENODEV;
4519 goto out_mq;
4522 ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
4523 if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
4524 pr_err("%pOF: failed to map DCRs!\n", np);
4525 ret = -ENODEV;
4526 goto out_mq;
4528 of_node_put(np);
4529 ppc440spe_mq_dcr_len = dcr_len;
4531 /* Set HB alias */
4532 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
4534 /* Set:
4535 * - LL transaction passing limit to 1;
4536 * - Memory controller cycle limit to 1;
4537 * - Galois Polynomial to 0x14d (default)
4539 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
4540 (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
4541 (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
4543 atomic_set(&ppc440spe_adma_err_irq_ref, 0);
4544 for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
4545 ppc440spe_adma_devices[i] = -1;
4547 return 0;
4549 out_mq:
4550 of_node_put(np);
4551 out_free:
4552 kfree(ppc440spe_dma_fifo_buf);
4553 return ret;
4556 static const struct of_device_id ppc440spe_adma_of_match[] = {
4557 { .compatible = "ibm,dma-440spe", },
4558 { .compatible = "amcc,xor-accelerator", },
4561 MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
4563 static struct platform_driver ppc440spe_adma_driver = {
4564 .probe = ppc440spe_adma_probe,
4565 .remove = ppc440spe_adma_remove,
4566 .driver = {
4567 .name = "PPC440SP(E)-ADMA",
4568 .of_match_table = ppc440spe_adma_of_match,
4572 static __init int ppc440spe_adma_init(void)
4574 int ret;
4576 ret = ppc440spe_configure_raid_devices();
4577 if (ret)
4578 return ret;
4580 ret = platform_driver_register(&ppc440spe_adma_driver);
4581 if (ret) {
4582 pr_err("%s: failed to register platform driver\n",
4583 __func__);
4584 goto out_reg;
4587 /* Initialization status */
4588 ret = driver_create_file(&ppc440spe_adma_driver.driver,
4589 &driver_attr_devices);
4590 if (ret)
4591 goto out_dev;
4593 /* RAID-6 h/w enable entry */
4594 ret = driver_create_file(&ppc440spe_adma_driver.driver,
4595 &driver_attr_enable);
4596 if (ret)
4597 goto out_en;
4599 /* GF polynomial to use */
4600 ret = driver_create_file(&ppc440spe_adma_driver.driver,
4601 &driver_attr_poly);
4602 if (!ret)
4603 return ret;
4605 driver_remove_file(&ppc440spe_adma_driver.driver,
4606 &driver_attr_enable);
4607 out_en:
4608 driver_remove_file(&ppc440spe_adma_driver.driver,
4609 &driver_attr_devices);
4610 out_dev:
4611 /* User will not be able to enable h/w RAID-6 */
4612 pr_err("%s: failed to create RAID-6 driver interface\n",
4613 __func__);
4614 platform_driver_unregister(&ppc440spe_adma_driver);
4615 out_reg:
4616 dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4617 kfree(ppc440spe_dma_fifo_buf);
4618 return ret;
4621 static void __exit ppc440spe_adma_exit(void)
4623 driver_remove_file(&ppc440spe_adma_driver.driver,
4624 &driver_attr_poly);
4625 driver_remove_file(&ppc440spe_adma_driver.driver,
4626 &driver_attr_enable);
4627 driver_remove_file(&ppc440spe_adma_driver.driver,
4628 &driver_attr_devices);
4629 platform_driver_unregister(&ppc440spe_adma_driver);
4630 dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4631 kfree(ppc440spe_dma_fifo_buf);
4634 arch_initcall(ppc440spe_adma_init);
4635 module_exit(ppc440spe_adma_exit);
4637 MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
4638 MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
4639 MODULE_LICENSE("GPL");