2 * SpanDSP - a series of DSP components for telephony
4 * fir.h - General telephony FIR routines
6 * Written by Steve Underwood <steveu@coppice.org>
8 * Copyright (C) 2002 Steve Underwood
10 * All rights reserved.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2, as
14 * published by the Free Software Foundation.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
30 Ideas for improvement:
32 1/ Rewrite filter for dual MAC inner loop. The issue here is handling
33 history sample offsets that are 16 bit aligned - the dual MAC needs
34 32 bit aligmnent. There are some good examples in libbfdsp.
36 2/ Use the hardware circular buffer facility tohalve memory usage.
38 3/ Consider using internal memory.
40 Using less memory might also improve speed as cache misses will be
41 reduced. A drop in MIPs and memory approaching 50% should be
44 The foreground and background filters currenlty use a total of
45 about 10 MIPs/ch as measured with speedtest.c on a 256 TAP echo
50 * 16 bit integer FIR descriptor. This defines the working state for a single
51 * instance of an FIR filter using 16 bit integer coefficients.
53 struct fir16_state_t
{
56 const int16_t *coeffs
;
61 * 32 bit integer FIR descriptor. This defines the working state for a single
62 * instance of an FIR filter using 32 bit integer coefficients, and filtering
63 * 16 bit integer data.
65 struct fir32_state_t
{
68 const int32_t *coeffs
;
73 * Floating point FIR descriptor. This defines the working state for a single
74 * instance of an FIR filter using floating point coefficients and data.
76 struct fir_float_state_t
{
83 static inline const int16_t *fir16_create(struct fir16_state_t
*fir
,
84 const int16_t *coeffs
, int taps
)
87 fir
->curr_pos
= taps
- 1;
89 fir
->history
= kcalloc(taps
, sizeof(int16_t), GFP_KERNEL
);
93 static inline void fir16_flush(struct fir16_state_t
*fir
)
95 memset(fir
->history
, 0, fir
->taps
* sizeof(int16_t));
98 static inline void fir16_free(struct fir16_state_t
*fir
)
103 static inline int16_t fir16(struct fir16_state_t
*fir
, int16_t sample
)
110 fir
->history
[fir
->curr_pos
] = sample
;
112 offset2
= fir
->curr_pos
;
113 offset1
= fir
->taps
- offset2
;
115 for (i
= fir
->taps
- 1; i
>= offset1
; i
--)
116 y
+= fir
->coeffs
[i
] * fir
->history
[i
- offset1
];
118 y
+= fir
->coeffs
[i
] * fir
->history
[i
+ offset2
];
119 if (fir
->curr_pos
<= 0)
120 fir
->curr_pos
= fir
->taps
;
122 return (int16_t) (y
>> 15);
125 static inline const int16_t *fir32_create(struct fir32_state_t
*fir
,
126 const int32_t *coeffs
, int taps
)
129 fir
->curr_pos
= taps
- 1;
130 fir
->coeffs
= coeffs
;
131 fir
->history
= kcalloc(taps
, sizeof(int16_t), GFP_KERNEL
);
135 static inline void fir32_flush(struct fir32_state_t
*fir
)
137 memset(fir
->history
, 0, fir
->taps
* sizeof(int16_t));
140 static inline void fir32_free(struct fir32_state_t
*fir
)
145 static inline int16_t fir32(struct fir32_state_t
*fir
, int16_t sample
)
152 fir
->history
[fir
->curr_pos
] = sample
;
153 offset2
= fir
->curr_pos
;
154 offset1
= fir
->taps
- offset2
;
156 for (i
= fir
->taps
- 1; i
>= offset1
; i
--)
157 y
+= fir
->coeffs
[i
] * fir
->history
[i
- offset1
];
159 y
+= fir
->coeffs
[i
] * fir
->history
[i
+ offset2
];
160 if (fir
->curr_pos
<= 0)
161 fir
->curr_pos
= fir
->taps
;
163 return (int16_t) (y
>> 15);