2 * IBM Accelerator Family 'GenWQE'
4 * (C) Copyright IBM Corp. 2013
6 * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
7 * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
8 * Author: Michael Jung <mijung@gmx.net>
9 * Author: Michael Ruettger <michael@ibmra.de>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License (version 2 only)
13 * as published by the Free Software Foundation.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
22 * Miscelanous functionality used in the other GenWQE driver parts.
25 #include <linux/kernel.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/sched.h>
28 #include <linux/vmalloc.h>
29 #include <linux/page-flags.h>
30 #include <linux/scatterlist.h>
31 #include <linux/hugetlb.h>
32 #include <linux/iommu.h>
33 #include <linux/delay.h>
34 #include <linux/pci.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/ctype.h>
37 #include <linux/module.h>
38 #include <linux/platform_device.h>
39 #include <linux/delay.h>
40 #include <asm/pgtable.h>
42 #include "genwqe_driver.h"
43 #include "card_base.h"
44 #include "card_ddcb.h"
47 * __genwqe_writeq() - Write 64-bit register
48 * @cd: genwqe device descriptor
49 * @byte_offs: byte offset within BAR
52 * Return: 0 if success; < 0 if error
54 int __genwqe_writeq(struct genwqe_dev
*cd
, u64 byte_offs
, u64 val
)
56 struct pci_dev
*pci_dev
= cd
->pci_dev
;
58 if (cd
->err_inject
& GENWQE_INJECT_HARDWARE_FAILURE
)
64 if (pci_channel_offline(pci_dev
))
67 __raw_writeq((__force u64
)cpu_to_be64(val
), cd
->mmio
+ byte_offs
);
72 * __genwqe_readq() - Read 64-bit register
73 * @cd: genwqe device descriptor
74 * @byte_offs: offset within BAR
76 * Return: value from register
78 u64
__genwqe_readq(struct genwqe_dev
*cd
, u64 byte_offs
)
80 if (cd
->err_inject
& GENWQE_INJECT_HARDWARE_FAILURE
)
81 return 0xffffffffffffffffull
;
83 if ((cd
->err_inject
& GENWQE_INJECT_GFIR_FATAL
) &&
84 (byte_offs
== IO_SLC_CFGREG_GFIR
))
85 return 0x000000000000ffffull
;
87 if ((cd
->err_inject
& GENWQE_INJECT_GFIR_INFO
) &&
88 (byte_offs
== IO_SLC_CFGREG_GFIR
))
89 return 0x00000000ffff0000ull
;
92 return 0xffffffffffffffffull
;
94 return be64_to_cpu((__force __be64
)__raw_readq(cd
->mmio
+ byte_offs
));
98 * __genwqe_writel() - Write 32-bit register
99 * @cd: genwqe device descriptor
100 * @byte_offs: byte offset within BAR
103 * Return: 0 if success; < 0 if error
105 int __genwqe_writel(struct genwqe_dev
*cd
, u64 byte_offs
, u32 val
)
107 struct pci_dev
*pci_dev
= cd
->pci_dev
;
109 if (cd
->err_inject
& GENWQE_INJECT_HARDWARE_FAILURE
)
112 if (cd
->mmio
== NULL
)
115 if (pci_channel_offline(pci_dev
))
118 __raw_writel((__force u32
)cpu_to_be32(val
), cd
->mmio
+ byte_offs
);
123 * __genwqe_readl() - Read 32-bit register
124 * @cd: genwqe device descriptor
125 * @byte_offs: offset within BAR
127 * Return: Value from register
129 u32
__genwqe_readl(struct genwqe_dev
*cd
, u64 byte_offs
)
131 if (cd
->err_inject
& GENWQE_INJECT_HARDWARE_FAILURE
)
134 if (cd
->mmio
== NULL
)
137 return be32_to_cpu((__force __be32
)__raw_readl(cd
->mmio
+ byte_offs
));
141 * genwqe_read_app_id() - Extract app_id
143 * app_unitcfg need to be filled with valid data first
145 int genwqe_read_app_id(struct genwqe_dev
*cd
, char *app_name
, int len
)
148 u32 app_id
= (u32
)cd
->app_unitcfg
;
150 memset(app_name
, 0, len
);
151 for (i
= 0, j
= 0; j
< min(len
, 4); j
++) {
152 char ch
= (char)((app_id
>> (24 - j
*8)) & 0xff);
156 app_name
[i
++] = isprint(ch
) ? ch
: 'X';
162 * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations
164 * Existing kernel functions seem to use a different polynom,
165 * therefore we could not use them here.
167 * Genwqe's Polynomial = 0x20044009
169 #define CRC32_POLYNOMIAL 0x20044009
170 static u32 crc32_tab
[256]; /* crc32 lookup table */
172 void genwqe_init_crc32(void)
177 for (i
= 0; i
< 256; i
++) {
179 for (j
= 0; j
< 8; j
++) {
180 if (crc
& 0x80000000)
181 crc
= (crc
<< 1) ^ CRC32_POLYNOMIAL
;
190 * genwqe_crc32() - Generate 32-bit crc as required for DDCBs
191 * @buff: pointer to data buffer
192 * @len: length of data for calculation
193 * @init: initial crc (0xffffffff at start)
195 * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009)
197 * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should
198 * result in a crc32 of 0xf33cb7d3.
200 * The existing kernel crc functions did not cover this polynom yet.
202 * Return: crc32 checksum.
204 u32
genwqe_crc32(u8
*buff
, size_t len
, u32 init
)
211 i
= ((crc
>> 24) ^ *buff
++) & 0xFF;
212 crc
= (crc
<< 8) ^ crc32_tab
[i
];
217 void *__genwqe_alloc_consistent(struct genwqe_dev
*cd
, size_t size
,
218 dma_addr_t
*dma_handle
)
220 if (get_order(size
) > MAX_ORDER
)
223 return dma_zalloc_coherent(&cd
->pci_dev
->dev
, size
, dma_handle
,
227 void __genwqe_free_consistent(struct genwqe_dev
*cd
, size_t size
,
228 void *vaddr
, dma_addr_t dma_handle
)
233 dma_free_coherent(&cd
->pci_dev
->dev
, size
, vaddr
, dma_handle
);
236 static void genwqe_unmap_pages(struct genwqe_dev
*cd
, dma_addr_t
*dma_list
,
240 struct pci_dev
*pci_dev
= cd
->pci_dev
;
242 for (i
= 0; (i
< num_pages
) && (dma_list
[i
] != 0x0); i
++) {
243 pci_unmap_page(pci_dev
, dma_list
[i
],
244 PAGE_SIZE
, PCI_DMA_BIDIRECTIONAL
);
249 static int genwqe_map_pages(struct genwqe_dev
*cd
,
250 struct page
**page_list
, int num_pages
,
251 dma_addr_t
*dma_list
)
254 struct pci_dev
*pci_dev
= cd
->pci_dev
;
256 /* establish DMA mapping for requested pages */
257 for (i
= 0; i
< num_pages
; i
++) {
261 daddr
= pci_map_page(pci_dev
, page_list
[i
],
264 PCI_DMA_BIDIRECTIONAL
); /* FIXME rd/rw */
266 if (pci_dma_mapping_error(pci_dev
, daddr
)) {
267 dev_err(&pci_dev
->dev
,
268 "[%s] err: no dma addr daddr=%016llx!\n",
269 __func__
, (long long)daddr
);
278 genwqe_unmap_pages(cd
, dma_list
, num_pages
);
282 static int genwqe_sgl_size(int num_pages
)
284 int len
, num_tlb
= num_pages
/ 7;
286 len
= sizeof(struct sg_entry
) * (num_pages
+num_tlb
+ 1);
287 return roundup(len
, PAGE_SIZE
);
291 * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages
293 * Allocates memory for sgl and overlapping pages. Pages which might
294 * overlap other user-space memory blocks are being cached for DMAs,
295 * such that we do not run into syncronization issues. Data is copied
296 * from user-space into the cached pages.
298 int genwqe_alloc_sync_sgl(struct genwqe_dev
*cd
, struct genwqe_sgl
*sgl
,
299 void __user
*user_addr
, size_t user_size
, int write
)
302 struct pci_dev
*pci_dev
= cd
->pci_dev
;
304 sgl
->fpage_offs
= offset_in_page((unsigned long)user_addr
);
305 sgl
->fpage_size
= min_t(size_t, PAGE_SIZE
-sgl
->fpage_offs
, user_size
);
306 sgl
->nr_pages
= DIV_ROUND_UP(sgl
->fpage_offs
+ user_size
, PAGE_SIZE
);
307 sgl
->lpage_size
= (user_size
- sgl
->fpage_size
) % PAGE_SIZE
;
309 dev_dbg(&pci_dev
->dev
, "[%s] uaddr=%p usize=%8ld nr_pages=%ld fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n",
310 __func__
, user_addr
, user_size
, sgl
->nr_pages
,
311 sgl
->fpage_offs
, sgl
->fpage_size
, sgl
->lpage_size
);
313 sgl
->user_addr
= user_addr
;
314 sgl
->user_size
= user_size
;
316 sgl
->sgl_size
= genwqe_sgl_size(sgl
->nr_pages
);
318 if (get_order(sgl
->sgl_size
) > MAX_ORDER
) {
319 dev_err(&pci_dev
->dev
,
320 "[%s] err: too much memory requested!\n", __func__
);
324 sgl
->sgl
= __genwqe_alloc_consistent(cd
, sgl
->sgl_size
,
326 if (sgl
->sgl
== NULL
) {
327 dev_err(&pci_dev
->dev
,
328 "[%s] err: no memory available!\n", __func__
);
332 /* Only use buffering on incomplete pages */
333 if ((sgl
->fpage_size
!= 0) && (sgl
->fpage_size
!= PAGE_SIZE
)) {
334 sgl
->fpage
= __genwqe_alloc_consistent(cd
, PAGE_SIZE
,
335 &sgl
->fpage_dma_addr
);
336 if (sgl
->fpage
== NULL
)
339 /* Sync with user memory */
340 if (copy_from_user(sgl
->fpage
+ sgl
->fpage_offs
,
341 user_addr
, sgl
->fpage_size
)) {
346 if (sgl
->lpage_size
!= 0) {
347 sgl
->lpage
= __genwqe_alloc_consistent(cd
, PAGE_SIZE
,
348 &sgl
->lpage_dma_addr
);
349 if (sgl
->lpage
== NULL
)
352 /* Sync with user memory */
353 if (copy_from_user(sgl
->lpage
, user_addr
+ user_size
-
354 sgl
->lpage_size
, sgl
->lpage_size
)) {
362 __genwqe_free_consistent(cd
, PAGE_SIZE
, sgl
->lpage
,
363 sgl
->lpage_dma_addr
);
365 sgl
->lpage_dma_addr
= 0;
367 __genwqe_free_consistent(cd
, PAGE_SIZE
, sgl
->fpage
,
368 sgl
->fpage_dma_addr
);
370 sgl
->fpage_dma_addr
= 0;
372 __genwqe_free_consistent(cd
, sgl
->sgl_size
, sgl
->sgl
,
375 sgl
->sgl_dma_addr
= 0;
380 int genwqe_setup_sgl(struct genwqe_dev
*cd
, struct genwqe_sgl
*sgl
,
381 dma_addr_t
*dma_list
)
384 unsigned long dma_offs
, map_offs
;
385 dma_addr_t prev_daddr
= 0;
386 struct sg_entry
*s
, *last_s
= NULL
;
387 size_t size
= sgl
->user_size
;
389 dma_offs
= 128; /* next block if needed/dma_offset */
390 map_offs
= sgl
->fpage_offs
; /* offset in first page */
392 s
= &sgl
->sgl
[0]; /* first set of 8 entries */
394 while (p
< sgl
->nr_pages
) {
396 unsigned int size_to_map
;
398 /* always write the chaining entry, cleanup is done later */
400 s
[j
].target_addr
= cpu_to_be64(sgl
->sgl_dma_addr
+ dma_offs
);
401 s
[j
].len
= cpu_to_be32(128);
402 s
[j
].flags
= cpu_to_be32(SG_CHAINED
);
406 /* DMA mapping for requested page, offs, size */
407 size_to_map
= min(size
, PAGE_SIZE
- map_offs
);
409 if ((p
== 0) && (sgl
->fpage
!= NULL
)) {
410 daddr
= sgl
->fpage_dma_addr
+ map_offs
;
412 } else if ((p
== sgl
->nr_pages
- 1) &&
413 (sgl
->lpage
!= NULL
)) {
414 daddr
= sgl
->lpage_dma_addr
;
416 daddr
= dma_list
[p
] + map_offs
;
422 if (prev_daddr
== daddr
) {
423 u32 prev_len
= be32_to_cpu(last_s
->len
);
425 /* pr_info("daddr combining: "
426 "%016llx/%08x -> %016llx\n",
427 prev_daddr, prev_len, daddr); */
429 last_s
->len
= cpu_to_be32(prev_len
+
432 p
++; /* process next page */
433 if (p
== sgl
->nr_pages
)
434 goto fixup
; /* nothing to do */
436 prev_daddr
= daddr
+ size_to_map
;
440 /* start new entry */
441 s
[j
].target_addr
= cpu_to_be64(daddr
);
442 s
[j
].len
= cpu_to_be32(size_to_map
);
443 s
[j
].flags
= cpu_to_be32(SG_DATA
);
444 prev_daddr
= daddr
+ size_to_map
;
448 p
++; /* process next page */
449 if (p
== sgl
->nr_pages
)
450 goto fixup
; /* nothing to do */
453 s
+= 8; /* continue 8 elements further */
456 if (j
== 1) { /* combining happened on last entry! */
457 s
-= 8; /* full shift needed on previous sgl block */
458 j
= 7; /* shift all elements */
461 for (i
= 0; i
< j
; i
++) /* move elements 1 up */
464 s
[i
].target_addr
= cpu_to_be64(0);
465 s
[i
].len
= cpu_to_be32(0);
466 s
[i
].flags
= cpu_to_be32(SG_END_LIST
);
471 * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages
473 * After the DMA transfer has been completed we free the memory for
474 * the sgl and the cached pages. Data is being transferred from cached
475 * pages into user-space buffers.
477 int genwqe_free_sync_sgl(struct genwqe_dev
*cd
, struct genwqe_sgl
*sgl
)
482 struct pci_dev
*pci_dev
= cd
->pci_dev
;
486 res
= copy_to_user(sgl
->user_addr
,
487 sgl
->fpage
+ sgl
->fpage_offs
, sgl
->fpage_size
);
489 dev_err(&pci_dev
->dev
,
490 "[%s] err: copying fpage! (res=%lu)\n",
495 __genwqe_free_consistent(cd
, PAGE_SIZE
, sgl
->fpage
,
496 sgl
->fpage_dma_addr
);
498 sgl
->fpage_dma_addr
= 0;
502 offset
= sgl
->user_size
- sgl
->lpage_size
;
503 res
= copy_to_user(sgl
->user_addr
+ offset
, sgl
->lpage
,
506 dev_err(&pci_dev
->dev
,
507 "[%s] err: copying lpage! (res=%lu)\n",
512 __genwqe_free_consistent(cd
, PAGE_SIZE
, sgl
->lpage
,
513 sgl
->lpage_dma_addr
);
515 sgl
->lpage_dma_addr
= 0;
517 __genwqe_free_consistent(cd
, sgl
->sgl_size
, sgl
->sgl
,
521 sgl
->sgl_dma_addr
= 0x0;
527 * genwqe_free_user_pages() - Give pinned pages back
529 * Documentation of get_user_pages is in mm/gup.c:
531 * If the page is written to, set_page_dirty (or set_page_dirty_lock,
532 * as appropriate) must be called after the page is finished with, and
533 * before put_page is called.
535 static int genwqe_free_user_pages(struct page
**page_list
,
536 unsigned int nr_pages
, int dirty
)
540 for (i
= 0; i
< nr_pages
; i
++) {
541 if (page_list
[i
] != NULL
) {
543 set_page_dirty_lock(page_list
[i
]);
544 put_page(page_list
[i
]);
551 * genwqe_user_vmap() - Map user-space memory to virtual kernel memory
552 * @cd: pointer to genwqe device
554 * @uaddr: user virtual address
555 * @size: size of memory to be mapped
557 * We need to think about how we could speed this up. Of course it is
558 * not a good idea to do this over and over again, like we are
559 * currently doing it. Nevertheless, I am curious where on the path
560 * the performance is spend. Most probably within the memory
561 * allocation functions, but maybe also in the DMA mapping code.
563 * Restrictions: The maximum size of the possible mapping currently depends
564 * on the amount of memory we can get using kzalloc() for the
565 * page_list and pci_alloc_consistent for the sg_list.
566 * The sg_list is currently itself not scattered, which could
567 * be fixed with some effort. The page_list must be split into
568 * PAGE_SIZE chunks too. All that will make the complicated
569 * code more complicated.
571 * Return: 0 if success
573 int genwqe_user_vmap(struct genwqe_dev
*cd
, struct dma_mapping
*m
, void *uaddr
,
577 unsigned long data
, offs
;
578 struct pci_dev
*pci_dev
= cd
->pci_dev
;
580 if ((uaddr
== NULL
) || (size
== 0)) {
581 m
->size
= 0; /* mark unused and not added */
587 /* determine space needed for page_list. */
588 data
= (unsigned long)uaddr
;
589 offs
= offset_in_page(data
);
590 m
->nr_pages
= DIV_ROUND_UP(offs
+ size
, PAGE_SIZE
);
592 m
->page_list
= kcalloc(m
->nr_pages
,
593 sizeof(struct page
*) + sizeof(dma_addr_t
),
596 dev_err(&pci_dev
->dev
, "err: alloc page_list failed\n");
599 m
->size
= 0; /* mark unused and not added */
602 m
->dma_list
= (dma_addr_t
*)(m
->page_list
+ m
->nr_pages
);
604 /* pin user pages in memory */
605 rc
= get_user_pages_fast(data
& PAGE_MASK
, /* page aligned addr */
607 m
->write
, /* readable/writable */
608 m
->page_list
); /* ptrs to pages */
610 goto fail_get_user_pages
;
612 /* assumption: get_user_pages can be killed by signals. */
613 if (rc
< m
->nr_pages
) {
614 genwqe_free_user_pages(m
->page_list
, rc
, m
->write
);
616 goto fail_get_user_pages
;
619 rc
= genwqe_map_pages(cd
, m
->page_list
, m
->nr_pages
, m
->dma_list
);
621 goto fail_free_user_pages
;
625 fail_free_user_pages
:
626 genwqe_free_user_pages(m
->page_list
, m
->nr_pages
, m
->write
);
634 m
->size
= 0; /* mark unused and not added */
639 * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel
641 * @cd: pointer to genwqe device
644 int genwqe_user_vunmap(struct genwqe_dev
*cd
, struct dma_mapping
*m
)
646 struct pci_dev
*pci_dev
= cd
->pci_dev
;
648 if (!dma_mapping_used(m
)) {
649 dev_err(&pci_dev
->dev
, "[%s] err: mapping %p not used!\n",
655 genwqe_unmap_pages(cd
, m
->dma_list
, m
->nr_pages
);
658 genwqe_free_user_pages(m
->page_list
, m
->nr_pages
, m
->write
);
667 m
->size
= 0; /* mark as unused and not added */
672 * genwqe_card_type() - Get chip type SLU Configuration Register
673 * @cd: pointer to the genwqe device descriptor
674 * Return: 0: Altera Stratix-IV 230
675 * 1: Altera Stratix-IV 530
676 * 2: Altera Stratix-V A4
677 * 3: Altera Stratix-V A7
679 u8
genwqe_card_type(struct genwqe_dev
*cd
)
681 u64 card_type
= cd
->slu_unitcfg
;
683 return (u8
)((card_type
& IO_SLU_UNITCFG_TYPE_MASK
) >> 20);
687 * genwqe_card_reset() - Reset the card
688 * @cd: pointer to the genwqe device descriptor
690 int genwqe_card_reset(struct genwqe_dev
*cd
)
693 struct pci_dev
*pci_dev
= cd
->pci_dev
;
695 if (!genwqe_is_privileged(cd
))
699 __genwqe_writeq(cd
, IO_SLC_CFGREG_SOFTRESET
, 0x1ull
);
701 __genwqe_readq(cd
, IO_HSU_FIR_CLR
);
702 __genwqe_readq(cd
, IO_APP_FIR_CLR
);
703 __genwqe_readq(cd
, IO_SLU_FIR_CLR
);
706 * Read-modify-write to preserve the stealth bits
708 * For SL >= 039, Stealth WE bit allows removing
709 * the read-modify-wrote.
710 * r-m-w may require a mask 0x3C to avoid hitting hard
711 * reset again for error reset (should be 0, chicken).
713 softrst
= __genwqe_readq(cd
, IO_SLC_CFGREG_SOFTRESET
) & 0x3cull
;
714 __genwqe_writeq(cd
, IO_SLC_CFGREG_SOFTRESET
, softrst
| 0x2ull
);
716 /* give ERRORRESET some time to finish */
719 if (genwqe_need_err_masking(cd
)) {
720 dev_info(&pci_dev
->dev
,
721 "[%s] masking errors for old bitstreams\n", __func__
);
722 __genwqe_writeq(cd
, IO_SLC_MISC_DEBUG
, 0x0aull
);
727 int genwqe_read_softreset(struct genwqe_dev
*cd
)
731 if (!genwqe_is_privileged(cd
))
734 bitstream
= __genwqe_readq(cd
, IO_SLU_BITSTREAM
) & 0x1;
735 cd
->softreset
= (bitstream
== 0) ? 0x8ull
: 0xcull
;
740 * genwqe_set_interrupt_capability() - Configure MSI capability structure
741 * @cd: pointer to the device
742 * Return: 0 if no error
744 int genwqe_set_interrupt_capability(struct genwqe_dev
*cd
, int count
)
748 rc
= pci_alloc_irq_vectors(cd
->pci_dev
, 1, count
, PCI_IRQ_MSI
);
755 * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability()
756 * @cd: pointer to the device
758 void genwqe_reset_interrupt_capability(struct genwqe_dev
*cd
)
760 pci_free_irq_vectors(cd
->pci_dev
);
764 * set_reg_idx() - Fill array with data. Ignore illegal offsets.
766 * @r: debug register array
767 * @i: index to desired entry
768 * @m: maximum possible entries
769 * @addr: addr which is read
770 * @index: index in debug array
773 static int set_reg_idx(struct genwqe_dev
*cd
, struct genwqe_reg
*r
,
774 unsigned int *i
, unsigned int m
, u32 addr
, u32 idx
,
777 if (WARN_ON_ONCE(*i
>= m
))
787 static int set_reg(struct genwqe_dev
*cd
, struct genwqe_reg
*r
,
788 unsigned int *i
, unsigned int m
, u32 addr
, u64 val
)
790 return set_reg_idx(cd
, r
, i
, m
, addr
, 0, val
);
793 int genwqe_read_ffdc_regs(struct genwqe_dev
*cd
, struct genwqe_reg
*regs
,
794 unsigned int max_regs
, int all
)
796 unsigned int i
, j
, idx
= 0;
797 u32 ufir_addr
, ufec_addr
, sfir_addr
, sfec_addr
;
798 u64 gfir
, sluid
, appid
, ufir
, ufec
, sfir
, sfec
;
801 gfir
= __genwqe_readq(cd
, IO_SLC_CFGREG_GFIR
);
802 set_reg(cd
, regs
, &idx
, max_regs
, IO_SLC_CFGREG_GFIR
, gfir
);
804 /* UnitCfg for SLU */
805 sluid
= __genwqe_readq(cd
, IO_SLU_UNITCFG
); /* 0x00000000 */
806 set_reg(cd
, regs
, &idx
, max_regs
, IO_SLU_UNITCFG
, sluid
);
808 /* UnitCfg for APP */
809 appid
= __genwqe_readq(cd
, IO_APP_UNITCFG
); /* 0x02000000 */
810 set_reg(cd
, regs
, &idx
, max_regs
, IO_APP_UNITCFG
, appid
);
812 /* Check all chip Units */
813 for (i
= 0; i
< GENWQE_MAX_UNITS
; i
++) {
816 ufir_addr
= (i
<< 24) | 0x008;
817 ufir
= __genwqe_readq(cd
, ufir_addr
);
818 set_reg(cd
, regs
, &idx
, max_regs
, ufir_addr
, ufir
);
821 ufec_addr
= (i
<< 24) | 0x018;
822 ufec
= __genwqe_readq(cd
, ufec_addr
);
823 set_reg(cd
, regs
, &idx
, max_regs
, ufec_addr
, ufec
);
825 for (j
= 0; j
< 64; j
++) {
826 /* wherever there is a primary 1, read the 2ndary */
827 if (!all
&& (!(ufir
& (1ull << j
))))
830 sfir_addr
= (i
<< 24) | (0x100 + 8 * j
);
831 sfir
= __genwqe_readq(cd
, sfir_addr
);
832 set_reg(cd
, regs
, &idx
, max_regs
, sfir_addr
, sfir
);
834 sfec_addr
= (i
<< 24) | (0x300 + 8 * j
);
835 sfec
= __genwqe_readq(cd
, sfec_addr
);
836 set_reg(cd
, regs
, &idx
, max_regs
, sfec_addr
, sfec
);
840 /* fill with invalid data until end */
841 for (i
= idx
; i
< max_regs
; i
++) {
842 regs
[i
].addr
= 0xffffffff;
843 regs
[i
].val
= 0xffffffffffffffffull
;
849 * genwqe_ffdc_buff_size() - Calculates the number of dump registers
851 int genwqe_ffdc_buff_size(struct genwqe_dev
*cd
, int uid
)
853 int entries
= 0, ring
, traps
, traces
, trace_entries
;
854 u32 eevptr_addr
, l_addr
, d_len
, d_type
;
855 u64 eevptr
, val
, addr
;
857 eevptr_addr
= GENWQE_UID_OFFS(uid
) | IO_EXTENDED_ERROR_POINTER
;
858 eevptr
= __genwqe_readq(cd
, eevptr_addr
);
860 if ((eevptr
!= 0x0) && (eevptr
!= -1ull)) {
861 l_addr
= GENWQE_UID_OFFS(uid
) | eevptr
;
864 val
= __genwqe_readq(cd
, l_addr
);
866 if ((val
== 0x0) || (val
== -1ull))
870 d_len
= (val
& 0x0000007fff000000ull
) >> 24;
873 d_type
= (val
& 0x0000008000000000ull
) >> 36;
875 if (d_type
) { /* repeat */
877 } else { /* size in bytes! */
878 entries
+= d_len
>> 3;
885 for (ring
= 0; ring
< 8; ring
++) {
886 addr
= GENWQE_UID_OFFS(uid
) | IO_EXTENDED_DIAG_MAP(ring
);
887 val
= __genwqe_readq(cd
, addr
);
889 if ((val
== 0x0ull
) || (val
== -1ull))
892 traps
= (val
>> 24) & 0xff;
893 traces
= (val
>> 16) & 0xff;
894 trace_entries
= val
& 0xffff;
896 entries
+= traps
+ (traces
* trace_entries
);
902 * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure
904 int genwqe_ffdc_buff_read(struct genwqe_dev
*cd
, int uid
,
905 struct genwqe_reg
*regs
, unsigned int max_regs
)
907 int i
, traps
, traces
, trace
, trace_entries
, trace_entry
, ring
;
908 unsigned int idx
= 0;
909 u32 eevptr_addr
, l_addr
, d_addr
, d_len
, d_type
;
910 u64 eevptr
, e
, val
, addr
;
912 eevptr_addr
= GENWQE_UID_OFFS(uid
) | IO_EXTENDED_ERROR_POINTER
;
913 eevptr
= __genwqe_readq(cd
, eevptr_addr
);
915 if ((eevptr
!= 0x0) && (eevptr
!= 0xffffffffffffffffull
)) {
916 l_addr
= GENWQE_UID_OFFS(uid
) | eevptr
;
918 e
= __genwqe_readq(cd
, l_addr
);
919 if ((e
== 0x0) || (e
== 0xffffffffffffffffull
))
922 d_addr
= (e
& 0x0000000000ffffffull
); /* 23:0 */
923 d_len
= (e
& 0x0000007fff000000ull
) >> 24; /* 38:24 */
924 d_type
= (e
& 0x0000008000000000ull
) >> 36; /* 39 */
925 d_addr
|= GENWQE_UID_OFFS(uid
);
928 for (i
= 0; i
< (int)d_len
; i
++) {
929 val
= __genwqe_readq(cd
, d_addr
);
930 set_reg_idx(cd
, regs
, &idx
, max_regs
,
934 d_len
>>= 3; /* Size in bytes! */
935 for (i
= 0; i
< (int)d_len
; i
++, d_addr
+= 8) {
936 val
= __genwqe_readq(cd
, d_addr
);
937 set_reg_idx(cd
, regs
, &idx
, max_regs
,
946 * To save time, there are only 6 traces poplulated on Uid=2,
947 * Ring=1. each with iters=512.
949 for (ring
= 0; ring
< 8; ring
++) { /* 0 is fls, 1 is fds,
950 2...7 are ASI rings */
951 addr
= GENWQE_UID_OFFS(uid
) | IO_EXTENDED_DIAG_MAP(ring
);
952 val
= __genwqe_readq(cd
, addr
);
954 if ((val
== 0x0ull
) || (val
== -1ull))
957 traps
= (val
>> 24) & 0xff; /* Number of Traps */
958 traces
= (val
>> 16) & 0xff; /* Number of Traces */
959 trace_entries
= val
& 0xffff; /* Entries per trace */
961 /* Note: This is a combined loop that dumps both the traps */
962 /* (for the trace == 0 case) as well as the traces 1 to */
964 for (trace
= 0; trace
<= traces
; trace
++) {
966 GENWQE_EXTENDED_DIAG_SELECTOR(ring
, trace
);
968 addr
= (GENWQE_UID_OFFS(uid
) |
969 IO_EXTENDED_DIAG_SELECTOR
);
970 __genwqe_writeq(cd
, addr
, diag_sel
);
972 for (trace_entry
= 0;
973 trace_entry
< (trace
? trace_entries
: traps
);
975 addr
= (GENWQE_UID_OFFS(uid
) |
976 IO_EXTENDED_DIAG_READ_MBX
);
977 val
= __genwqe_readq(cd
, addr
);
978 set_reg_idx(cd
, regs
, &idx
, max_regs
, addr
,
979 (diag_sel
<<16) | trace_entry
, val
);
987 * genwqe_write_vreg() - Write register in virtual window
989 * Note, these registers are only accessible to the PF through the
990 * VF-window. It is not intended for the VF to access.
992 int genwqe_write_vreg(struct genwqe_dev
*cd
, u32 reg
, u64 val
, int func
)
994 __genwqe_writeq(cd
, IO_PF_SLC_VIRTUAL_WINDOW
, func
& 0xf);
995 __genwqe_writeq(cd
, reg
, val
);
1000 * genwqe_read_vreg() - Read register in virtual window
1002 * Note, these registers are only accessible to the PF through the
1003 * VF-window. It is not intended for the VF to access.
1005 u64
genwqe_read_vreg(struct genwqe_dev
*cd
, u32 reg
, int func
)
1007 __genwqe_writeq(cd
, IO_PF_SLC_VIRTUAL_WINDOW
, func
& 0xf);
1008 return __genwqe_readq(cd
, reg
);
1012 * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card
1014 * Note: From a design perspective it turned out to be a bad idea to
1015 * use codes here to specifiy the frequency/speed values. An old
1016 * driver cannot understand new codes and is therefore always a
1017 * problem. Better is to measure out the value or put the
1018 * speed/frequency directly into a register which is always a valid
1019 * value for old as well as for new software.
1021 * Return: Card clock in MHz
1023 int genwqe_base_clock_frequency(struct genwqe_dev
*cd
)
1025 u16 speed
; /* MHz MHz MHz MHz */
1026 static const int speed_grade
[] = { 250, 200, 166, 175 };
1028 speed
= (u16
)((cd
->slu_unitcfg
>> 28) & 0x0full
);
1029 if (speed
>= ARRAY_SIZE(speed_grade
))
1030 return 0; /* illegal value */
1032 return speed_grade
[speed
];
1036 * genwqe_stop_traps() - Stop traps
1038 * Before reading out the analysis data, we need to stop the traps.
1040 void genwqe_stop_traps(struct genwqe_dev
*cd
)
1042 __genwqe_writeq(cd
, IO_SLC_MISC_DEBUG_SET
, 0xcull
);
1046 * genwqe_start_traps() - Start traps
1048 * After having read the data, we can/must enable the traps again.
1050 void genwqe_start_traps(struct genwqe_dev
*cd
)
1052 __genwqe_writeq(cd
, IO_SLC_MISC_DEBUG_CLR
, 0xcull
);
1054 if (genwqe_need_err_masking(cd
))
1055 __genwqe_writeq(cd
, IO_SLC_MISC_DEBUG
, 0x0aull
);