Linux 4.18.10
[linux/fpc-iii.git] / drivers / misc / mei / hw-txe.c
blobc2c8993e2a511e64d18fb5da57bd5eb507e1d2e2
1 /*
3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2013-2014, Intel Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
17 #include <linux/pci.h>
18 #include <linux/jiffies.h>
19 #include <linux/ktime.h>
20 #include <linux/delay.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/pm_runtime.h>
25 #include <linux/mei.h>
27 #include "mei_dev.h"
28 #include "hw-txe.h"
29 #include "client.h"
30 #include "hbm.h"
32 #include "mei-trace.h"
35 /**
36 * mei_txe_reg_read - Reads 32bit data from the txe device
38 * @base_addr: registers base address
39 * @offset: register offset
41 * Return: register value
43 static inline u32 mei_txe_reg_read(void __iomem *base_addr,
44 unsigned long offset)
46 return ioread32(base_addr + offset);
49 /**
50 * mei_txe_reg_write - Writes 32bit data to the txe device
52 * @base_addr: registers base address
53 * @offset: register offset
54 * @value: the value to write
56 static inline void mei_txe_reg_write(void __iomem *base_addr,
57 unsigned long offset, u32 value)
59 iowrite32(value, base_addr + offset);
62 /**
63 * mei_txe_sec_reg_read_silent - Reads 32bit data from the SeC BAR
65 * @hw: the txe hardware structure
66 * @offset: register offset
68 * Doesn't check for aliveness while Reads 32bit data from the SeC BAR
70 * Return: register value
72 static inline u32 mei_txe_sec_reg_read_silent(struct mei_txe_hw *hw,
73 unsigned long offset)
75 return mei_txe_reg_read(hw->mem_addr[SEC_BAR], offset);
78 /**
79 * mei_txe_sec_reg_read - Reads 32bit data from the SeC BAR
81 * @hw: the txe hardware structure
82 * @offset: register offset
84 * Reads 32bit data from the SeC BAR and shout loud if aliveness is not set
86 * Return: register value
88 static inline u32 mei_txe_sec_reg_read(struct mei_txe_hw *hw,
89 unsigned long offset)
91 WARN(!hw->aliveness, "sec read: aliveness not asserted\n");
92 return mei_txe_sec_reg_read_silent(hw, offset);
94 /**
95 * mei_txe_sec_reg_write_silent - Writes 32bit data to the SeC BAR
96 * doesn't check for aliveness
98 * @hw: the txe hardware structure
99 * @offset: register offset
100 * @value: value to write
102 * Doesn't check for aliveness while writes 32bit data from to the SeC BAR
104 static inline void mei_txe_sec_reg_write_silent(struct mei_txe_hw *hw,
105 unsigned long offset, u32 value)
107 mei_txe_reg_write(hw->mem_addr[SEC_BAR], offset, value);
111 * mei_txe_sec_reg_write - Writes 32bit data to the SeC BAR
113 * @hw: the txe hardware structure
114 * @offset: register offset
115 * @value: value to write
117 * Writes 32bit data from the SeC BAR and shout loud if aliveness is not set
119 static inline void mei_txe_sec_reg_write(struct mei_txe_hw *hw,
120 unsigned long offset, u32 value)
122 WARN(!hw->aliveness, "sec write: aliveness not asserted\n");
123 mei_txe_sec_reg_write_silent(hw, offset, value);
126 * mei_txe_br_reg_read - Reads 32bit data from the Bridge BAR
128 * @hw: the txe hardware structure
129 * @offset: offset from which to read the data
131 * Return: the byte read.
133 static inline u32 mei_txe_br_reg_read(struct mei_txe_hw *hw,
134 unsigned long offset)
136 return mei_txe_reg_read(hw->mem_addr[BRIDGE_BAR], offset);
140 * mei_txe_br_reg_write - Writes 32bit data to the Bridge BAR
142 * @hw: the txe hardware structure
143 * @offset: offset from which to write the data
144 * @value: the byte to write
146 static inline void mei_txe_br_reg_write(struct mei_txe_hw *hw,
147 unsigned long offset, u32 value)
149 mei_txe_reg_write(hw->mem_addr[BRIDGE_BAR], offset, value);
153 * mei_txe_aliveness_set - request for aliveness change
155 * @dev: the device structure
156 * @req: requested aliveness value
158 * Request for aliveness change and returns true if the change is
159 * really needed and false if aliveness is already
160 * in the requested state
162 * Locking: called under "dev->device_lock" lock
164 * Return: true if request was send
166 static bool mei_txe_aliveness_set(struct mei_device *dev, u32 req)
169 struct mei_txe_hw *hw = to_txe_hw(dev);
170 bool do_req = hw->aliveness != req;
172 dev_dbg(dev->dev, "Aliveness current=%d request=%d\n",
173 hw->aliveness, req);
174 if (do_req) {
175 dev->pg_event = MEI_PG_EVENT_WAIT;
176 mei_txe_br_reg_write(hw, SICR_HOST_ALIVENESS_REQ_REG, req);
178 return do_req;
183 * mei_txe_aliveness_req_get - get aliveness requested register value
185 * @dev: the device structure
187 * Extract HICR_HOST_ALIVENESS_RESP_ACK bit from
188 * from HICR_HOST_ALIVENESS_REQ register value
190 * Return: SICR_HOST_ALIVENESS_REQ_REQUESTED bit value
192 static u32 mei_txe_aliveness_req_get(struct mei_device *dev)
194 struct mei_txe_hw *hw = to_txe_hw(dev);
195 u32 reg;
197 reg = mei_txe_br_reg_read(hw, SICR_HOST_ALIVENESS_REQ_REG);
198 return reg & SICR_HOST_ALIVENESS_REQ_REQUESTED;
202 * mei_txe_aliveness_get - get aliveness response register value
204 * @dev: the device structure
206 * Return: HICR_HOST_ALIVENESS_RESP_ACK bit from HICR_HOST_ALIVENESS_RESP
207 * register
209 static u32 mei_txe_aliveness_get(struct mei_device *dev)
211 struct mei_txe_hw *hw = to_txe_hw(dev);
212 u32 reg;
214 reg = mei_txe_br_reg_read(hw, HICR_HOST_ALIVENESS_RESP_REG);
215 return reg & HICR_HOST_ALIVENESS_RESP_ACK;
219 * mei_txe_aliveness_poll - waits for aliveness to settle
221 * @dev: the device structure
222 * @expected: expected aliveness value
224 * Polls for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
226 * Return: 0 if the expected value was received, -ETIME otherwise
228 static int mei_txe_aliveness_poll(struct mei_device *dev, u32 expected)
230 struct mei_txe_hw *hw = to_txe_hw(dev);
231 ktime_t stop, start;
233 start = ktime_get();
234 stop = ktime_add(start, ms_to_ktime(SEC_ALIVENESS_WAIT_TIMEOUT));
235 do {
236 hw->aliveness = mei_txe_aliveness_get(dev);
237 if (hw->aliveness == expected) {
238 dev->pg_event = MEI_PG_EVENT_IDLE;
239 dev_dbg(dev->dev, "aliveness settled after %lld usecs\n",
240 ktime_to_us(ktime_sub(ktime_get(), start)));
241 return 0;
243 usleep_range(20, 50);
244 } while (ktime_before(ktime_get(), stop));
246 dev->pg_event = MEI_PG_EVENT_IDLE;
247 dev_err(dev->dev, "aliveness timed out\n");
248 return -ETIME;
252 * mei_txe_aliveness_wait - waits for aliveness to settle
254 * @dev: the device structure
255 * @expected: expected aliveness value
257 * Waits for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
259 * Return: 0 on success and < 0 otherwise
261 static int mei_txe_aliveness_wait(struct mei_device *dev, u32 expected)
263 struct mei_txe_hw *hw = to_txe_hw(dev);
264 const unsigned long timeout =
265 msecs_to_jiffies(SEC_ALIVENESS_WAIT_TIMEOUT);
266 long err;
267 int ret;
269 hw->aliveness = mei_txe_aliveness_get(dev);
270 if (hw->aliveness == expected)
271 return 0;
273 mutex_unlock(&dev->device_lock);
274 err = wait_event_timeout(hw->wait_aliveness_resp,
275 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
276 mutex_lock(&dev->device_lock);
278 hw->aliveness = mei_txe_aliveness_get(dev);
279 ret = hw->aliveness == expected ? 0 : -ETIME;
281 if (ret)
282 dev_warn(dev->dev, "aliveness timed out = %ld aliveness = %d event = %d\n",
283 err, hw->aliveness, dev->pg_event);
284 else
285 dev_dbg(dev->dev, "aliveness settled after = %d msec aliveness = %d event = %d\n",
286 jiffies_to_msecs(timeout - err),
287 hw->aliveness, dev->pg_event);
289 dev->pg_event = MEI_PG_EVENT_IDLE;
290 return ret;
294 * mei_txe_aliveness_set_sync - sets an wait for aliveness to complete
296 * @dev: the device structure
297 * @req: requested aliveness value
299 * Return: 0 on success and < 0 otherwise
301 int mei_txe_aliveness_set_sync(struct mei_device *dev, u32 req)
303 if (mei_txe_aliveness_set(dev, req))
304 return mei_txe_aliveness_wait(dev, req);
305 return 0;
309 * mei_txe_pg_in_transition - is device now in pg transition
311 * @dev: the device structure
313 * Return: true if in pg transition, false otherwise
315 static bool mei_txe_pg_in_transition(struct mei_device *dev)
317 return dev->pg_event == MEI_PG_EVENT_WAIT;
321 * mei_txe_pg_is_enabled - detect if PG is supported by HW
323 * @dev: the device structure
325 * Return: true is pg supported, false otherwise
327 static bool mei_txe_pg_is_enabled(struct mei_device *dev)
329 return true;
333 * mei_txe_pg_state - translate aliveness register value
334 * to the mei power gating state
336 * @dev: the device structure
338 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
340 static inline enum mei_pg_state mei_txe_pg_state(struct mei_device *dev)
342 struct mei_txe_hw *hw = to_txe_hw(dev);
344 return hw->aliveness ? MEI_PG_OFF : MEI_PG_ON;
348 * mei_txe_input_ready_interrupt_enable - sets the Input Ready Interrupt
350 * @dev: the device structure
352 static void mei_txe_input_ready_interrupt_enable(struct mei_device *dev)
354 struct mei_txe_hw *hw = to_txe_hw(dev);
355 u32 hintmsk;
356 /* Enable the SEC_IPC_HOST_INT_MASK_IN_RDY interrupt */
357 hintmsk = mei_txe_sec_reg_read(hw, SEC_IPC_HOST_INT_MASK_REG);
358 hintmsk |= SEC_IPC_HOST_INT_MASK_IN_RDY;
359 mei_txe_sec_reg_write(hw, SEC_IPC_HOST_INT_MASK_REG, hintmsk);
363 * mei_txe_input_doorbell_set - sets bit 0 in
364 * SEC_IPC_INPUT_DOORBELL.IPC_INPUT_DOORBELL.
366 * @hw: the txe hardware structure
368 static void mei_txe_input_doorbell_set(struct mei_txe_hw *hw)
370 /* Clear the interrupt cause */
371 clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause);
372 mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_DOORBELL_REG, 1);
376 * mei_txe_output_ready_set - Sets the SICR_SEC_IPC_OUTPUT_STATUS bit to 1
378 * @hw: the txe hardware structure
380 static void mei_txe_output_ready_set(struct mei_txe_hw *hw)
382 mei_txe_br_reg_write(hw,
383 SICR_SEC_IPC_OUTPUT_STATUS_REG,
384 SEC_IPC_OUTPUT_STATUS_RDY);
388 * mei_txe_is_input_ready - check if TXE is ready for receiving data
390 * @dev: the device structure
392 * Return: true if INPUT STATUS READY bit is set
394 static bool mei_txe_is_input_ready(struct mei_device *dev)
396 struct mei_txe_hw *hw = to_txe_hw(dev);
397 u32 status;
399 status = mei_txe_sec_reg_read(hw, SEC_IPC_INPUT_STATUS_REG);
400 return !!(SEC_IPC_INPUT_STATUS_RDY & status);
404 * mei_txe_intr_clear - clear all interrupts
406 * @dev: the device structure
408 static inline void mei_txe_intr_clear(struct mei_device *dev)
410 struct mei_txe_hw *hw = to_txe_hw(dev);
412 mei_txe_sec_reg_write_silent(hw, SEC_IPC_HOST_INT_STATUS_REG,
413 SEC_IPC_HOST_INT_STATUS_PENDING);
414 mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_STS_MSK);
415 mei_txe_br_reg_write(hw, HHISR_REG, IPC_HHIER_MSK);
419 * mei_txe_intr_disable - disable all interrupts
421 * @dev: the device structure
423 static void mei_txe_intr_disable(struct mei_device *dev)
425 struct mei_txe_hw *hw = to_txe_hw(dev);
427 mei_txe_br_reg_write(hw, HHIER_REG, 0);
428 mei_txe_br_reg_write(hw, HIER_REG, 0);
431 * mei_txe_intr_enable - enable all interrupts
433 * @dev: the device structure
435 static void mei_txe_intr_enable(struct mei_device *dev)
437 struct mei_txe_hw *hw = to_txe_hw(dev);
439 mei_txe_br_reg_write(hw, HHIER_REG, IPC_HHIER_MSK);
440 mei_txe_br_reg_write(hw, HIER_REG, HIER_INT_EN_MSK);
444 * mei_txe_synchronize_irq - wait for pending IRQ handlers
446 * @dev: the device structure
448 static void mei_txe_synchronize_irq(struct mei_device *dev)
450 struct pci_dev *pdev = to_pci_dev(dev->dev);
452 synchronize_irq(pdev->irq);
456 * mei_txe_pending_interrupts - check if there are pending interrupts
457 * only Aliveness, Input ready, and output doorbell are of relevance
459 * @dev: the device structure
461 * Checks if there are pending interrupts
462 * only Aliveness, Readiness, Input ready, and Output doorbell are relevant
464 * Return: true if there are pending interrupts
466 static bool mei_txe_pending_interrupts(struct mei_device *dev)
469 struct mei_txe_hw *hw = to_txe_hw(dev);
470 bool ret = (hw->intr_cause & (TXE_INTR_READINESS |
471 TXE_INTR_ALIVENESS |
472 TXE_INTR_IN_READY |
473 TXE_INTR_OUT_DB));
475 if (ret) {
476 dev_dbg(dev->dev,
477 "Pending Interrupts InReady=%01d Readiness=%01d, Aliveness=%01d, OutDoor=%01d\n",
478 !!(hw->intr_cause & TXE_INTR_IN_READY),
479 !!(hw->intr_cause & TXE_INTR_READINESS),
480 !!(hw->intr_cause & TXE_INTR_ALIVENESS),
481 !!(hw->intr_cause & TXE_INTR_OUT_DB));
483 return ret;
487 * mei_txe_input_payload_write - write a dword to the host buffer
488 * at offset idx
490 * @dev: the device structure
491 * @idx: index in the host buffer
492 * @value: value
494 static void mei_txe_input_payload_write(struct mei_device *dev,
495 unsigned long idx, u32 value)
497 struct mei_txe_hw *hw = to_txe_hw(dev);
499 mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_PAYLOAD_REG +
500 (idx * sizeof(u32)), value);
504 * mei_txe_out_data_read - read dword from the device buffer
505 * at offset idx
507 * @dev: the device structure
508 * @idx: index in the device buffer
510 * Return: register value at index
512 static u32 mei_txe_out_data_read(const struct mei_device *dev,
513 unsigned long idx)
515 struct mei_txe_hw *hw = to_txe_hw(dev);
517 return mei_txe_br_reg_read(hw,
518 BRIDGE_IPC_OUTPUT_PAYLOAD_REG + (idx * sizeof(u32)));
521 /* Readiness */
524 * mei_txe_readiness_set_host_rdy - set host readiness bit
526 * @dev: the device structure
528 static void mei_txe_readiness_set_host_rdy(struct mei_device *dev)
530 struct mei_txe_hw *hw = to_txe_hw(dev);
532 mei_txe_br_reg_write(hw,
533 SICR_HOST_IPC_READINESS_REQ_REG,
534 SICR_HOST_IPC_READINESS_HOST_RDY);
538 * mei_txe_readiness_clear - clear host readiness bit
540 * @dev: the device structure
542 static void mei_txe_readiness_clear(struct mei_device *dev)
544 struct mei_txe_hw *hw = to_txe_hw(dev);
546 mei_txe_br_reg_write(hw, SICR_HOST_IPC_READINESS_REQ_REG,
547 SICR_HOST_IPC_READINESS_RDY_CLR);
550 * mei_txe_readiness_get - Reads and returns
551 * the HICR_SEC_IPC_READINESS register value
553 * @dev: the device structure
555 * Return: the HICR_SEC_IPC_READINESS register value
557 static u32 mei_txe_readiness_get(struct mei_device *dev)
559 struct mei_txe_hw *hw = to_txe_hw(dev);
561 return mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
566 * mei_txe_readiness_is_sec_rdy - check readiness
567 * for HICR_SEC_IPC_READINESS_SEC_RDY
569 * @readiness: cached readiness state
571 * Return: true if readiness bit is set
573 static inline bool mei_txe_readiness_is_sec_rdy(u32 readiness)
575 return !!(readiness & HICR_SEC_IPC_READINESS_SEC_RDY);
579 * mei_txe_hw_is_ready - check if the hw is ready
581 * @dev: the device structure
583 * Return: true if sec is ready
585 static bool mei_txe_hw_is_ready(struct mei_device *dev)
587 u32 readiness = mei_txe_readiness_get(dev);
589 return mei_txe_readiness_is_sec_rdy(readiness);
593 * mei_txe_host_is_ready - check if the host is ready
595 * @dev: the device structure
597 * Return: true if host is ready
599 static inline bool mei_txe_host_is_ready(struct mei_device *dev)
601 struct mei_txe_hw *hw = to_txe_hw(dev);
602 u32 reg = mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
604 return !!(reg & HICR_SEC_IPC_READINESS_HOST_RDY);
608 * mei_txe_readiness_wait - wait till readiness settles
610 * @dev: the device structure
612 * Return: 0 on success and -ETIME on timeout
614 static int mei_txe_readiness_wait(struct mei_device *dev)
616 if (mei_txe_hw_is_ready(dev))
617 return 0;
619 mutex_unlock(&dev->device_lock);
620 wait_event_timeout(dev->wait_hw_ready, dev->recvd_hw_ready,
621 msecs_to_jiffies(SEC_RESET_WAIT_TIMEOUT));
622 mutex_lock(&dev->device_lock);
623 if (!dev->recvd_hw_ready) {
624 dev_err(dev->dev, "wait for readiness failed\n");
625 return -ETIME;
628 dev->recvd_hw_ready = false;
629 return 0;
632 static const struct mei_fw_status mei_txe_fw_sts = {
633 .count = 2,
634 .status[0] = PCI_CFG_TXE_FW_STS0,
635 .status[1] = PCI_CFG_TXE_FW_STS1
639 * mei_txe_fw_status - read fw status register from pci config space
641 * @dev: mei device
642 * @fw_status: fw status register values
644 * Return: 0 on success, error otherwise
646 static int mei_txe_fw_status(struct mei_device *dev,
647 struct mei_fw_status *fw_status)
649 const struct mei_fw_status *fw_src = &mei_txe_fw_sts;
650 struct pci_dev *pdev = to_pci_dev(dev->dev);
651 int ret;
652 int i;
654 if (!fw_status)
655 return -EINVAL;
657 fw_status->count = fw_src->count;
658 for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
659 ret = pci_read_config_dword(pdev, fw_src->status[i],
660 &fw_status->status[i]);
661 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
662 fw_src->status[i],
663 fw_status->status[i]);
664 if (ret)
665 return ret;
668 return 0;
672 * mei_txe_hw_config - configure hardware at the start of the devices
674 * @dev: the device structure
676 * Configure hardware at the start of the device should be done only
677 * once at the device probe time
679 static void mei_txe_hw_config(struct mei_device *dev)
682 struct mei_txe_hw *hw = to_txe_hw(dev);
684 /* Doesn't change in runtime */
685 dev->hbuf_depth = PAYLOAD_SIZE / 4;
687 hw->aliveness = mei_txe_aliveness_get(dev);
688 hw->readiness = mei_txe_readiness_get(dev);
690 dev_dbg(dev->dev, "aliveness_resp = 0x%08x, readiness = 0x%08x.\n",
691 hw->aliveness, hw->readiness);
696 * mei_txe_write - writes a message to device.
698 * @dev: the device structure
699 * @header: header of message
700 * @buf: message buffer will be written
702 * Return: 0 if success, <0 - otherwise.
705 static int mei_txe_write(struct mei_device *dev,
706 struct mei_msg_hdr *header,
707 const unsigned char *buf)
709 struct mei_txe_hw *hw = to_txe_hw(dev);
710 unsigned long rem;
711 unsigned long length;
712 int slots = dev->hbuf_depth;
713 u32 *reg_buf = (u32 *)buf;
714 u32 dw_cnt;
715 int i;
717 if (WARN_ON(!header || !buf))
718 return -EINVAL;
720 length = header->length;
722 dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
724 dw_cnt = mei_data2slots(length);
725 if (dw_cnt > slots)
726 return -EMSGSIZE;
728 if (WARN(!hw->aliveness, "txe write: aliveness not asserted\n"))
729 return -EAGAIN;
731 /* Enable Input Ready Interrupt. */
732 mei_txe_input_ready_interrupt_enable(dev);
734 if (!mei_txe_is_input_ready(dev)) {
735 char fw_sts_str[MEI_FW_STATUS_STR_SZ];
737 mei_fw_status_str(dev, fw_sts_str, MEI_FW_STATUS_STR_SZ);
738 dev_err(dev->dev, "Input is not ready %s\n", fw_sts_str);
739 return -EAGAIN;
742 mei_txe_input_payload_write(dev, 0, *((u32 *)header));
744 for (i = 0; i < length / 4; i++)
745 mei_txe_input_payload_write(dev, i + 1, reg_buf[i]);
747 rem = length & 0x3;
748 if (rem > 0) {
749 u32 reg = 0;
751 memcpy(&reg, &buf[length - rem], rem);
752 mei_txe_input_payload_write(dev, i + 1, reg);
755 /* after each write the whole buffer is consumed */
756 hw->slots = 0;
758 /* Set Input-Doorbell */
759 mei_txe_input_doorbell_set(hw);
761 return 0;
765 * mei_txe_hbuf_max_len - mimics the me hbuf circular buffer
767 * @dev: the device structure
769 * Return: the PAYLOAD_SIZE - 4
771 static size_t mei_txe_hbuf_max_len(const struct mei_device *dev)
773 return PAYLOAD_SIZE - sizeof(struct mei_msg_hdr);
777 * mei_txe_hbuf_empty_slots - mimics the me hbuf circular buffer
779 * @dev: the device structure
781 * Return: always hbuf_depth
783 static int mei_txe_hbuf_empty_slots(struct mei_device *dev)
785 struct mei_txe_hw *hw = to_txe_hw(dev);
787 return hw->slots;
791 * mei_txe_count_full_read_slots - mimics the me device circular buffer
793 * @dev: the device structure
795 * Return: always buffer size in dwords count
797 static int mei_txe_count_full_read_slots(struct mei_device *dev)
799 /* read buffers has static size */
800 return PAYLOAD_SIZE / 4;
804 * mei_txe_read_hdr - read message header which is always in 4 first bytes
806 * @dev: the device structure
808 * Return: mei message header
811 static u32 mei_txe_read_hdr(const struct mei_device *dev)
813 return mei_txe_out_data_read(dev, 0);
816 * mei_txe_read - reads a message from the txe device.
818 * @dev: the device structure
819 * @buf: message buffer will be written
820 * @len: message size will be read
822 * Return: -EINVAL on error wrong argument and 0 on success
824 static int mei_txe_read(struct mei_device *dev,
825 unsigned char *buf, unsigned long len)
828 struct mei_txe_hw *hw = to_txe_hw(dev);
829 u32 *reg_buf, reg;
830 u32 rem;
831 u32 i;
833 if (WARN_ON(!buf || !len))
834 return -EINVAL;
836 reg_buf = (u32 *)buf;
837 rem = len & 0x3;
839 dev_dbg(dev->dev, "buffer-length = %lu buf[0]0x%08X\n",
840 len, mei_txe_out_data_read(dev, 0));
842 for (i = 0; i < len / 4; i++) {
843 /* skip header: index starts from 1 */
844 reg = mei_txe_out_data_read(dev, i + 1);
845 dev_dbg(dev->dev, "buf[%d] = 0x%08X\n", i, reg);
846 *reg_buf++ = reg;
849 if (rem) {
850 reg = mei_txe_out_data_read(dev, i + 1);
851 memcpy(reg_buf, &reg, rem);
854 mei_txe_output_ready_set(hw);
855 return 0;
859 * mei_txe_hw_reset - resets host and fw.
861 * @dev: the device structure
862 * @intr_enable: if interrupt should be enabled after reset.
864 * Return: 0 on success and < 0 in case of error
866 static int mei_txe_hw_reset(struct mei_device *dev, bool intr_enable)
868 struct mei_txe_hw *hw = to_txe_hw(dev);
870 u32 aliveness_req;
872 * read input doorbell to ensure consistency between Bridge and SeC
873 * return value might be garbage return
875 (void)mei_txe_sec_reg_read_silent(hw, SEC_IPC_INPUT_DOORBELL_REG);
877 aliveness_req = mei_txe_aliveness_req_get(dev);
878 hw->aliveness = mei_txe_aliveness_get(dev);
880 /* Disable interrupts in this stage we will poll */
881 mei_txe_intr_disable(dev);
884 * If Aliveness Request and Aliveness Response are not equal then
885 * wait for them to be equal
886 * Since we might have interrupts disabled - poll for it
888 if (aliveness_req != hw->aliveness)
889 if (mei_txe_aliveness_poll(dev, aliveness_req) < 0) {
890 dev_err(dev->dev, "wait for aliveness settle failed ... bailing out\n");
891 return -EIO;
895 * If Aliveness Request and Aliveness Response are set then clear them
897 if (aliveness_req) {
898 mei_txe_aliveness_set(dev, 0);
899 if (mei_txe_aliveness_poll(dev, 0) < 0) {
900 dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
901 return -EIO;
906 * Set readiness RDY_CLR bit
908 mei_txe_readiness_clear(dev);
910 return 0;
914 * mei_txe_hw_start - start the hardware after reset
916 * @dev: the device structure
918 * Return: 0 on success an error code otherwise
920 static int mei_txe_hw_start(struct mei_device *dev)
922 struct mei_txe_hw *hw = to_txe_hw(dev);
923 int ret;
925 u32 hisr;
927 /* bring back interrupts */
928 mei_txe_intr_enable(dev);
930 ret = mei_txe_readiness_wait(dev);
931 if (ret < 0) {
932 dev_err(dev->dev, "waiting for readiness failed\n");
933 return ret;
937 * If HISR.INT2_STS interrupt status bit is set then clear it.
939 hisr = mei_txe_br_reg_read(hw, HISR_REG);
940 if (hisr & HISR_INT_2_STS)
941 mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_2_STS);
943 /* Clear the interrupt cause of OutputDoorbell */
944 clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause);
946 ret = mei_txe_aliveness_set_sync(dev, 1);
947 if (ret < 0) {
948 dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
949 return ret;
952 pm_runtime_set_active(dev->dev);
954 /* enable input ready interrupts:
955 * SEC_IPC_HOST_INT_MASK.IPC_INPUT_READY_INT_MASK
957 mei_txe_input_ready_interrupt_enable(dev);
960 /* Set the SICR_SEC_IPC_OUTPUT_STATUS.IPC_OUTPUT_READY bit */
961 mei_txe_output_ready_set(hw);
963 /* Set bit SICR_HOST_IPC_READINESS.HOST_RDY
965 mei_txe_readiness_set_host_rdy(dev);
967 return 0;
971 * mei_txe_check_and_ack_intrs - translate multi BAR interrupt into
972 * single bit mask and acknowledge the interrupts
974 * @dev: the device structure
975 * @do_ack: acknowledge interrupts
977 * Return: true if found interrupts to process.
979 static bool mei_txe_check_and_ack_intrs(struct mei_device *dev, bool do_ack)
981 struct mei_txe_hw *hw = to_txe_hw(dev);
982 u32 hisr;
983 u32 hhisr;
984 u32 ipc_isr;
985 u32 aliveness;
986 bool generated;
988 /* read interrupt registers */
989 hhisr = mei_txe_br_reg_read(hw, HHISR_REG);
990 generated = (hhisr & IPC_HHIER_MSK);
991 if (!generated)
992 goto out;
994 hisr = mei_txe_br_reg_read(hw, HISR_REG);
996 aliveness = mei_txe_aliveness_get(dev);
997 if (hhisr & IPC_HHIER_SEC && aliveness) {
998 ipc_isr = mei_txe_sec_reg_read_silent(hw,
999 SEC_IPC_HOST_INT_STATUS_REG);
1000 } else {
1001 ipc_isr = 0;
1002 hhisr &= ~IPC_HHIER_SEC;
1005 generated = generated ||
1006 (hisr & HISR_INT_STS_MSK) ||
1007 (ipc_isr & SEC_IPC_HOST_INT_STATUS_PENDING);
1009 if (generated && do_ack) {
1010 /* Save the interrupt causes */
1011 hw->intr_cause |= hisr & HISR_INT_STS_MSK;
1012 if (ipc_isr & SEC_IPC_HOST_INT_STATUS_IN_RDY)
1013 hw->intr_cause |= TXE_INTR_IN_READY;
1016 mei_txe_intr_disable(dev);
1017 /* Clear the interrupts in hierarchy:
1018 * IPC and Bridge, than the High Level */
1019 mei_txe_sec_reg_write_silent(hw,
1020 SEC_IPC_HOST_INT_STATUS_REG, ipc_isr);
1021 mei_txe_br_reg_write(hw, HISR_REG, hisr);
1022 mei_txe_br_reg_write(hw, HHISR_REG, hhisr);
1025 out:
1026 return generated;
1030 * mei_txe_irq_quick_handler - The ISR of the MEI device
1032 * @irq: The irq number
1033 * @dev_id: pointer to the device structure
1035 * Return: IRQ_WAKE_THREAD if interrupt is designed for the device
1036 * IRQ_NONE otherwise
1038 irqreturn_t mei_txe_irq_quick_handler(int irq, void *dev_id)
1040 struct mei_device *dev = dev_id;
1042 if (mei_txe_check_and_ack_intrs(dev, true))
1043 return IRQ_WAKE_THREAD;
1044 return IRQ_NONE;
1049 * mei_txe_irq_thread_handler - txe interrupt thread
1051 * @irq: The irq number
1052 * @dev_id: pointer to the device structure
1054 * Return: IRQ_HANDLED
1056 irqreturn_t mei_txe_irq_thread_handler(int irq, void *dev_id)
1058 struct mei_device *dev = (struct mei_device *) dev_id;
1059 struct mei_txe_hw *hw = to_txe_hw(dev);
1060 struct list_head cmpl_list;
1061 s32 slots;
1062 int rets = 0;
1064 dev_dbg(dev->dev, "irq thread: Interrupt Registers HHISR|HISR|SEC=%02X|%04X|%02X\n",
1065 mei_txe_br_reg_read(hw, HHISR_REG),
1066 mei_txe_br_reg_read(hw, HISR_REG),
1067 mei_txe_sec_reg_read_silent(hw, SEC_IPC_HOST_INT_STATUS_REG));
1070 /* initialize our complete list */
1071 mutex_lock(&dev->device_lock);
1072 INIT_LIST_HEAD(&cmpl_list);
1074 if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
1075 mei_txe_check_and_ack_intrs(dev, true);
1077 /* show irq events */
1078 mei_txe_pending_interrupts(dev);
1080 hw->aliveness = mei_txe_aliveness_get(dev);
1081 hw->readiness = mei_txe_readiness_get(dev);
1083 /* Readiness:
1084 * Detection of TXE driver going through reset
1085 * or TXE driver resetting the HECI interface.
1087 if (test_and_clear_bit(TXE_INTR_READINESS_BIT, &hw->intr_cause)) {
1088 dev_dbg(dev->dev, "Readiness Interrupt was received...\n");
1090 /* Check if SeC is going through reset */
1091 if (mei_txe_readiness_is_sec_rdy(hw->readiness)) {
1092 dev_dbg(dev->dev, "we need to start the dev.\n");
1093 dev->recvd_hw_ready = true;
1094 } else {
1095 dev->recvd_hw_ready = false;
1096 if (dev->dev_state != MEI_DEV_RESETTING) {
1098 dev_warn(dev->dev, "FW not ready: resetting.\n");
1099 schedule_work(&dev->reset_work);
1100 goto end;
1104 wake_up(&dev->wait_hw_ready);
1107 /************************************************************/
1108 /* Check interrupt cause:
1109 * Aliveness: Detection of SeC acknowledge of host request that
1110 * it remain alive or host cancellation of that request.
1113 if (test_and_clear_bit(TXE_INTR_ALIVENESS_BIT, &hw->intr_cause)) {
1114 /* Clear the interrupt cause */
1115 dev_dbg(dev->dev,
1116 "Aliveness Interrupt: Status: %d\n", hw->aliveness);
1117 dev->pg_event = MEI_PG_EVENT_RECEIVED;
1118 if (waitqueue_active(&hw->wait_aliveness_resp))
1119 wake_up(&hw->wait_aliveness_resp);
1123 /* Output Doorbell:
1124 * Detection of SeC having sent output to host
1126 slots = mei_count_full_read_slots(dev);
1127 if (test_and_clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause)) {
1128 /* Read from TXE */
1129 rets = mei_irq_read_handler(dev, &cmpl_list, &slots);
1130 if (rets &&
1131 (dev->dev_state != MEI_DEV_RESETTING &&
1132 dev->dev_state != MEI_DEV_POWER_DOWN)) {
1133 dev_err(dev->dev,
1134 "mei_irq_read_handler ret = %d.\n", rets);
1136 schedule_work(&dev->reset_work);
1137 goto end;
1140 /* Input Ready: Detection if host can write to SeC */
1141 if (test_and_clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause)) {
1142 dev->hbuf_is_ready = true;
1143 hw->slots = dev->hbuf_depth;
1146 if (hw->aliveness && dev->hbuf_is_ready) {
1147 /* get the real register value */
1148 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1149 rets = mei_irq_write_handler(dev, &cmpl_list);
1150 if (rets && rets != -EMSGSIZE)
1151 dev_err(dev->dev, "mei_irq_write_handler ret = %d.\n",
1152 rets);
1153 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1156 mei_irq_compl_handler(dev, &cmpl_list);
1158 end:
1159 dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1161 mutex_unlock(&dev->device_lock);
1163 mei_enable_interrupts(dev);
1164 return IRQ_HANDLED;
1167 static const struct mei_hw_ops mei_txe_hw_ops = {
1169 .host_is_ready = mei_txe_host_is_ready,
1171 .fw_status = mei_txe_fw_status,
1172 .pg_state = mei_txe_pg_state,
1174 .hw_is_ready = mei_txe_hw_is_ready,
1175 .hw_reset = mei_txe_hw_reset,
1176 .hw_config = mei_txe_hw_config,
1177 .hw_start = mei_txe_hw_start,
1179 .pg_in_transition = mei_txe_pg_in_transition,
1180 .pg_is_enabled = mei_txe_pg_is_enabled,
1182 .intr_clear = mei_txe_intr_clear,
1183 .intr_enable = mei_txe_intr_enable,
1184 .intr_disable = mei_txe_intr_disable,
1185 .synchronize_irq = mei_txe_synchronize_irq,
1187 .hbuf_free_slots = mei_txe_hbuf_empty_slots,
1188 .hbuf_is_ready = mei_txe_is_input_ready,
1189 .hbuf_max_len = mei_txe_hbuf_max_len,
1191 .write = mei_txe_write,
1193 .rdbuf_full_slots = mei_txe_count_full_read_slots,
1194 .read_hdr = mei_txe_read_hdr,
1196 .read = mei_txe_read,
1201 * mei_txe_dev_init - allocates and initializes txe hardware specific structure
1203 * @pdev: pci device
1205 * Return: struct mei_device * on success or NULL
1207 struct mei_device *mei_txe_dev_init(struct pci_dev *pdev)
1209 struct mei_device *dev;
1210 struct mei_txe_hw *hw;
1212 dev = devm_kzalloc(&pdev->dev, sizeof(struct mei_device) +
1213 sizeof(struct mei_txe_hw), GFP_KERNEL);
1214 if (!dev)
1215 return NULL;
1217 mei_device_init(dev, &pdev->dev, &mei_txe_hw_ops);
1219 hw = to_txe_hw(dev);
1221 init_waitqueue_head(&hw->wait_aliveness_resp);
1223 return dev;
1227 * mei_txe_setup_satt2 - SATT2 configuration for DMA support.
1229 * @dev: the device structure
1230 * @addr: physical address start of the range
1231 * @range: physical range size
1233 * Return: 0 on success an error code otherwise
1235 int mei_txe_setup_satt2(struct mei_device *dev, phys_addr_t addr, u32 range)
1237 struct mei_txe_hw *hw = to_txe_hw(dev);
1239 u32 lo32 = lower_32_bits(addr);
1240 u32 hi32 = upper_32_bits(addr);
1241 u32 ctrl;
1243 /* SATT is limited to 36 Bits */
1244 if (hi32 & ~0xF)
1245 return -EINVAL;
1247 /* SATT has to be 16Byte aligned */
1248 if (lo32 & 0xF)
1249 return -EINVAL;
1251 /* SATT range has to be 4Bytes aligned */
1252 if (range & 0x4)
1253 return -EINVAL;
1255 /* SATT is limited to 32 MB range*/
1256 if (range > SATT_RANGE_MAX)
1257 return -EINVAL;
1259 ctrl = SATT2_CTRL_VALID_MSK;
1260 ctrl |= hi32 << SATT2_CTRL_BR_BASE_ADDR_REG_SHIFT;
1262 mei_txe_br_reg_write(hw, SATT2_SAP_SIZE_REG, range);
1263 mei_txe_br_reg_write(hw, SATT2_BRG_BA_LSB_REG, lo32);
1264 mei_txe_br_reg_write(hw, SATT2_CTRL_REG, ctrl);
1265 dev_dbg(dev->dev, "SATT2: SAP_SIZE_OFFSET=0x%08X, BRG_BA_LSB_OFFSET=0x%08X, CTRL_OFFSET=0x%08X\n",
1266 range, lo32, ctrl);
1268 return 0;