Linux 4.18.10
[linux/fpc-iii.git] / drivers / misc / mic / host / mic_smpt.c
blobc3f958580fb01bcde2f9514172d5520ecba9664c
1 /*
2 * Intel MIC Platform Software Stack (MPSS)
4 * Copyright(c) 2013 Intel Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License for more details.
15 * The full GNU General Public License is included in this distribution in
16 * the file called "COPYING".
18 * Intel MIC Host driver.
21 #include <linux/pci.h>
23 #include "../common/mic_dev.h"
24 #include "mic_device.h"
25 #include "mic_smpt.h"
27 static inline u64 mic_system_page_mask(struct mic_device *mdev)
29 return (1ULL << mdev->smpt->info.page_shift) - 1ULL;
32 static inline u8 mic_sys_addr_to_smpt(struct mic_device *mdev, dma_addr_t pa)
34 return (pa - mdev->smpt->info.base) >> mdev->smpt->info.page_shift;
37 static inline u64 mic_smpt_to_pa(struct mic_device *mdev, u8 index)
39 return mdev->smpt->info.base + (index * mdev->smpt->info.page_size);
42 static inline u64 mic_smpt_offset(struct mic_device *mdev, dma_addr_t pa)
44 return pa & mic_system_page_mask(mdev);
47 static inline u64 mic_smpt_align_low(struct mic_device *mdev, dma_addr_t pa)
49 return ALIGN(pa - mic_system_page_mask(mdev),
50 mdev->smpt->info.page_size);
53 static inline u64 mic_smpt_align_high(struct mic_device *mdev, dma_addr_t pa)
55 return ALIGN(pa, mdev->smpt->info.page_size);
58 /* Total Cumulative system memory accessible by MIC across all SMPT entries */
59 static inline u64 mic_max_system_memory(struct mic_device *mdev)
61 return mdev->smpt->info.num_reg * mdev->smpt->info.page_size;
64 /* Maximum system memory address accessible by MIC */
65 static inline u64 mic_max_system_addr(struct mic_device *mdev)
67 return mdev->smpt->info.base + mic_max_system_memory(mdev) - 1ULL;
70 /* Check if the DMA address is a MIC system memory address */
71 static inline bool
72 mic_is_system_addr(struct mic_device *mdev, dma_addr_t pa)
74 return pa >= mdev->smpt->info.base && pa <= mic_max_system_addr(mdev);
77 /* Populate an SMPT entry and update the reference counts. */
78 static void mic_add_smpt_entry(int spt, s64 *ref, u64 addr,
79 int entries, struct mic_device *mdev)
81 struct mic_smpt_info *smpt_info = mdev->smpt;
82 int i;
84 for (i = spt; i < spt + entries; i++,
85 addr += smpt_info->info.page_size) {
86 if (!smpt_info->entry[i].ref_count &&
87 (smpt_info->entry[i].dma_addr != addr)) {
88 mdev->smpt_ops->set(mdev, addr, i);
89 smpt_info->entry[i].dma_addr = addr;
91 smpt_info->entry[i].ref_count += ref[i - spt];
96 * Find an available MIC address in MIC SMPT address space
97 * for a given DMA address and size.
99 static dma_addr_t mic_smpt_op(struct mic_device *mdev, u64 dma_addr,
100 int entries, s64 *ref, size_t size)
102 int spt;
103 int ae = 0;
104 int i;
105 unsigned long flags;
106 dma_addr_t mic_addr = 0;
107 dma_addr_t addr = dma_addr;
108 struct mic_smpt_info *smpt_info = mdev->smpt;
110 spin_lock_irqsave(&smpt_info->smpt_lock, flags);
112 /* find existing entries */
113 for (i = 0; i < smpt_info->info.num_reg; i++) {
114 if (smpt_info->entry[i].dma_addr == addr) {
115 ae++;
116 addr += smpt_info->info.page_size;
117 } else if (ae) /* cannot find contiguous entries */
118 goto not_found;
120 if (ae == entries)
121 goto found;
124 /* find free entry */
125 for (ae = 0, i = 0; i < smpt_info->info.num_reg; i++) {
126 ae = (smpt_info->entry[i].ref_count == 0) ? ae + 1 : 0;
127 if (ae == entries)
128 goto found;
131 not_found:
132 spin_unlock_irqrestore(&smpt_info->smpt_lock, flags);
133 return mic_addr;
135 found:
136 spt = i - entries + 1;
137 mic_addr = mic_smpt_to_pa(mdev, spt);
138 mic_add_smpt_entry(spt, ref, dma_addr, entries, mdev);
139 smpt_info->map_count++;
140 smpt_info->ref_count += (s64)size;
141 spin_unlock_irqrestore(&smpt_info->smpt_lock, flags);
142 return mic_addr;
146 * Returns number of smpt entries needed for dma_addr to dma_addr + size
147 * also returns the reference count array for each of those entries
148 * and the starting smpt address
150 static int mic_get_smpt_ref_count(struct mic_device *mdev, dma_addr_t dma_addr,
151 size_t size, s64 *ref, u64 *smpt_start)
153 u64 start = dma_addr;
154 u64 end = dma_addr + size;
155 int i = 0;
157 while (start < end) {
158 ref[i++] = min(mic_smpt_align_high(mdev, start + 1),
159 end) - start;
160 start = mic_smpt_align_high(mdev, start + 1);
163 if (smpt_start)
164 *smpt_start = mic_smpt_align_low(mdev, dma_addr);
166 return i;
170 * mic_to_dma_addr - Converts a MIC address to a DMA address.
172 * @mdev: pointer to mic_device instance.
173 * @mic_addr: MIC address.
175 * returns a DMA address.
177 dma_addr_t mic_to_dma_addr(struct mic_device *mdev, dma_addr_t mic_addr)
179 struct mic_smpt_info *smpt_info = mdev->smpt;
180 int spt;
181 dma_addr_t dma_addr;
183 if (!mic_is_system_addr(mdev, mic_addr)) {
184 dev_err(&mdev->pdev->dev,
185 "mic_addr is invalid. mic_addr = 0x%llx\n", mic_addr);
186 return -EINVAL;
188 spt = mic_sys_addr_to_smpt(mdev, mic_addr);
189 dma_addr = smpt_info->entry[spt].dma_addr +
190 mic_smpt_offset(mdev, mic_addr);
191 return dma_addr;
195 * mic_map - Maps a DMA address to a MIC physical address.
197 * @mdev: pointer to mic_device instance.
198 * @dma_addr: DMA address.
199 * @size: Size of the region to be mapped.
201 * This API converts the DMA address provided to a DMA address understood
202 * by MIC. Caller should check for errors by calling mic_map_error(..).
204 * returns DMA address as required by MIC.
206 dma_addr_t mic_map(struct mic_device *mdev, dma_addr_t dma_addr, size_t size)
208 dma_addr_t mic_addr = 0;
209 int num_entries;
210 s64 *ref;
211 u64 smpt_start;
213 if (!size || size > mic_max_system_memory(mdev))
214 return mic_addr;
216 ref = kmalloc_array(mdev->smpt->info.num_reg, sizeof(s64), GFP_ATOMIC);
217 if (!ref)
218 return mic_addr;
220 num_entries = mic_get_smpt_ref_count(mdev, dma_addr, size,
221 ref, &smpt_start);
223 /* Set the smpt table appropriately and get 16G aligned mic address */
224 mic_addr = mic_smpt_op(mdev, smpt_start, num_entries, ref, size);
226 kfree(ref);
229 * If mic_addr is zero then its an error case
230 * since mic_addr can never be zero.
231 * else generate mic_addr by adding the 16G offset in dma_addr
233 if (!mic_addr && MIC_FAMILY_X100 == mdev->family) {
234 dev_err(&mdev->pdev->dev,
235 "mic_map failed dma_addr 0x%llx size 0x%lx\n",
236 dma_addr, size);
237 return mic_addr;
238 } else {
239 return mic_addr + mic_smpt_offset(mdev, dma_addr);
244 * mic_unmap - Unmaps a MIC physical address.
246 * @mdev: pointer to mic_device instance.
247 * @mic_addr: MIC physical address.
248 * @size: Size of the region to be unmapped.
250 * This API unmaps the mappings created by mic_map(..).
252 * returns None.
254 void mic_unmap(struct mic_device *mdev, dma_addr_t mic_addr, size_t size)
256 struct mic_smpt_info *smpt_info = mdev->smpt;
257 s64 *ref;
258 int num_smpt;
259 int spt;
260 int i;
261 unsigned long flags;
263 if (!size)
264 return;
266 if (!mic_is_system_addr(mdev, mic_addr)) {
267 dev_err(&mdev->pdev->dev,
268 "invalid address: 0x%llx\n", mic_addr);
269 return;
272 spt = mic_sys_addr_to_smpt(mdev, mic_addr);
273 ref = kmalloc_array(mdev->smpt->info.num_reg, sizeof(s64), GFP_ATOMIC);
274 if (!ref)
275 return;
277 /* Get number of smpt entries to be mapped, ref count array */
278 num_smpt = mic_get_smpt_ref_count(mdev, mic_addr, size, ref, NULL);
280 spin_lock_irqsave(&smpt_info->smpt_lock, flags);
281 smpt_info->unmap_count++;
282 smpt_info->ref_count -= (s64)size;
284 for (i = spt; i < spt + num_smpt; i++) {
285 smpt_info->entry[i].ref_count -= ref[i - spt];
286 if (smpt_info->entry[i].ref_count < 0)
287 dev_warn(&mdev->pdev->dev,
288 "ref count for entry %d is negative\n", i);
290 spin_unlock_irqrestore(&smpt_info->smpt_lock, flags);
291 kfree(ref);
295 * mic_map_single - Maps a virtual address to a MIC physical address.
297 * @mdev: pointer to mic_device instance.
298 * @va: Kernel direct mapped virtual address.
299 * @size: Size of the region to be mapped.
301 * This API calls pci_map_single(..) for the direct mapped virtual address
302 * and then converts the DMA address provided to a DMA address understood
303 * by MIC. Caller should check for errors by calling mic_map_error(..).
305 * returns DMA address as required by MIC.
307 dma_addr_t mic_map_single(struct mic_device *mdev, void *va, size_t size)
309 dma_addr_t mic_addr = 0;
310 struct pci_dev *pdev = mdev->pdev;
311 dma_addr_t dma_addr =
312 pci_map_single(pdev, va, size, PCI_DMA_BIDIRECTIONAL);
314 if (!pci_dma_mapping_error(pdev, dma_addr)) {
315 mic_addr = mic_map(mdev, dma_addr, size);
316 if (!mic_addr) {
317 dev_err(&mdev->pdev->dev,
318 "mic_map failed dma_addr 0x%llx size 0x%lx\n",
319 dma_addr, size);
320 pci_unmap_single(pdev, dma_addr,
321 size, PCI_DMA_BIDIRECTIONAL);
324 return mic_addr;
328 * mic_unmap_single - Unmaps a MIC physical address.
330 * @mdev: pointer to mic_device instance.
331 * @mic_addr: MIC physical address.
332 * @size: Size of the region to be unmapped.
334 * This API unmaps the mappings created by mic_map_single(..).
336 * returns None.
338 void
339 mic_unmap_single(struct mic_device *mdev, dma_addr_t mic_addr, size_t size)
341 struct pci_dev *pdev = mdev->pdev;
342 dma_addr_t dma_addr = mic_to_dma_addr(mdev, mic_addr);
343 mic_unmap(mdev, mic_addr, size);
344 pci_unmap_single(pdev, dma_addr, size, PCI_DMA_BIDIRECTIONAL);
348 * mic_smpt_init - Initialize MIC System Memory Page Tables.
350 * @mdev: pointer to mic_device instance.
352 * returns 0 for success and -errno for error.
354 int mic_smpt_init(struct mic_device *mdev)
356 int i, err = 0;
357 dma_addr_t dma_addr;
358 struct mic_smpt_info *smpt_info;
360 mdev->smpt = kmalloc(sizeof(*mdev->smpt), GFP_KERNEL);
361 if (!mdev->smpt)
362 return -ENOMEM;
364 smpt_info = mdev->smpt;
365 mdev->smpt_ops->init(mdev);
366 smpt_info->entry = kmalloc_array(smpt_info->info.num_reg,
367 sizeof(*smpt_info->entry), GFP_KERNEL);
368 if (!smpt_info->entry) {
369 err = -ENOMEM;
370 goto free_smpt;
372 spin_lock_init(&smpt_info->smpt_lock);
373 for (i = 0; i < smpt_info->info.num_reg; i++) {
374 dma_addr = i * smpt_info->info.page_size;
375 smpt_info->entry[i].dma_addr = dma_addr;
376 smpt_info->entry[i].ref_count = 0;
377 mdev->smpt_ops->set(mdev, dma_addr, i);
379 smpt_info->ref_count = 0;
380 smpt_info->map_count = 0;
381 smpt_info->unmap_count = 0;
382 return 0;
383 free_smpt:
384 kfree(smpt_info);
385 return err;
389 * mic_smpt_uninit - UnInitialize MIC System Memory Page Tables.
391 * @mdev: pointer to mic_device instance.
393 * returns None.
395 void mic_smpt_uninit(struct mic_device *mdev)
397 struct mic_smpt_info *smpt_info = mdev->smpt;
398 int i;
400 dev_dbg(&mdev->pdev->dev,
401 "nodeid %d SMPT ref count %lld map %lld unmap %lld\n",
402 mdev->id, smpt_info->ref_count,
403 smpt_info->map_count, smpt_info->unmap_count);
405 for (i = 0; i < smpt_info->info.num_reg; i++) {
406 dev_dbg(&mdev->pdev->dev,
407 "SMPT entry[%d] dma_addr = 0x%llx ref_count = %lld\n",
408 i, smpt_info->entry[i].dma_addr,
409 smpt_info->entry[i].ref_count);
410 if (smpt_info->entry[i].ref_count)
411 dev_warn(&mdev->pdev->dev,
412 "ref count for entry %d is not zero\n", i);
414 kfree(smpt_info->entry);
415 kfree(smpt_info);
419 * mic_smpt_restore - Restore MIC System Memory Page Tables.
421 * @mdev: pointer to mic_device instance.
423 * Restore the SMPT registers to values previously stored in the
424 * SW data structures. Some MIC steppings lose register state
425 * across resets and this API should be called for performing
426 * a restore operation if required.
428 * returns None.
430 void mic_smpt_restore(struct mic_device *mdev)
432 int i;
433 dma_addr_t dma_addr;
435 for (i = 0; i < mdev->smpt->info.num_reg; i++) {
436 dma_addr = mdev->smpt->entry[i].dma_addr;
437 mdev->smpt_ops->set(mdev, dma_addr, i);