4 * Copyright (C) 2012 VMware, Inc. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation version 2 and no later version.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/highmem.h>
19 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/uio.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
30 #include <linux/skbuff.h>
32 #include "vmci_handle_array.h"
33 #include "vmci_queue_pair.h"
34 #include "vmci_datagram.h"
35 #include "vmci_resource.h"
36 #include "vmci_context.h"
37 #include "vmci_driver.h"
38 #include "vmci_event.h"
39 #include "vmci_route.h"
42 * In the following, we will distinguish between two kinds of VMX processes -
43 * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
44 * VMCI page files in the VMX and supporting VM to VM communication and the
45 * newer ones that use the guest memory directly. We will in the following
46 * refer to the older VMX versions as old-style VMX'en, and the newer ones as
49 * The state transition datagram is as follows (the VMCIQPB_ prefix has been
50 * removed for readability) - see below for more details on the transtions:
52 * -------------- NEW -------------
55 * CREATED_NO_MEM <-----------------> CREATED_MEM
57 * | o-----------------------o |
60 * ATTACHED_NO_MEM <----------------> ATTACHED_MEM
62 * | o----------------------o |
65 * SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
68 * -------------> gone <-------------
70 * In more detail. When a VMCI queue pair is first created, it will be in the
71 * VMCIQPB_NEW state. It will then move into one of the following states:
73 * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
75 * - the created was performed by a host endpoint, in which case there is
76 * no backing memory yet.
78 * - the create was initiated by an old-style VMX, that uses
79 * vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
80 * a later point in time. This state can be distinguished from the one
81 * above by the context ID of the creator. A host side is not allowed to
82 * attach until the page store has been set.
84 * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
85 * is created by a VMX using the queue pair device backend that
86 * sets the UVAs of the queue pair immediately and stores the
87 * information for later attachers. At this point, it is ready for
88 * the host side to attach to it.
90 * Once the queue pair is in one of the created states (with the exception of
91 * the case mentioned for older VMX'en above), it is possible to attach to the
92 * queue pair. Again we have two new states possible:
94 * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
97 * - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
98 * pair, and attaches to a queue pair previously created by the host side.
100 * - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
101 * already created by a guest.
103 * - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
104 * vmci_qp_broker_set_page_store (see below).
106 * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
107 * VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
108 * bring the queue pair into this state. Once vmci_qp_broker_set_page_store
109 * is called to register the user memory, the VMCIQPB_ATTACH_MEM state
112 * From the attached queue pair, the queue pair can enter the shutdown states
113 * when either side of the queue pair detaches. If the guest side detaches
114 * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
115 * the content of the queue pair will no longer be available. If the host
116 * side detaches first, the queue pair will either enter the
117 * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
118 * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
119 * (e.g., the host detaches while a guest is stunned).
121 * New-style VMX'en will also unmap guest memory, if the guest is
122 * quiesced, e.g., during a snapshot operation. In that case, the guest
123 * memory will no longer be available, and the queue pair will transition from
124 * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
125 * in which case the queue pair will transition from the *_NO_MEM state at that
126 * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
127 * since the peer may have either attached or detached in the meantime. The
128 * values are laid out such that ++ on a state will move from a *_NO_MEM to a
129 * *_MEM state, and vice versa.
132 /* The Kernel specific component of the struct vmci_queue structure. */
133 struct vmci_queue_kern_if
{
134 struct mutex __mutex
; /* Protects the queue. */
135 struct mutex
*mutex
; /* Shared by producer and consumer queues. */
136 size_t num_pages
; /* Number of pages incl. header. */
137 bool host
; /* Host or guest? */
142 } g
; /* Used by the guest. */
145 struct page
**header_page
;
146 } h
; /* Used by the host. */
151 * This structure is opaque to the clients.
154 struct vmci_handle handle
;
155 struct vmci_queue
*produce_q
;
156 struct vmci_queue
*consume_q
;
163 unsigned int blocked
;
164 unsigned int generation
;
165 wait_queue_head_t event
;
168 enum qp_broker_state
{
170 VMCIQPB_CREATED_NO_MEM
,
172 VMCIQPB_ATTACHED_NO_MEM
,
173 VMCIQPB_ATTACHED_MEM
,
174 VMCIQPB_SHUTDOWN_NO_MEM
,
175 VMCIQPB_SHUTDOWN_MEM
,
179 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
180 _qpb->state == VMCIQPB_ATTACHED_MEM || \
181 _qpb->state == VMCIQPB_SHUTDOWN_MEM)
184 * In the queue pair broker, we always use the guest point of view for
185 * the produce and consume queue values and references, e.g., the
186 * produce queue size stored is the guests produce queue size. The
187 * host endpoint will need to swap these around. The only exception is
188 * the local queue pairs on the host, in which case the host endpoint
189 * that creates the queue pair will have the right orientation, and
190 * the attaching host endpoint will need to swap.
193 struct list_head list_item
;
194 struct vmci_handle handle
;
202 struct qp_broker_entry
{
203 struct vmci_resource resource
;
207 enum qp_broker_state state
;
208 bool require_trusted_attach
;
209 bool created_by_trusted
;
210 bool vmci_page_files
; /* Created by VMX using VMCI page files */
211 struct vmci_queue
*produce_q
;
212 struct vmci_queue
*consume_q
;
213 struct vmci_queue_header saved_produce_q
;
214 struct vmci_queue_header saved_consume_q
;
215 vmci_event_release_cb wakeup_cb
;
217 void *local_mem
; /* Kernel memory for local queue pair */
220 struct qp_guest_endpoint
{
221 struct vmci_resource resource
;
226 struct ppn_set ppn_set
;
230 struct list_head head
;
231 struct mutex mutex
; /* Protect queue list. */
234 static struct qp_list qp_broker_list
= {
235 .head
= LIST_HEAD_INIT(qp_broker_list
.head
),
236 .mutex
= __MUTEX_INITIALIZER(qp_broker_list
.mutex
),
239 static struct qp_list qp_guest_endpoints
= {
240 .head
= LIST_HEAD_INIT(qp_guest_endpoints
.head
),
241 .mutex
= __MUTEX_INITIALIZER(qp_guest_endpoints
.mutex
),
244 #define INVALID_VMCI_GUEST_MEM_ID 0
245 #define QPE_NUM_PAGES(_QPE) ((u32) \
246 (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
247 DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
251 * Frees kernel VA space for a given queue and its queue header, and
252 * frees physical data pages.
254 static void qp_free_queue(void *q
, u64 size
)
256 struct vmci_queue
*queue
= q
;
261 /* Given size does not include header, so add in a page here. */
262 for (i
= 0; i
< DIV_ROUND_UP(size
, PAGE_SIZE
) + 1; i
++) {
263 dma_free_coherent(&vmci_pdev
->dev
, PAGE_SIZE
,
264 queue
->kernel_if
->u
.g
.vas
[i
],
265 queue
->kernel_if
->u
.g
.pas
[i
]);
273 * Allocates kernel queue pages of specified size with IOMMU mappings,
274 * plus space for the queue structure/kernel interface and the queue
277 static void *qp_alloc_queue(u64 size
, u32 flags
)
280 struct vmci_queue
*queue
;
283 size_t queue_size
= sizeof(*queue
) + sizeof(*queue
->kernel_if
);
286 if (size
> SIZE_MAX
- PAGE_SIZE
)
288 num_pages
= DIV_ROUND_UP(size
, PAGE_SIZE
) + 1;
290 (SIZE_MAX
- queue_size
) /
291 (sizeof(*queue
->kernel_if
->u
.g
.pas
) +
292 sizeof(*queue
->kernel_if
->u
.g
.vas
)))
295 pas_size
= num_pages
* sizeof(*queue
->kernel_if
->u
.g
.pas
);
296 vas_size
= num_pages
* sizeof(*queue
->kernel_if
->u
.g
.vas
);
297 queue_size
+= pas_size
+ vas_size
;
299 queue
= vmalloc(queue_size
);
303 queue
->q_header
= NULL
;
304 queue
->saved_header
= NULL
;
305 queue
->kernel_if
= (struct vmci_queue_kern_if
*)(queue
+ 1);
306 queue
->kernel_if
->mutex
= NULL
;
307 queue
->kernel_if
->num_pages
= num_pages
;
308 queue
->kernel_if
->u
.g
.pas
= (dma_addr_t
*)(queue
->kernel_if
+ 1);
309 queue
->kernel_if
->u
.g
.vas
=
310 (void **)((u8
*)queue
->kernel_if
->u
.g
.pas
+ pas_size
);
311 queue
->kernel_if
->host
= false;
313 for (i
= 0; i
< num_pages
; i
++) {
314 queue
->kernel_if
->u
.g
.vas
[i
] =
315 dma_alloc_coherent(&vmci_pdev
->dev
, PAGE_SIZE
,
316 &queue
->kernel_if
->u
.g
.pas
[i
],
318 if (!queue
->kernel_if
->u
.g
.vas
[i
]) {
319 /* Size excl. the header. */
320 qp_free_queue(queue
, i
* PAGE_SIZE
);
325 /* Queue header is the first page. */
326 queue
->q_header
= queue
->kernel_if
->u
.g
.vas
[0];
332 * Copies from a given buffer or iovector to a VMCI Queue. Uses
333 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
334 * by traversing the offset -> page translation structure for the queue.
335 * Assumes that offset + size does not wrap around in the queue.
337 static int qp_memcpy_to_queue_iter(struct vmci_queue
*queue
,
339 struct iov_iter
*from
,
342 struct vmci_queue_kern_if
*kernel_if
= queue
->kernel_if
;
343 size_t bytes_copied
= 0;
345 while (bytes_copied
< size
) {
346 const u64 page_index
=
347 (queue_offset
+ bytes_copied
) / PAGE_SIZE
;
348 const size_t page_offset
=
349 (queue_offset
+ bytes_copied
) & (PAGE_SIZE
- 1);
354 va
= kmap(kernel_if
->u
.h
.page
[page_index
]);
356 va
= kernel_if
->u
.g
.vas
[page_index
+ 1];
359 if (size
- bytes_copied
> PAGE_SIZE
- page_offset
)
360 /* Enough payload to fill up from this page. */
361 to_copy
= PAGE_SIZE
- page_offset
;
363 to_copy
= size
- bytes_copied
;
365 if (!copy_from_iter_full((u8
*)va
+ page_offset
, to_copy
,
368 kunmap(kernel_if
->u
.h
.page
[page_index
]);
369 return VMCI_ERROR_INVALID_ARGS
;
371 bytes_copied
+= to_copy
;
373 kunmap(kernel_if
->u
.h
.page
[page_index
]);
380 * Copies to a given buffer or iovector from a VMCI Queue. Uses
381 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
382 * by traversing the offset -> page translation structure for the queue.
383 * Assumes that offset + size does not wrap around in the queue.
385 static int qp_memcpy_from_queue_iter(struct iov_iter
*to
,
386 const struct vmci_queue
*queue
,
387 u64 queue_offset
, size_t size
)
389 struct vmci_queue_kern_if
*kernel_if
= queue
->kernel_if
;
390 size_t bytes_copied
= 0;
392 while (bytes_copied
< size
) {
393 const u64 page_index
=
394 (queue_offset
+ bytes_copied
) / PAGE_SIZE
;
395 const size_t page_offset
=
396 (queue_offset
+ bytes_copied
) & (PAGE_SIZE
- 1);
402 va
= kmap(kernel_if
->u
.h
.page
[page_index
]);
404 va
= kernel_if
->u
.g
.vas
[page_index
+ 1];
407 if (size
- bytes_copied
> PAGE_SIZE
- page_offset
)
408 /* Enough payload to fill up this page. */
409 to_copy
= PAGE_SIZE
- page_offset
;
411 to_copy
= size
- bytes_copied
;
413 err
= copy_to_iter((u8
*)va
+ page_offset
, to_copy
, to
);
414 if (err
!= to_copy
) {
416 kunmap(kernel_if
->u
.h
.page
[page_index
]);
417 return VMCI_ERROR_INVALID_ARGS
;
419 bytes_copied
+= to_copy
;
421 kunmap(kernel_if
->u
.h
.page
[page_index
]);
428 * Allocates two list of PPNs --- one for the pages in the produce queue,
429 * and the other for the pages in the consume queue. Intializes the list
430 * of PPNs with the page frame numbers of the KVA for the two queues (and
431 * the queue headers).
433 static int qp_alloc_ppn_set(void *prod_q
,
434 u64 num_produce_pages
,
436 u64 num_consume_pages
, struct ppn_set
*ppn_set
)
440 struct vmci_queue
*produce_q
= prod_q
;
441 struct vmci_queue
*consume_q
= cons_q
;
444 if (!produce_q
|| !num_produce_pages
|| !consume_q
||
445 !num_consume_pages
|| !ppn_set
)
446 return VMCI_ERROR_INVALID_ARGS
;
448 if (ppn_set
->initialized
)
449 return VMCI_ERROR_ALREADY_EXISTS
;
452 kmalloc_array(num_produce_pages
, sizeof(*produce_ppns
),
455 return VMCI_ERROR_NO_MEM
;
458 kmalloc_array(num_consume_pages
, sizeof(*consume_ppns
),
462 return VMCI_ERROR_NO_MEM
;
465 for (i
= 0; i
< num_produce_pages
; i
++) {
469 produce_q
->kernel_if
->u
.g
.pas
[i
] >> PAGE_SHIFT
;
470 pfn
= produce_ppns
[i
];
472 /* Fail allocation if PFN isn't supported by hypervisor. */
473 if (sizeof(pfn
) > sizeof(*produce_ppns
)
474 && pfn
!= produce_ppns
[i
])
478 for (i
= 0; i
< num_consume_pages
; i
++) {
482 consume_q
->kernel_if
->u
.g
.pas
[i
] >> PAGE_SHIFT
;
483 pfn
= consume_ppns
[i
];
485 /* Fail allocation if PFN isn't supported by hypervisor. */
486 if (sizeof(pfn
) > sizeof(*consume_ppns
)
487 && pfn
!= consume_ppns
[i
])
491 ppn_set
->num_produce_pages
= num_produce_pages
;
492 ppn_set
->num_consume_pages
= num_consume_pages
;
493 ppn_set
->produce_ppns
= produce_ppns
;
494 ppn_set
->consume_ppns
= consume_ppns
;
495 ppn_set
->initialized
= true;
501 return VMCI_ERROR_INVALID_ARGS
;
505 * Frees the two list of PPNs for a queue pair.
507 static void qp_free_ppn_set(struct ppn_set
*ppn_set
)
509 if (ppn_set
->initialized
) {
510 /* Do not call these functions on NULL inputs. */
511 kfree(ppn_set
->produce_ppns
);
512 kfree(ppn_set
->consume_ppns
);
514 memset(ppn_set
, 0, sizeof(*ppn_set
));
518 * Populates the list of PPNs in the hypercall structure with the PPNS
519 * of the produce queue and the consume queue.
521 static int qp_populate_ppn_set(u8
*call_buf
, const struct ppn_set
*ppn_set
)
523 memcpy(call_buf
, ppn_set
->produce_ppns
,
524 ppn_set
->num_produce_pages
* sizeof(*ppn_set
->produce_ppns
));
526 ppn_set
->num_produce_pages
* sizeof(*ppn_set
->produce_ppns
),
527 ppn_set
->consume_ppns
,
528 ppn_set
->num_consume_pages
* sizeof(*ppn_set
->consume_ppns
));
534 * Allocates kernel VA space of specified size plus space for the queue
535 * and kernel interface. This is different from the guest queue allocator,
536 * because we do not allocate our own queue header/data pages here but
537 * share those of the guest.
539 static struct vmci_queue
*qp_host_alloc_queue(u64 size
)
541 struct vmci_queue
*queue
;
542 size_t queue_page_size
;
544 const size_t queue_size
= sizeof(*queue
) + sizeof(*(queue
->kernel_if
));
546 if (size
> SIZE_MAX
- PAGE_SIZE
)
548 num_pages
= DIV_ROUND_UP(size
, PAGE_SIZE
) + 1;
549 if (num_pages
> (SIZE_MAX
- queue_size
) /
550 sizeof(*queue
->kernel_if
->u
.h
.page
))
553 queue_page_size
= num_pages
* sizeof(*queue
->kernel_if
->u
.h
.page
);
555 queue
= kzalloc(queue_size
+ queue_page_size
, GFP_KERNEL
);
557 queue
->q_header
= NULL
;
558 queue
->saved_header
= NULL
;
559 queue
->kernel_if
= (struct vmci_queue_kern_if
*)(queue
+ 1);
560 queue
->kernel_if
->host
= true;
561 queue
->kernel_if
->mutex
= NULL
;
562 queue
->kernel_if
->num_pages
= num_pages
;
563 queue
->kernel_if
->u
.h
.header_page
=
564 (struct page
**)((u8
*)queue
+ queue_size
);
565 queue
->kernel_if
->u
.h
.page
=
566 &queue
->kernel_if
->u
.h
.header_page
[1];
573 * Frees kernel memory for a given queue (header plus translation
576 static void qp_host_free_queue(struct vmci_queue
*queue
, u64 queue_size
)
582 * Initialize the mutex for the pair of queues. This mutex is used to
583 * protect the q_header and the buffer from changing out from under any
584 * users of either queue. Of course, it's only any good if the mutexes
585 * are actually acquired. Queue structure must lie on non-paged memory
586 * or we cannot guarantee access to the mutex.
588 static void qp_init_queue_mutex(struct vmci_queue
*produce_q
,
589 struct vmci_queue
*consume_q
)
592 * Only the host queue has shared state - the guest queues do not
593 * need to synchronize access using a queue mutex.
596 if (produce_q
->kernel_if
->host
) {
597 produce_q
->kernel_if
->mutex
= &produce_q
->kernel_if
->__mutex
;
598 consume_q
->kernel_if
->mutex
= &produce_q
->kernel_if
->__mutex
;
599 mutex_init(produce_q
->kernel_if
->mutex
);
604 * Cleans up the mutex for the pair of queues.
606 static void qp_cleanup_queue_mutex(struct vmci_queue
*produce_q
,
607 struct vmci_queue
*consume_q
)
609 if (produce_q
->kernel_if
->host
) {
610 produce_q
->kernel_if
->mutex
= NULL
;
611 consume_q
->kernel_if
->mutex
= NULL
;
616 * Acquire the mutex for the queue. Note that the produce_q and
617 * the consume_q share a mutex. So, only one of the two need to
618 * be passed in to this routine. Either will work just fine.
620 static void qp_acquire_queue_mutex(struct vmci_queue
*queue
)
622 if (queue
->kernel_if
->host
)
623 mutex_lock(queue
->kernel_if
->mutex
);
627 * Release the mutex for the queue. Note that the produce_q and
628 * the consume_q share a mutex. So, only one of the two need to
629 * be passed in to this routine. Either will work just fine.
631 static void qp_release_queue_mutex(struct vmci_queue
*queue
)
633 if (queue
->kernel_if
->host
)
634 mutex_unlock(queue
->kernel_if
->mutex
);
638 * Helper function to release pages in the PageStoreAttachInfo
639 * previously obtained using get_user_pages.
641 static void qp_release_pages(struct page
**pages
,
642 u64 num_pages
, bool dirty
)
646 for (i
= 0; i
< num_pages
; i
++) {
648 set_page_dirty(pages
[i
]);
656 * Lock the user pages referenced by the {produce,consume}Buffer
657 * struct into memory and populate the {produce,consume}Pages
658 * arrays in the attach structure with them.
660 static int qp_host_get_user_memory(u64 produce_uva
,
662 struct vmci_queue
*produce_q
,
663 struct vmci_queue
*consume_q
)
666 int err
= VMCI_SUCCESS
;
668 retval
= get_user_pages_fast((uintptr_t) produce_uva
,
669 produce_q
->kernel_if
->num_pages
, 1,
670 produce_q
->kernel_if
->u
.h
.header_page
);
671 if (retval
< produce_q
->kernel_if
->num_pages
) {
672 pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
674 qp_release_pages(produce_q
->kernel_if
->u
.h
.header_page
,
676 err
= VMCI_ERROR_NO_MEM
;
680 retval
= get_user_pages_fast((uintptr_t) consume_uva
,
681 consume_q
->kernel_if
->num_pages
, 1,
682 consume_q
->kernel_if
->u
.h
.header_page
);
683 if (retval
< consume_q
->kernel_if
->num_pages
) {
684 pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
686 qp_release_pages(consume_q
->kernel_if
->u
.h
.header_page
,
688 qp_release_pages(produce_q
->kernel_if
->u
.h
.header_page
,
689 produce_q
->kernel_if
->num_pages
, false);
690 err
= VMCI_ERROR_NO_MEM
;
698 * Registers the specification of the user pages used for backing a queue
699 * pair. Enough information to map in pages is stored in the OS specific
700 * part of the struct vmci_queue structure.
702 static int qp_host_register_user_memory(struct vmci_qp_page_store
*page_store
,
703 struct vmci_queue
*produce_q
,
704 struct vmci_queue
*consume_q
)
710 * The new style and the old style mapping only differs in
711 * that we either get a single or two UVAs, so we split the
712 * single UVA range at the appropriate spot.
714 produce_uva
= page_store
->pages
;
715 consume_uva
= page_store
->pages
+
716 produce_q
->kernel_if
->num_pages
* PAGE_SIZE
;
717 return qp_host_get_user_memory(produce_uva
, consume_uva
, produce_q
,
722 * Releases and removes the references to user pages stored in the attach
723 * struct. Pages are released from the page cache and may become
726 static void qp_host_unregister_user_memory(struct vmci_queue
*produce_q
,
727 struct vmci_queue
*consume_q
)
729 qp_release_pages(produce_q
->kernel_if
->u
.h
.header_page
,
730 produce_q
->kernel_if
->num_pages
, true);
731 memset(produce_q
->kernel_if
->u
.h
.header_page
, 0,
732 sizeof(*produce_q
->kernel_if
->u
.h
.header_page
) *
733 produce_q
->kernel_if
->num_pages
);
734 qp_release_pages(consume_q
->kernel_if
->u
.h
.header_page
,
735 consume_q
->kernel_if
->num_pages
, true);
736 memset(consume_q
->kernel_if
->u
.h
.header_page
, 0,
737 sizeof(*consume_q
->kernel_if
->u
.h
.header_page
) *
738 consume_q
->kernel_if
->num_pages
);
742 * Once qp_host_register_user_memory has been performed on a
743 * queue, the queue pair headers can be mapped into the
744 * kernel. Once mapped, they must be unmapped with
745 * qp_host_unmap_queues prior to calling
746 * qp_host_unregister_user_memory.
749 static int qp_host_map_queues(struct vmci_queue
*produce_q
,
750 struct vmci_queue
*consume_q
)
754 if (!produce_q
->q_header
|| !consume_q
->q_header
) {
755 struct page
*headers
[2];
757 if (produce_q
->q_header
!= consume_q
->q_header
)
758 return VMCI_ERROR_QUEUEPAIR_MISMATCH
;
760 if (produce_q
->kernel_if
->u
.h
.header_page
== NULL
||
761 *produce_q
->kernel_if
->u
.h
.header_page
== NULL
)
762 return VMCI_ERROR_UNAVAILABLE
;
764 headers
[0] = *produce_q
->kernel_if
->u
.h
.header_page
;
765 headers
[1] = *consume_q
->kernel_if
->u
.h
.header_page
;
767 produce_q
->q_header
= vmap(headers
, 2, VM_MAP
, PAGE_KERNEL
);
768 if (produce_q
->q_header
!= NULL
) {
769 consume_q
->q_header
=
770 (struct vmci_queue_header
*)((u8
*)
771 produce_q
->q_header
+
773 result
= VMCI_SUCCESS
;
775 pr_warn("vmap failed\n");
776 result
= VMCI_ERROR_NO_MEM
;
779 result
= VMCI_SUCCESS
;
786 * Unmaps previously mapped queue pair headers from the kernel.
787 * Pages are unpinned.
789 static int qp_host_unmap_queues(u32 gid
,
790 struct vmci_queue
*produce_q
,
791 struct vmci_queue
*consume_q
)
793 if (produce_q
->q_header
) {
794 if (produce_q
->q_header
< consume_q
->q_header
)
795 vunmap(produce_q
->q_header
);
797 vunmap(consume_q
->q_header
);
799 produce_q
->q_header
= NULL
;
800 consume_q
->q_header
= NULL
;
807 * Finds the entry in the list corresponding to a given handle. Assumes
808 * that the list is locked.
810 static struct qp_entry
*qp_list_find(struct qp_list
*qp_list
,
811 struct vmci_handle handle
)
813 struct qp_entry
*entry
;
815 if (vmci_handle_is_invalid(handle
))
818 list_for_each_entry(entry
, &qp_list
->head
, list_item
) {
819 if (vmci_handle_is_equal(entry
->handle
, handle
))
827 * Finds the entry in the list corresponding to a given handle.
829 static struct qp_guest_endpoint
*
830 qp_guest_handle_to_entry(struct vmci_handle handle
)
832 struct qp_guest_endpoint
*entry
;
833 struct qp_entry
*qp
= qp_list_find(&qp_guest_endpoints
, handle
);
835 entry
= qp
? container_of(
836 qp
, struct qp_guest_endpoint
, qp
) : NULL
;
841 * Finds the entry in the list corresponding to a given handle.
843 static struct qp_broker_entry
*
844 qp_broker_handle_to_entry(struct vmci_handle handle
)
846 struct qp_broker_entry
*entry
;
847 struct qp_entry
*qp
= qp_list_find(&qp_broker_list
, handle
);
849 entry
= qp
? container_of(
850 qp
, struct qp_broker_entry
, qp
) : NULL
;
855 * Dispatches a queue pair event message directly into the local event
858 static int qp_notify_peer_local(bool attach
, struct vmci_handle handle
)
860 u32 context_id
= vmci_get_context_id();
861 struct vmci_event_qp ev
;
863 ev
.msg
.hdr
.dst
= vmci_make_handle(context_id
, VMCI_EVENT_HANDLER
);
864 ev
.msg
.hdr
.src
= vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID
,
865 VMCI_CONTEXT_RESOURCE_ID
);
866 ev
.msg
.hdr
.payload_size
= sizeof(ev
) - sizeof(ev
.msg
.hdr
);
867 ev
.msg
.event_data
.event
=
868 attach
? VMCI_EVENT_QP_PEER_ATTACH
: VMCI_EVENT_QP_PEER_DETACH
;
869 ev
.payload
.peer_id
= context_id
;
870 ev
.payload
.handle
= handle
;
872 return vmci_event_dispatch(&ev
.msg
.hdr
);
876 * Allocates and initializes a qp_guest_endpoint structure.
877 * Allocates a queue_pair rid (and handle) iff the given entry has
878 * an invalid handle. 0 through VMCI_RESERVED_RESOURCE_ID_MAX
879 * are reserved handles. Assumes that the QP list mutex is held
882 static struct qp_guest_endpoint
*
883 qp_guest_endpoint_create(struct vmci_handle handle
,
892 struct qp_guest_endpoint
*entry
;
893 /* One page each for the queue headers. */
894 const u64 num_ppns
= DIV_ROUND_UP(produce_size
, PAGE_SIZE
) +
895 DIV_ROUND_UP(consume_size
, PAGE_SIZE
) + 2;
897 if (vmci_handle_is_invalid(handle
)) {
898 u32 context_id
= vmci_get_context_id();
900 handle
= vmci_make_handle(context_id
, VMCI_INVALID_ID
);
903 entry
= kzalloc(sizeof(*entry
), GFP_KERNEL
);
905 entry
->qp
.peer
= peer
;
906 entry
->qp
.flags
= flags
;
907 entry
->qp
.produce_size
= produce_size
;
908 entry
->qp
.consume_size
= consume_size
;
909 entry
->qp
.ref_count
= 0;
910 entry
->num_ppns
= num_ppns
;
911 entry
->produce_q
= produce_q
;
912 entry
->consume_q
= consume_q
;
913 INIT_LIST_HEAD(&entry
->qp
.list_item
);
915 /* Add resource obj */
916 result
= vmci_resource_add(&entry
->resource
,
917 VMCI_RESOURCE_TYPE_QPAIR_GUEST
,
919 entry
->qp
.handle
= vmci_resource_handle(&entry
->resource
);
920 if ((result
!= VMCI_SUCCESS
) ||
921 qp_list_find(&qp_guest_endpoints
, entry
->qp
.handle
)) {
922 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
923 handle
.context
, handle
.resource
, result
);
932 * Frees a qp_guest_endpoint structure.
934 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint
*entry
)
936 qp_free_ppn_set(&entry
->ppn_set
);
937 qp_cleanup_queue_mutex(entry
->produce_q
, entry
->consume_q
);
938 qp_free_queue(entry
->produce_q
, entry
->qp
.produce_size
);
939 qp_free_queue(entry
->consume_q
, entry
->qp
.consume_size
);
940 /* Unlink from resource hash table and free callback */
941 vmci_resource_remove(&entry
->resource
);
947 * Helper to make a queue_pairAlloc hypercall when the driver is
948 * supporting a guest device.
950 static int qp_alloc_hypercall(const struct qp_guest_endpoint
*entry
)
952 struct vmci_qp_alloc_msg
*alloc_msg
;
956 if (!entry
|| entry
->num_ppns
<= 2)
957 return VMCI_ERROR_INVALID_ARGS
;
959 msg_size
= sizeof(*alloc_msg
) +
960 (size_t) entry
->num_ppns
* sizeof(u32
);
961 alloc_msg
= kmalloc(msg_size
, GFP_KERNEL
);
963 return VMCI_ERROR_NO_MEM
;
965 alloc_msg
->hdr
.dst
= vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID
,
966 VMCI_QUEUEPAIR_ALLOC
);
967 alloc_msg
->hdr
.src
= VMCI_ANON_SRC_HANDLE
;
968 alloc_msg
->hdr
.payload_size
= msg_size
- VMCI_DG_HEADERSIZE
;
969 alloc_msg
->handle
= entry
->qp
.handle
;
970 alloc_msg
->peer
= entry
->qp
.peer
;
971 alloc_msg
->flags
= entry
->qp
.flags
;
972 alloc_msg
->produce_size
= entry
->qp
.produce_size
;
973 alloc_msg
->consume_size
= entry
->qp
.consume_size
;
974 alloc_msg
->num_ppns
= entry
->num_ppns
;
976 result
= qp_populate_ppn_set((u8
*)alloc_msg
+ sizeof(*alloc_msg
),
978 if (result
== VMCI_SUCCESS
)
979 result
= vmci_send_datagram(&alloc_msg
->hdr
);
987 * Helper to make a queue_pairDetach hypercall when the driver is
988 * supporting a guest device.
990 static int qp_detatch_hypercall(struct vmci_handle handle
)
992 struct vmci_qp_detach_msg detach_msg
;
994 detach_msg
.hdr
.dst
= vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID
,
995 VMCI_QUEUEPAIR_DETACH
);
996 detach_msg
.hdr
.src
= VMCI_ANON_SRC_HANDLE
;
997 detach_msg
.hdr
.payload_size
= sizeof(handle
);
998 detach_msg
.handle
= handle
;
1000 return vmci_send_datagram(&detach_msg
.hdr
);
1004 * Adds the given entry to the list. Assumes that the list is locked.
1006 static void qp_list_add_entry(struct qp_list
*qp_list
, struct qp_entry
*entry
)
1009 list_add(&entry
->list_item
, &qp_list
->head
);
1013 * Removes the given entry from the list. Assumes that the list is locked.
1015 static void qp_list_remove_entry(struct qp_list
*qp_list
,
1016 struct qp_entry
*entry
)
1019 list_del(&entry
->list_item
);
1023 * Helper for VMCI queue_pair detach interface. Frees the physical
1024 * pages for the queue pair.
1026 static int qp_detatch_guest_work(struct vmci_handle handle
)
1029 struct qp_guest_endpoint
*entry
;
1030 u32 ref_count
= ~0; /* To avoid compiler warning below */
1032 mutex_lock(&qp_guest_endpoints
.mutex
);
1034 entry
= qp_guest_handle_to_entry(handle
);
1036 mutex_unlock(&qp_guest_endpoints
.mutex
);
1037 return VMCI_ERROR_NOT_FOUND
;
1040 if (entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) {
1041 result
= VMCI_SUCCESS
;
1043 if (entry
->qp
.ref_count
> 1) {
1044 result
= qp_notify_peer_local(false, handle
);
1046 * We can fail to notify a local queuepair
1047 * because we can't allocate. We still want
1048 * to release the entry if that happens, so
1049 * don't bail out yet.
1053 result
= qp_detatch_hypercall(handle
);
1054 if (result
< VMCI_SUCCESS
) {
1056 * We failed to notify a non-local queuepair.
1057 * That other queuepair might still be
1058 * accessing the shared memory, so don't
1059 * release the entry yet. It will get cleaned
1060 * up by VMCIqueue_pair_Exit() if necessary
1061 * (assuming we are going away, otherwise why
1065 mutex_unlock(&qp_guest_endpoints
.mutex
);
1071 * If we get here then we either failed to notify a local queuepair, or
1072 * we succeeded in all cases. Release the entry if required.
1075 entry
->qp
.ref_count
--;
1076 if (entry
->qp
.ref_count
== 0)
1077 qp_list_remove_entry(&qp_guest_endpoints
, &entry
->qp
);
1079 /* If we didn't remove the entry, this could change once we unlock. */
1081 ref_count
= entry
->qp
.ref_count
;
1083 mutex_unlock(&qp_guest_endpoints
.mutex
);
1086 qp_guest_endpoint_destroy(entry
);
1092 * This functions handles the actual allocation of a VMCI queue
1093 * pair guest endpoint. Allocates physical pages for the queue
1094 * pair. It makes OS dependent calls through generic wrappers.
1096 static int qp_alloc_guest_work(struct vmci_handle
*handle
,
1097 struct vmci_queue
**produce_q
,
1099 struct vmci_queue
**consume_q
,
1105 const u64 num_produce_pages
=
1106 DIV_ROUND_UP(produce_size
, PAGE_SIZE
) + 1;
1107 const u64 num_consume_pages
=
1108 DIV_ROUND_UP(consume_size
, PAGE_SIZE
) + 1;
1109 void *my_produce_q
= NULL
;
1110 void *my_consume_q
= NULL
;
1112 struct qp_guest_endpoint
*queue_pair_entry
= NULL
;
1114 if (priv_flags
!= VMCI_NO_PRIVILEGE_FLAGS
)
1115 return VMCI_ERROR_NO_ACCESS
;
1117 mutex_lock(&qp_guest_endpoints
.mutex
);
1119 queue_pair_entry
= qp_guest_handle_to_entry(*handle
);
1120 if (queue_pair_entry
) {
1121 if (queue_pair_entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) {
1122 /* Local attach case. */
1123 if (queue_pair_entry
->qp
.ref_count
> 1) {
1124 pr_devel("Error attempting to attach more than once\n");
1125 result
= VMCI_ERROR_UNAVAILABLE
;
1126 goto error_keep_entry
;
1129 if (queue_pair_entry
->qp
.produce_size
!= consume_size
||
1130 queue_pair_entry
->qp
.consume_size
!=
1132 queue_pair_entry
->qp
.flags
!=
1133 (flags
& ~VMCI_QPFLAG_ATTACH_ONLY
)) {
1134 pr_devel("Error mismatched queue pair in local attach\n");
1135 result
= VMCI_ERROR_QUEUEPAIR_MISMATCH
;
1136 goto error_keep_entry
;
1140 * Do a local attach. We swap the consume and
1141 * produce queues for the attacher and deliver
1144 result
= qp_notify_peer_local(true, *handle
);
1145 if (result
< VMCI_SUCCESS
)
1146 goto error_keep_entry
;
1148 my_produce_q
= queue_pair_entry
->consume_q
;
1149 my_consume_q
= queue_pair_entry
->produce_q
;
1153 result
= VMCI_ERROR_ALREADY_EXISTS
;
1154 goto error_keep_entry
;
1157 my_produce_q
= qp_alloc_queue(produce_size
, flags
);
1158 if (!my_produce_q
) {
1159 pr_warn("Error allocating pages for produce queue\n");
1160 result
= VMCI_ERROR_NO_MEM
;
1164 my_consume_q
= qp_alloc_queue(consume_size
, flags
);
1165 if (!my_consume_q
) {
1166 pr_warn("Error allocating pages for consume queue\n");
1167 result
= VMCI_ERROR_NO_MEM
;
1171 queue_pair_entry
= qp_guest_endpoint_create(*handle
, peer
, flags
,
1172 produce_size
, consume_size
,
1173 my_produce_q
, my_consume_q
);
1174 if (!queue_pair_entry
) {
1175 pr_warn("Error allocating memory in %s\n", __func__
);
1176 result
= VMCI_ERROR_NO_MEM
;
1180 result
= qp_alloc_ppn_set(my_produce_q
, num_produce_pages
, my_consume_q
,
1182 &queue_pair_entry
->ppn_set
);
1183 if (result
< VMCI_SUCCESS
) {
1184 pr_warn("qp_alloc_ppn_set failed\n");
1189 * It's only necessary to notify the host if this queue pair will be
1190 * attached to from another context.
1192 if (queue_pair_entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) {
1193 /* Local create case. */
1194 u32 context_id
= vmci_get_context_id();
1197 * Enforce similar checks on local queue pairs as we
1198 * do for regular ones. The handle's context must
1199 * match the creator or attacher context id (here they
1200 * are both the current context id) and the
1201 * attach-only flag cannot exist during create. We
1202 * also ensure specified peer is this context or an
1205 if (queue_pair_entry
->qp
.handle
.context
!= context_id
||
1206 (queue_pair_entry
->qp
.peer
!= VMCI_INVALID_ID
&&
1207 queue_pair_entry
->qp
.peer
!= context_id
)) {
1208 result
= VMCI_ERROR_NO_ACCESS
;
1212 if (queue_pair_entry
->qp
.flags
& VMCI_QPFLAG_ATTACH_ONLY
) {
1213 result
= VMCI_ERROR_NOT_FOUND
;
1217 result
= qp_alloc_hypercall(queue_pair_entry
);
1218 if (result
< VMCI_SUCCESS
) {
1219 pr_warn("qp_alloc_hypercall result = %d\n", result
);
1224 qp_init_queue_mutex((struct vmci_queue
*)my_produce_q
,
1225 (struct vmci_queue
*)my_consume_q
);
1227 qp_list_add_entry(&qp_guest_endpoints
, &queue_pair_entry
->qp
);
1230 queue_pair_entry
->qp
.ref_count
++;
1231 *handle
= queue_pair_entry
->qp
.handle
;
1232 *produce_q
= (struct vmci_queue
*)my_produce_q
;
1233 *consume_q
= (struct vmci_queue
*)my_consume_q
;
1236 * We should initialize the queue pair header pages on a local
1237 * queue pair create. For non-local queue pairs, the
1238 * hypervisor initializes the header pages in the create step.
1240 if ((queue_pair_entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) &&
1241 queue_pair_entry
->qp
.ref_count
== 1) {
1242 vmci_q_header_init((*produce_q
)->q_header
, *handle
);
1243 vmci_q_header_init((*consume_q
)->q_header
, *handle
);
1246 mutex_unlock(&qp_guest_endpoints
.mutex
);
1248 return VMCI_SUCCESS
;
1251 mutex_unlock(&qp_guest_endpoints
.mutex
);
1252 if (queue_pair_entry
) {
1253 /* The queues will be freed inside the destroy routine. */
1254 qp_guest_endpoint_destroy(queue_pair_entry
);
1256 qp_free_queue(my_produce_q
, produce_size
);
1257 qp_free_queue(my_consume_q
, consume_size
);
1262 /* This path should only be used when an existing entry was found. */
1263 mutex_unlock(&qp_guest_endpoints
.mutex
);
1268 * The first endpoint issuing a queue pair allocation will create the state
1269 * of the queue pair in the queue pair broker.
1271 * If the creator is a guest, it will associate a VMX virtual address range
1272 * with the queue pair as specified by the page_store. For compatibility with
1273 * older VMX'en, that would use a separate step to set the VMX virtual
1274 * address range, the virtual address range can be registered later using
1275 * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1278 * If the creator is the host, a page_store of NULL should be used as well,
1279 * since the host is not able to supply a page store for the queue pair.
1281 * For older VMX and host callers, the queue pair will be created in the
1282 * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1283 * created in VMCOQPB_CREATED_MEM state.
1285 static int qp_broker_create(struct vmci_handle handle
,
1291 struct vmci_qp_page_store
*page_store
,
1292 struct vmci_ctx
*context
,
1293 vmci_event_release_cb wakeup_cb
,
1294 void *client_data
, struct qp_broker_entry
**ent
)
1296 struct qp_broker_entry
*entry
= NULL
;
1297 const u32 context_id
= vmci_ctx_get_id(context
);
1298 bool is_local
= flags
& VMCI_QPFLAG_LOCAL
;
1300 u64 guest_produce_size
;
1301 u64 guest_consume_size
;
1303 /* Do not create if the caller asked not to. */
1304 if (flags
& VMCI_QPFLAG_ATTACH_ONLY
)
1305 return VMCI_ERROR_NOT_FOUND
;
1308 * Creator's context ID should match handle's context ID or the creator
1309 * must allow the context in handle's context ID as the "peer".
1311 if (handle
.context
!= context_id
&& handle
.context
!= peer
)
1312 return VMCI_ERROR_NO_ACCESS
;
1314 if (VMCI_CONTEXT_IS_VM(context_id
) && VMCI_CONTEXT_IS_VM(peer
))
1315 return VMCI_ERROR_DST_UNREACHABLE
;
1318 * Creator's context ID for local queue pairs should match the
1319 * peer, if a peer is specified.
1321 if (is_local
&& peer
!= VMCI_INVALID_ID
&& context_id
!= peer
)
1322 return VMCI_ERROR_NO_ACCESS
;
1324 entry
= kzalloc(sizeof(*entry
), GFP_ATOMIC
);
1326 return VMCI_ERROR_NO_MEM
;
1328 if (vmci_ctx_get_id(context
) == VMCI_HOST_CONTEXT_ID
&& !is_local
) {
1330 * The queue pair broker entry stores values from the guest
1331 * point of view, so a creating host side endpoint should swap
1332 * produce and consume values -- unless it is a local queue
1333 * pair, in which case no swapping is necessary, since the local
1334 * attacher will swap queues.
1337 guest_produce_size
= consume_size
;
1338 guest_consume_size
= produce_size
;
1340 guest_produce_size
= produce_size
;
1341 guest_consume_size
= consume_size
;
1344 entry
->qp
.handle
= handle
;
1345 entry
->qp
.peer
= peer
;
1346 entry
->qp
.flags
= flags
;
1347 entry
->qp
.produce_size
= guest_produce_size
;
1348 entry
->qp
.consume_size
= guest_consume_size
;
1349 entry
->qp
.ref_count
= 1;
1350 entry
->create_id
= context_id
;
1351 entry
->attach_id
= VMCI_INVALID_ID
;
1352 entry
->state
= VMCIQPB_NEW
;
1353 entry
->require_trusted_attach
=
1354 !!(context
->priv_flags
& VMCI_PRIVILEGE_FLAG_RESTRICTED
);
1355 entry
->created_by_trusted
=
1356 !!(priv_flags
& VMCI_PRIVILEGE_FLAG_TRUSTED
);
1357 entry
->vmci_page_files
= false;
1358 entry
->wakeup_cb
= wakeup_cb
;
1359 entry
->client_data
= client_data
;
1360 entry
->produce_q
= qp_host_alloc_queue(guest_produce_size
);
1361 if (entry
->produce_q
== NULL
) {
1362 result
= VMCI_ERROR_NO_MEM
;
1365 entry
->consume_q
= qp_host_alloc_queue(guest_consume_size
);
1366 if (entry
->consume_q
== NULL
) {
1367 result
= VMCI_ERROR_NO_MEM
;
1371 qp_init_queue_mutex(entry
->produce_q
, entry
->consume_q
);
1373 INIT_LIST_HEAD(&entry
->qp
.list_item
);
1378 entry
->local_mem
= kcalloc(QPE_NUM_PAGES(entry
->qp
),
1379 PAGE_SIZE
, GFP_KERNEL
);
1380 if (entry
->local_mem
== NULL
) {
1381 result
= VMCI_ERROR_NO_MEM
;
1384 entry
->state
= VMCIQPB_CREATED_MEM
;
1385 entry
->produce_q
->q_header
= entry
->local_mem
;
1386 tmp
= (u8
*)entry
->local_mem
+ PAGE_SIZE
*
1387 (DIV_ROUND_UP(entry
->qp
.produce_size
, PAGE_SIZE
) + 1);
1388 entry
->consume_q
->q_header
= (struct vmci_queue_header
*)tmp
;
1389 } else if (page_store
) {
1391 * The VMX already initialized the queue pair headers, so no
1392 * need for the kernel side to do that.
1394 result
= qp_host_register_user_memory(page_store
,
1397 if (result
< VMCI_SUCCESS
)
1400 entry
->state
= VMCIQPB_CREATED_MEM
;
1403 * A create without a page_store may be either a host
1404 * side create (in which case we are waiting for the
1405 * guest side to supply the memory) or an old style
1406 * queue pair create (in which case we will expect a
1407 * set page store call as the next step).
1409 entry
->state
= VMCIQPB_CREATED_NO_MEM
;
1412 qp_list_add_entry(&qp_broker_list
, &entry
->qp
);
1416 /* Add to resource obj */
1417 result
= vmci_resource_add(&entry
->resource
,
1418 VMCI_RESOURCE_TYPE_QPAIR_HOST
,
1420 if (result
!= VMCI_SUCCESS
) {
1421 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1422 handle
.context
, handle
.resource
, result
);
1426 entry
->qp
.handle
= vmci_resource_handle(&entry
->resource
);
1428 vmci_q_header_init(entry
->produce_q
->q_header
,
1430 vmci_q_header_init(entry
->consume_q
->q_header
,
1434 vmci_ctx_qp_create(context
, entry
->qp
.handle
);
1436 return VMCI_SUCCESS
;
1439 if (entry
!= NULL
) {
1440 qp_host_free_queue(entry
->produce_q
, guest_produce_size
);
1441 qp_host_free_queue(entry
->consume_q
, guest_consume_size
);
1449 * Enqueues an event datagram to notify the peer VM attached to
1450 * the given queue pair handle about attach/detach event by the
1451 * given VM. Returns Payload size of datagram enqueued on
1452 * success, error code otherwise.
1454 static int qp_notify_peer(bool attach
,
1455 struct vmci_handle handle
,
1460 struct vmci_event_qp ev
;
1462 if (vmci_handle_is_invalid(handle
) || my_id
== VMCI_INVALID_ID
||
1463 peer_id
== VMCI_INVALID_ID
)
1464 return VMCI_ERROR_INVALID_ARGS
;
1467 * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1468 * number of pending events from the hypervisor to a given VM
1469 * otherwise a rogue VM could do an arbitrary number of attach
1470 * and detach operations causing memory pressure in the host
1474 ev
.msg
.hdr
.dst
= vmci_make_handle(peer_id
, VMCI_EVENT_HANDLER
);
1475 ev
.msg
.hdr
.src
= vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID
,
1476 VMCI_CONTEXT_RESOURCE_ID
);
1477 ev
.msg
.hdr
.payload_size
= sizeof(ev
) - sizeof(ev
.msg
.hdr
);
1478 ev
.msg
.event_data
.event
= attach
?
1479 VMCI_EVENT_QP_PEER_ATTACH
: VMCI_EVENT_QP_PEER_DETACH
;
1480 ev
.payload
.handle
= handle
;
1481 ev
.payload
.peer_id
= my_id
;
1483 rv
= vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID
,
1484 &ev
.msg
.hdr
, false);
1485 if (rv
< VMCI_SUCCESS
)
1486 pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1487 attach
? "ATTACH" : "DETACH", peer_id
);
1493 * The second endpoint issuing a queue pair allocation will attach to
1494 * the queue pair registered with the queue pair broker.
1496 * If the attacher is a guest, it will associate a VMX virtual address
1497 * range with the queue pair as specified by the page_store. At this
1498 * point, the already attach host endpoint may start using the queue
1499 * pair, and an attach event is sent to it. For compatibility with
1500 * older VMX'en, that used a separate step to set the VMX virtual
1501 * address range, the virtual address range can be registered later
1502 * using vmci_qp_broker_set_page_store. In that case, a page_store of
1503 * NULL should be used, and the attach event will be generated once
1504 * the actual page store has been set.
1506 * If the attacher is the host, a page_store of NULL should be used as
1507 * well, since the page store information is already set by the guest.
1509 * For new VMX and host callers, the queue pair will be moved to the
1510 * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1511 * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1513 static int qp_broker_attach(struct qp_broker_entry
*entry
,
1519 struct vmci_qp_page_store
*page_store
,
1520 struct vmci_ctx
*context
,
1521 vmci_event_release_cb wakeup_cb
,
1523 struct qp_broker_entry
**ent
)
1525 const u32 context_id
= vmci_ctx_get_id(context
);
1526 bool is_local
= flags
& VMCI_QPFLAG_LOCAL
;
1529 if (entry
->state
!= VMCIQPB_CREATED_NO_MEM
&&
1530 entry
->state
!= VMCIQPB_CREATED_MEM
)
1531 return VMCI_ERROR_UNAVAILABLE
;
1534 if (!(entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) ||
1535 context_id
!= entry
->create_id
) {
1536 return VMCI_ERROR_INVALID_ARGS
;
1538 } else if (context_id
== entry
->create_id
||
1539 context_id
== entry
->attach_id
) {
1540 return VMCI_ERROR_ALREADY_EXISTS
;
1543 if (VMCI_CONTEXT_IS_VM(context_id
) &&
1544 VMCI_CONTEXT_IS_VM(entry
->create_id
))
1545 return VMCI_ERROR_DST_UNREACHABLE
;
1548 * If we are attaching from a restricted context then the queuepair
1549 * must have been created by a trusted endpoint.
1551 if ((context
->priv_flags
& VMCI_PRIVILEGE_FLAG_RESTRICTED
) &&
1552 !entry
->created_by_trusted
)
1553 return VMCI_ERROR_NO_ACCESS
;
1556 * If we are attaching to a queuepair that was created by a restricted
1557 * context then we must be trusted.
1559 if (entry
->require_trusted_attach
&&
1560 (!(priv_flags
& VMCI_PRIVILEGE_FLAG_TRUSTED
)))
1561 return VMCI_ERROR_NO_ACCESS
;
1564 * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1565 * control check is not performed.
1567 if (entry
->qp
.peer
!= VMCI_INVALID_ID
&& entry
->qp
.peer
!= context_id
)
1568 return VMCI_ERROR_NO_ACCESS
;
1570 if (entry
->create_id
== VMCI_HOST_CONTEXT_ID
) {
1572 * Do not attach if the caller doesn't support Host Queue Pairs
1573 * and a host created this queue pair.
1576 if (!vmci_ctx_supports_host_qp(context
))
1577 return VMCI_ERROR_INVALID_RESOURCE
;
1579 } else if (context_id
== VMCI_HOST_CONTEXT_ID
) {
1580 struct vmci_ctx
*create_context
;
1581 bool supports_host_qp
;
1584 * Do not attach a host to a user created queue pair if that
1585 * user doesn't support host queue pair end points.
1588 create_context
= vmci_ctx_get(entry
->create_id
);
1589 supports_host_qp
= vmci_ctx_supports_host_qp(create_context
);
1590 vmci_ctx_put(create_context
);
1592 if (!supports_host_qp
)
1593 return VMCI_ERROR_INVALID_RESOURCE
;
1596 if ((entry
->qp
.flags
& ~VMCI_QP_ASYMM
) != (flags
& ~VMCI_QP_ASYMM_PEER
))
1597 return VMCI_ERROR_QUEUEPAIR_MISMATCH
;
1599 if (context_id
!= VMCI_HOST_CONTEXT_ID
) {
1601 * The queue pair broker entry stores values from the guest
1602 * point of view, so an attaching guest should match the values
1603 * stored in the entry.
1606 if (entry
->qp
.produce_size
!= produce_size
||
1607 entry
->qp
.consume_size
!= consume_size
) {
1608 return VMCI_ERROR_QUEUEPAIR_MISMATCH
;
1610 } else if (entry
->qp
.produce_size
!= consume_size
||
1611 entry
->qp
.consume_size
!= produce_size
) {
1612 return VMCI_ERROR_QUEUEPAIR_MISMATCH
;
1615 if (context_id
!= VMCI_HOST_CONTEXT_ID
) {
1617 * If a guest attached to a queue pair, it will supply
1618 * the backing memory. If this is a pre NOVMVM vmx,
1619 * the backing memory will be supplied by calling
1620 * vmci_qp_broker_set_page_store() following the
1621 * return of the vmci_qp_broker_alloc() call. If it is
1622 * a vmx of version NOVMVM or later, the page store
1623 * must be supplied as part of the
1624 * vmci_qp_broker_alloc call. Under all circumstances
1625 * must the initially created queue pair not have any
1626 * memory associated with it already.
1629 if (entry
->state
!= VMCIQPB_CREATED_NO_MEM
)
1630 return VMCI_ERROR_INVALID_ARGS
;
1632 if (page_store
!= NULL
) {
1634 * Patch up host state to point to guest
1635 * supplied memory. The VMX already
1636 * initialized the queue pair headers, so no
1637 * need for the kernel side to do that.
1640 result
= qp_host_register_user_memory(page_store
,
1643 if (result
< VMCI_SUCCESS
)
1646 entry
->state
= VMCIQPB_ATTACHED_MEM
;
1648 entry
->state
= VMCIQPB_ATTACHED_NO_MEM
;
1650 } else if (entry
->state
== VMCIQPB_CREATED_NO_MEM
) {
1652 * The host side is attempting to attach to a queue
1653 * pair that doesn't have any memory associated with
1654 * it. This must be a pre NOVMVM vmx that hasn't set
1655 * the page store information yet, or a quiesced VM.
1658 return VMCI_ERROR_UNAVAILABLE
;
1660 /* The host side has successfully attached to a queue pair. */
1661 entry
->state
= VMCIQPB_ATTACHED_MEM
;
1664 if (entry
->state
== VMCIQPB_ATTACHED_MEM
) {
1666 qp_notify_peer(true, entry
->qp
.handle
, context_id
,
1668 if (result
< VMCI_SUCCESS
)
1669 pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1670 entry
->create_id
, entry
->qp
.handle
.context
,
1671 entry
->qp
.handle
.resource
);
1674 entry
->attach_id
= context_id
;
1675 entry
->qp
.ref_count
++;
1677 entry
->wakeup_cb
= wakeup_cb
;
1678 entry
->client_data
= client_data
;
1682 * When attaching to local queue pairs, the context already has
1683 * an entry tracking the queue pair, so don't add another one.
1686 vmci_ctx_qp_create(context
, entry
->qp
.handle
);
1691 return VMCI_SUCCESS
;
1695 * queue_pair_Alloc for use when setting up queue pair endpoints
1698 static int qp_broker_alloc(struct vmci_handle handle
,
1704 struct vmci_qp_page_store
*page_store
,
1705 struct vmci_ctx
*context
,
1706 vmci_event_release_cb wakeup_cb
,
1708 struct qp_broker_entry
**ent
,
1711 const u32 context_id
= vmci_ctx_get_id(context
);
1713 struct qp_broker_entry
*entry
= NULL
;
1714 bool is_local
= flags
& VMCI_QPFLAG_LOCAL
;
1717 if (vmci_handle_is_invalid(handle
) ||
1718 (flags
& ~VMCI_QP_ALL_FLAGS
) || is_local
||
1719 !(produce_size
|| consume_size
) ||
1720 !context
|| context_id
== VMCI_INVALID_ID
||
1721 handle
.context
== VMCI_INVALID_ID
) {
1722 return VMCI_ERROR_INVALID_ARGS
;
1725 if (page_store
&& !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store
))
1726 return VMCI_ERROR_INVALID_ARGS
;
1729 * In the initial argument check, we ensure that non-vmkernel hosts
1730 * are not allowed to create local queue pairs.
1733 mutex_lock(&qp_broker_list
.mutex
);
1735 if (!is_local
&& vmci_ctx_qp_exists(context
, handle
)) {
1736 pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1737 context_id
, handle
.context
, handle
.resource
);
1738 mutex_unlock(&qp_broker_list
.mutex
);
1739 return VMCI_ERROR_ALREADY_EXISTS
;
1742 if (handle
.resource
!= VMCI_INVALID_ID
)
1743 entry
= qp_broker_handle_to_entry(handle
);
1748 qp_broker_create(handle
, peer
, flags
, priv_flags
,
1749 produce_size
, consume_size
, page_store
,
1750 context
, wakeup_cb
, client_data
, ent
);
1754 qp_broker_attach(entry
, peer
, flags
, priv_flags
,
1755 produce_size
, consume_size
, page_store
,
1756 context
, wakeup_cb
, client_data
, ent
);
1759 mutex_unlock(&qp_broker_list
.mutex
);
1762 *swap
= (context_id
== VMCI_HOST_CONTEXT_ID
) &&
1763 !(create
&& is_local
);
1769 * This function implements the kernel API for allocating a queue
1772 static int qp_alloc_host_work(struct vmci_handle
*handle
,
1773 struct vmci_queue
**produce_q
,
1775 struct vmci_queue
**consume_q
,
1780 vmci_event_release_cb wakeup_cb
,
1783 struct vmci_handle new_handle
;
1784 struct vmci_ctx
*context
;
1785 struct qp_broker_entry
*entry
;
1789 if (vmci_handle_is_invalid(*handle
)) {
1790 new_handle
= vmci_make_handle(
1791 VMCI_HOST_CONTEXT_ID
, VMCI_INVALID_ID
);
1793 new_handle
= *handle
;
1795 context
= vmci_ctx_get(VMCI_HOST_CONTEXT_ID
);
1798 qp_broker_alloc(new_handle
, peer
, flags
, priv_flags
,
1799 produce_size
, consume_size
, NULL
, context
,
1800 wakeup_cb
, client_data
, &entry
, &swap
);
1801 if (result
== VMCI_SUCCESS
) {
1804 * If this is a local queue pair, the attacher
1805 * will swap around produce and consume
1809 *produce_q
= entry
->consume_q
;
1810 *consume_q
= entry
->produce_q
;
1812 *produce_q
= entry
->produce_q
;
1813 *consume_q
= entry
->consume_q
;
1816 *handle
= vmci_resource_handle(&entry
->resource
);
1818 *handle
= VMCI_INVALID_HANDLE
;
1819 pr_devel("queue pair broker failed to alloc (result=%d)\n",
1822 vmci_ctx_put(context
);
1827 * Allocates a VMCI queue_pair. Only checks validity of input
1828 * arguments. The real work is done in the host or guest
1829 * specific function.
1831 int vmci_qp_alloc(struct vmci_handle
*handle
,
1832 struct vmci_queue
**produce_q
,
1834 struct vmci_queue
**consume_q
,
1839 bool guest_endpoint
,
1840 vmci_event_release_cb wakeup_cb
,
1843 if (!handle
|| !produce_q
|| !consume_q
||
1844 (!produce_size
&& !consume_size
) || (flags
& ~VMCI_QP_ALL_FLAGS
))
1845 return VMCI_ERROR_INVALID_ARGS
;
1847 if (guest_endpoint
) {
1848 return qp_alloc_guest_work(handle
, produce_q
,
1849 produce_size
, consume_q
,
1853 return qp_alloc_host_work(handle
, produce_q
,
1854 produce_size
, consume_q
,
1855 consume_size
, peer
, flags
,
1856 priv_flags
, wakeup_cb
, client_data
);
1861 * This function implements the host kernel API for detaching from
1864 static int qp_detatch_host_work(struct vmci_handle handle
)
1867 struct vmci_ctx
*context
;
1869 context
= vmci_ctx_get(VMCI_HOST_CONTEXT_ID
);
1871 result
= vmci_qp_broker_detach(handle
, context
);
1873 vmci_ctx_put(context
);
1878 * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1879 * Real work is done in the host or guest specific function.
1881 static int qp_detatch(struct vmci_handle handle
, bool guest_endpoint
)
1883 if (vmci_handle_is_invalid(handle
))
1884 return VMCI_ERROR_INVALID_ARGS
;
1887 return qp_detatch_guest_work(handle
);
1889 return qp_detatch_host_work(handle
);
1893 * Returns the entry from the head of the list. Assumes that the list is
1896 static struct qp_entry
*qp_list_get_head(struct qp_list
*qp_list
)
1898 if (!list_empty(&qp_list
->head
)) {
1899 struct qp_entry
*entry
=
1900 list_first_entry(&qp_list
->head
, struct qp_entry
,
1908 void vmci_qp_broker_exit(void)
1910 struct qp_entry
*entry
;
1911 struct qp_broker_entry
*be
;
1913 mutex_lock(&qp_broker_list
.mutex
);
1915 while ((entry
= qp_list_get_head(&qp_broker_list
))) {
1916 be
= (struct qp_broker_entry
*)entry
;
1918 qp_list_remove_entry(&qp_broker_list
, entry
);
1922 mutex_unlock(&qp_broker_list
.mutex
);
1926 * Requests that a queue pair be allocated with the VMCI queue
1927 * pair broker. Allocates a queue pair entry if one does not
1928 * exist. Attaches to one if it exists, and retrieves the page
1929 * files backing that queue_pair. Assumes that the queue pair
1930 * broker lock is held.
1932 int vmci_qp_broker_alloc(struct vmci_handle handle
,
1938 struct vmci_qp_page_store
*page_store
,
1939 struct vmci_ctx
*context
)
1941 return qp_broker_alloc(handle
, peer
, flags
, priv_flags
,
1942 produce_size
, consume_size
,
1943 page_store
, context
, NULL
, NULL
, NULL
, NULL
);
1947 * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
1948 * step to add the UVAs of the VMX mapping of the queue pair. This function
1949 * provides backwards compatibility with such VMX'en, and takes care of
1950 * registering the page store for a queue pair previously allocated by the
1951 * VMX during create or attach. This function will move the queue pair state
1952 * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
1953 * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
1954 * attached state with memory, the queue pair is ready to be used by the
1955 * host peer, and an attached event will be generated.
1957 * Assumes that the queue pair broker lock is held.
1959 * This function is only used by the hosted platform, since there is no
1960 * issue with backwards compatibility for vmkernel.
1962 int vmci_qp_broker_set_page_store(struct vmci_handle handle
,
1965 struct vmci_ctx
*context
)
1967 struct qp_broker_entry
*entry
;
1969 const u32 context_id
= vmci_ctx_get_id(context
);
1971 if (vmci_handle_is_invalid(handle
) || !context
||
1972 context_id
== VMCI_INVALID_ID
)
1973 return VMCI_ERROR_INVALID_ARGS
;
1976 * We only support guest to host queue pairs, so the VMX must
1977 * supply UVAs for the mapped page files.
1980 if (produce_uva
== 0 || consume_uva
== 0)
1981 return VMCI_ERROR_INVALID_ARGS
;
1983 mutex_lock(&qp_broker_list
.mutex
);
1985 if (!vmci_ctx_qp_exists(context
, handle
)) {
1986 pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
1987 context_id
, handle
.context
, handle
.resource
);
1988 result
= VMCI_ERROR_NOT_FOUND
;
1992 entry
= qp_broker_handle_to_entry(handle
);
1994 result
= VMCI_ERROR_NOT_FOUND
;
1999 * If I'm the owner then I can set the page store.
2001 * Or, if a host created the queue_pair and I'm the attached peer
2002 * then I can set the page store.
2004 if (entry
->create_id
!= context_id
&&
2005 (entry
->create_id
!= VMCI_HOST_CONTEXT_ID
||
2006 entry
->attach_id
!= context_id
)) {
2007 result
= VMCI_ERROR_QUEUEPAIR_NOTOWNER
;
2011 if (entry
->state
!= VMCIQPB_CREATED_NO_MEM
&&
2012 entry
->state
!= VMCIQPB_ATTACHED_NO_MEM
) {
2013 result
= VMCI_ERROR_UNAVAILABLE
;
2017 result
= qp_host_get_user_memory(produce_uva
, consume_uva
,
2018 entry
->produce_q
, entry
->consume_q
);
2019 if (result
< VMCI_SUCCESS
)
2022 result
= qp_host_map_queues(entry
->produce_q
, entry
->consume_q
);
2023 if (result
< VMCI_SUCCESS
) {
2024 qp_host_unregister_user_memory(entry
->produce_q
,
2029 if (entry
->state
== VMCIQPB_CREATED_NO_MEM
)
2030 entry
->state
= VMCIQPB_CREATED_MEM
;
2032 entry
->state
= VMCIQPB_ATTACHED_MEM
;
2034 entry
->vmci_page_files
= true;
2036 if (entry
->state
== VMCIQPB_ATTACHED_MEM
) {
2038 qp_notify_peer(true, handle
, context_id
, entry
->create_id
);
2039 if (result
< VMCI_SUCCESS
) {
2040 pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2041 entry
->create_id
, entry
->qp
.handle
.context
,
2042 entry
->qp
.handle
.resource
);
2046 result
= VMCI_SUCCESS
;
2048 mutex_unlock(&qp_broker_list
.mutex
);
2053 * Resets saved queue headers for the given QP broker
2054 * entry. Should be used when guest memory becomes available
2055 * again, or the guest detaches.
2057 static void qp_reset_saved_headers(struct qp_broker_entry
*entry
)
2059 entry
->produce_q
->saved_header
= NULL
;
2060 entry
->consume_q
->saved_header
= NULL
;
2064 * The main entry point for detaching from a queue pair registered with the
2065 * queue pair broker. If more than one endpoint is attached to the queue
2066 * pair, the first endpoint will mainly decrement a reference count and
2067 * generate a notification to its peer. The last endpoint will clean up
2068 * the queue pair state registered with the broker.
2070 * When a guest endpoint detaches, it will unmap and unregister the guest
2071 * memory backing the queue pair. If the host is still attached, it will
2072 * no longer be able to access the queue pair content.
2074 * If the queue pair is already in a state where there is no memory
2075 * registered for the queue pair (any *_NO_MEM state), it will transition to
2076 * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2077 * endpoint is the first of two endpoints to detach. If the host endpoint is
2078 * the first out of two to detach, the queue pair will move to the
2079 * VMCIQPB_SHUTDOWN_MEM state.
2081 int vmci_qp_broker_detach(struct vmci_handle handle
, struct vmci_ctx
*context
)
2083 struct qp_broker_entry
*entry
;
2084 const u32 context_id
= vmci_ctx_get_id(context
);
2086 bool is_local
= false;
2089 if (vmci_handle_is_invalid(handle
) || !context
||
2090 context_id
== VMCI_INVALID_ID
) {
2091 return VMCI_ERROR_INVALID_ARGS
;
2094 mutex_lock(&qp_broker_list
.mutex
);
2096 if (!vmci_ctx_qp_exists(context
, handle
)) {
2097 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2098 context_id
, handle
.context
, handle
.resource
);
2099 result
= VMCI_ERROR_NOT_FOUND
;
2103 entry
= qp_broker_handle_to_entry(handle
);
2105 pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2106 context_id
, handle
.context
, handle
.resource
);
2107 result
= VMCI_ERROR_NOT_FOUND
;
2111 if (context_id
!= entry
->create_id
&& context_id
!= entry
->attach_id
) {
2112 result
= VMCI_ERROR_QUEUEPAIR_NOTATTACHED
;
2116 if (context_id
== entry
->create_id
) {
2117 peer_id
= entry
->attach_id
;
2118 entry
->create_id
= VMCI_INVALID_ID
;
2120 peer_id
= entry
->create_id
;
2121 entry
->attach_id
= VMCI_INVALID_ID
;
2123 entry
->qp
.ref_count
--;
2125 is_local
= entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
;
2127 if (context_id
!= VMCI_HOST_CONTEXT_ID
) {
2128 bool headers_mapped
;
2131 * Pre NOVMVM vmx'en may detach from a queue pair
2132 * before setting the page store, and in that case
2133 * there is no user memory to detach from. Also, more
2134 * recent VMX'en may detach from a queue pair in the
2138 qp_acquire_queue_mutex(entry
->produce_q
);
2139 headers_mapped
= entry
->produce_q
->q_header
||
2140 entry
->consume_q
->q_header
;
2141 if (QPBROKERSTATE_HAS_MEM(entry
)) {
2143 qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID
,
2146 if (result
< VMCI_SUCCESS
)
2147 pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2148 handle
.context
, handle
.resource
,
2151 qp_host_unregister_user_memory(entry
->produce_q
,
2156 if (!headers_mapped
)
2157 qp_reset_saved_headers(entry
);
2159 qp_release_queue_mutex(entry
->produce_q
);
2161 if (!headers_mapped
&& entry
->wakeup_cb
)
2162 entry
->wakeup_cb(entry
->client_data
);
2165 if (entry
->wakeup_cb
) {
2166 entry
->wakeup_cb
= NULL
;
2167 entry
->client_data
= NULL
;
2171 if (entry
->qp
.ref_count
== 0) {
2172 qp_list_remove_entry(&qp_broker_list
, &entry
->qp
);
2175 kfree(entry
->local_mem
);
2177 qp_cleanup_queue_mutex(entry
->produce_q
, entry
->consume_q
);
2178 qp_host_free_queue(entry
->produce_q
, entry
->qp
.produce_size
);
2179 qp_host_free_queue(entry
->consume_q
, entry
->qp
.consume_size
);
2180 /* Unlink from resource hash table and free callback */
2181 vmci_resource_remove(&entry
->resource
);
2185 vmci_ctx_qp_destroy(context
, handle
);
2187 qp_notify_peer(false, handle
, context_id
, peer_id
);
2188 if (context_id
== VMCI_HOST_CONTEXT_ID
&&
2189 QPBROKERSTATE_HAS_MEM(entry
)) {
2190 entry
->state
= VMCIQPB_SHUTDOWN_MEM
;
2192 entry
->state
= VMCIQPB_SHUTDOWN_NO_MEM
;
2196 vmci_ctx_qp_destroy(context
, handle
);
2199 result
= VMCI_SUCCESS
;
2201 mutex_unlock(&qp_broker_list
.mutex
);
2206 * Establishes the necessary mappings for a queue pair given a
2207 * reference to the queue pair guest memory. This is usually
2208 * called when a guest is unquiesced and the VMX is allowed to
2209 * map guest memory once again.
2211 int vmci_qp_broker_map(struct vmci_handle handle
,
2212 struct vmci_ctx
*context
,
2215 struct qp_broker_entry
*entry
;
2216 const u32 context_id
= vmci_ctx_get_id(context
);
2217 bool is_local
= false;
2220 if (vmci_handle_is_invalid(handle
) || !context
||
2221 context_id
== VMCI_INVALID_ID
)
2222 return VMCI_ERROR_INVALID_ARGS
;
2224 mutex_lock(&qp_broker_list
.mutex
);
2226 if (!vmci_ctx_qp_exists(context
, handle
)) {
2227 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2228 context_id
, handle
.context
, handle
.resource
);
2229 result
= VMCI_ERROR_NOT_FOUND
;
2233 entry
= qp_broker_handle_to_entry(handle
);
2235 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2236 context_id
, handle
.context
, handle
.resource
);
2237 result
= VMCI_ERROR_NOT_FOUND
;
2241 if (context_id
!= entry
->create_id
&& context_id
!= entry
->attach_id
) {
2242 result
= VMCI_ERROR_QUEUEPAIR_NOTATTACHED
;
2246 is_local
= entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
;
2247 result
= VMCI_SUCCESS
;
2249 if (context_id
!= VMCI_HOST_CONTEXT_ID
) {
2250 struct vmci_qp_page_store page_store
;
2252 page_store
.pages
= guest_mem
;
2253 page_store
.len
= QPE_NUM_PAGES(entry
->qp
);
2255 qp_acquire_queue_mutex(entry
->produce_q
);
2256 qp_reset_saved_headers(entry
);
2258 qp_host_register_user_memory(&page_store
,
2261 qp_release_queue_mutex(entry
->produce_q
);
2262 if (result
== VMCI_SUCCESS
) {
2263 /* Move state from *_NO_MEM to *_MEM */
2267 if (entry
->wakeup_cb
)
2268 entry
->wakeup_cb(entry
->client_data
);
2273 mutex_unlock(&qp_broker_list
.mutex
);
2278 * Saves a snapshot of the queue headers for the given QP broker
2279 * entry. Should be used when guest memory is unmapped.
2281 * VMCI_SUCCESS on success, appropriate error code if guest memory
2282 * can't be accessed..
2284 static int qp_save_headers(struct qp_broker_entry
*entry
)
2288 if (entry
->produce_q
->saved_header
!= NULL
&&
2289 entry
->consume_q
->saved_header
!= NULL
) {
2291 * If the headers have already been saved, we don't need to do
2292 * it again, and we don't want to map in the headers
2296 return VMCI_SUCCESS
;
2299 if (NULL
== entry
->produce_q
->q_header
||
2300 NULL
== entry
->consume_q
->q_header
) {
2301 result
= qp_host_map_queues(entry
->produce_q
, entry
->consume_q
);
2302 if (result
< VMCI_SUCCESS
)
2306 memcpy(&entry
->saved_produce_q
, entry
->produce_q
->q_header
,
2307 sizeof(entry
->saved_produce_q
));
2308 entry
->produce_q
->saved_header
= &entry
->saved_produce_q
;
2309 memcpy(&entry
->saved_consume_q
, entry
->consume_q
->q_header
,
2310 sizeof(entry
->saved_consume_q
));
2311 entry
->consume_q
->saved_header
= &entry
->saved_consume_q
;
2313 return VMCI_SUCCESS
;
2317 * Removes all references to the guest memory of a given queue pair, and
2318 * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2319 * called when a VM is being quiesced where access to guest memory should
2322 int vmci_qp_broker_unmap(struct vmci_handle handle
,
2323 struct vmci_ctx
*context
,
2326 struct qp_broker_entry
*entry
;
2327 const u32 context_id
= vmci_ctx_get_id(context
);
2328 bool is_local
= false;
2331 if (vmci_handle_is_invalid(handle
) || !context
||
2332 context_id
== VMCI_INVALID_ID
)
2333 return VMCI_ERROR_INVALID_ARGS
;
2335 mutex_lock(&qp_broker_list
.mutex
);
2337 if (!vmci_ctx_qp_exists(context
, handle
)) {
2338 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2339 context_id
, handle
.context
, handle
.resource
);
2340 result
= VMCI_ERROR_NOT_FOUND
;
2344 entry
= qp_broker_handle_to_entry(handle
);
2346 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2347 context_id
, handle
.context
, handle
.resource
);
2348 result
= VMCI_ERROR_NOT_FOUND
;
2352 if (context_id
!= entry
->create_id
&& context_id
!= entry
->attach_id
) {
2353 result
= VMCI_ERROR_QUEUEPAIR_NOTATTACHED
;
2357 is_local
= entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
;
2359 if (context_id
!= VMCI_HOST_CONTEXT_ID
) {
2360 qp_acquire_queue_mutex(entry
->produce_q
);
2361 result
= qp_save_headers(entry
);
2362 if (result
< VMCI_SUCCESS
)
2363 pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2364 handle
.context
, handle
.resource
, result
);
2366 qp_host_unmap_queues(gid
, entry
->produce_q
, entry
->consume_q
);
2369 * On hosted, when we unmap queue pairs, the VMX will also
2370 * unmap the guest memory, so we invalidate the previously
2371 * registered memory. If the queue pair is mapped again at a
2372 * later point in time, we will need to reregister the user
2373 * memory with a possibly new user VA.
2375 qp_host_unregister_user_memory(entry
->produce_q
,
2379 * Move state from *_MEM to *_NO_MEM.
2383 qp_release_queue_mutex(entry
->produce_q
);
2386 result
= VMCI_SUCCESS
;
2389 mutex_unlock(&qp_broker_list
.mutex
);
2394 * Destroys all guest queue pair endpoints. If active guest queue
2395 * pairs still exist, hypercalls to attempt detach from these
2396 * queue pairs will be made. Any failure to detach is silently
2399 void vmci_qp_guest_endpoints_exit(void)
2401 struct qp_entry
*entry
;
2402 struct qp_guest_endpoint
*ep
;
2404 mutex_lock(&qp_guest_endpoints
.mutex
);
2406 while ((entry
= qp_list_get_head(&qp_guest_endpoints
))) {
2407 ep
= (struct qp_guest_endpoint
*)entry
;
2409 /* Don't make a hypercall for local queue_pairs. */
2410 if (!(entry
->flags
& VMCI_QPFLAG_LOCAL
))
2411 qp_detatch_hypercall(entry
->handle
);
2413 /* We cannot fail the exit, so let's reset ref_count. */
2414 entry
->ref_count
= 0;
2415 qp_list_remove_entry(&qp_guest_endpoints
, entry
);
2417 qp_guest_endpoint_destroy(ep
);
2420 mutex_unlock(&qp_guest_endpoints
.mutex
);
2424 * Helper routine that will lock the queue pair before subsequent
2426 * Note: Non-blocking on the host side is currently only implemented in ESX.
2427 * Since non-blocking isn't yet implemented on the host personality we
2428 * have no reason to acquire a spin lock. So to avoid the use of an
2429 * unnecessary lock only acquire the mutex if we can block.
2431 static void qp_lock(const struct vmci_qp
*qpair
)
2433 qp_acquire_queue_mutex(qpair
->produce_q
);
2437 * Helper routine that unlocks the queue pair after calling
2440 static void qp_unlock(const struct vmci_qp
*qpair
)
2442 qp_release_queue_mutex(qpair
->produce_q
);
2446 * The queue headers may not be mapped at all times. If a queue is
2447 * currently not mapped, it will be attempted to do so.
2449 static int qp_map_queue_headers(struct vmci_queue
*produce_q
,
2450 struct vmci_queue
*consume_q
)
2454 if (NULL
== produce_q
->q_header
|| NULL
== consume_q
->q_header
) {
2455 result
= qp_host_map_queues(produce_q
, consume_q
);
2456 if (result
< VMCI_SUCCESS
)
2457 return (produce_q
->saved_header
&&
2458 consume_q
->saved_header
) ?
2459 VMCI_ERROR_QUEUEPAIR_NOT_READY
:
2460 VMCI_ERROR_QUEUEPAIR_NOTATTACHED
;
2463 return VMCI_SUCCESS
;
2467 * Helper routine that will retrieve the produce and consume
2468 * headers of a given queue pair. If the guest memory of the
2469 * queue pair is currently not available, the saved queue headers
2470 * will be returned, if these are available.
2472 static int qp_get_queue_headers(const struct vmci_qp
*qpair
,
2473 struct vmci_queue_header
**produce_q_header
,
2474 struct vmci_queue_header
**consume_q_header
)
2478 result
= qp_map_queue_headers(qpair
->produce_q
, qpair
->consume_q
);
2479 if (result
== VMCI_SUCCESS
) {
2480 *produce_q_header
= qpair
->produce_q
->q_header
;
2481 *consume_q_header
= qpair
->consume_q
->q_header
;
2482 } else if (qpair
->produce_q
->saved_header
&&
2483 qpair
->consume_q
->saved_header
) {
2484 *produce_q_header
= qpair
->produce_q
->saved_header
;
2485 *consume_q_header
= qpair
->consume_q
->saved_header
;
2486 result
= VMCI_SUCCESS
;
2493 * Callback from VMCI queue pair broker indicating that a queue
2494 * pair that was previously not ready, now either is ready or
2497 static int qp_wakeup_cb(void *client_data
)
2499 struct vmci_qp
*qpair
= (struct vmci_qp
*)client_data
;
2502 while (qpair
->blocked
> 0) {
2504 qpair
->generation
++;
2505 wake_up(&qpair
->event
);
2509 return VMCI_SUCCESS
;
2513 * Makes the calling thread wait for the queue pair to become
2514 * ready for host side access. Returns true when thread is
2515 * woken up after queue pair state change, false otherwise.
2517 static bool qp_wait_for_ready_queue(struct vmci_qp
*qpair
)
2519 unsigned int generation
;
2522 generation
= qpair
->generation
;
2524 wait_event(qpair
->event
, generation
!= qpair
->generation
);
2531 * Enqueues a given buffer to the produce queue using the provided
2532 * function. As many bytes as possible (space available in the queue)
2533 * are enqueued. Assumes the queue->mutex has been acquired. Returns
2534 * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2535 * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2536 * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2537 * an error occured when accessing the buffer,
2538 * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2539 * available. Otherwise, the number of bytes written to the queue is
2540 * returned. Updates the tail pointer of the produce queue.
2542 static ssize_t
qp_enqueue_locked(struct vmci_queue
*produce_q
,
2543 struct vmci_queue
*consume_q
,
2544 const u64 produce_q_size
,
2545 struct iov_iter
*from
)
2549 size_t buf_size
= iov_iter_count(from
);
2553 result
= qp_map_queue_headers(produce_q
, consume_q
);
2554 if (unlikely(result
!= VMCI_SUCCESS
))
2557 free_space
= vmci_q_header_free_space(produce_q
->q_header
,
2558 consume_q
->q_header
,
2560 if (free_space
== 0)
2561 return VMCI_ERROR_QUEUEPAIR_NOSPACE
;
2563 if (free_space
< VMCI_SUCCESS
)
2564 return (ssize_t
) free_space
;
2566 written
= (size_t) (free_space
> buf_size
? buf_size
: free_space
);
2567 tail
= vmci_q_header_producer_tail(produce_q
->q_header
);
2568 if (likely(tail
+ written
< produce_q_size
)) {
2569 result
= qp_memcpy_to_queue_iter(produce_q
, tail
, from
, written
);
2571 /* Tail pointer wraps around. */
2573 const size_t tmp
= (size_t) (produce_q_size
- tail
);
2575 result
= qp_memcpy_to_queue_iter(produce_q
, tail
, from
, tmp
);
2576 if (result
>= VMCI_SUCCESS
)
2577 result
= qp_memcpy_to_queue_iter(produce_q
, 0, from
,
2581 if (result
< VMCI_SUCCESS
)
2584 vmci_q_header_add_producer_tail(produce_q
->q_header
, written
,
2590 * Dequeues data (if available) from the given consume queue. Writes data
2591 * to the user provided buffer using the provided function.
2592 * Assumes the queue->mutex has been acquired.
2594 * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2595 * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2596 * (as defined by the queue size).
2597 * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2598 * Otherwise the number of bytes dequeued is returned.
2600 * Updates the head pointer of the consume queue.
2602 static ssize_t
qp_dequeue_locked(struct vmci_queue
*produce_q
,
2603 struct vmci_queue
*consume_q
,
2604 const u64 consume_q_size
,
2605 struct iov_iter
*to
,
2606 bool update_consumer
)
2608 size_t buf_size
= iov_iter_count(to
);
2614 result
= qp_map_queue_headers(produce_q
, consume_q
);
2615 if (unlikely(result
!= VMCI_SUCCESS
))
2618 buf_ready
= vmci_q_header_buf_ready(consume_q
->q_header
,
2619 produce_q
->q_header
,
2622 return VMCI_ERROR_QUEUEPAIR_NODATA
;
2624 if (buf_ready
< VMCI_SUCCESS
)
2625 return (ssize_t
) buf_ready
;
2627 read
= (size_t) (buf_ready
> buf_size
? buf_size
: buf_ready
);
2628 head
= vmci_q_header_consumer_head(produce_q
->q_header
);
2629 if (likely(head
+ read
< consume_q_size
)) {
2630 result
= qp_memcpy_from_queue_iter(to
, consume_q
, head
, read
);
2632 /* Head pointer wraps around. */
2634 const size_t tmp
= (size_t) (consume_q_size
- head
);
2636 result
= qp_memcpy_from_queue_iter(to
, consume_q
, head
, tmp
);
2637 if (result
>= VMCI_SUCCESS
)
2638 result
= qp_memcpy_from_queue_iter(to
, consume_q
, 0,
2643 if (result
< VMCI_SUCCESS
)
2646 if (update_consumer
)
2647 vmci_q_header_add_consumer_head(produce_q
->q_header
,
2648 read
, consume_q_size
);
2654 * vmci_qpair_alloc() - Allocates a queue pair.
2655 * @qpair: Pointer for the new vmci_qp struct.
2656 * @handle: Handle to track the resource.
2657 * @produce_qsize: Desired size of the producer queue.
2658 * @consume_qsize: Desired size of the consumer queue.
2659 * @peer: ContextID of the peer.
2660 * @flags: VMCI flags.
2661 * @priv_flags: VMCI priviledge flags.
2663 * This is the client interface for allocating the memory for a
2664 * vmci_qp structure and then attaching to the underlying
2665 * queue. If an error occurs allocating the memory for the
2666 * vmci_qp structure no attempt is made to attach. If an
2667 * error occurs attaching, then the structure is freed.
2669 int vmci_qpair_alloc(struct vmci_qp
**qpair
,
2670 struct vmci_handle
*handle
,
2677 struct vmci_qp
*my_qpair
;
2679 struct vmci_handle src
= VMCI_INVALID_HANDLE
;
2680 struct vmci_handle dst
= vmci_make_handle(peer
, VMCI_INVALID_ID
);
2681 enum vmci_route route
;
2682 vmci_event_release_cb wakeup_cb
;
2686 * Restrict the size of a queuepair. The device already
2687 * enforces a limit on the total amount of memory that can be
2688 * allocated to queuepairs for a guest. However, we try to
2689 * allocate this memory before we make the queuepair
2690 * allocation hypercall. On Linux, we allocate each page
2691 * separately, which means rather than fail, the guest will
2692 * thrash while it tries to allocate, and will become
2693 * increasingly unresponsive to the point where it appears to
2694 * be hung. So we place a limit on the size of an individual
2695 * queuepair here, and leave the device to enforce the
2696 * restriction on total queuepair memory. (Note that this
2697 * doesn't prevent all cases; a user with only this much
2698 * physical memory could still get into trouble.) The error
2699 * used by the device is NO_RESOURCES, so use that here too.
2702 if (produce_qsize
+ consume_qsize
< max(produce_qsize
, consume_qsize
) ||
2703 produce_qsize
+ consume_qsize
> VMCI_MAX_GUEST_QP_MEMORY
)
2704 return VMCI_ERROR_NO_RESOURCES
;
2706 retval
= vmci_route(&src
, &dst
, false, &route
);
2707 if (retval
< VMCI_SUCCESS
)
2708 route
= vmci_guest_code_active() ?
2709 VMCI_ROUTE_AS_GUEST
: VMCI_ROUTE_AS_HOST
;
2711 if (flags
& (VMCI_QPFLAG_NONBLOCK
| VMCI_QPFLAG_PINNED
)) {
2712 pr_devel("NONBLOCK OR PINNED set");
2713 return VMCI_ERROR_INVALID_ARGS
;
2716 my_qpair
= kzalloc(sizeof(*my_qpair
), GFP_KERNEL
);
2718 return VMCI_ERROR_NO_MEM
;
2720 my_qpair
->produce_q_size
= produce_qsize
;
2721 my_qpair
->consume_q_size
= consume_qsize
;
2722 my_qpair
->peer
= peer
;
2723 my_qpair
->flags
= flags
;
2724 my_qpair
->priv_flags
= priv_flags
;
2729 if (VMCI_ROUTE_AS_HOST
== route
) {
2730 my_qpair
->guest_endpoint
= false;
2731 if (!(flags
& VMCI_QPFLAG_LOCAL
)) {
2732 my_qpair
->blocked
= 0;
2733 my_qpair
->generation
= 0;
2734 init_waitqueue_head(&my_qpair
->event
);
2735 wakeup_cb
= qp_wakeup_cb
;
2736 client_data
= (void *)my_qpair
;
2739 my_qpair
->guest_endpoint
= true;
2742 retval
= vmci_qp_alloc(handle
,
2743 &my_qpair
->produce_q
,
2744 my_qpair
->produce_q_size
,
2745 &my_qpair
->consume_q
,
2746 my_qpair
->consume_q_size
,
2749 my_qpair
->priv_flags
,
2750 my_qpair
->guest_endpoint
,
2751 wakeup_cb
, client_data
);
2753 if (retval
< VMCI_SUCCESS
) {
2759 my_qpair
->handle
= *handle
;
2763 EXPORT_SYMBOL_GPL(vmci_qpair_alloc
);
2766 * vmci_qpair_detach() - Detatches the client from a queue pair.
2767 * @qpair: Reference of a pointer to the qpair struct.
2769 * This is the client interface for detaching from a VMCIQPair.
2770 * Note that this routine will free the memory allocated for the
2771 * vmci_qp structure too.
2773 int vmci_qpair_detach(struct vmci_qp
**qpair
)
2776 struct vmci_qp
*old_qpair
;
2778 if (!qpair
|| !(*qpair
))
2779 return VMCI_ERROR_INVALID_ARGS
;
2782 result
= qp_detatch(old_qpair
->handle
, old_qpair
->guest_endpoint
);
2785 * The guest can fail to detach for a number of reasons, and
2786 * if it does so, it will cleanup the entry (if there is one).
2787 * The host can fail too, but it won't cleanup the entry
2788 * immediately, it will do that later when the context is
2789 * freed. Either way, we need to release the qpair struct
2790 * here; there isn't much the caller can do, and we don't want
2794 memset(old_qpair
, 0, sizeof(*old_qpair
));
2795 old_qpair
->handle
= VMCI_INVALID_HANDLE
;
2796 old_qpair
->peer
= VMCI_INVALID_ID
;
2802 EXPORT_SYMBOL_GPL(vmci_qpair_detach
);
2805 * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2806 * @qpair: Pointer to the queue pair struct.
2807 * @producer_tail: Reference used for storing producer tail index.
2808 * @consumer_head: Reference used for storing the consumer head index.
2810 * This is the client interface for getting the current indexes of the
2811 * QPair from the point of the view of the caller as the producer.
2813 int vmci_qpair_get_produce_indexes(const struct vmci_qp
*qpair
,
2817 struct vmci_queue_header
*produce_q_header
;
2818 struct vmci_queue_header
*consume_q_header
;
2822 return VMCI_ERROR_INVALID_ARGS
;
2826 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
2827 if (result
== VMCI_SUCCESS
)
2828 vmci_q_header_get_pointers(produce_q_header
, consume_q_header
,
2829 producer_tail
, consumer_head
);
2832 if (result
== VMCI_SUCCESS
&&
2833 ((producer_tail
&& *producer_tail
>= qpair
->produce_q_size
) ||
2834 (consumer_head
&& *consumer_head
>= qpair
->produce_q_size
)))
2835 return VMCI_ERROR_INVALID_SIZE
;
2839 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes
);
2842 * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer.
2843 * @qpair: Pointer to the queue pair struct.
2844 * @consumer_tail: Reference used for storing consumer tail index.
2845 * @producer_head: Reference used for storing the producer head index.
2847 * This is the client interface for getting the current indexes of the
2848 * QPair from the point of the view of the caller as the consumer.
2850 int vmci_qpair_get_consume_indexes(const struct vmci_qp
*qpair
,
2854 struct vmci_queue_header
*produce_q_header
;
2855 struct vmci_queue_header
*consume_q_header
;
2859 return VMCI_ERROR_INVALID_ARGS
;
2863 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
2864 if (result
== VMCI_SUCCESS
)
2865 vmci_q_header_get_pointers(consume_q_header
, produce_q_header
,
2866 consumer_tail
, producer_head
);
2869 if (result
== VMCI_SUCCESS
&&
2870 ((consumer_tail
&& *consumer_tail
>= qpair
->consume_q_size
) ||
2871 (producer_head
&& *producer_head
>= qpair
->consume_q_size
)))
2872 return VMCI_ERROR_INVALID_SIZE
;
2876 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes
);
2879 * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2880 * @qpair: Pointer to the queue pair struct.
2882 * This is the client interface for getting the amount of free
2883 * space in the QPair from the point of the view of the caller as
2884 * the producer which is the common case. Returns < 0 if err, else
2885 * available bytes into which data can be enqueued if > 0.
2887 s64
vmci_qpair_produce_free_space(const struct vmci_qp
*qpair
)
2889 struct vmci_queue_header
*produce_q_header
;
2890 struct vmci_queue_header
*consume_q_header
;
2894 return VMCI_ERROR_INVALID_ARGS
;
2898 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
2899 if (result
== VMCI_SUCCESS
)
2900 result
= vmci_q_header_free_space(produce_q_header
,
2902 qpair
->produce_q_size
);
2910 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space
);
2913 * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2914 * @qpair: Pointer to the queue pair struct.
2916 * This is the client interface for getting the amount of free
2917 * space in the QPair from the point of the view of the caller as
2918 * the consumer which is not the common case. Returns < 0 if err, else
2919 * available bytes into which data can be enqueued if > 0.
2921 s64
vmci_qpair_consume_free_space(const struct vmci_qp
*qpair
)
2923 struct vmci_queue_header
*produce_q_header
;
2924 struct vmci_queue_header
*consume_q_header
;
2928 return VMCI_ERROR_INVALID_ARGS
;
2932 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
2933 if (result
== VMCI_SUCCESS
)
2934 result
= vmci_q_header_free_space(consume_q_header
,
2936 qpair
->consume_q_size
);
2944 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space
);
2947 * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
2949 * @qpair: Pointer to the queue pair struct.
2951 * This is the client interface for getting the amount of
2952 * enqueued data in the QPair from the point of the view of the
2953 * caller as the producer which is not the common case. Returns < 0 if err,
2954 * else available bytes that may be read.
2956 s64
vmci_qpair_produce_buf_ready(const struct vmci_qp
*qpair
)
2958 struct vmci_queue_header
*produce_q_header
;
2959 struct vmci_queue_header
*consume_q_header
;
2963 return VMCI_ERROR_INVALID_ARGS
;
2967 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
2968 if (result
== VMCI_SUCCESS
)
2969 result
= vmci_q_header_buf_ready(produce_q_header
,
2971 qpair
->produce_q_size
);
2979 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready
);
2982 * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
2984 * @qpair: Pointer to the queue pair struct.
2986 * This is the client interface for getting the amount of
2987 * enqueued data in the QPair from the point of the view of the
2988 * caller as the consumer which is the normal case. Returns < 0 if err,
2989 * else available bytes that may be read.
2991 s64
vmci_qpair_consume_buf_ready(const struct vmci_qp
*qpair
)
2993 struct vmci_queue_header
*produce_q_header
;
2994 struct vmci_queue_header
*consume_q_header
;
2998 return VMCI_ERROR_INVALID_ARGS
;
3002 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
3003 if (result
== VMCI_SUCCESS
)
3004 result
= vmci_q_header_buf_ready(consume_q_header
,
3006 qpair
->consume_q_size
);
3014 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready
);
3017 * vmci_qpair_enqueue() - Throw data on the queue.
3018 * @qpair: Pointer to the queue pair struct.
3019 * @buf: Pointer to buffer containing data
3020 * @buf_size: Length of buffer.
3021 * @buf_type: Buffer type (Unused).
3023 * This is the client interface for enqueueing data into the queue.
3024 * Returns number of bytes enqueued or < 0 on error.
3026 ssize_t
vmci_qpair_enqueue(struct vmci_qp
*qpair
,
3032 struct iov_iter from
;
3033 struct kvec v
= {.iov_base
= (void *)buf
, .iov_len
= buf_size
};
3036 return VMCI_ERROR_INVALID_ARGS
;
3038 iov_iter_kvec(&from
, WRITE
| ITER_KVEC
, &v
, 1, buf_size
);
3043 result
= qp_enqueue_locked(qpair
->produce_q
,
3045 qpair
->produce_q_size
,
3048 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3049 !qp_wait_for_ready_queue(qpair
))
3050 result
= VMCI_ERROR_WOULD_BLOCK
;
3052 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3058 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue
);
3061 * vmci_qpair_dequeue() - Get data from the queue.
3062 * @qpair: Pointer to the queue pair struct.
3063 * @buf: Pointer to buffer for the data
3064 * @buf_size: Length of buffer.
3065 * @buf_type: Buffer type (Unused).
3067 * This is the client interface for dequeueing data from the queue.
3068 * Returns number of bytes dequeued or < 0 on error.
3070 ssize_t
vmci_qpair_dequeue(struct vmci_qp
*qpair
,
3077 struct kvec v
= {.iov_base
= buf
, .iov_len
= buf_size
};
3080 return VMCI_ERROR_INVALID_ARGS
;
3082 iov_iter_kvec(&to
, READ
| ITER_KVEC
, &v
, 1, buf_size
);
3087 result
= qp_dequeue_locked(qpair
->produce_q
,
3089 qpair
->consume_q_size
,
3092 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3093 !qp_wait_for_ready_queue(qpair
))
3094 result
= VMCI_ERROR_WOULD_BLOCK
;
3096 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3102 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue
);
3105 * vmci_qpair_peek() - Peek at the data in the queue.
3106 * @qpair: Pointer to the queue pair struct.
3107 * @buf: Pointer to buffer for the data
3108 * @buf_size: Length of buffer.
3109 * @buf_type: Buffer type (Unused on Linux).
3111 * This is the client interface for peeking into a queue. (I.e.,
3112 * copy data from the queue without updating the head pointer.)
3113 * Returns number of bytes dequeued or < 0 on error.
3115 ssize_t
vmci_qpair_peek(struct vmci_qp
*qpair
,
3121 struct kvec v
= {.iov_base
= buf
, .iov_len
= buf_size
};
3125 return VMCI_ERROR_INVALID_ARGS
;
3127 iov_iter_kvec(&to
, READ
| ITER_KVEC
, &v
, 1, buf_size
);
3132 result
= qp_dequeue_locked(qpair
->produce_q
,
3134 qpair
->consume_q_size
,
3137 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3138 !qp_wait_for_ready_queue(qpair
))
3139 result
= VMCI_ERROR_WOULD_BLOCK
;
3141 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3147 EXPORT_SYMBOL_GPL(vmci_qpair_peek
);
3150 * vmci_qpair_enquev() - Throw data on the queue using iov.
3151 * @qpair: Pointer to the queue pair struct.
3152 * @iov: Pointer to buffer containing data
3153 * @iov_size: Length of buffer.
3154 * @buf_type: Buffer type (Unused).
3156 * This is the client interface for enqueueing data into the queue.
3157 * This function uses IO vectors to handle the work. Returns number
3158 * of bytes enqueued or < 0 on error.
3160 ssize_t
vmci_qpair_enquev(struct vmci_qp
*qpair
,
3168 return VMCI_ERROR_INVALID_ARGS
;
3173 result
= qp_enqueue_locked(qpair
->produce_q
,
3175 qpair
->produce_q_size
,
3178 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3179 !qp_wait_for_ready_queue(qpair
))
3180 result
= VMCI_ERROR_WOULD_BLOCK
;
3182 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3188 EXPORT_SYMBOL_GPL(vmci_qpair_enquev
);
3191 * vmci_qpair_dequev() - Get data from the queue using iov.
3192 * @qpair: Pointer to the queue pair struct.
3193 * @iov: Pointer to buffer for the data
3194 * @iov_size: Length of buffer.
3195 * @buf_type: Buffer type (Unused).
3197 * This is the client interface for dequeueing data from the queue.
3198 * This function uses IO vectors to handle the work. Returns number
3199 * of bytes dequeued or < 0 on error.
3201 ssize_t
vmci_qpair_dequev(struct vmci_qp
*qpair
,
3209 return VMCI_ERROR_INVALID_ARGS
;
3214 result
= qp_dequeue_locked(qpair
->produce_q
,
3216 qpair
->consume_q_size
,
3217 &msg
->msg_iter
, true);
3219 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3220 !qp_wait_for_ready_queue(qpair
))
3221 result
= VMCI_ERROR_WOULD_BLOCK
;
3223 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3229 EXPORT_SYMBOL_GPL(vmci_qpair_dequev
);
3232 * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3233 * @qpair: Pointer to the queue pair struct.
3234 * @iov: Pointer to buffer for the data
3235 * @iov_size: Length of buffer.
3236 * @buf_type: Buffer type (Unused on Linux).
3238 * This is the client interface for peeking into a queue. (I.e.,
3239 * copy data from the queue without updating the head pointer.)
3240 * This function uses IO vectors to handle the work. Returns number
3241 * of bytes peeked or < 0 on error.
3243 ssize_t
vmci_qpair_peekv(struct vmci_qp
*qpair
,
3251 return VMCI_ERROR_INVALID_ARGS
;
3256 result
= qp_dequeue_locked(qpair
->produce_q
,
3258 qpair
->consume_q_size
,
3259 &msg
->msg_iter
, false);
3261 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3262 !qp_wait_for_ready_queue(qpair
))
3263 result
= VMCI_ERROR_WOULD_BLOCK
;
3265 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3270 EXPORT_SYMBOL_GPL(vmci_qpair_peekv
);