1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) "OF: " fmt
4 #include <linux/device.h>
5 #include <linux/fwnode.h>
7 #include <linux/ioport.h>
8 #include <linux/logic_pio.h>
9 #include <linux/module.h>
10 #include <linux/of_address.h>
11 #include <linux/pci.h>
12 #include <linux/pci_regs.h>
13 #include <linux/sizes.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
17 /* Max address size we deal with */
18 #define OF_MAX_ADDR_CELLS 4
19 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
20 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
22 static struct of_bus
*of_match_bus(struct device_node
*np
);
23 static int __of_address_to_resource(struct device_node
*dev
,
24 const __be32
*addrp
, u64 size
, unsigned int flags
,
25 const char *name
, struct resource
*r
);
29 static void of_dump_addr(const char *s
, const __be32
*addr
, int na
)
33 pr_cont(" %08x", be32_to_cpu(*(addr
++)));
37 static void of_dump_addr(const char *s
, const __be32
*addr
, int na
) { }
40 /* Callbacks for bus specific translators */
43 const char *addresses
;
44 int (*match
)(struct device_node
*parent
);
45 void (*count_cells
)(struct device_node
*child
,
46 int *addrc
, int *sizec
);
47 u64 (*map
)(__be32
*addr
, const __be32
*range
,
48 int na
, int ns
, int pna
);
49 int (*translate
)(__be32
*addr
, u64 offset
, int na
);
50 unsigned int (*get_flags
)(const __be32
*addr
);
54 * Default translator (generic bus)
57 static void of_bus_default_count_cells(struct device_node
*dev
,
58 int *addrc
, int *sizec
)
61 *addrc
= of_n_addr_cells(dev
);
63 *sizec
= of_n_size_cells(dev
);
66 static u64
of_bus_default_map(__be32
*addr
, const __be32
*range
,
67 int na
, int ns
, int pna
)
71 cp
= of_read_number(range
, na
);
72 s
= of_read_number(range
+ na
+ pna
, ns
);
73 da
= of_read_number(addr
, na
);
75 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n",
76 (unsigned long long)cp
, (unsigned long long)s
,
77 (unsigned long long)da
);
79 if (da
< cp
|| da
>= (cp
+ s
))
84 static int of_bus_default_translate(__be32
*addr
, u64 offset
, int na
)
86 u64 a
= of_read_number(addr
, na
);
87 memset(addr
, 0, na
* 4);
90 addr
[na
- 2] = cpu_to_be32(a
>> 32);
91 addr
[na
- 1] = cpu_to_be32(a
& 0xffffffffu
);
96 static unsigned int of_bus_default_get_flags(const __be32
*addr
)
98 return IORESOURCE_MEM
;
103 * PCI bus specific translator
106 static int of_bus_pci_match(struct device_node
*np
)
109 * "pciex" is PCI Express
110 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
111 * "ht" is hypertransport
113 return !strcmp(np
->type
, "pci") || !strcmp(np
->type
, "pciex") ||
114 !strcmp(np
->type
, "vci") || !strcmp(np
->type
, "ht");
117 static void of_bus_pci_count_cells(struct device_node
*np
,
118 int *addrc
, int *sizec
)
126 static unsigned int of_bus_pci_get_flags(const __be32
*addr
)
128 unsigned int flags
= 0;
129 u32 w
= be32_to_cpup(addr
);
131 switch((w
>> 24) & 0x03) {
133 flags
|= IORESOURCE_IO
;
135 case 0x02: /* 32 bits */
136 case 0x03: /* 64 bits */
137 flags
|= IORESOURCE_MEM
;
141 flags
|= IORESOURCE_PREFETCH
;
145 static u64
of_bus_pci_map(__be32
*addr
, const __be32
*range
, int na
, int ns
,
151 af
= of_bus_pci_get_flags(addr
);
152 rf
= of_bus_pci_get_flags(range
);
154 /* Check address type match */
155 if ((af
^ rf
) & (IORESOURCE_MEM
| IORESOURCE_IO
))
158 /* Read address values, skipping high cell */
159 cp
= of_read_number(range
+ 1, na
- 1);
160 s
= of_read_number(range
+ na
+ pna
, ns
);
161 da
= of_read_number(addr
+ 1, na
- 1);
163 pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n",
164 (unsigned long long)cp
, (unsigned long long)s
,
165 (unsigned long long)da
);
167 if (da
< cp
|| da
>= (cp
+ s
))
172 static int of_bus_pci_translate(__be32
*addr
, u64 offset
, int na
)
174 return of_bus_default_translate(addr
+ 1, offset
, na
- 1);
177 const __be32
*of_get_pci_address(struct device_node
*dev
, int bar_no
, u64
*size
,
182 struct device_node
*parent
;
184 int onesize
, i
, na
, ns
;
186 /* Get parent & match bus type */
187 parent
= of_get_parent(dev
);
190 bus
= of_match_bus(parent
);
191 if (strcmp(bus
->name
, "pci")) {
195 bus
->count_cells(dev
, &na
, &ns
);
197 if (!OF_CHECK_ADDR_COUNT(na
))
200 /* Get "reg" or "assigned-addresses" property */
201 prop
= of_get_property(dev
, bus
->addresses
, &psize
);
207 for (i
= 0; psize
>= onesize
; psize
-= onesize
, prop
+= onesize
, i
++) {
208 u32 val
= be32_to_cpu(prop
[0]);
209 if ((val
& 0xff) == ((bar_no
* 4) + PCI_BASE_ADDRESS_0
)) {
211 *size
= of_read_number(prop
+ na
, ns
);
213 *flags
= bus
->get_flags(prop
);
219 EXPORT_SYMBOL(of_get_pci_address
);
221 int of_pci_address_to_resource(struct device_node
*dev
, int bar
,
228 addrp
= of_get_pci_address(dev
, bar
, &size
, &flags
);
231 return __of_address_to_resource(dev
, addrp
, size
, flags
, NULL
, r
);
233 EXPORT_SYMBOL_GPL(of_pci_address_to_resource
);
235 static int parser_init(struct of_pci_range_parser
*parser
,
236 struct device_node
*node
, const char *name
)
238 const int na
= 3, ns
= 2;
242 parser
->pna
= of_n_addr_cells(node
);
243 parser
->np
= parser
->pna
+ na
+ ns
;
245 parser
->range
= of_get_property(node
, name
, &rlen
);
246 if (parser
->range
== NULL
)
249 parser
->end
= parser
->range
+ rlen
/ sizeof(__be32
);
254 int of_pci_range_parser_init(struct of_pci_range_parser
*parser
,
255 struct device_node
*node
)
257 return parser_init(parser
, node
, "ranges");
259 EXPORT_SYMBOL_GPL(of_pci_range_parser_init
);
261 int of_pci_dma_range_parser_init(struct of_pci_range_parser
*parser
,
262 struct device_node
*node
)
264 return parser_init(parser
, node
, "dma-ranges");
266 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init
);
268 struct of_pci_range
*of_pci_range_parser_one(struct of_pci_range_parser
*parser
,
269 struct of_pci_range
*range
)
271 const int na
= 3, ns
= 2;
276 if (!parser
->range
|| parser
->range
+ parser
->np
> parser
->end
)
279 range
->pci_space
= be32_to_cpup(parser
->range
);
280 range
->flags
= of_bus_pci_get_flags(parser
->range
);
281 range
->pci_addr
= of_read_number(parser
->range
+ 1, ns
);
282 range
->cpu_addr
= of_translate_address(parser
->node
,
284 range
->size
= of_read_number(parser
->range
+ parser
->pna
+ na
, ns
);
286 parser
->range
+= parser
->np
;
288 /* Now consume following elements while they are contiguous */
289 while (parser
->range
+ parser
->np
<= parser
->end
) {
291 u64 pci_addr
, cpu_addr
, size
;
293 flags
= of_bus_pci_get_flags(parser
->range
);
294 pci_addr
= of_read_number(parser
->range
+ 1, ns
);
295 cpu_addr
= of_translate_address(parser
->node
,
297 size
= of_read_number(parser
->range
+ parser
->pna
+ na
, ns
);
299 if (flags
!= range
->flags
)
301 if (pci_addr
!= range
->pci_addr
+ range
->size
||
302 cpu_addr
!= range
->cpu_addr
+ range
->size
)
306 parser
->range
+= parser
->np
;
311 EXPORT_SYMBOL_GPL(of_pci_range_parser_one
);
314 * of_pci_range_to_resource - Create a resource from an of_pci_range
315 * @range: the PCI range that describes the resource
316 * @np: device node where the range belongs to
317 * @res: pointer to a valid resource that will be updated to
318 * reflect the values contained in the range.
320 * Returns EINVAL if the range cannot be converted to resource.
322 * Note that if the range is an IO range, the resource will be converted
323 * using pci_address_to_pio() which can fail if it is called too early or
324 * if the range cannot be matched to any host bridge IO space (our case here).
325 * To guard against that we try to register the IO range first.
326 * If that fails we know that pci_address_to_pio() will do too.
328 int of_pci_range_to_resource(struct of_pci_range
*range
,
329 struct device_node
*np
, struct resource
*res
)
332 res
->flags
= range
->flags
;
333 res
->parent
= res
->child
= res
->sibling
= NULL
;
334 res
->name
= np
->full_name
;
336 if (res
->flags
& IORESOURCE_IO
) {
338 err
= pci_register_io_range(&np
->fwnode
, range
->cpu_addr
,
342 port
= pci_address_to_pio(range
->cpu_addr
);
343 if (port
== (unsigned long)-1) {
349 if ((sizeof(resource_size_t
) < 8) &&
350 upper_32_bits(range
->cpu_addr
)) {
355 res
->start
= range
->cpu_addr
;
357 res
->end
= res
->start
+ range
->size
- 1;
361 res
->start
= (resource_size_t
)OF_BAD_ADDR
;
362 res
->end
= (resource_size_t
)OF_BAD_ADDR
;
365 EXPORT_SYMBOL(of_pci_range_to_resource
);
366 #endif /* CONFIG_PCI */
369 * ISA bus specific translator
372 static int of_bus_isa_match(struct device_node
*np
)
374 return !strcmp(np
->name
, "isa");
377 static void of_bus_isa_count_cells(struct device_node
*child
,
378 int *addrc
, int *sizec
)
386 static u64
of_bus_isa_map(__be32
*addr
, const __be32
*range
, int na
, int ns
,
391 /* Check address type match */
392 if ((addr
[0] ^ range
[0]) & cpu_to_be32(1))
395 /* Read address values, skipping high cell */
396 cp
= of_read_number(range
+ 1, na
- 1);
397 s
= of_read_number(range
+ na
+ pna
, ns
);
398 da
= of_read_number(addr
+ 1, na
- 1);
400 pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n",
401 (unsigned long long)cp
, (unsigned long long)s
,
402 (unsigned long long)da
);
404 if (da
< cp
|| da
>= (cp
+ s
))
409 static int of_bus_isa_translate(__be32
*addr
, u64 offset
, int na
)
411 return of_bus_default_translate(addr
+ 1, offset
, na
- 1);
414 static unsigned int of_bus_isa_get_flags(const __be32
*addr
)
416 unsigned int flags
= 0;
417 u32 w
= be32_to_cpup(addr
);
420 flags
|= IORESOURCE_IO
;
422 flags
|= IORESOURCE_MEM
;
427 * Array of bus specific translators
430 static struct of_bus of_busses
[] = {
435 .addresses
= "assigned-addresses",
436 .match
= of_bus_pci_match
,
437 .count_cells
= of_bus_pci_count_cells
,
438 .map
= of_bus_pci_map
,
439 .translate
= of_bus_pci_translate
,
440 .get_flags
= of_bus_pci_get_flags
,
442 #endif /* CONFIG_PCI */
447 .match
= of_bus_isa_match
,
448 .count_cells
= of_bus_isa_count_cells
,
449 .map
= of_bus_isa_map
,
450 .translate
= of_bus_isa_translate
,
451 .get_flags
= of_bus_isa_get_flags
,
458 .count_cells
= of_bus_default_count_cells
,
459 .map
= of_bus_default_map
,
460 .translate
= of_bus_default_translate
,
461 .get_flags
= of_bus_default_get_flags
,
465 static struct of_bus
*of_match_bus(struct device_node
*np
)
469 for (i
= 0; i
< ARRAY_SIZE(of_busses
); i
++)
470 if (!of_busses
[i
].match
|| of_busses
[i
].match(np
))
471 return &of_busses
[i
];
476 static int of_empty_ranges_quirk(struct device_node
*np
)
478 if (IS_ENABLED(CONFIG_PPC
)) {
479 /* To save cycles, we cache the result for global "Mac" setting */
480 static int quirk_state
= -1;
482 /* PA-SEMI sdc DT bug */
483 if (of_device_is_compatible(np
, "1682m-sdc"))
486 /* Make quirk cached */
489 of_machine_is_compatible("Power Macintosh") ||
490 of_machine_is_compatible("MacRISC");
496 static int of_translate_one(struct device_node
*parent
, struct of_bus
*bus
,
497 struct of_bus
*pbus
, __be32
*addr
,
498 int na
, int ns
, int pna
, const char *rprop
)
500 const __be32
*ranges
;
503 u64 offset
= OF_BAD_ADDR
;
506 * Normally, an absence of a "ranges" property means we are
507 * crossing a non-translatable boundary, and thus the addresses
508 * below the current cannot be converted to CPU physical ones.
509 * Unfortunately, while this is very clear in the spec, it's not
510 * what Apple understood, and they do have things like /uni-n or
511 * /ht nodes with no "ranges" property and a lot of perfectly
512 * useable mapped devices below them. Thus we treat the absence of
513 * "ranges" as equivalent to an empty "ranges" property which means
514 * a 1:1 translation at that level. It's up to the caller not to try
515 * to translate addresses that aren't supposed to be translated in
516 * the first place. --BenH.
518 * As far as we know, this damage only exists on Apple machines, so
519 * This code is only enabled on powerpc. --gcl
521 ranges
= of_get_property(parent
, rprop
, &rlen
);
522 if (ranges
== NULL
&& !of_empty_ranges_quirk(parent
)) {
523 pr_debug("no ranges; cannot translate\n");
526 if (ranges
== NULL
|| rlen
== 0) {
527 offset
= of_read_number(addr
, na
);
528 memset(addr
, 0, pna
* 4);
529 pr_debug("empty ranges; 1:1 translation\n");
533 pr_debug("walking ranges...\n");
535 /* Now walk through the ranges */
537 rone
= na
+ pna
+ ns
;
538 for (; rlen
>= rone
; rlen
-= rone
, ranges
+= rone
) {
539 offset
= bus
->map(addr
, ranges
, na
, ns
, pna
);
540 if (offset
!= OF_BAD_ADDR
)
543 if (offset
== OF_BAD_ADDR
) {
544 pr_debug("not found !\n");
547 memcpy(addr
, ranges
+ na
, 4 * pna
);
550 of_dump_addr("parent translation for:", addr
, pna
);
551 pr_debug("with offset: %llx\n", (unsigned long long)offset
);
553 /* Translate it into parent bus space */
554 return pbus
->translate(addr
, offset
, pna
);
558 * Translate an address from the device-tree into a CPU physical address,
559 * this walks up the tree and applies the various bus mappings on the
562 * Note: We consider that crossing any level with #size-cells == 0 to mean
563 * that translation is impossible (that is we are not dealing with a value
564 * that can be mapped to a cpu physical address). This is not really specified
565 * that way, but this is traditionally the way IBM at least do things
567 * Whenever the translation fails, the *host pointer will be set to the
568 * device that had registered logical PIO mapping, and the return code is
569 * relative to that node.
571 static u64
__of_translate_address(struct device_node
*dev
,
572 const __be32
*in_addr
, const char *rprop
,
573 struct device_node
**host
)
575 struct device_node
*parent
= NULL
;
576 struct of_bus
*bus
, *pbus
;
577 __be32 addr
[OF_MAX_ADDR_CELLS
];
578 int na
, ns
, pna
, pns
;
579 u64 result
= OF_BAD_ADDR
;
581 pr_debug("** translation for device %pOF **\n", dev
);
583 /* Increase refcount at current level */
587 /* Get parent & match bus type */
588 parent
= of_get_parent(dev
);
591 bus
= of_match_bus(parent
);
593 /* Count address cells & copy address locally */
594 bus
->count_cells(dev
, &na
, &ns
);
595 if (!OF_CHECK_COUNTS(na
, ns
)) {
596 pr_debug("Bad cell count for %pOF\n", dev
);
599 memcpy(addr
, in_addr
, na
* 4);
601 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
602 bus
->name
, na
, ns
, parent
);
603 of_dump_addr("translating address:", addr
, na
);
607 struct logic_pio_hwaddr
*iorange
;
609 /* Switch to parent bus */
612 parent
= of_get_parent(dev
);
614 /* If root, we have finished */
615 if (parent
== NULL
) {
616 pr_debug("reached root node\n");
617 result
= of_read_number(addr
, na
);
622 * For indirectIO device which has no ranges property, get
623 * the address from reg directly.
625 iorange
= find_io_range_by_fwnode(&dev
->fwnode
);
626 if (iorange
&& (iorange
->flags
!= LOGIC_PIO_CPU_MMIO
)) {
627 result
= of_read_number(addr
+ 1, na
- 1);
628 pr_debug("indirectIO matched(%pOF) 0x%llx\n",
630 *host
= of_node_get(dev
);
634 /* Get new parent bus and counts */
635 pbus
= of_match_bus(parent
);
636 pbus
->count_cells(dev
, &pna
, &pns
);
637 if (!OF_CHECK_COUNTS(pna
, pns
)) {
638 pr_err("Bad cell count for %pOF\n", dev
);
642 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
643 pbus
->name
, pna
, pns
, parent
);
645 /* Apply bus translation */
646 if (of_translate_one(dev
, bus
, pbus
, addr
, na
, ns
, pna
, rprop
))
649 /* Complete the move up one level */
654 of_dump_addr("one level translation:", addr
, na
);
663 u64
of_translate_address(struct device_node
*dev
, const __be32
*in_addr
)
665 struct device_node
*host
;
668 ret
= __of_translate_address(dev
, in_addr
, "ranges", &host
);
676 EXPORT_SYMBOL(of_translate_address
);
678 u64
of_translate_dma_address(struct device_node
*dev
, const __be32
*in_addr
)
680 struct device_node
*host
;
683 ret
= __of_translate_address(dev
, in_addr
, "dma-ranges", &host
);
692 EXPORT_SYMBOL(of_translate_dma_address
);
694 const __be32
*of_get_address(struct device_node
*dev
, int index
, u64
*size
,
699 struct device_node
*parent
;
701 int onesize
, i
, na
, ns
;
703 /* Get parent & match bus type */
704 parent
= of_get_parent(dev
);
707 bus
= of_match_bus(parent
);
708 bus
->count_cells(dev
, &na
, &ns
);
710 if (!OF_CHECK_ADDR_COUNT(na
))
713 /* Get "reg" or "assigned-addresses" property */
714 prop
= of_get_property(dev
, bus
->addresses
, &psize
);
720 for (i
= 0; psize
>= onesize
; psize
-= onesize
, prop
+= onesize
, i
++)
723 *size
= of_read_number(prop
+ na
, ns
);
725 *flags
= bus
->get_flags(prop
);
730 EXPORT_SYMBOL(of_get_address
);
732 static u64
of_translate_ioport(struct device_node
*dev
, const __be32
*in_addr
,
737 struct device_node
*host
;
739 taddr
= __of_translate_address(dev
, in_addr
, "ranges", &host
);
741 /* host-specific port access */
742 port
= logic_pio_trans_hwaddr(&host
->fwnode
, taddr
, size
);
745 /* memory-mapped I/O range */
746 port
= pci_address_to_pio(taddr
);
749 if (port
== (unsigned long)-1)
755 static int __of_address_to_resource(struct device_node
*dev
,
756 const __be32
*addrp
, u64 size
, unsigned int flags
,
757 const char *name
, struct resource
*r
)
761 if (flags
& IORESOURCE_MEM
)
762 taddr
= of_translate_address(dev
, addrp
);
763 else if (flags
& IORESOURCE_IO
)
764 taddr
= of_translate_ioport(dev
, addrp
, size
);
768 if (taddr
== OF_BAD_ADDR
)
770 memset(r
, 0, sizeof(struct resource
));
773 r
->end
= taddr
+ size
- 1;
775 r
->name
= name
? name
: dev
->full_name
;
781 * of_address_to_resource - Translate device tree address and return as resource
783 * Note that if your address is a PIO address, the conversion will fail if
784 * the physical address can't be internally converted to an IO token with
785 * pci_address_to_pio(), that is because it's either called too early or it
786 * can't be matched to any host bridge IO space
788 int of_address_to_resource(struct device_node
*dev
, int index
,
794 const char *name
= NULL
;
796 addrp
= of_get_address(dev
, index
, &size
, &flags
);
800 /* Get optional "reg-names" property to add a name to a resource */
801 of_property_read_string_index(dev
, "reg-names", index
, &name
);
803 return __of_address_to_resource(dev
, addrp
, size
, flags
, name
, r
);
805 EXPORT_SYMBOL_GPL(of_address_to_resource
);
807 struct device_node
*of_find_matching_node_by_address(struct device_node
*from
,
808 const struct of_device_id
*matches
,
811 struct device_node
*dn
= of_find_matching_node(from
, matches
);
815 if (!of_address_to_resource(dn
, 0, &res
) &&
816 res
.start
== base_address
)
819 dn
= of_find_matching_node(dn
, matches
);
827 * of_iomap - Maps the memory mapped IO for a given device_node
828 * @device: the device whose io range will be mapped
829 * @index: index of the io range
831 * Returns a pointer to the mapped memory
833 void __iomem
*of_iomap(struct device_node
*np
, int index
)
837 if (of_address_to_resource(np
, index
, &res
))
840 return ioremap(res
.start
, resource_size(&res
));
842 EXPORT_SYMBOL(of_iomap
);
845 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
846 * for a given device_node
847 * @device: the device whose io range will be mapped
848 * @index: index of the io range
849 * @name: name of the resource
851 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
852 * error code on failure. Usage example:
854 * base = of_io_request_and_map(node, 0, "foo");
856 * return PTR_ERR(base);
858 void __iomem
*of_io_request_and_map(struct device_node
*np
, int index
,
864 if (of_address_to_resource(np
, index
, &res
))
865 return IOMEM_ERR_PTR(-EINVAL
);
867 if (!request_mem_region(res
.start
, resource_size(&res
), name
))
868 return IOMEM_ERR_PTR(-EBUSY
);
870 mem
= ioremap(res
.start
, resource_size(&res
));
872 release_mem_region(res
.start
, resource_size(&res
));
873 return IOMEM_ERR_PTR(-ENOMEM
);
878 EXPORT_SYMBOL(of_io_request_and_map
);
881 * of_dma_get_range - Get DMA range info
882 * @np: device node to get DMA range info
883 * @dma_addr: pointer to store initial DMA address of DMA range
884 * @paddr: pointer to store initial CPU address of DMA range
885 * @size: pointer to store size of DMA range
887 * Look in bottom up direction for the first "dma-ranges" property
890 * DMA addr (dma_addr) : naddr cells
891 * CPU addr (phys_addr_t) : pna cells
894 * It returns -ENODEV if "dma-ranges" property was not found
895 * for this device in DT.
897 int of_dma_get_range(struct device_node
*np
, u64
*dma_addr
, u64
*paddr
, u64
*size
)
899 struct device_node
*node
= of_node_get(np
);
900 const __be32
*ranges
= NULL
;
901 int len
, naddr
, nsize
, pna
;
909 naddr
= of_n_addr_cells(node
);
910 nsize
= of_n_size_cells(node
);
911 node
= of_get_next_parent(node
);
915 ranges
= of_get_property(node
, "dma-ranges", &len
);
917 /* Ignore empty ranges, they imply no translation required */
918 if (ranges
&& len
> 0)
922 * At least empty ranges has to be defined for parent node if
930 pr_debug("no dma-ranges found for node(%pOF)\n", np
);
937 pna
= of_n_addr_cells(node
);
939 /* dma-ranges format:
940 * DMA addr : naddr cells
941 * CPU addr : pna cells
944 dmaaddr
= of_read_number(ranges
, naddr
);
945 *paddr
= of_translate_dma_address(np
, ranges
);
946 if (*paddr
== OF_BAD_ADDR
) {
947 pr_err("translation of DMA address(%pad) to CPU address failed node(%pOF)\n",
954 *size
= of_read_number(ranges
+ naddr
+ pna
, nsize
);
956 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
957 *dma_addr
, *paddr
, *size
);
964 EXPORT_SYMBOL_GPL(of_dma_get_range
);
967 * of_dma_is_coherent - Check if device is coherent
970 * It returns true if "dma-coherent" property was found
971 * for this device in DT.
973 bool of_dma_is_coherent(struct device_node
*np
)
975 struct device_node
*node
= of_node_get(np
);
978 if (of_property_read_bool(node
, "dma-coherent")) {
982 node
= of_get_next_parent(node
);
987 EXPORT_SYMBOL_GPL(of_dma_is_coherent
);