Linux 4.18.10
[linux/fpc-iii.git] / drivers / regulator / helpers.c
blob2ae7c3ac5940ec29b52870f4619905e7040aaf20
1 /*
2 * helpers.c -- Voltage/Current Regulator framework helper functions.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2 of the License, or (at your
10 * option) any later version.
14 #include <linux/kernel.h>
15 #include <linux/err.h>
16 #include <linux/delay.h>
17 #include <linux/regmap.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/regulator/driver.h>
20 #include <linux/module.h>
22 /**
23 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
25 * @rdev: regulator to operate on
27 * Regulators that use regmap for their register I/O can set the
28 * enable_reg and enable_mask fields in their descriptor and then use
29 * this as their is_enabled operation, saving some code.
31 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
33 unsigned int val;
34 int ret;
36 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
37 if (ret != 0)
38 return ret;
40 val &= rdev->desc->enable_mask;
42 if (rdev->desc->enable_is_inverted) {
43 if (rdev->desc->enable_val)
44 return val != rdev->desc->enable_val;
45 return val == 0;
46 } else {
47 if (rdev->desc->enable_val)
48 return val == rdev->desc->enable_val;
49 return val != 0;
52 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
54 /**
55 * regulator_enable_regmap - standard enable() for regmap users
57 * @rdev: regulator to operate on
59 * Regulators that use regmap for their register I/O can set the
60 * enable_reg and enable_mask fields in their descriptor and then use
61 * this as their enable() operation, saving some code.
63 int regulator_enable_regmap(struct regulator_dev *rdev)
65 unsigned int val;
67 if (rdev->desc->enable_is_inverted) {
68 val = rdev->desc->disable_val;
69 } else {
70 val = rdev->desc->enable_val;
71 if (!val)
72 val = rdev->desc->enable_mask;
75 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
76 rdev->desc->enable_mask, val);
78 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
80 /**
81 * regulator_disable_regmap - standard disable() for regmap users
83 * @rdev: regulator to operate on
85 * Regulators that use regmap for their register I/O can set the
86 * enable_reg and enable_mask fields in their descriptor and then use
87 * this as their disable() operation, saving some code.
89 int regulator_disable_regmap(struct regulator_dev *rdev)
91 unsigned int val;
93 if (rdev->desc->enable_is_inverted) {
94 val = rdev->desc->enable_val;
95 if (!val)
96 val = rdev->desc->enable_mask;
97 } else {
98 val = rdev->desc->disable_val;
101 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
102 rdev->desc->enable_mask, val);
104 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
107 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
109 * @rdev: regulator to operate on
111 * Regulators that use regmap for their register I/O can set the
112 * vsel_reg and vsel_mask fields in their descriptor and then use this
113 * as their get_voltage_vsel operation, saving some code.
115 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
117 unsigned int val;
118 int ret;
120 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
121 if (ret != 0)
122 return ret;
124 val &= rdev->desc->vsel_mask;
125 val >>= ffs(rdev->desc->vsel_mask) - 1;
127 return val;
129 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
132 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
134 * @rdev: regulator to operate on
135 * @sel: Selector to set
137 * Regulators that use regmap for their register I/O can set the
138 * vsel_reg and vsel_mask fields in their descriptor and then use this
139 * as their set_voltage_vsel operation, saving some code.
141 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
143 int ret;
145 sel <<= ffs(rdev->desc->vsel_mask) - 1;
147 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
148 rdev->desc->vsel_mask, sel);
149 if (ret)
150 return ret;
152 if (rdev->desc->apply_bit)
153 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
154 rdev->desc->apply_bit,
155 rdev->desc->apply_bit);
156 return ret;
158 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
161 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
163 * @rdev: Regulator to operate on
164 * @min_uV: Lower bound for voltage
165 * @max_uV: Upper bound for voltage
167 * Drivers implementing set_voltage_sel() and list_voltage() can use
168 * this as their map_voltage() operation. It will find a suitable
169 * voltage by calling list_voltage() until it gets something in bounds
170 * for the requested voltages.
172 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
173 int min_uV, int max_uV)
175 int best_val = INT_MAX;
176 int selector = 0;
177 int i, ret;
179 /* Find the smallest voltage that falls within the specified
180 * range.
182 for (i = 0; i < rdev->desc->n_voltages; i++) {
183 ret = rdev->desc->ops->list_voltage(rdev, i);
184 if (ret < 0)
185 continue;
187 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
188 best_val = ret;
189 selector = i;
193 if (best_val != INT_MAX)
194 return selector;
195 else
196 return -EINVAL;
198 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
201 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
203 * @rdev: Regulator to operate on
204 * @min_uV: Lower bound for voltage
205 * @max_uV: Upper bound for voltage
207 * Drivers that have ascendant voltage list can use this as their
208 * map_voltage() operation.
210 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
211 int min_uV, int max_uV)
213 int i, ret;
215 for (i = 0; i < rdev->desc->n_voltages; i++) {
216 ret = rdev->desc->ops->list_voltage(rdev, i);
217 if (ret < 0)
218 continue;
220 if (ret > max_uV)
221 break;
223 if (ret >= min_uV && ret <= max_uV)
224 return i;
227 return -EINVAL;
229 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
232 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
234 * @rdev: Regulator to operate on
235 * @min_uV: Lower bound for voltage
236 * @max_uV: Upper bound for voltage
238 * Drivers providing min_uV and uV_step in their regulator_desc can
239 * use this as their map_voltage() operation.
241 int regulator_map_voltage_linear(struct regulator_dev *rdev,
242 int min_uV, int max_uV)
244 int ret, voltage;
246 /* Allow uV_step to be 0 for fixed voltage */
247 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
248 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
249 return 0;
250 else
251 return -EINVAL;
254 if (!rdev->desc->uV_step) {
255 BUG_ON(!rdev->desc->uV_step);
256 return -EINVAL;
259 if (min_uV < rdev->desc->min_uV)
260 min_uV = rdev->desc->min_uV;
262 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
263 if (ret < 0)
264 return ret;
266 ret += rdev->desc->linear_min_sel;
268 /* Map back into a voltage to verify we're still in bounds */
269 voltage = rdev->desc->ops->list_voltage(rdev, ret);
270 if (voltage < min_uV || voltage > max_uV)
271 return -EINVAL;
273 return ret;
275 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
278 * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
280 * @rdev: Regulator to operate on
281 * @min_uV: Lower bound for voltage
282 * @max_uV: Upper bound for voltage
284 * Drivers providing linear_ranges in their descriptor can use this as
285 * their map_voltage() callback.
287 int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
288 int min_uV, int max_uV)
290 const struct regulator_linear_range *range;
291 int ret = -EINVAL;
292 int voltage, i;
294 if (!rdev->desc->n_linear_ranges) {
295 BUG_ON(!rdev->desc->n_linear_ranges);
296 return -EINVAL;
299 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
300 int linear_max_uV;
302 range = &rdev->desc->linear_ranges[i];
303 linear_max_uV = range->min_uV +
304 (range->max_sel - range->min_sel) * range->uV_step;
306 if (!(min_uV <= linear_max_uV && max_uV >= range->min_uV))
307 continue;
309 if (min_uV <= range->min_uV)
310 min_uV = range->min_uV;
312 /* range->uV_step == 0 means fixed voltage range */
313 if (range->uV_step == 0) {
314 ret = 0;
315 } else {
316 ret = DIV_ROUND_UP(min_uV - range->min_uV,
317 range->uV_step);
318 if (ret < 0)
319 return ret;
322 ret += range->min_sel;
324 break;
327 if (i == rdev->desc->n_linear_ranges)
328 return -EINVAL;
330 /* Map back into a voltage to verify we're still in bounds */
331 voltage = rdev->desc->ops->list_voltage(rdev, ret);
332 if (voltage < min_uV || voltage > max_uV)
333 return -EINVAL;
335 return ret;
337 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
340 * regulator_list_voltage_linear - List voltages with simple calculation
342 * @rdev: Regulator device
343 * @selector: Selector to convert into a voltage
345 * Regulators with a simple linear mapping between voltages and
346 * selectors can set min_uV and uV_step in the regulator descriptor
347 * and then use this function as their list_voltage() operation,
349 int regulator_list_voltage_linear(struct regulator_dev *rdev,
350 unsigned int selector)
352 if (selector >= rdev->desc->n_voltages)
353 return -EINVAL;
354 if (selector < rdev->desc->linear_min_sel)
355 return 0;
357 selector -= rdev->desc->linear_min_sel;
359 return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
361 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
364 * regulator_list_voltage_linear_range - List voltages for linear ranges
366 * @rdev: Regulator device
367 * @selector: Selector to convert into a voltage
369 * Regulators with a series of simple linear mappings between voltages
370 * and selectors can set linear_ranges in the regulator descriptor and
371 * then use this function as their list_voltage() operation,
373 int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
374 unsigned int selector)
376 const struct regulator_linear_range *range;
377 int i;
379 if (!rdev->desc->n_linear_ranges) {
380 BUG_ON(!rdev->desc->n_linear_ranges);
381 return -EINVAL;
384 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
385 range = &rdev->desc->linear_ranges[i];
387 if (!(selector >= range->min_sel &&
388 selector <= range->max_sel))
389 continue;
391 selector -= range->min_sel;
393 return range->min_uV + (range->uV_step * selector);
396 return -EINVAL;
398 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
401 * regulator_list_voltage_table - List voltages with table based mapping
403 * @rdev: Regulator device
404 * @selector: Selector to convert into a voltage
406 * Regulators with table based mapping between voltages and
407 * selectors can set volt_table in the regulator descriptor
408 * and then use this function as their list_voltage() operation.
410 int regulator_list_voltage_table(struct regulator_dev *rdev,
411 unsigned int selector)
413 if (!rdev->desc->volt_table) {
414 BUG_ON(!rdev->desc->volt_table);
415 return -EINVAL;
418 if (selector >= rdev->desc->n_voltages)
419 return -EINVAL;
421 return rdev->desc->volt_table[selector];
423 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
426 * regulator_set_bypass_regmap - Default set_bypass() using regmap
428 * @rdev: device to operate on.
429 * @enable: state to set.
431 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
433 unsigned int val;
435 if (enable) {
436 val = rdev->desc->bypass_val_on;
437 if (!val)
438 val = rdev->desc->bypass_mask;
439 } else {
440 val = rdev->desc->bypass_val_off;
443 return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
444 rdev->desc->bypass_mask, val);
446 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
449 * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
451 * @rdev: device to operate on.
453 int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
455 unsigned int val;
457 val = rdev->desc->soft_start_val_on;
458 if (!val)
459 val = rdev->desc->soft_start_mask;
461 return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
462 rdev->desc->soft_start_mask, val);
464 EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
467 * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
469 * @rdev: device to operate on.
471 int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
473 unsigned int val;
475 val = rdev->desc->pull_down_val_on;
476 if (!val)
477 val = rdev->desc->pull_down_mask;
479 return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
480 rdev->desc->pull_down_mask, val);
482 EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
485 * regulator_get_bypass_regmap - Default get_bypass() using regmap
487 * @rdev: device to operate on.
488 * @enable: current state.
490 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
492 unsigned int val;
493 unsigned int val_on = rdev->desc->bypass_val_on;
494 int ret;
496 ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
497 if (ret != 0)
498 return ret;
500 if (!val_on)
501 val_on = rdev->desc->bypass_mask;
503 *enable = (val & rdev->desc->bypass_mask) == val_on;
505 return 0;
507 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
510 * regulator_set_active_discharge_regmap - Default set_active_discharge()
511 * using regmap
513 * @rdev: device to operate on.
514 * @enable: state to set, 0 to disable and 1 to enable.
516 int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
517 bool enable)
519 unsigned int val;
521 if (enable)
522 val = rdev->desc->active_discharge_on;
523 else
524 val = rdev->desc->active_discharge_off;
526 return regmap_update_bits(rdev->regmap,
527 rdev->desc->active_discharge_reg,
528 rdev->desc->active_discharge_mask, val);
530 EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);