Linux 4.18.10
[linux/fpc-iii.git] / drivers / scsi / csiostor / csio_hw.c
bloba10cf25ee7f9c1b8c2899c5587e513803e7d65e4
1 /*
2 * This file is part of the Chelsio FCoE driver for Linux.
4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
35 #include <linux/pci.h>
36 #include <linux/pci_regs.h>
37 #include <linux/firmware.h>
38 #include <linux/stddef.h>
39 #include <linux/delay.h>
40 #include <linux/string.h>
41 #include <linux/compiler.h>
42 #include <linux/jiffies.h>
43 #include <linux/kernel.h>
44 #include <linux/log2.h>
46 #include "csio_hw.h"
47 #include "csio_lnode.h"
48 #include "csio_rnode.h"
50 int csio_dbg_level = 0xFEFF;
51 unsigned int csio_port_mask = 0xf;
53 /* Default FW event queue entries. */
54 static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
56 /* Default MSI param level */
57 int csio_msi = 2;
59 /* FCoE function instances */
60 static int dev_num;
62 /* FCoE Adapter types & its description */
63 static const struct csio_adap_desc csio_t5_fcoe_adapters[] = {
64 {"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"},
65 {"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"},
66 {"T522-CR 10G/1G", "Chelsio T522-CR 10G/1G [FCoE]"},
67 {"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"},
68 {"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"},
69 {"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"},
70 {"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"},
71 {"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"},
72 {"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"},
73 {"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"},
74 {"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"},
75 {"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"},
76 {"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"},
77 {"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"},
78 {"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"},
79 {"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
80 {"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"},
81 {"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"},
82 {"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"},
83 {"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"},
84 {"T580-SO 40G", "Chelsio T580-SO 40G [FCoE]"},
85 {"T502-BT 1G", "Chelsio T502-BT 1G [FCoE]"}
88 static void csio_mgmtm_cleanup(struct csio_mgmtm *);
89 static void csio_hw_mbm_cleanup(struct csio_hw *);
91 /* State machine forward declarations */
92 static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
93 static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
94 static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
95 static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
96 static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
97 static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
98 static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
99 static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
100 static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
102 static void csio_hw_initialize(struct csio_hw *hw);
103 static void csio_evtq_stop(struct csio_hw *hw);
104 static void csio_evtq_start(struct csio_hw *hw);
106 int csio_is_hw_ready(struct csio_hw *hw)
108 return csio_match_state(hw, csio_hws_ready);
111 int csio_is_hw_removing(struct csio_hw *hw)
113 return csio_match_state(hw, csio_hws_removing);
118 * csio_hw_wait_op_done_val - wait until an operation is completed
119 * @hw: the HW module
120 * @reg: the register to check for completion
121 * @mask: a single-bit field within @reg that indicates completion
122 * @polarity: the value of the field when the operation is completed
123 * @attempts: number of check iterations
124 * @delay: delay in usecs between iterations
125 * @valp: where to store the value of the register at completion time
127 * Wait until an operation is completed by checking a bit in a register
128 * up to @attempts times. If @valp is not NULL the value of the register
129 * at the time it indicated completion is stored there. Returns 0 if the
130 * operation completes and -EAGAIN otherwise.
133 csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
134 int polarity, int attempts, int delay, uint32_t *valp)
136 uint32_t val;
137 while (1) {
138 val = csio_rd_reg32(hw, reg);
140 if (!!(val & mask) == polarity) {
141 if (valp)
142 *valp = val;
143 return 0;
146 if (--attempts == 0)
147 return -EAGAIN;
148 if (delay)
149 udelay(delay);
154 * csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register
155 * @hw: the adapter
156 * @addr: the indirect TP register address
157 * @mask: specifies the field within the register to modify
158 * @val: new value for the field
160 * Sets a field of an indirect TP register to the given value.
162 void
163 csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr,
164 unsigned int mask, unsigned int val)
166 csio_wr_reg32(hw, addr, TP_PIO_ADDR_A);
167 val |= csio_rd_reg32(hw, TP_PIO_DATA_A) & ~mask;
168 csio_wr_reg32(hw, val, TP_PIO_DATA_A);
171 void
172 csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
173 uint32_t value)
175 uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
177 csio_wr_reg32(hw, val | value, reg);
178 /* Flush */
179 csio_rd_reg32(hw, reg);
183 static int
184 csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
186 return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype,
187 addr, len, buf, 0);
191 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
193 #define EEPROM_MAX_RD_POLL 40
194 #define EEPROM_MAX_WR_POLL 6
195 #define EEPROM_STAT_ADDR 0x7bfc
196 #define VPD_BASE 0x400
197 #define VPD_BASE_OLD 0
198 #define VPD_LEN 1024
199 #define VPD_INFO_FLD_HDR_SIZE 3
202 * csio_hw_seeprom_read - read a serial EEPROM location
203 * @hw: hw to read
204 * @addr: EEPROM virtual address
205 * @data: where to store the read data
207 * Read a 32-bit word from a location in serial EEPROM using the card's PCI
208 * VPD capability. Note that this function must be called with a virtual
209 * address.
211 static int
212 csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
214 uint16_t val = 0;
215 int attempts = EEPROM_MAX_RD_POLL;
216 uint32_t base = hw->params.pci.vpd_cap_addr;
218 if (addr >= EEPROMVSIZE || (addr & 3))
219 return -EINVAL;
221 pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
223 do {
224 udelay(10);
225 pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
226 } while (!(val & PCI_VPD_ADDR_F) && --attempts);
228 if (!(val & PCI_VPD_ADDR_F)) {
229 csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
230 return -EINVAL;
233 pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
234 *data = le32_to_cpu(*(__le32 *)data);
236 return 0;
240 * Partial EEPROM Vital Product Data structure. Includes only the ID and
241 * VPD-R sections.
243 struct t4_vpd_hdr {
244 u8 id_tag;
245 u8 id_len[2];
246 u8 id_data[ID_LEN];
247 u8 vpdr_tag;
248 u8 vpdr_len[2];
252 * csio_hw_get_vpd_keyword_val - Locates an information field keyword in
253 * the VPD
254 * @v: Pointer to buffered vpd data structure
255 * @kw: The keyword to search for
257 * Returns the value of the information field keyword or
258 * -EINVAL otherwise.
260 static int
261 csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
263 int32_t i;
264 int32_t offset , len;
265 const uint8_t *buf = &v->id_tag;
266 const uint8_t *vpdr_len = &v->vpdr_tag;
267 offset = sizeof(struct t4_vpd_hdr);
268 len = (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
270 if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
271 return -EINVAL;
273 for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
274 if (memcmp(buf + i , kw, 2) == 0) {
275 i += VPD_INFO_FLD_HDR_SIZE;
276 return i;
279 i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
282 return -EINVAL;
285 static int
286 csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
288 *pos = pci_find_capability(pdev, cap);
289 if (*pos)
290 return 0;
292 return -1;
296 * csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
297 * @hw: HW module
298 * @p: where to store the parameters
300 * Reads card parameters stored in VPD EEPROM.
302 static int
303 csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
305 int i, ret, ec, sn, addr;
306 uint8_t *vpd, csum;
307 const struct t4_vpd_hdr *v;
308 /* To get around compilation warning from strstrip */
309 char *s;
311 if (csio_is_valid_vpd(hw))
312 return 0;
314 ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
315 &hw->params.pci.vpd_cap_addr);
316 if (ret)
317 return -EINVAL;
319 vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
320 if (vpd == NULL)
321 return -ENOMEM;
324 * Card information normally starts at VPD_BASE but early cards had
325 * it at 0.
327 ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
328 addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
330 for (i = 0; i < VPD_LEN; i += 4) {
331 ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
332 if (ret) {
333 kfree(vpd);
334 return ret;
338 /* Reset the VPD flag! */
339 hw->flags &= (~CSIO_HWF_VPD_VALID);
341 v = (const struct t4_vpd_hdr *)vpd;
343 #define FIND_VPD_KW(var, name) do { \
344 var = csio_hw_get_vpd_keyword_val(v, name); \
345 if (var < 0) { \
346 csio_err(hw, "missing VPD keyword " name "\n"); \
347 kfree(vpd); \
348 return -EINVAL; \
350 } while (0)
352 FIND_VPD_KW(i, "RV");
353 for (csum = 0; i >= 0; i--)
354 csum += vpd[i];
356 if (csum) {
357 csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
358 kfree(vpd);
359 return -EINVAL;
361 FIND_VPD_KW(ec, "EC");
362 FIND_VPD_KW(sn, "SN");
363 #undef FIND_VPD_KW
365 memcpy(p->id, v->id_data, ID_LEN);
366 s = strstrip(p->id);
367 memcpy(p->ec, vpd + ec, EC_LEN);
368 s = strstrip(p->ec);
369 i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
370 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
371 s = strstrip(p->sn);
373 csio_valid_vpd_copied(hw);
375 kfree(vpd);
376 return 0;
380 * csio_hw_sf1_read - read data from the serial flash
381 * @hw: the HW module
382 * @byte_cnt: number of bytes to read
383 * @cont: whether another operation will be chained
384 * @lock: whether to lock SF for PL access only
385 * @valp: where to store the read data
387 * Reads up to 4 bytes of data from the serial flash. The location of
388 * the read needs to be specified prior to calling this by issuing the
389 * appropriate commands to the serial flash.
391 static int
392 csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
393 int32_t lock, uint32_t *valp)
395 int ret;
397 if (!byte_cnt || byte_cnt > 4)
398 return -EINVAL;
399 if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
400 return -EBUSY;
402 csio_wr_reg32(hw, SF_LOCK_V(lock) | SF_CONT_V(cont) |
403 BYTECNT_V(byte_cnt - 1), SF_OP_A);
404 ret = csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
405 10, NULL);
406 if (!ret)
407 *valp = csio_rd_reg32(hw, SF_DATA_A);
408 return ret;
412 * csio_hw_sf1_write - write data to the serial flash
413 * @hw: the HW module
414 * @byte_cnt: number of bytes to write
415 * @cont: whether another operation will be chained
416 * @lock: whether to lock SF for PL access only
417 * @val: value to write
419 * Writes up to 4 bytes of data to the serial flash. The location of
420 * the write needs to be specified prior to calling this by issuing the
421 * appropriate commands to the serial flash.
423 static int
424 csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
425 int32_t lock, uint32_t val)
427 if (!byte_cnt || byte_cnt > 4)
428 return -EINVAL;
429 if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
430 return -EBUSY;
432 csio_wr_reg32(hw, val, SF_DATA_A);
433 csio_wr_reg32(hw, SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) |
434 OP_V(1) | SF_LOCK_V(lock), SF_OP_A);
436 return csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
437 10, NULL);
441 * csio_hw_flash_wait_op - wait for a flash operation to complete
442 * @hw: the HW module
443 * @attempts: max number of polls of the status register
444 * @delay: delay between polls in ms
446 * Wait for a flash operation to complete by polling the status register.
448 static int
449 csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
451 int ret;
452 uint32_t status;
454 while (1) {
455 ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
456 if (ret != 0)
457 return ret;
459 ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
460 if (ret != 0)
461 return ret;
463 if (!(status & 1))
464 return 0;
465 if (--attempts == 0)
466 return -EAGAIN;
467 if (delay)
468 msleep(delay);
473 * csio_hw_read_flash - read words from serial flash
474 * @hw: the HW module
475 * @addr: the start address for the read
476 * @nwords: how many 32-bit words to read
477 * @data: where to store the read data
478 * @byte_oriented: whether to store data as bytes or as words
480 * Read the specified number of 32-bit words from the serial flash.
481 * If @byte_oriented is set the read data is stored as a byte array
482 * (i.e., big-endian), otherwise as 32-bit words in the platform's
483 * natural endianess.
485 static int
486 csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
487 uint32_t *data, int32_t byte_oriented)
489 int ret;
491 if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
492 return -EINVAL;
494 addr = swab32(addr) | SF_RD_DATA_FAST;
496 ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
497 if (ret != 0)
498 return ret;
500 ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
501 if (ret != 0)
502 return ret;
504 for ( ; nwords; nwords--, data++) {
505 ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
506 if (nwords == 1)
507 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
508 if (ret)
509 return ret;
510 if (byte_oriented)
511 *data = (__force __u32) htonl(*data);
513 return 0;
517 * csio_hw_write_flash - write up to a page of data to the serial flash
518 * @hw: the hw
519 * @addr: the start address to write
520 * @n: length of data to write in bytes
521 * @data: the data to write
523 * Writes up to a page of data (256 bytes) to the serial flash starting
524 * at the given address. All the data must be written to the same page.
526 static int
527 csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
528 uint32_t n, const uint8_t *data)
530 int ret = -EINVAL;
531 uint32_t buf[64];
532 uint32_t i, c, left, val, offset = addr & 0xff;
534 if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
535 return -EINVAL;
537 val = swab32(addr) | SF_PROG_PAGE;
539 ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
540 if (ret != 0)
541 goto unlock;
543 ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
544 if (ret != 0)
545 goto unlock;
547 for (left = n; left; left -= c) {
548 c = min(left, 4U);
549 for (val = 0, i = 0; i < c; ++i)
550 val = (val << 8) + *data++;
552 ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
553 if (ret)
554 goto unlock;
556 ret = csio_hw_flash_wait_op(hw, 8, 1);
557 if (ret)
558 goto unlock;
560 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
562 /* Read the page to verify the write succeeded */
563 ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
564 if (ret)
565 return ret;
567 if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
568 csio_err(hw,
569 "failed to correctly write the flash page at %#x\n",
570 addr);
571 return -EINVAL;
574 return 0;
576 unlock:
577 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
578 return ret;
582 * csio_hw_flash_erase_sectors - erase a range of flash sectors
583 * @hw: the HW module
584 * @start: the first sector to erase
585 * @end: the last sector to erase
587 * Erases the sectors in the given inclusive range.
589 static int
590 csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
592 int ret = 0;
594 while (start <= end) {
596 ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
597 if (ret != 0)
598 goto out;
600 ret = csio_hw_sf1_write(hw, 4, 0, 1,
601 SF_ERASE_SECTOR | (start << 8));
602 if (ret != 0)
603 goto out;
605 ret = csio_hw_flash_wait_op(hw, 14, 500);
606 if (ret != 0)
607 goto out;
609 start++;
611 out:
612 if (ret)
613 csio_err(hw, "erase of flash sector %d failed, error %d\n",
614 start, ret);
615 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
616 return 0;
619 static void
620 csio_hw_print_fw_version(struct csio_hw *hw, char *str)
622 csio_info(hw, "%s: %u.%u.%u.%u\n", str,
623 FW_HDR_FW_VER_MAJOR_G(hw->fwrev),
624 FW_HDR_FW_VER_MINOR_G(hw->fwrev),
625 FW_HDR_FW_VER_MICRO_G(hw->fwrev),
626 FW_HDR_FW_VER_BUILD_G(hw->fwrev));
630 * csio_hw_get_fw_version - read the firmware version
631 * @hw: HW module
632 * @vers: where to place the version
634 * Reads the FW version from flash.
636 static int
637 csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
639 return csio_hw_read_flash(hw, FLASH_FW_START +
640 offsetof(struct fw_hdr, fw_ver), 1,
641 vers, 0);
645 * csio_hw_get_tp_version - read the TP microcode version
646 * @hw: HW module
647 * @vers: where to place the version
649 * Reads the TP microcode version from flash.
651 static int
652 csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
654 return csio_hw_read_flash(hw, FLASH_FW_START +
655 offsetof(struct fw_hdr, tp_microcode_ver), 1,
656 vers, 0);
660 * csio_hw_fw_dload - download firmware.
661 * @hw: HW module
662 * @fw_data: firmware image to write.
663 * @size: image size
665 * Write the supplied firmware image to the card's serial flash.
667 static int
668 csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
670 uint32_t csum;
671 int32_t addr;
672 int ret;
673 uint32_t i;
674 uint8_t first_page[SF_PAGE_SIZE];
675 const __be32 *p = (const __be32 *)fw_data;
676 struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
677 uint32_t sf_sec_size;
679 if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
680 csio_err(hw, "Serial Flash data invalid\n");
681 return -EINVAL;
684 if (!size) {
685 csio_err(hw, "FW image has no data\n");
686 return -EINVAL;
689 if (size & 511) {
690 csio_err(hw, "FW image size not multiple of 512 bytes\n");
691 return -EINVAL;
694 if (ntohs(hdr->len512) * 512 != size) {
695 csio_err(hw, "FW image size differs from size in FW header\n");
696 return -EINVAL;
699 if (size > FLASH_FW_MAX_SIZE) {
700 csio_err(hw, "FW image too large, max is %u bytes\n",
701 FLASH_FW_MAX_SIZE);
702 return -EINVAL;
705 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
706 csum += ntohl(p[i]);
708 if (csum != 0xffffffff) {
709 csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
710 return -EINVAL;
713 sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
714 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
716 csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
717 FLASH_FW_START_SEC, FLASH_FW_START_SEC + i - 1);
719 ret = csio_hw_flash_erase_sectors(hw, FLASH_FW_START_SEC,
720 FLASH_FW_START_SEC + i - 1);
721 if (ret) {
722 csio_err(hw, "Flash Erase failed\n");
723 goto out;
727 * We write the correct version at the end so the driver can see a bad
728 * version if the FW write fails. Start by writing a copy of the
729 * first page with a bad version.
731 memcpy(first_page, fw_data, SF_PAGE_SIZE);
732 ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
733 ret = csio_hw_write_flash(hw, FLASH_FW_START, SF_PAGE_SIZE, first_page);
734 if (ret)
735 goto out;
737 csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
738 FW_IMG_START, FW_IMG_START + size);
740 addr = FLASH_FW_START;
741 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
742 addr += SF_PAGE_SIZE;
743 fw_data += SF_PAGE_SIZE;
744 ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
745 if (ret)
746 goto out;
749 ret = csio_hw_write_flash(hw,
750 FLASH_FW_START +
751 offsetof(struct fw_hdr, fw_ver),
752 sizeof(hdr->fw_ver),
753 (const uint8_t *)&hdr->fw_ver);
755 out:
756 if (ret)
757 csio_err(hw, "firmware download failed, error %d\n", ret);
758 return ret;
761 static int
762 csio_hw_get_flash_params(struct csio_hw *hw)
764 int ret;
765 uint32_t info = 0;
767 ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
768 if (!ret)
769 ret = csio_hw_sf1_read(hw, 3, 0, 1, &info);
770 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
771 if (ret != 0)
772 return ret;
774 if ((info & 0xff) != 0x20) /* not a Numonix flash */
775 return -EINVAL;
776 info >>= 16; /* log2 of size */
777 if (info >= 0x14 && info < 0x18)
778 hw->params.sf_nsec = 1 << (info - 16);
779 else if (info == 0x18)
780 hw->params.sf_nsec = 64;
781 else
782 return -EINVAL;
783 hw->params.sf_size = 1 << info;
785 return 0;
788 /*****************************************************************************/
789 /* HW State machine assists */
790 /*****************************************************************************/
792 static int
793 csio_hw_dev_ready(struct csio_hw *hw)
795 uint32_t reg;
796 int cnt = 6;
797 int src_pf;
799 while (((reg = csio_rd_reg32(hw, PL_WHOAMI_A)) == 0xFFFFFFFF) &&
800 (--cnt != 0))
801 mdelay(100);
803 if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
804 src_pf = SOURCEPF_G(reg);
805 else
806 src_pf = T6_SOURCEPF_G(reg);
808 if ((cnt == 0) && (((int32_t)(src_pf) < 0) ||
809 (src_pf >= CSIO_MAX_PFN))) {
810 csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
811 return -EIO;
814 hw->pfn = src_pf;
816 return 0;
820 * csio_do_hello - Perform the HELLO FW Mailbox command and process response.
821 * @hw: HW module
822 * @state: Device state
824 * FW_HELLO_CMD has to be polled for completion.
826 static int
827 csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
829 struct csio_mb *mbp;
830 int rv = 0;
831 enum fw_retval retval;
832 uint8_t mpfn;
833 char state_str[16];
834 int retries = FW_CMD_HELLO_RETRIES;
836 memset(state_str, 0, sizeof(state_str));
838 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
839 if (!mbp) {
840 rv = -ENOMEM;
841 CSIO_INC_STATS(hw, n_err_nomem);
842 goto out;
845 retry:
846 csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
847 hw->pfn, CSIO_MASTER_MAY, NULL);
849 rv = csio_mb_issue(hw, mbp);
850 if (rv) {
851 csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
852 goto out_free_mb;
855 csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
856 if (retval != FW_SUCCESS) {
857 csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
858 rv = -EINVAL;
859 goto out_free_mb;
862 /* Firmware has designated us to be master */
863 if (hw->pfn == mpfn) {
864 hw->flags |= CSIO_HWF_MASTER;
865 } else if (*state == CSIO_DEV_STATE_UNINIT) {
867 * If we're not the Master PF then we need to wait around for
868 * the Master PF Driver to finish setting up the adapter.
870 * Note that we also do this wait if we're a non-Master-capable
871 * PF and there is no current Master PF; a Master PF may show up
872 * momentarily and we wouldn't want to fail pointlessly. (This
873 * can happen when an OS loads lots of different drivers rapidly
874 * at the same time). In this case, the Master PF returned by
875 * the firmware will be PCIE_FW_MASTER_MASK so the test below
876 * will work ...
879 int waiting = FW_CMD_HELLO_TIMEOUT;
882 * Wait for the firmware to either indicate an error or
883 * initialized state. If we see either of these we bail out
884 * and report the issue to the caller. If we exhaust the
885 * "hello timeout" and we haven't exhausted our retries, try
886 * again. Otherwise bail with a timeout error.
888 for (;;) {
889 uint32_t pcie_fw;
891 spin_unlock_irq(&hw->lock);
892 msleep(50);
893 spin_lock_irq(&hw->lock);
894 waiting -= 50;
897 * If neither Error nor Initialialized are indicated
898 * by the firmware keep waiting till we exaust our
899 * timeout ... and then retry if we haven't exhausted
900 * our retries ...
902 pcie_fw = csio_rd_reg32(hw, PCIE_FW_A);
903 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
904 if (waiting <= 0) {
905 if (retries-- > 0)
906 goto retry;
908 rv = -ETIMEDOUT;
909 break;
911 continue;
915 * We either have an Error or Initialized condition
916 * report errors preferentially.
918 if (state) {
919 if (pcie_fw & PCIE_FW_ERR_F) {
920 *state = CSIO_DEV_STATE_ERR;
921 rv = -ETIMEDOUT;
922 } else if (pcie_fw & PCIE_FW_INIT_F)
923 *state = CSIO_DEV_STATE_INIT;
927 * If we arrived before a Master PF was selected and
928 * there's not a valid Master PF, grab its identity
929 * for our caller.
931 if (mpfn == PCIE_FW_MASTER_M &&
932 (pcie_fw & PCIE_FW_MASTER_VLD_F))
933 mpfn = PCIE_FW_MASTER_G(pcie_fw);
934 break;
936 hw->flags &= ~CSIO_HWF_MASTER;
939 switch (*state) {
940 case CSIO_DEV_STATE_UNINIT:
941 strcpy(state_str, "Initializing");
942 break;
943 case CSIO_DEV_STATE_INIT:
944 strcpy(state_str, "Initialized");
945 break;
946 case CSIO_DEV_STATE_ERR:
947 strcpy(state_str, "Error");
948 break;
949 default:
950 strcpy(state_str, "Unknown");
951 break;
954 if (hw->pfn == mpfn)
955 csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
956 hw->pfn, state_str);
957 else
958 csio_info(hw,
959 "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
960 hw->pfn, mpfn, state_str);
962 out_free_mb:
963 mempool_free(mbp, hw->mb_mempool);
964 out:
965 return rv;
969 * csio_do_bye - Perform the BYE FW Mailbox command and process response.
970 * @hw: HW module
973 static int
974 csio_do_bye(struct csio_hw *hw)
976 struct csio_mb *mbp;
977 enum fw_retval retval;
979 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
980 if (!mbp) {
981 CSIO_INC_STATS(hw, n_err_nomem);
982 return -ENOMEM;
985 csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
987 if (csio_mb_issue(hw, mbp)) {
988 csio_err(hw, "Issue of BYE command failed\n");
989 mempool_free(mbp, hw->mb_mempool);
990 return -EINVAL;
993 retval = csio_mb_fw_retval(mbp);
994 if (retval != FW_SUCCESS) {
995 mempool_free(mbp, hw->mb_mempool);
996 return -EINVAL;
999 mempool_free(mbp, hw->mb_mempool);
1001 return 0;
1005 * csio_do_reset- Perform the device reset.
1006 * @hw: HW module
1007 * @fw_rst: FW reset
1009 * If fw_rst is set, issues FW reset mbox cmd otherwise
1010 * does PIO reset.
1011 * Performs reset of the function.
1013 static int
1014 csio_do_reset(struct csio_hw *hw, bool fw_rst)
1016 struct csio_mb *mbp;
1017 enum fw_retval retval;
1019 if (!fw_rst) {
1020 /* PIO reset */
1021 csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1022 mdelay(2000);
1023 return 0;
1026 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1027 if (!mbp) {
1028 CSIO_INC_STATS(hw, n_err_nomem);
1029 return -ENOMEM;
1032 csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1033 PIORSTMODE_F | PIORST_F, 0, NULL);
1035 if (csio_mb_issue(hw, mbp)) {
1036 csio_err(hw, "Issue of RESET command failed.n");
1037 mempool_free(mbp, hw->mb_mempool);
1038 return -EINVAL;
1041 retval = csio_mb_fw_retval(mbp);
1042 if (retval != FW_SUCCESS) {
1043 csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
1044 mempool_free(mbp, hw->mb_mempool);
1045 return -EINVAL;
1048 mempool_free(mbp, hw->mb_mempool);
1050 return 0;
1053 static int
1054 csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
1056 struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
1057 uint16_t caps;
1059 caps = ntohs(rsp->fcoecaps);
1061 if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
1062 csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
1063 return -EINVAL;
1066 if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
1067 csio_err(hw, "No FCoE Control Offload capability\n");
1068 return -EINVAL;
1071 return 0;
1075 * csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
1076 * @hw: the HW module
1077 * @mbox: mailbox to use for the FW RESET command (if desired)
1078 * @force: force uP into RESET even if FW RESET command fails
1080 * Issues a RESET command to firmware (if desired) with a HALT indication
1081 * and then puts the microprocessor into RESET state. The RESET command
1082 * will only be issued if a legitimate mailbox is provided (mbox <=
1083 * PCIE_FW_MASTER_MASK).
1085 * This is generally used in order for the host to safely manipulate the
1086 * adapter without fear of conflicting with whatever the firmware might
1087 * be doing. The only way out of this state is to RESTART the firmware
1088 * ...
1090 static int
1091 csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
1093 enum fw_retval retval = 0;
1096 * If a legitimate mailbox is provided, issue a RESET command
1097 * with a HALT indication.
1099 if (mbox <= PCIE_FW_MASTER_M) {
1100 struct csio_mb *mbp;
1102 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1103 if (!mbp) {
1104 CSIO_INC_STATS(hw, n_err_nomem);
1105 return -ENOMEM;
1108 csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1109 PIORSTMODE_F | PIORST_F, FW_RESET_CMD_HALT_F,
1110 NULL);
1112 if (csio_mb_issue(hw, mbp)) {
1113 csio_err(hw, "Issue of RESET command failed!\n");
1114 mempool_free(mbp, hw->mb_mempool);
1115 return -EINVAL;
1118 retval = csio_mb_fw_retval(mbp);
1119 mempool_free(mbp, hw->mb_mempool);
1123 * Normally we won't complete the operation if the firmware RESET
1124 * command fails but if our caller insists we'll go ahead and put the
1125 * uP into RESET. This can be useful if the firmware is hung or even
1126 * missing ... We'll have to take the risk of putting the uP into
1127 * RESET without the cooperation of firmware in that case.
1129 * We also force the firmware's HALT flag to be on in case we bypassed
1130 * the firmware RESET command above or we're dealing with old firmware
1131 * which doesn't have the HALT capability. This will serve as a flag
1132 * for the incoming firmware to know that it's coming out of a HALT
1133 * rather than a RESET ... if it's new enough to understand that ...
1135 if (retval == 0 || force) {
1136 csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
1137 csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F,
1138 PCIE_FW_HALT_F);
1142 * And we always return the result of the firmware RESET command
1143 * even when we force the uP into RESET ...
1145 return retval ? -EINVAL : 0;
1149 * csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
1150 * @hw: the HW module
1151 * @reset: if we want to do a RESET to restart things
1153 * Restart firmware previously halted by csio_hw_fw_halt(). On successful
1154 * return the previous PF Master remains as the new PF Master and there
1155 * is no need to issue a new HELLO command, etc.
1157 * We do this in two ways:
1159 * 1. If we're dealing with newer firmware we'll simply want to take
1160 * the chip's microprocessor out of RESET. This will cause the
1161 * firmware to start up from its start vector. And then we'll loop
1162 * until the firmware indicates it's started again (PCIE_FW.HALT
1163 * reset to 0) or we timeout.
1165 * 2. If we're dealing with older firmware then we'll need to RESET
1166 * the chip since older firmware won't recognize the PCIE_FW.HALT
1167 * flag and automatically RESET itself on startup.
1169 static int
1170 csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
1172 if (reset) {
1174 * Since we're directing the RESET instead of the firmware
1175 * doing it automatically, we need to clear the PCIE_FW.HALT
1176 * bit.
1178 csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F, 0);
1181 * If we've been given a valid mailbox, first try to get the
1182 * firmware to do the RESET. If that works, great and we can
1183 * return success. Otherwise, if we haven't been given a
1184 * valid mailbox or the RESET command failed, fall back to
1185 * hitting the chip with a hammer.
1187 if (mbox <= PCIE_FW_MASTER_M) {
1188 csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1189 msleep(100);
1190 if (csio_do_reset(hw, true) == 0)
1191 return 0;
1194 csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1195 msleep(2000);
1196 } else {
1197 int ms;
1199 csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1200 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
1201 if (!(csio_rd_reg32(hw, PCIE_FW_A) & PCIE_FW_HALT_F))
1202 return 0;
1203 msleep(100);
1204 ms += 100;
1206 return -ETIMEDOUT;
1208 return 0;
1212 * csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
1213 * @hw: the HW module
1214 * @mbox: mailbox to use for the FW RESET command (if desired)
1215 * @fw_data: the firmware image to write
1216 * @size: image size
1217 * @force: force upgrade even if firmware doesn't cooperate
1219 * Perform all of the steps necessary for upgrading an adapter's
1220 * firmware image. Normally this requires the cooperation of the
1221 * existing firmware in order to halt all existing activities
1222 * but if an invalid mailbox token is passed in we skip that step
1223 * (though we'll still put the adapter microprocessor into RESET in
1224 * that case).
1226 * On successful return the new firmware will have been loaded and
1227 * the adapter will have been fully RESET losing all previous setup
1228 * state. On unsuccessful return the adapter may be completely hosed ...
1229 * positive errno indicates that the adapter is ~probably~ intact, a
1230 * negative errno indicates that things are looking bad ...
1232 static int
1233 csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
1234 const u8 *fw_data, uint32_t size, int32_t force)
1236 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
1237 int reset, ret;
1239 ret = csio_hw_fw_halt(hw, mbox, force);
1240 if (ret != 0 && !force)
1241 return ret;
1243 ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
1244 if (ret != 0)
1245 return ret;
1248 * Older versions of the firmware don't understand the new
1249 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
1250 * restart. So for newly loaded older firmware we'll have to do the
1251 * RESET for it so it starts up on a clean slate. We can tell if
1252 * the newly loaded firmware will handle this right by checking
1253 * its header flags to see if it advertises the capability.
1255 reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
1256 return csio_hw_fw_restart(hw, mbox, reset);
1260 * csio_get_device_params - Get device parameters.
1261 * @hw: HW module
1264 static int
1265 csio_get_device_params(struct csio_hw *hw)
1267 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1268 struct csio_mb *mbp;
1269 enum fw_retval retval;
1270 u32 param[6];
1271 int i, j = 0;
1273 /* Initialize portids to -1 */
1274 for (i = 0; i < CSIO_MAX_PPORTS; i++)
1275 hw->pport[i].portid = -1;
1277 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1278 if (!mbp) {
1279 CSIO_INC_STATS(hw, n_err_nomem);
1280 return -ENOMEM;
1283 /* Get port vec information. */
1284 param[0] = FW_PARAM_DEV(PORTVEC);
1286 /* Get Core clock. */
1287 param[1] = FW_PARAM_DEV(CCLK);
1289 /* Get EQ id start and end. */
1290 param[2] = FW_PARAM_PFVF(EQ_START);
1291 param[3] = FW_PARAM_PFVF(EQ_END);
1293 /* Get IQ id start and end. */
1294 param[4] = FW_PARAM_PFVF(IQFLINT_START);
1295 param[5] = FW_PARAM_PFVF(IQFLINT_END);
1297 csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1298 ARRAY_SIZE(param), param, NULL, false, NULL);
1299 if (csio_mb_issue(hw, mbp)) {
1300 csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1301 mempool_free(mbp, hw->mb_mempool);
1302 return -EINVAL;
1305 csio_mb_process_read_params_rsp(hw, mbp, &retval,
1306 ARRAY_SIZE(param), param);
1307 if (retval != FW_SUCCESS) {
1308 csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1309 retval);
1310 mempool_free(mbp, hw->mb_mempool);
1311 return -EINVAL;
1314 /* cache the information. */
1315 hw->port_vec = param[0];
1316 hw->vpd.cclk = param[1];
1317 wrm->fw_eq_start = param[2];
1318 wrm->fw_iq_start = param[4];
1320 /* Using FW configured max iqs & eqs */
1321 if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
1322 !csio_is_hw_master(hw)) {
1323 hw->cfg_niq = param[5] - param[4] + 1;
1324 hw->cfg_neq = param[3] - param[2] + 1;
1325 csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
1326 hw->cfg_niq, hw->cfg_neq);
1329 hw->port_vec &= csio_port_mask;
1331 hw->num_pports = hweight32(hw->port_vec);
1333 csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
1334 hw->port_vec, hw->num_pports);
1336 for (i = 0; i < hw->num_pports; i++) {
1337 while ((hw->port_vec & (1 << j)) == 0)
1338 j++;
1339 hw->pport[i].portid = j++;
1340 csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
1342 mempool_free(mbp, hw->mb_mempool);
1344 return 0;
1349 * csio_config_device_caps - Get and set device capabilities.
1350 * @hw: HW module
1353 static int
1354 csio_config_device_caps(struct csio_hw *hw)
1356 struct csio_mb *mbp;
1357 enum fw_retval retval;
1358 int rv = -EINVAL;
1360 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1361 if (!mbp) {
1362 CSIO_INC_STATS(hw, n_err_nomem);
1363 return -ENOMEM;
1366 /* Get device capabilities */
1367 csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
1369 if (csio_mb_issue(hw, mbp)) {
1370 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
1371 goto out;
1374 retval = csio_mb_fw_retval(mbp);
1375 if (retval != FW_SUCCESS) {
1376 csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
1377 goto out;
1380 /* Validate device capabilities */
1381 rv = csio_hw_validate_caps(hw, mbp);
1382 if (rv != 0)
1383 goto out;
1385 /* Don't config device capabilities if already configured */
1386 if (hw->fw_state == CSIO_DEV_STATE_INIT) {
1387 rv = 0;
1388 goto out;
1391 /* Write back desired device capabilities */
1392 csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
1393 false, true, NULL);
1395 if (csio_mb_issue(hw, mbp)) {
1396 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
1397 goto out;
1400 retval = csio_mb_fw_retval(mbp);
1401 if (retval != FW_SUCCESS) {
1402 csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
1403 goto out;
1406 rv = 0;
1407 out:
1408 mempool_free(mbp, hw->mb_mempool);
1409 return rv;
1412 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
1414 enum cc_fec cc_fec = 0;
1416 if (fw_fec & FW_PORT_CAP32_FEC_RS)
1417 cc_fec |= FEC_RS;
1418 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
1419 cc_fec |= FEC_BASER_RS;
1421 return cc_fec;
1424 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
1426 fw_port_cap32_t fw_pause = 0;
1428 if (cc_pause & PAUSE_RX)
1429 fw_pause |= FW_PORT_CAP32_FC_RX;
1430 if (cc_pause & PAUSE_TX)
1431 fw_pause |= FW_PORT_CAP32_FC_TX;
1433 return fw_pause;
1436 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
1438 fw_port_cap32_t fw_fec = 0;
1440 if (cc_fec & FEC_RS)
1441 fw_fec |= FW_PORT_CAP32_FEC_RS;
1442 if (cc_fec & FEC_BASER_RS)
1443 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
1445 return fw_fec;
1449 * fwcap_to_fwspeed - return highest speed in Port Capabilities
1450 * @acaps: advertised Port Capabilities
1452 * Get the highest speed for the port from the advertised Port
1453 * Capabilities.
1455 fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
1457 #define TEST_SPEED_RETURN(__caps_speed) \
1458 do { \
1459 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
1460 return FW_PORT_CAP32_SPEED_##__caps_speed; \
1461 } while (0)
1463 TEST_SPEED_RETURN(400G);
1464 TEST_SPEED_RETURN(200G);
1465 TEST_SPEED_RETURN(100G);
1466 TEST_SPEED_RETURN(50G);
1467 TEST_SPEED_RETURN(40G);
1468 TEST_SPEED_RETURN(25G);
1469 TEST_SPEED_RETURN(10G);
1470 TEST_SPEED_RETURN(1G);
1471 TEST_SPEED_RETURN(100M);
1473 #undef TEST_SPEED_RETURN
1475 return 0;
1479 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
1480 * @caps16: a 16-bit Port Capabilities value
1482 * Returns the equivalent 32-bit Port Capabilities value.
1484 fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
1486 fw_port_cap32_t caps32 = 0;
1488 #define CAP16_TO_CAP32(__cap) \
1489 do { \
1490 if (caps16 & FW_PORT_CAP_##__cap) \
1491 caps32 |= FW_PORT_CAP32_##__cap; \
1492 } while (0)
1494 CAP16_TO_CAP32(SPEED_100M);
1495 CAP16_TO_CAP32(SPEED_1G);
1496 CAP16_TO_CAP32(SPEED_25G);
1497 CAP16_TO_CAP32(SPEED_10G);
1498 CAP16_TO_CAP32(SPEED_40G);
1499 CAP16_TO_CAP32(SPEED_100G);
1500 CAP16_TO_CAP32(FC_RX);
1501 CAP16_TO_CAP32(FC_TX);
1502 CAP16_TO_CAP32(ANEG);
1503 CAP16_TO_CAP32(MDIAUTO);
1504 CAP16_TO_CAP32(MDISTRAIGHT);
1505 CAP16_TO_CAP32(FEC_RS);
1506 CAP16_TO_CAP32(FEC_BASER_RS);
1507 CAP16_TO_CAP32(802_3_PAUSE);
1508 CAP16_TO_CAP32(802_3_ASM_DIR);
1510 #undef CAP16_TO_CAP32
1512 return caps32;
1516 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
1517 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
1519 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
1520 * 32-bit Port Capabilities value.
1522 fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
1524 fw_port_cap32_t linkattr = 0;
1526 /* The format of the Link Status in the old
1527 * 16-bit Port Information message isn't the same as the
1528 * 16-bit Port Capabilities bitfield used everywhere else.
1530 if (lstatus & FW_PORT_CMD_RXPAUSE_F)
1531 linkattr |= FW_PORT_CAP32_FC_RX;
1532 if (lstatus & FW_PORT_CMD_TXPAUSE_F)
1533 linkattr |= FW_PORT_CAP32_FC_TX;
1534 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1535 linkattr |= FW_PORT_CAP32_SPEED_100M;
1536 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1537 linkattr |= FW_PORT_CAP32_SPEED_1G;
1538 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1539 linkattr |= FW_PORT_CAP32_SPEED_10G;
1540 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1541 linkattr |= FW_PORT_CAP32_SPEED_25G;
1542 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1543 linkattr |= FW_PORT_CAP32_SPEED_40G;
1544 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1545 linkattr |= FW_PORT_CAP32_SPEED_100G;
1547 return linkattr;
1551 * csio_init_link_config - initialize a link's SW state
1552 * @lc: pointer to structure holding the link state
1553 * @pcaps: link Port Capabilities
1554 * @acaps: link current Advertised Port Capabilities
1556 * Initializes the SW state maintained for each link, including the link's
1557 * capabilities and default speed/flow-control/autonegotiation settings.
1559 static void csio_init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
1560 fw_port_cap32_t acaps)
1562 lc->pcaps = pcaps;
1563 lc->def_acaps = acaps;
1564 lc->lpacaps = 0;
1565 lc->speed_caps = 0;
1566 lc->speed = 0;
1567 lc->requested_fc = PAUSE_RX | PAUSE_TX;
1568 lc->fc = lc->requested_fc;
1571 * For Forward Error Control, we default to whatever the Firmware
1572 * tells us the Link is currently advertising.
1574 lc->requested_fec = FEC_AUTO;
1575 lc->fec = fwcap_to_cc_fec(lc->def_acaps);
1577 /* If the Port is capable of Auto-Negtotiation, initialize it as
1578 * "enabled" and copy over all of the Physical Port Capabilities
1579 * to the Advertised Port Capabilities. Otherwise mark it as
1580 * Auto-Negotiate disabled and select the highest supported speed
1581 * for the link. Note parallel structure in t4_link_l1cfg_core()
1582 * and t4_handle_get_port_info().
1584 if (lc->pcaps & FW_PORT_CAP32_ANEG) {
1585 lc->acaps = lc->pcaps & ADVERT_MASK;
1586 lc->autoneg = AUTONEG_ENABLE;
1587 lc->requested_fc |= PAUSE_AUTONEG;
1588 } else {
1589 lc->acaps = 0;
1590 lc->autoneg = AUTONEG_DISABLE;
1594 static void csio_link_l1cfg(struct link_config *lc, uint16_t fw_caps,
1595 uint32_t *rcaps)
1597 unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO);
1598 fw_port_cap32_t fw_fc, cc_fec, fw_fec, lrcap;
1600 lc->link_ok = 0;
1603 * Convert driver coding of Pause Frame Flow Control settings into the
1604 * Firmware's API.
1606 fw_fc = cc_to_fwcap_pause(lc->requested_fc);
1609 * Convert Common Code Forward Error Control settings into the
1610 * Firmware's API. If the current Requested FEC has "Automatic"
1611 * (IEEE 802.3) specified, then we use whatever the Firmware
1612 * sent us as part of it's IEEE 802.3-based interpratation of
1613 * the Transceiver Module EPROM FEC parameters. Otherwise we
1614 * use whatever is in the current Requested FEC settings.
1616 if (lc->requested_fec & FEC_AUTO)
1617 cc_fec = fwcap_to_cc_fec(lc->def_acaps);
1618 else
1619 cc_fec = lc->requested_fec;
1620 fw_fec = cc_to_fwcap_fec(cc_fec);
1622 /* Figure out what our Requested Port Capabilities are going to be.
1623 * Note parallel structure in t4_handle_get_port_info() and
1624 * init_link_config().
1626 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
1627 lrcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec;
1628 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
1629 lc->fec = cc_fec;
1630 } else if (lc->autoneg == AUTONEG_DISABLE) {
1631 lrcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
1632 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
1633 lc->fec = cc_fec;
1634 } else {
1635 lrcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
1638 *rcaps = lrcap;
1642 * csio_enable_ports - Bring up all available ports.
1643 * @hw: HW module.
1646 static int
1647 csio_enable_ports(struct csio_hw *hw)
1649 struct csio_mb *mbp;
1650 u16 fw_caps = FW_CAPS_UNKNOWN;
1651 enum fw_retval retval;
1652 uint8_t portid;
1653 fw_port_cap32_t pcaps, acaps, rcaps;
1654 int i;
1656 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1657 if (!mbp) {
1658 CSIO_INC_STATS(hw, n_err_nomem);
1659 return -ENOMEM;
1662 for (i = 0; i < hw->num_pports; i++) {
1663 portid = hw->pport[i].portid;
1665 if (fw_caps == FW_CAPS_UNKNOWN) {
1666 u32 param, val;
1668 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
1669 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
1670 val = 1;
1672 csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO,
1673 hw->pfn, 0, 1, &param, &val, false,
1674 NULL);
1676 if (csio_mb_issue(hw, mbp)) {
1677 csio_err(hw, "failed to issue FW_PARAMS_CMD(r) port:%d\n",
1678 portid);
1679 mempool_free(mbp, hw->mb_mempool);
1680 return -EINVAL;
1683 csio_mb_process_read_params_rsp(hw, mbp, &retval, 1,
1684 &val);
1685 if (retval != FW_SUCCESS) {
1686 csio_err(hw, "FW_PARAMS_CMD(r) port:%d failed: 0x%x\n",
1687 portid, retval);
1688 mempool_free(mbp, hw->mb_mempool);
1689 return -EINVAL;
1692 fw_caps = val;
1695 /* Read PORT information */
1696 csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1697 false, 0, fw_caps, NULL);
1699 if (csio_mb_issue(hw, mbp)) {
1700 csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
1701 portid);
1702 mempool_free(mbp, hw->mb_mempool);
1703 return -EINVAL;
1706 csio_mb_process_read_port_rsp(hw, mbp, &retval, fw_caps,
1707 &pcaps, &acaps);
1708 if (retval != FW_SUCCESS) {
1709 csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
1710 portid, retval);
1711 mempool_free(mbp, hw->mb_mempool);
1712 return -EINVAL;
1715 csio_init_link_config(&hw->pport[i].link_cfg, pcaps, acaps);
1717 csio_link_l1cfg(&hw->pport[i].link_cfg, fw_caps, &rcaps);
1719 /* Write back PORT information */
1720 csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1721 true, rcaps, fw_caps, NULL);
1723 if (csio_mb_issue(hw, mbp)) {
1724 csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
1725 portid);
1726 mempool_free(mbp, hw->mb_mempool);
1727 return -EINVAL;
1730 retval = csio_mb_fw_retval(mbp);
1731 if (retval != FW_SUCCESS) {
1732 csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
1733 portid, retval);
1734 mempool_free(mbp, hw->mb_mempool);
1735 return -EINVAL;
1738 } /* For all ports */
1740 mempool_free(mbp, hw->mb_mempool);
1742 return 0;
1746 * csio_get_fcoe_resinfo - Read fcoe fw resource info.
1747 * @hw: HW module
1748 * Issued with lock held.
1750 static int
1751 csio_get_fcoe_resinfo(struct csio_hw *hw)
1753 struct csio_fcoe_res_info *res_info = &hw->fres_info;
1754 struct fw_fcoe_res_info_cmd *rsp;
1755 struct csio_mb *mbp;
1756 enum fw_retval retval;
1758 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1759 if (!mbp) {
1760 CSIO_INC_STATS(hw, n_err_nomem);
1761 return -ENOMEM;
1764 /* Get FCoE FW resource information */
1765 csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1767 if (csio_mb_issue(hw, mbp)) {
1768 csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
1769 mempool_free(mbp, hw->mb_mempool);
1770 return -EINVAL;
1773 rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
1774 retval = FW_CMD_RETVAL_G(ntohl(rsp->retval_len16));
1775 if (retval != FW_SUCCESS) {
1776 csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
1777 retval);
1778 mempool_free(mbp, hw->mb_mempool);
1779 return -EINVAL;
1782 res_info->e_d_tov = ntohs(rsp->e_d_tov);
1783 res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
1784 res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
1785 res_info->r_r_tov = ntohs(rsp->r_r_tov);
1786 res_info->max_xchgs = ntohl(rsp->max_xchgs);
1787 res_info->max_ssns = ntohl(rsp->max_ssns);
1788 res_info->used_xchgs = ntohl(rsp->used_xchgs);
1789 res_info->used_ssns = ntohl(rsp->used_ssns);
1790 res_info->max_fcfs = ntohl(rsp->max_fcfs);
1791 res_info->max_vnps = ntohl(rsp->max_vnps);
1792 res_info->used_fcfs = ntohl(rsp->used_fcfs);
1793 res_info->used_vnps = ntohl(rsp->used_vnps);
1795 csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
1796 res_info->max_xchgs);
1797 mempool_free(mbp, hw->mb_mempool);
1799 return 0;
1802 static int
1803 csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
1805 struct csio_mb *mbp;
1806 enum fw_retval retval;
1807 u32 _param[1];
1809 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1810 if (!mbp) {
1811 CSIO_INC_STATS(hw, n_err_nomem);
1812 return -ENOMEM;
1816 * Find out whether we're dealing with a version of
1817 * the firmware which has configuration file support.
1819 _param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1820 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
1822 csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1823 ARRAY_SIZE(_param), _param, NULL, false, NULL);
1824 if (csio_mb_issue(hw, mbp)) {
1825 csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1826 mempool_free(mbp, hw->mb_mempool);
1827 return -EINVAL;
1830 csio_mb_process_read_params_rsp(hw, mbp, &retval,
1831 ARRAY_SIZE(_param), _param);
1832 if (retval != FW_SUCCESS) {
1833 csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1834 retval);
1835 mempool_free(mbp, hw->mb_mempool);
1836 return -EINVAL;
1839 mempool_free(mbp, hw->mb_mempool);
1840 *param = _param[0];
1842 return 0;
1845 static int
1846 csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
1848 int ret = 0;
1849 const struct firmware *cf;
1850 struct pci_dev *pci_dev = hw->pdev;
1851 struct device *dev = &pci_dev->dev;
1852 unsigned int mtype = 0, maddr = 0;
1853 uint32_t *cfg_data;
1854 int value_to_add = 0;
1855 const char *fw_cfg_file;
1857 if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK))
1858 fw_cfg_file = FW_CFG_NAME_T5;
1859 else
1860 fw_cfg_file = FW_CFG_NAME_T6;
1862 if (request_firmware(&cf, fw_cfg_file, dev) < 0) {
1863 csio_err(hw, "could not find config file %s, err: %d\n",
1864 fw_cfg_file, ret);
1865 return -ENOENT;
1868 if (cf->size%4 != 0)
1869 value_to_add = 4 - (cf->size % 4);
1871 cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
1872 if (cfg_data == NULL) {
1873 ret = -ENOMEM;
1874 goto leave;
1877 memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
1878 if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) {
1879 ret = -EINVAL;
1880 goto leave;
1883 mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
1884 maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
1886 ret = csio_memory_write(hw, mtype, maddr,
1887 cf->size + value_to_add, cfg_data);
1889 if ((ret == 0) && (value_to_add != 0)) {
1890 union {
1891 u32 word;
1892 char buf[4];
1893 } last;
1894 size_t size = cf->size & ~0x3;
1895 int i;
1897 last.word = cfg_data[size >> 2];
1898 for (i = value_to_add; i < 4; i++)
1899 last.buf[i] = 0;
1900 ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word);
1902 if (ret == 0) {
1903 csio_info(hw, "config file upgraded to %s\n", fw_cfg_file);
1904 snprintf(path, 64, "%s%s", "/lib/firmware/", fw_cfg_file);
1907 leave:
1908 kfree(cfg_data);
1909 release_firmware(cf);
1910 return ret;
1914 * HW initialization: contact FW, obtain config, perform basic init.
1916 * If the firmware we're dealing with has Configuration File support, then
1917 * we use that to perform all configuration -- either using the configuration
1918 * file stored in flash on the adapter or using a filesystem-local file
1919 * if available.
1921 * If we don't have configuration file support in the firmware, then we'll
1922 * have to set things up the old fashioned way with hard-coded register
1923 * writes and firmware commands ...
1927 * Attempt to initialize the HW via a Firmware Configuration File.
1929 static int
1930 csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
1932 struct csio_mb *mbp = NULL;
1933 struct fw_caps_config_cmd *caps_cmd;
1934 unsigned int mtype, maddr;
1935 int rv = -EINVAL;
1936 uint32_t finiver = 0, finicsum = 0, cfcsum = 0;
1937 char path[64];
1938 char *config_name = NULL;
1941 * Reset device if necessary
1943 if (reset) {
1944 rv = csio_do_reset(hw, true);
1945 if (rv != 0)
1946 goto bye;
1950 * If we have a configuration file in host ,
1951 * then use that. Otherwise, use the configuration file stored
1952 * in the HW flash ...
1954 spin_unlock_irq(&hw->lock);
1955 rv = csio_hw_flash_config(hw, fw_cfg_param, path);
1956 spin_lock_irq(&hw->lock);
1957 if (rv != 0) {
1959 * config file was not found. Use default
1960 * config file from flash.
1962 config_name = "On FLASH";
1963 mtype = FW_MEMTYPE_CF_FLASH;
1964 maddr = hw->chip_ops->chip_flash_cfg_addr(hw);
1965 } else {
1966 config_name = path;
1967 mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
1968 maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
1971 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1972 if (!mbp) {
1973 CSIO_INC_STATS(hw, n_err_nomem);
1974 return -ENOMEM;
1977 * Tell the firmware to process the indicated Configuration File.
1978 * If there are no errors and the caller has provided return value
1979 * pointers for the [fini] section version, checksum and computed
1980 * checksum, pass those back to the caller.
1982 caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
1983 CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1984 caps_cmd->op_to_write =
1985 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1986 FW_CMD_REQUEST_F |
1987 FW_CMD_READ_F);
1988 caps_cmd->cfvalid_to_len16 =
1989 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
1990 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
1991 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
1992 FW_LEN16(*caps_cmd));
1994 if (csio_mb_issue(hw, mbp)) {
1995 rv = -EINVAL;
1996 goto bye;
1999 rv = csio_mb_fw_retval(mbp);
2000 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
2001 * Configuration File in FLASH), our last gasp effort is to use the
2002 * Firmware Configuration File which is embedded in the
2003 * firmware. A very few early versions of the firmware didn't
2004 * have one embedded but we can ignore those.
2006 if (rv == ENOENT) {
2007 CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
2008 caps_cmd->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2009 FW_CMD_REQUEST_F |
2010 FW_CMD_READ_F);
2011 caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
2013 if (csio_mb_issue(hw, mbp)) {
2014 rv = -EINVAL;
2015 goto bye;
2018 rv = csio_mb_fw_retval(mbp);
2019 config_name = "Firmware Default";
2021 if (rv != FW_SUCCESS)
2022 goto bye;
2024 finiver = ntohl(caps_cmd->finiver);
2025 finicsum = ntohl(caps_cmd->finicsum);
2026 cfcsum = ntohl(caps_cmd->cfcsum);
2029 * And now tell the firmware to use the configuration we just loaded.
2031 caps_cmd->op_to_write =
2032 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2033 FW_CMD_REQUEST_F |
2034 FW_CMD_WRITE_F);
2035 caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
2037 if (csio_mb_issue(hw, mbp)) {
2038 rv = -EINVAL;
2039 goto bye;
2042 rv = csio_mb_fw_retval(mbp);
2043 if (rv != FW_SUCCESS) {
2044 csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
2045 goto bye;
2048 if (finicsum != cfcsum) {
2049 csio_warn(hw,
2050 "Config File checksum mismatch: csum=%#x, computed=%#x\n",
2051 finicsum, cfcsum);
2054 /* Validate device capabilities */
2055 rv = csio_hw_validate_caps(hw, mbp);
2056 if (rv != 0)
2057 goto bye;
2059 mempool_free(mbp, hw->mb_mempool);
2060 mbp = NULL;
2063 * Note that we're operating with parameters
2064 * not supplied by the driver, rather than from hard-wired
2065 * initialization constants buried in the driver.
2067 hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2069 /* device parameters */
2070 rv = csio_get_device_params(hw);
2071 if (rv != 0)
2072 goto bye;
2074 /* Configure SGE */
2075 csio_wr_sge_init(hw);
2078 * And finally tell the firmware to initialize itself using the
2079 * parameters from the Configuration File.
2081 /* Post event to notify completion of configuration */
2082 csio_post_event(&hw->sm, CSIO_HWE_INIT);
2084 csio_info(hw, "Successfully configure using Firmware "
2085 "Configuration File %s, version %#x, computed checksum %#x\n",
2086 config_name, finiver, cfcsum);
2087 return 0;
2090 * Something bad happened. Return the error ...
2092 bye:
2093 if (mbp)
2094 mempool_free(mbp, hw->mb_mempool);
2095 hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
2096 csio_warn(hw, "Configuration file error %d\n", rv);
2097 return rv;
2100 /* Is the given firmware API compatible with the one the driver was compiled
2101 * with?
2103 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
2106 /* short circuit if it's the exact same firmware version */
2107 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
2108 return 1;
2110 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
2111 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
2112 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
2113 return 1;
2114 #undef SAME_INTF
2116 return 0;
2119 /* The firmware in the filesystem is usable, but should it be installed?
2120 * This routine explains itself in detail if it indicates the filesystem
2121 * firmware should be installed.
2123 static int csio_should_install_fs_fw(struct csio_hw *hw, int card_fw_usable,
2124 int k, int c)
2126 const char *reason;
2128 if (!card_fw_usable) {
2129 reason = "incompatible or unusable";
2130 goto install;
2133 if (k > c) {
2134 reason = "older than the version supported with this driver";
2135 goto install;
2138 return 0;
2140 install:
2141 csio_err(hw, "firmware on card (%u.%u.%u.%u) is %s, "
2142 "installing firmware %u.%u.%u.%u on card.\n",
2143 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2144 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
2145 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2146 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2148 return 1;
2151 static struct fw_info fw_info_array[] = {
2153 .chip = CHELSIO_T5,
2154 .fs_name = FW_CFG_NAME_T5,
2155 .fw_mod_name = FW_FNAME_T5,
2156 .fw_hdr = {
2157 .chip = FW_HDR_CHIP_T5,
2158 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
2159 .intfver_nic = FW_INTFVER(T5, NIC),
2160 .intfver_vnic = FW_INTFVER(T5, VNIC),
2161 .intfver_ri = FW_INTFVER(T5, RI),
2162 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
2163 .intfver_fcoe = FW_INTFVER(T5, FCOE),
2165 }, {
2166 .chip = CHELSIO_T6,
2167 .fs_name = FW_CFG_NAME_T6,
2168 .fw_mod_name = FW_FNAME_T6,
2169 .fw_hdr = {
2170 .chip = FW_HDR_CHIP_T6,
2171 .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
2172 .intfver_nic = FW_INTFVER(T6, NIC),
2173 .intfver_vnic = FW_INTFVER(T6, VNIC),
2174 .intfver_ri = FW_INTFVER(T6, RI),
2175 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
2176 .intfver_fcoe = FW_INTFVER(T6, FCOE),
2181 static struct fw_info *find_fw_info(int chip)
2183 int i;
2185 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
2186 if (fw_info_array[i].chip == chip)
2187 return &fw_info_array[i];
2189 return NULL;
2192 static int csio_hw_prep_fw(struct csio_hw *hw, struct fw_info *fw_info,
2193 const u8 *fw_data, unsigned int fw_size,
2194 struct fw_hdr *card_fw, enum csio_dev_state state,
2195 int *reset)
2197 int ret, card_fw_usable, fs_fw_usable;
2198 const struct fw_hdr *fs_fw;
2199 const struct fw_hdr *drv_fw;
2201 drv_fw = &fw_info->fw_hdr;
2203 /* Read the header of the firmware on the card */
2204 ret = csio_hw_read_flash(hw, FLASH_FW_START,
2205 sizeof(*card_fw) / sizeof(uint32_t),
2206 (uint32_t *)card_fw, 1);
2207 if (ret == 0) {
2208 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
2209 } else {
2210 csio_err(hw,
2211 "Unable to read card's firmware header: %d\n", ret);
2212 card_fw_usable = 0;
2215 if (fw_data != NULL) {
2216 fs_fw = (const void *)fw_data;
2217 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
2218 } else {
2219 fs_fw = NULL;
2220 fs_fw_usable = 0;
2223 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
2224 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
2225 /* Common case: the firmware on the card is an exact match and
2226 * the filesystem one is an exact match too, or the filesystem
2227 * one is absent/incompatible.
2229 } else if (fs_fw_usable && state == CSIO_DEV_STATE_UNINIT &&
2230 csio_should_install_fs_fw(hw, card_fw_usable,
2231 be32_to_cpu(fs_fw->fw_ver),
2232 be32_to_cpu(card_fw->fw_ver))) {
2233 ret = csio_hw_fw_upgrade(hw, hw->pfn, fw_data,
2234 fw_size, 0);
2235 if (ret != 0) {
2236 csio_err(hw,
2237 "failed to install firmware: %d\n", ret);
2238 goto bye;
2241 /* Installed successfully, update the cached header too. */
2242 memcpy(card_fw, fs_fw, sizeof(*card_fw));
2243 card_fw_usable = 1;
2244 *reset = 0; /* already reset as part of load_fw */
2247 if (!card_fw_usable) {
2248 uint32_t d, c, k;
2250 d = be32_to_cpu(drv_fw->fw_ver);
2251 c = be32_to_cpu(card_fw->fw_ver);
2252 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
2254 csio_err(hw, "Cannot find a usable firmware: "
2255 "chip state %d, "
2256 "driver compiled with %d.%d.%d.%d, "
2257 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
2258 state,
2259 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
2260 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
2261 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2262 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
2263 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2264 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2265 ret = EINVAL;
2266 goto bye;
2269 /* We're using whatever's on the card and it's known to be good. */
2270 hw->fwrev = be32_to_cpu(card_fw->fw_ver);
2271 hw->tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
2273 bye:
2274 return ret;
2278 * Returns -EINVAL if attempts to flash the firmware failed
2279 * else returns 0,
2280 * if flashing was not attempted because the card had the
2281 * latest firmware ECANCELED is returned
2283 static int
2284 csio_hw_flash_fw(struct csio_hw *hw, int *reset)
2286 int ret = -ECANCELED;
2287 const struct firmware *fw;
2288 struct fw_info *fw_info;
2289 struct fw_hdr *card_fw;
2290 struct pci_dev *pci_dev = hw->pdev;
2291 struct device *dev = &pci_dev->dev ;
2292 const u8 *fw_data = NULL;
2293 unsigned int fw_size = 0;
2294 const char *fw_bin_file;
2296 /* This is the firmware whose headers the driver was compiled
2297 * against
2299 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(hw->chip_id));
2300 if (fw_info == NULL) {
2301 csio_err(hw,
2302 "unable to get firmware info for chip %d.\n",
2303 CHELSIO_CHIP_VERSION(hw->chip_id));
2304 return -EINVAL;
2307 if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK))
2308 fw_bin_file = FW_FNAME_T5;
2309 else
2310 fw_bin_file = FW_FNAME_T6;
2312 if (request_firmware(&fw, fw_bin_file, dev) < 0) {
2313 csio_err(hw, "could not find firmware image %s, err: %d\n",
2314 fw_bin_file, ret);
2315 } else {
2316 fw_data = fw->data;
2317 fw_size = fw->size;
2320 /* allocate memory to read the header of the firmware on the
2321 * card
2323 card_fw = kmalloc(sizeof(*card_fw), GFP_KERNEL);
2325 /* upgrade FW logic */
2326 ret = csio_hw_prep_fw(hw, fw_info, fw_data, fw_size, card_fw,
2327 hw->fw_state, reset);
2329 /* Cleaning up */
2330 if (fw != NULL)
2331 release_firmware(fw);
2332 kfree(card_fw);
2333 return ret;
2336 static int csio_hw_check_fwver(struct csio_hw *hw)
2338 if (csio_is_t6(hw->pdev->device & CSIO_HW_CHIP_MASK) &&
2339 (hw->fwrev < CSIO_MIN_T6_FW)) {
2340 csio_hw_print_fw_version(hw, "T6 unsupported fw");
2341 return -1;
2344 return 0;
2348 * csio_hw_configure - Configure HW
2349 * @hw - HW module
2352 static void
2353 csio_hw_configure(struct csio_hw *hw)
2355 int reset = 1;
2356 int rv;
2357 u32 param[1];
2359 rv = csio_hw_dev_ready(hw);
2360 if (rv != 0) {
2361 CSIO_INC_STATS(hw, n_err_fatal);
2362 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2363 goto out;
2366 /* HW version */
2367 hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV_A);
2369 /* Needed for FW download */
2370 rv = csio_hw_get_flash_params(hw);
2371 if (rv != 0) {
2372 csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
2373 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2374 goto out;
2377 /* Set PCIe completion timeout to 4 seconds */
2378 if (pci_is_pcie(hw->pdev))
2379 pcie_capability_clear_and_set_word(hw->pdev, PCI_EXP_DEVCTL2,
2380 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
2382 hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR);
2384 rv = csio_hw_get_fw_version(hw, &hw->fwrev);
2385 if (rv != 0)
2386 goto out;
2388 csio_hw_print_fw_version(hw, "Firmware revision");
2390 rv = csio_do_hello(hw, &hw->fw_state);
2391 if (rv != 0) {
2392 CSIO_INC_STATS(hw, n_err_fatal);
2393 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2394 goto out;
2397 /* Read vpd */
2398 rv = csio_hw_get_vpd_params(hw, &hw->vpd);
2399 if (rv != 0)
2400 goto out;
2402 csio_hw_get_fw_version(hw, &hw->fwrev);
2403 csio_hw_get_tp_version(hw, &hw->tp_vers);
2404 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2406 /* Do firmware update */
2407 spin_unlock_irq(&hw->lock);
2408 rv = csio_hw_flash_fw(hw, &reset);
2409 spin_lock_irq(&hw->lock);
2411 if (rv != 0)
2412 goto out;
2414 rv = csio_hw_check_fwver(hw);
2415 if (rv < 0)
2416 goto out;
2418 /* If the firmware doesn't support Configuration Files,
2419 * return an error.
2421 rv = csio_hw_check_fwconfig(hw, param);
2422 if (rv != 0) {
2423 csio_info(hw, "Firmware doesn't support "
2424 "Firmware Configuration files\n");
2425 goto out;
2428 /* The firmware provides us with a memory buffer where we can
2429 * load a Configuration File from the host if we want to
2430 * override the Configuration File in flash.
2432 rv = csio_hw_use_fwconfig(hw, reset, param);
2433 if (rv == -ENOENT) {
2434 csio_info(hw, "Could not initialize "
2435 "adapter, error%d\n", rv);
2436 goto out;
2438 if (rv != 0) {
2439 csio_info(hw, "Could not initialize "
2440 "adapter, error%d\n", rv);
2441 goto out;
2444 } else {
2445 rv = csio_hw_check_fwver(hw);
2446 if (rv < 0)
2447 goto out;
2449 if (hw->fw_state == CSIO_DEV_STATE_INIT) {
2451 hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2453 /* device parameters */
2454 rv = csio_get_device_params(hw);
2455 if (rv != 0)
2456 goto out;
2458 /* Get device capabilities */
2459 rv = csio_config_device_caps(hw);
2460 if (rv != 0)
2461 goto out;
2463 /* Configure SGE */
2464 csio_wr_sge_init(hw);
2466 /* Post event to notify completion of configuration */
2467 csio_post_event(&hw->sm, CSIO_HWE_INIT);
2468 goto out;
2470 } /* if not master */
2472 out:
2473 return;
2477 * csio_hw_initialize - Initialize HW
2478 * @hw - HW module
2481 static void
2482 csio_hw_initialize(struct csio_hw *hw)
2484 struct csio_mb *mbp;
2485 enum fw_retval retval;
2486 int rv;
2487 int i;
2489 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2490 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2491 if (!mbp)
2492 goto out;
2494 csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
2496 if (csio_mb_issue(hw, mbp)) {
2497 csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
2498 goto free_and_out;
2501 retval = csio_mb_fw_retval(mbp);
2502 if (retval != FW_SUCCESS) {
2503 csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
2504 retval);
2505 goto free_and_out;
2508 mempool_free(mbp, hw->mb_mempool);
2511 rv = csio_get_fcoe_resinfo(hw);
2512 if (rv != 0) {
2513 csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
2514 goto out;
2517 spin_unlock_irq(&hw->lock);
2518 rv = csio_config_queues(hw);
2519 spin_lock_irq(&hw->lock);
2521 if (rv != 0) {
2522 csio_err(hw, "Config of queues failed!: %d\n", rv);
2523 goto out;
2526 for (i = 0; i < hw->num_pports; i++)
2527 hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
2529 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2530 rv = csio_enable_ports(hw);
2531 if (rv != 0) {
2532 csio_err(hw, "Failed to enable ports: %d\n", rv);
2533 goto out;
2537 csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
2538 return;
2540 free_and_out:
2541 mempool_free(mbp, hw->mb_mempool);
2542 out:
2543 return;
2546 #define PF_INTR_MASK (PFSW_F | PFCIM_F)
2549 * csio_hw_intr_enable - Enable HW interrupts
2550 * @hw: Pointer to HW module.
2552 * Enable interrupts in HW registers.
2554 static void
2555 csio_hw_intr_enable(struct csio_hw *hw)
2557 uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
2558 u32 pf = 0;
2559 uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE_A);
2561 if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
2562 pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2563 else
2564 pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2567 * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
2568 * by FW, so do nothing for INTX.
2570 if (hw->intr_mode == CSIO_IM_MSIX)
2571 csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2572 AIVEC_V(AIVEC_M), vec);
2573 else if (hw->intr_mode == CSIO_IM_MSI)
2574 csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2575 AIVEC_V(AIVEC_M), 0);
2577 csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE_A));
2579 /* Turn on MB interrupts - this will internally flush PIO as well */
2580 csio_mb_intr_enable(hw);
2582 /* These are common registers - only a master can modify them */
2583 if (csio_is_hw_master(hw)) {
2585 * Disable the Serial FLASH interrupt, if enabled!
2587 pl &= (~SF_F);
2588 csio_wr_reg32(hw, pl, PL_INT_ENABLE_A);
2590 csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE_F |
2591 EGRESS_SIZE_ERR_F | ERR_INVALID_CIDX_INC_F |
2592 ERR_CPL_OPCODE_0_F | ERR_DROPPED_DB_F |
2593 ERR_DATA_CPL_ON_HIGH_QID1_F |
2594 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
2595 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
2596 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
2597 ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F,
2598 SGE_INT_ENABLE3_A);
2599 csio_set_reg_field(hw, PL_INT_MAP0_A, 0, 1 << pf);
2602 hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
2607 * csio_hw_intr_disable - Disable HW interrupts
2608 * @hw: Pointer to HW module.
2610 * Turn off Mailbox and PCI_PF_CFG interrupts.
2612 void
2613 csio_hw_intr_disable(struct csio_hw *hw)
2615 u32 pf = 0;
2617 if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
2618 pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2619 else
2620 pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2622 if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
2623 return;
2625 hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
2627 csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE_A));
2628 if (csio_is_hw_master(hw))
2629 csio_set_reg_field(hw, PL_INT_MAP0_A, 1 << pf, 0);
2631 /* Turn off MB interrupts */
2632 csio_mb_intr_disable(hw);
2636 void
2637 csio_hw_fatal_err(struct csio_hw *hw)
2639 csio_set_reg_field(hw, SGE_CONTROL_A, GLOBALENABLE_F, 0);
2640 csio_hw_intr_disable(hw);
2642 /* Do not reset HW, we may need FW state for debugging */
2643 csio_fatal(hw, "HW Fatal error encountered!\n");
2646 /*****************************************************************************/
2647 /* START: HW SM */
2648 /*****************************************************************************/
2650 * csio_hws_uninit - Uninit state
2651 * @hw - HW module
2652 * @evt - Event
2655 static void
2656 csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
2658 hw->prev_evt = hw->cur_evt;
2659 hw->cur_evt = evt;
2660 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2662 switch (evt) {
2663 case CSIO_HWE_CFG:
2664 csio_set_state(&hw->sm, csio_hws_configuring);
2665 csio_hw_configure(hw);
2666 break;
2668 default:
2669 CSIO_INC_STATS(hw, n_evt_unexp);
2670 break;
2675 * csio_hws_configuring - Configuring state
2676 * @hw - HW module
2677 * @evt - Event
2680 static void
2681 csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
2683 hw->prev_evt = hw->cur_evt;
2684 hw->cur_evt = evt;
2685 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2687 switch (evt) {
2688 case CSIO_HWE_INIT:
2689 csio_set_state(&hw->sm, csio_hws_initializing);
2690 csio_hw_initialize(hw);
2691 break;
2693 case CSIO_HWE_INIT_DONE:
2694 csio_set_state(&hw->sm, csio_hws_ready);
2695 /* Fan out event to all lnode SMs */
2696 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2697 break;
2699 case CSIO_HWE_FATAL:
2700 csio_set_state(&hw->sm, csio_hws_uninit);
2701 break;
2703 case CSIO_HWE_PCI_REMOVE:
2704 csio_do_bye(hw);
2705 break;
2706 default:
2707 CSIO_INC_STATS(hw, n_evt_unexp);
2708 break;
2713 * csio_hws_initializing - Initialiazing state
2714 * @hw - HW module
2715 * @evt - Event
2718 static void
2719 csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
2721 hw->prev_evt = hw->cur_evt;
2722 hw->cur_evt = evt;
2723 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2725 switch (evt) {
2726 case CSIO_HWE_INIT_DONE:
2727 csio_set_state(&hw->sm, csio_hws_ready);
2729 /* Fan out event to all lnode SMs */
2730 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2732 /* Enable interrupts */
2733 csio_hw_intr_enable(hw);
2734 break;
2736 case CSIO_HWE_FATAL:
2737 csio_set_state(&hw->sm, csio_hws_uninit);
2738 break;
2740 case CSIO_HWE_PCI_REMOVE:
2741 csio_do_bye(hw);
2742 break;
2744 default:
2745 CSIO_INC_STATS(hw, n_evt_unexp);
2746 break;
2751 * csio_hws_ready - Ready state
2752 * @hw - HW module
2753 * @evt - Event
2756 static void
2757 csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
2759 /* Remember the event */
2760 hw->evtflag = evt;
2762 hw->prev_evt = hw->cur_evt;
2763 hw->cur_evt = evt;
2764 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2766 switch (evt) {
2767 case CSIO_HWE_HBA_RESET:
2768 case CSIO_HWE_FW_DLOAD:
2769 case CSIO_HWE_SUSPEND:
2770 case CSIO_HWE_PCI_REMOVE:
2771 case CSIO_HWE_PCIERR_DETECTED:
2772 csio_set_state(&hw->sm, csio_hws_quiescing);
2773 /* cleanup all outstanding cmds */
2774 if (evt == CSIO_HWE_HBA_RESET ||
2775 evt == CSIO_HWE_PCIERR_DETECTED)
2776 csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
2777 else
2778 csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
2780 csio_hw_intr_disable(hw);
2781 csio_hw_mbm_cleanup(hw);
2782 csio_evtq_stop(hw);
2783 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
2784 csio_evtq_flush(hw);
2785 csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
2786 csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
2787 break;
2789 case CSIO_HWE_FATAL:
2790 csio_set_state(&hw->sm, csio_hws_uninit);
2791 break;
2793 default:
2794 CSIO_INC_STATS(hw, n_evt_unexp);
2795 break;
2800 * csio_hws_quiescing - Quiescing state
2801 * @hw - HW module
2802 * @evt - Event
2805 static void
2806 csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
2808 hw->prev_evt = hw->cur_evt;
2809 hw->cur_evt = evt;
2810 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2812 switch (evt) {
2813 case CSIO_HWE_QUIESCED:
2814 switch (hw->evtflag) {
2815 case CSIO_HWE_FW_DLOAD:
2816 csio_set_state(&hw->sm, csio_hws_resetting);
2817 /* Download firmware */
2818 /* Fall through */
2820 case CSIO_HWE_HBA_RESET:
2821 csio_set_state(&hw->sm, csio_hws_resetting);
2822 /* Start reset of the HBA */
2823 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
2824 csio_wr_destroy_queues(hw, false);
2825 csio_do_reset(hw, false);
2826 csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
2827 break;
2829 case CSIO_HWE_PCI_REMOVE:
2830 csio_set_state(&hw->sm, csio_hws_removing);
2831 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
2832 csio_wr_destroy_queues(hw, true);
2833 /* Now send the bye command */
2834 csio_do_bye(hw);
2835 break;
2837 case CSIO_HWE_SUSPEND:
2838 csio_set_state(&hw->sm, csio_hws_quiesced);
2839 break;
2841 case CSIO_HWE_PCIERR_DETECTED:
2842 csio_set_state(&hw->sm, csio_hws_pcierr);
2843 csio_wr_destroy_queues(hw, false);
2844 break;
2846 default:
2847 CSIO_INC_STATS(hw, n_evt_unexp);
2848 break;
2851 break;
2853 default:
2854 CSIO_INC_STATS(hw, n_evt_unexp);
2855 break;
2860 * csio_hws_quiesced - Quiesced state
2861 * @hw - HW module
2862 * @evt - Event
2865 static void
2866 csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
2868 hw->prev_evt = hw->cur_evt;
2869 hw->cur_evt = evt;
2870 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2872 switch (evt) {
2873 case CSIO_HWE_RESUME:
2874 csio_set_state(&hw->sm, csio_hws_configuring);
2875 csio_hw_configure(hw);
2876 break;
2878 default:
2879 CSIO_INC_STATS(hw, n_evt_unexp);
2880 break;
2885 * csio_hws_resetting - HW Resetting state
2886 * @hw - HW module
2887 * @evt - Event
2890 static void
2891 csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
2893 hw->prev_evt = hw->cur_evt;
2894 hw->cur_evt = evt;
2895 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2897 switch (evt) {
2898 case CSIO_HWE_HBA_RESET_DONE:
2899 csio_evtq_start(hw);
2900 csio_set_state(&hw->sm, csio_hws_configuring);
2901 csio_hw_configure(hw);
2902 break;
2904 default:
2905 CSIO_INC_STATS(hw, n_evt_unexp);
2906 break;
2911 * csio_hws_removing - PCI Hotplug removing state
2912 * @hw - HW module
2913 * @evt - Event
2916 static void
2917 csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
2919 hw->prev_evt = hw->cur_evt;
2920 hw->cur_evt = evt;
2921 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2923 switch (evt) {
2924 case CSIO_HWE_HBA_RESET:
2925 if (!csio_is_hw_master(hw))
2926 break;
2928 * The BYE should have alerady been issued, so we cant
2929 * use the mailbox interface. Hence we use the PL_RST
2930 * register directly.
2932 csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
2933 csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
2934 mdelay(2000);
2935 break;
2937 /* Should never receive any new events */
2938 default:
2939 CSIO_INC_STATS(hw, n_evt_unexp);
2940 break;
2946 * csio_hws_pcierr - PCI Error state
2947 * @hw - HW module
2948 * @evt - Event
2951 static void
2952 csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
2954 hw->prev_evt = hw->cur_evt;
2955 hw->cur_evt = evt;
2956 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2958 switch (evt) {
2959 case CSIO_HWE_PCIERR_SLOT_RESET:
2960 csio_evtq_start(hw);
2961 csio_set_state(&hw->sm, csio_hws_configuring);
2962 csio_hw_configure(hw);
2963 break;
2965 default:
2966 CSIO_INC_STATS(hw, n_evt_unexp);
2967 break;
2971 /*****************************************************************************/
2972 /* END: HW SM */
2973 /*****************************************************************************/
2976 * csio_handle_intr_status - table driven interrupt handler
2977 * @hw: HW instance
2978 * @reg: the interrupt status register to process
2979 * @acts: table of interrupt actions
2981 * A table driven interrupt handler that applies a set of masks to an
2982 * interrupt status word and performs the corresponding actions if the
2983 * interrupts described by the mask have occured. The actions include
2984 * optionally emitting a warning or alert message. The table is terminated
2985 * by an entry specifying mask 0. Returns the number of fatal interrupt
2986 * conditions.
2989 csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
2990 const struct intr_info *acts)
2992 int fatal = 0;
2993 unsigned int mask = 0;
2994 unsigned int status = csio_rd_reg32(hw, reg);
2996 for ( ; acts->mask; ++acts) {
2997 if (!(status & acts->mask))
2998 continue;
2999 if (acts->fatal) {
3000 fatal++;
3001 csio_fatal(hw, "Fatal %s (0x%x)\n",
3002 acts->msg, status & acts->mask);
3003 } else if (acts->msg)
3004 csio_info(hw, "%s (0x%x)\n",
3005 acts->msg, status & acts->mask);
3006 mask |= acts->mask;
3008 status &= mask;
3009 if (status) /* clear processed interrupts */
3010 csio_wr_reg32(hw, status, reg);
3011 return fatal;
3015 * TP interrupt handler.
3017 static void csio_tp_intr_handler(struct csio_hw *hw)
3019 static struct intr_info tp_intr_info[] = {
3020 { 0x3fffffff, "TP parity error", -1, 1 },
3021 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3022 { 0, NULL, 0, 0 }
3025 if (csio_handle_intr_status(hw, TP_INT_CAUSE_A, tp_intr_info))
3026 csio_hw_fatal_err(hw);
3030 * SGE interrupt handler.
3032 static void csio_sge_intr_handler(struct csio_hw *hw)
3034 uint64_t v;
3036 static struct intr_info sge_intr_info[] = {
3037 { ERR_CPL_EXCEED_IQE_SIZE_F,
3038 "SGE received CPL exceeding IQE size", -1, 1 },
3039 { ERR_INVALID_CIDX_INC_F,
3040 "SGE GTS CIDX increment too large", -1, 0 },
3041 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3042 { ERR_DROPPED_DB_F, "SGE doorbell dropped", -1, 0 },
3043 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3044 "SGE IQID > 1023 received CPL for FL", -1, 0 },
3045 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3046 0 },
3047 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3048 0 },
3049 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3050 0 },
3051 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3052 0 },
3053 { ERR_ING_CTXT_PRIO_F,
3054 "SGE too many priority ingress contexts", -1, 0 },
3055 { ERR_EGR_CTXT_PRIO_F,
3056 "SGE too many priority egress contexts", -1, 0 },
3057 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3058 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3059 { 0, NULL, 0, 0 }
3062 v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1_A) |
3063 ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2_A) << 32);
3064 if (v) {
3065 csio_fatal(hw, "SGE parity error (%#llx)\n",
3066 (unsigned long long)v);
3067 csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
3068 SGE_INT_CAUSE1_A);
3069 csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2_A);
3072 v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info);
3074 if (csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info) ||
3075 v != 0)
3076 csio_hw_fatal_err(hw);
3079 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3080 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3081 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3082 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3085 * CIM interrupt handler.
3087 static void csio_cim_intr_handler(struct csio_hw *hw)
3089 static struct intr_info cim_intr_info[] = {
3090 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3091 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3092 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3093 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3094 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3095 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3096 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3097 { 0, NULL, 0, 0 }
3099 static struct intr_info cim_upintr_info[] = {
3100 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3101 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3102 { ILLWRINT_F, "CIM illegal write", -1, 1 },
3103 { ILLRDINT_F, "CIM illegal read", -1, 1 },
3104 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3105 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3106 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3107 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3108 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3109 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3110 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3111 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3112 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3113 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3114 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3115 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3116 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3117 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3118 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3119 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3120 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3121 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3122 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3123 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3124 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3125 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3126 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3127 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3128 { 0, NULL, 0, 0 }
3131 int fat;
3133 fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE_A,
3134 cim_intr_info) +
3135 csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE_A,
3136 cim_upintr_info);
3137 if (fat)
3138 csio_hw_fatal_err(hw);
3142 * ULP RX interrupt handler.
3144 static void csio_ulprx_intr_handler(struct csio_hw *hw)
3146 static struct intr_info ulprx_intr_info[] = {
3147 { 0x1800000, "ULPRX context error", -1, 1 },
3148 { 0x7fffff, "ULPRX parity error", -1, 1 },
3149 { 0, NULL, 0, 0 }
3152 if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
3153 csio_hw_fatal_err(hw);
3157 * ULP TX interrupt handler.
3159 static void csio_ulptx_intr_handler(struct csio_hw *hw)
3161 static struct intr_info ulptx_intr_info[] = {
3162 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
3163 0 },
3164 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
3165 0 },
3166 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
3167 0 },
3168 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
3169 0 },
3170 { 0xfffffff, "ULPTX parity error", -1, 1 },
3171 { 0, NULL, 0, 0 }
3174 if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
3175 csio_hw_fatal_err(hw);
3179 * PM TX interrupt handler.
3181 static void csio_pmtx_intr_handler(struct csio_hw *hw)
3183 static struct intr_info pmtx_intr_info[] = {
3184 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
3185 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
3186 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
3187 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
3188 { 0xffffff0, "PMTX framing error", -1, 1 },
3189 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
3190 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", -1,
3191 1 },
3192 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
3193 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
3194 { 0, NULL, 0, 0 }
3197 if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE_A, pmtx_intr_info))
3198 csio_hw_fatal_err(hw);
3202 * PM RX interrupt handler.
3204 static void csio_pmrx_intr_handler(struct csio_hw *hw)
3206 static struct intr_info pmrx_intr_info[] = {
3207 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
3208 { 0x3ffff0, "PMRX framing error", -1, 1 },
3209 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
3210 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", -1,
3211 1 },
3212 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
3213 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
3214 { 0, NULL, 0, 0 }
3217 if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE_A, pmrx_intr_info))
3218 csio_hw_fatal_err(hw);
3222 * CPL switch interrupt handler.
3224 static void csio_cplsw_intr_handler(struct csio_hw *hw)
3226 static struct intr_info cplsw_intr_info[] = {
3227 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
3228 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
3229 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
3230 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
3231 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
3232 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
3233 { 0, NULL, 0, 0 }
3236 if (csio_handle_intr_status(hw, CPL_INTR_CAUSE_A, cplsw_intr_info))
3237 csio_hw_fatal_err(hw);
3241 * LE interrupt handler.
3243 static void csio_le_intr_handler(struct csio_hw *hw)
3245 enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id);
3247 static struct intr_info le_intr_info[] = {
3248 { LIPMISS_F, "LE LIP miss", -1, 0 },
3249 { LIP0_F, "LE 0 LIP error", -1, 0 },
3250 { PARITYERR_F, "LE parity error", -1, 1 },
3251 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3252 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
3253 { 0, NULL, 0, 0 }
3256 static struct intr_info t6_le_intr_info[] = {
3257 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
3258 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
3259 { TCAMINTPERR_F, "LE parity error", -1, 1 },
3260 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3261 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
3262 { 0, NULL, 0, 0 }
3265 if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE_A,
3266 (chip == CHELSIO_T5) ?
3267 le_intr_info : t6_le_intr_info))
3268 csio_hw_fatal_err(hw);
3272 * MPS interrupt handler.
3274 static void csio_mps_intr_handler(struct csio_hw *hw)
3276 static struct intr_info mps_rx_intr_info[] = {
3277 { 0xffffff, "MPS Rx parity error", -1, 1 },
3278 { 0, NULL, 0, 0 }
3280 static struct intr_info mps_tx_intr_info[] = {
3281 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
3282 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
3283 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
3284 -1, 1 },
3285 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
3286 -1, 1 },
3287 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
3288 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
3289 { FRMERR_F, "MPS Tx framing error", -1, 1 },
3290 { 0, NULL, 0, 0 }
3292 static struct intr_info mps_trc_intr_info[] = {
3293 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
3294 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
3295 -1, 1 },
3296 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
3297 { 0, NULL, 0, 0 }
3299 static struct intr_info mps_stat_sram_intr_info[] = {
3300 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
3301 { 0, NULL, 0, 0 }
3303 static struct intr_info mps_stat_tx_intr_info[] = {
3304 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
3305 { 0, NULL, 0, 0 }
3307 static struct intr_info mps_stat_rx_intr_info[] = {
3308 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
3309 { 0, NULL, 0, 0 }
3311 static struct intr_info mps_cls_intr_info[] = {
3312 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
3313 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
3314 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
3315 { 0, NULL, 0, 0 }
3318 int fat;
3320 fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE_A,
3321 mps_rx_intr_info) +
3322 csio_handle_intr_status(hw, MPS_TX_INT_CAUSE_A,
3323 mps_tx_intr_info) +
3324 csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE_A,
3325 mps_trc_intr_info) +
3326 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
3327 mps_stat_sram_intr_info) +
3328 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
3329 mps_stat_tx_intr_info) +
3330 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
3331 mps_stat_rx_intr_info) +
3332 csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE_A,
3333 mps_cls_intr_info);
3335 csio_wr_reg32(hw, 0, MPS_INT_CAUSE_A);
3336 csio_rd_reg32(hw, MPS_INT_CAUSE_A); /* flush */
3337 if (fat)
3338 csio_hw_fatal_err(hw);
3341 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
3342 ECC_UE_INT_CAUSE_F)
3345 * EDC/MC interrupt handler.
3347 static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
3349 static const char name[3][5] = { "EDC0", "EDC1", "MC" };
3351 unsigned int addr, cnt_addr, v;
3353 if (idx <= MEM_EDC1) {
3354 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
3355 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
3356 } else {
3357 addr = MC_INT_CAUSE_A;
3358 cnt_addr = MC_ECC_STATUS_A;
3361 v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
3362 if (v & PERR_INT_CAUSE_F)
3363 csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
3364 if (v & ECC_CE_INT_CAUSE_F) {
3365 uint32_t cnt = ECC_CECNT_G(csio_rd_reg32(hw, cnt_addr));
3367 csio_wr_reg32(hw, ECC_CECNT_V(ECC_CECNT_M), cnt_addr);
3368 csio_warn(hw, "%u %s correctable ECC data error%s\n",
3369 cnt, name[idx], cnt > 1 ? "s" : "");
3371 if (v & ECC_UE_INT_CAUSE_F)
3372 csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
3374 csio_wr_reg32(hw, v, addr);
3375 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
3376 csio_hw_fatal_err(hw);
3380 * MA interrupt handler.
3382 static void csio_ma_intr_handler(struct csio_hw *hw)
3384 uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE_A);
3386 if (status & MEM_PERR_INT_CAUSE_F)
3387 csio_fatal(hw, "MA parity error, parity status %#x\n",
3388 csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS_A));
3389 if (status & MEM_WRAP_INT_CAUSE_F) {
3390 v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS_A);
3391 csio_fatal(hw,
3392 "MA address wrap-around error by client %u to address %#x\n",
3393 MEM_WRAP_CLIENT_NUM_G(v), MEM_WRAP_ADDRESS_G(v) << 4);
3395 csio_wr_reg32(hw, status, MA_INT_CAUSE_A);
3396 csio_hw_fatal_err(hw);
3400 * SMB interrupt handler.
3402 static void csio_smb_intr_handler(struct csio_hw *hw)
3404 static struct intr_info smb_intr_info[] = {
3405 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
3406 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
3407 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
3408 { 0, NULL, 0, 0 }
3411 if (csio_handle_intr_status(hw, SMB_INT_CAUSE_A, smb_intr_info))
3412 csio_hw_fatal_err(hw);
3416 * NC-SI interrupt handler.
3418 static void csio_ncsi_intr_handler(struct csio_hw *hw)
3420 static struct intr_info ncsi_intr_info[] = {
3421 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
3422 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
3423 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
3424 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
3425 { 0, NULL, 0, 0 }
3428 if (csio_handle_intr_status(hw, NCSI_INT_CAUSE_A, ncsi_intr_info))
3429 csio_hw_fatal_err(hw);
3433 * XGMAC interrupt handler.
3435 static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
3437 uint32_t v = csio_rd_reg32(hw, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3439 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
3440 if (!v)
3441 return;
3443 if (v & TXFIFO_PRTY_ERR_F)
3444 csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
3445 if (v & RXFIFO_PRTY_ERR_F)
3446 csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
3447 csio_wr_reg32(hw, v, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3448 csio_hw_fatal_err(hw);
3452 * PL interrupt handler.
3454 static void csio_pl_intr_handler(struct csio_hw *hw)
3456 static struct intr_info pl_intr_info[] = {
3457 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
3458 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
3459 { 0, NULL, 0, 0 }
3462 if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE_A, pl_intr_info))
3463 csio_hw_fatal_err(hw);
3467 * csio_hw_slow_intr_handler - control path interrupt handler
3468 * @hw: HW module
3470 * Interrupt handler for non-data global interrupt events, e.g., errors.
3471 * The designation 'slow' is because it involves register reads, while
3472 * data interrupts typically don't involve any MMIOs.
3475 csio_hw_slow_intr_handler(struct csio_hw *hw)
3477 uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE_A);
3479 if (!(cause & CSIO_GLBL_INTR_MASK)) {
3480 CSIO_INC_STATS(hw, n_plint_unexp);
3481 return 0;
3484 csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
3486 CSIO_INC_STATS(hw, n_plint_cnt);
3488 if (cause & CIM_F)
3489 csio_cim_intr_handler(hw);
3491 if (cause & MPS_F)
3492 csio_mps_intr_handler(hw);
3494 if (cause & NCSI_F)
3495 csio_ncsi_intr_handler(hw);
3497 if (cause & PL_F)
3498 csio_pl_intr_handler(hw);
3500 if (cause & SMB_F)
3501 csio_smb_intr_handler(hw);
3503 if (cause & XGMAC0_F)
3504 csio_xgmac_intr_handler(hw, 0);
3506 if (cause & XGMAC1_F)
3507 csio_xgmac_intr_handler(hw, 1);
3509 if (cause & XGMAC_KR0_F)
3510 csio_xgmac_intr_handler(hw, 2);
3512 if (cause & XGMAC_KR1_F)
3513 csio_xgmac_intr_handler(hw, 3);
3515 if (cause & PCIE_F)
3516 hw->chip_ops->chip_pcie_intr_handler(hw);
3518 if (cause & MC_F)
3519 csio_mem_intr_handler(hw, MEM_MC);
3521 if (cause & EDC0_F)
3522 csio_mem_intr_handler(hw, MEM_EDC0);
3524 if (cause & EDC1_F)
3525 csio_mem_intr_handler(hw, MEM_EDC1);
3527 if (cause & LE_F)
3528 csio_le_intr_handler(hw);
3530 if (cause & TP_F)
3531 csio_tp_intr_handler(hw);
3533 if (cause & MA_F)
3534 csio_ma_intr_handler(hw);
3536 if (cause & PM_TX_F)
3537 csio_pmtx_intr_handler(hw);
3539 if (cause & PM_RX_F)
3540 csio_pmrx_intr_handler(hw);
3542 if (cause & ULP_RX_F)
3543 csio_ulprx_intr_handler(hw);
3545 if (cause & CPL_SWITCH_F)
3546 csio_cplsw_intr_handler(hw);
3548 if (cause & SGE_F)
3549 csio_sge_intr_handler(hw);
3551 if (cause & ULP_TX_F)
3552 csio_ulptx_intr_handler(hw);
3554 /* Clear the interrupts just processed for which we are the master. */
3555 csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE_A);
3556 csio_rd_reg32(hw, PL_INT_CAUSE_A); /* flush */
3558 return 1;
3561 /*****************************************************************************
3562 * HW <--> mailbox interfacing routines.
3563 ****************************************************************************/
3565 * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
3567 * @data: Private data pointer.
3569 * Called from worker thread context.
3571 static void
3572 csio_mberr_worker(void *data)
3574 struct csio_hw *hw = (struct csio_hw *)data;
3575 struct csio_mbm *mbm = &hw->mbm;
3576 LIST_HEAD(cbfn_q);
3577 struct csio_mb *mbp_next;
3578 int rv;
3580 del_timer_sync(&mbm->timer);
3582 spin_lock_irq(&hw->lock);
3583 if (list_empty(&mbm->cbfn_q)) {
3584 spin_unlock_irq(&hw->lock);
3585 return;
3588 list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
3589 mbm->stats.n_cbfnq = 0;
3591 /* Try to start waiting mailboxes */
3592 if (!list_empty(&mbm->req_q)) {
3593 mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
3594 list_del_init(&mbp_next->list);
3596 rv = csio_mb_issue(hw, mbp_next);
3597 if (rv != 0)
3598 list_add_tail(&mbp_next->list, &mbm->req_q);
3599 else
3600 CSIO_DEC_STATS(mbm, n_activeq);
3602 spin_unlock_irq(&hw->lock);
3604 /* Now callback completions */
3605 csio_mb_completions(hw, &cbfn_q);
3609 * csio_hw_mb_timer - Top-level Mailbox timeout handler.
3611 * @data: private data pointer
3614 static void
3615 csio_hw_mb_timer(struct timer_list *t)
3617 struct csio_mbm *mbm = from_timer(mbm, t, timer);
3618 struct csio_hw *hw = mbm->hw;
3619 struct csio_mb *mbp = NULL;
3621 spin_lock_irq(&hw->lock);
3622 mbp = csio_mb_tmo_handler(hw);
3623 spin_unlock_irq(&hw->lock);
3625 /* Call back the function for the timed-out Mailbox */
3626 if (mbp)
3627 mbp->mb_cbfn(hw, mbp);
3632 * csio_hw_mbm_cleanup - Cleanup Mailbox module.
3633 * @hw: HW module
3635 * Called with lock held, should exit with lock held.
3636 * Cancels outstanding mailboxes (waiting, in-flight) and gathers them
3637 * into a local queue. Drops lock and calls the completions. Holds
3638 * lock and returns.
3640 static void
3641 csio_hw_mbm_cleanup(struct csio_hw *hw)
3643 LIST_HEAD(cbfn_q);
3645 csio_mb_cancel_all(hw, &cbfn_q);
3647 spin_unlock_irq(&hw->lock);
3648 csio_mb_completions(hw, &cbfn_q);
3649 spin_lock_irq(&hw->lock);
3652 /*****************************************************************************
3653 * Event handling
3654 ****************************************************************************/
3656 csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3657 uint16_t len)
3659 struct csio_evt_msg *evt_entry = NULL;
3661 if (type >= CSIO_EVT_MAX)
3662 return -EINVAL;
3664 if (len > CSIO_EVT_MSG_SIZE)
3665 return -EINVAL;
3667 if (hw->flags & CSIO_HWF_FWEVT_STOP)
3668 return -EINVAL;
3670 if (list_empty(&hw->evt_free_q)) {
3671 csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3672 type, len);
3673 return -ENOMEM;
3676 evt_entry = list_first_entry(&hw->evt_free_q,
3677 struct csio_evt_msg, list);
3678 list_del_init(&evt_entry->list);
3680 /* copy event msg and queue the event */
3681 evt_entry->type = type;
3682 memcpy((void *)evt_entry->data, evt_msg, len);
3683 list_add_tail(&evt_entry->list, &hw->evt_active_q);
3685 CSIO_DEC_STATS(hw, n_evt_freeq);
3686 CSIO_INC_STATS(hw, n_evt_activeq);
3688 return 0;
3691 static int
3692 csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3693 uint16_t len, bool msg_sg)
3695 struct csio_evt_msg *evt_entry = NULL;
3696 struct csio_fl_dma_buf *fl_sg;
3697 uint32_t off = 0;
3698 unsigned long flags;
3699 int n, ret = 0;
3701 if (type >= CSIO_EVT_MAX)
3702 return -EINVAL;
3704 if (len > CSIO_EVT_MSG_SIZE)
3705 return -EINVAL;
3707 spin_lock_irqsave(&hw->lock, flags);
3708 if (hw->flags & CSIO_HWF_FWEVT_STOP) {
3709 ret = -EINVAL;
3710 goto out;
3713 if (list_empty(&hw->evt_free_q)) {
3714 csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3715 type, len);
3716 ret = -ENOMEM;
3717 goto out;
3720 evt_entry = list_first_entry(&hw->evt_free_q,
3721 struct csio_evt_msg, list);
3722 list_del_init(&evt_entry->list);
3724 /* copy event msg and queue the event */
3725 evt_entry->type = type;
3727 /* If Payload in SG list*/
3728 if (msg_sg) {
3729 fl_sg = (struct csio_fl_dma_buf *) evt_msg;
3730 for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
3731 memcpy((void *)((uintptr_t)evt_entry->data + off),
3732 fl_sg->flbufs[n].vaddr,
3733 fl_sg->flbufs[n].len);
3734 off += fl_sg->flbufs[n].len;
3736 } else
3737 memcpy((void *)evt_entry->data, evt_msg, len);
3739 list_add_tail(&evt_entry->list, &hw->evt_active_q);
3740 CSIO_DEC_STATS(hw, n_evt_freeq);
3741 CSIO_INC_STATS(hw, n_evt_activeq);
3742 out:
3743 spin_unlock_irqrestore(&hw->lock, flags);
3744 return ret;
3747 static void
3748 csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
3750 if (evt_entry) {
3751 spin_lock_irq(&hw->lock);
3752 list_del_init(&evt_entry->list);
3753 list_add_tail(&evt_entry->list, &hw->evt_free_q);
3754 CSIO_DEC_STATS(hw, n_evt_activeq);
3755 CSIO_INC_STATS(hw, n_evt_freeq);
3756 spin_unlock_irq(&hw->lock);
3760 void
3761 csio_evtq_flush(struct csio_hw *hw)
3763 uint32_t count;
3764 count = 30;
3765 while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
3766 spin_unlock_irq(&hw->lock);
3767 msleep(2000);
3768 spin_lock_irq(&hw->lock);
3771 CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
3774 static void
3775 csio_evtq_stop(struct csio_hw *hw)
3777 hw->flags |= CSIO_HWF_FWEVT_STOP;
3780 static void
3781 csio_evtq_start(struct csio_hw *hw)
3783 hw->flags &= ~CSIO_HWF_FWEVT_STOP;
3786 static void
3787 csio_evtq_cleanup(struct csio_hw *hw)
3789 struct list_head *evt_entry, *next_entry;
3791 /* Release outstanding events from activeq to freeq*/
3792 if (!list_empty(&hw->evt_active_q))
3793 list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
3795 hw->stats.n_evt_activeq = 0;
3796 hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3798 /* Freeup event entry */
3799 list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
3800 kfree(evt_entry);
3801 CSIO_DEC_STATS(hw, n_evt_freeq);
3804 hw->stats.n_evt_freeq = 0;
3808 static void
3809 csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
3810 struct csio_fl_dma_buf *flb, void *priv)
3812 __u8 op;
3813 void *msg = NULL;
3814 uint32_t msg_len = 0;
3815 bool msg_sg = 0;
3817 op = ((struct rss_header *) wr)->opcode;
3818 if (op == CPL_FW6_PLD) {
3819 CSIO_INC_STATS(hw, n_cpl_fw6_pld);
3820 if (!flb || !flb->totlen) {
3821 CSIO_INC_STATS(hw, n_cpl_unexp);
3822 return;
3825 msg = (void *) flb;
3826 msg_len = flb->totlen;
3827 msg_sg = 1;
3828 } else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
3830 CSIO_INC_STATS(hw, n_cpl_fw6_msg);
3831 /* skip RSS header */
3832 msg = (void *)((uintptr_t)wr + sizeof(__be64));
3833 msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
3834 sizeof(struct cpl_fw4_msg);
3835 } else {
3836 csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
3837 CSIO_INC_STATS(hw, n_cpl_unexp);
3838 return;
3842 * Enqueue event to EventQ. Events processing happens
3843 * in Event worker thread context
3845 if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
3846 (uint16_t)msg_len, msg_sg))
3847 CSIO_INC_STATS(hw, n_evt_drop);
3850 void
3851 csio_evtq_worker(struct work_struct *work)
3853 struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
3854 struct list_head *evt_entry, *next_entry;
3855 LIST_HEAD(evt_q);
3856 struct csio_evt_msg *evt_msg;
3857 struct cpl_fw6_msg *msg;
3858 struct csio_rnode *rn;
3859 int rv = 0;
3860 uint8_t evtq_stop = 0;
3862 csio_dbg(hw, "event worker thread active evts#%d\n",
3863 hw->stats.n_evt_activeq);
3865 spin_lock_irq(&hw->lock);
3866 while (!list_empty(&hw->evt_active_q)) {
3867 list_splice_tail_init(&hw->evt_active_q, &evt_q);
3868 spin_unlock_irq(&hw->lock);
3870 list_for_each_safe(evt_entry, next_entry, &evt_q) {
3871 evt_msg = (struct csio_evt_msg *) evt_entry;
3873 /* Drop events if queue is STOPPED */
3874 spin_lock_irq(&hw->lock);
3875 if (hw->flags & CSIO_HWF_FWEVT_STOP)
3876 evtq_stop = 1;
3877 spin_unlock_irq(&hw->lock);
3878 if (evtq_stop) {
3879 CSIO_INC_STATS(hw, n_evt_drop);
3880 goto free_evt;
3883 switch (evt_msg->type) {
3884 case CSIO_EVT_FW:
3885 msg = (struct cpl_fw6_msg *)(evt_msg->data);
3887 if ((msg->opcode == CPL_FW6_MSG ||
3888 msg->opcode == CPL_FW4_MSG) &&
3889 !msg->type) {
3890 rv = csio_mb_fwevt_handler(hw,
3891 msg->data);
3892 if (!rv)
3893 break;
3894 /* Handle any remaining fw events */
3895 csio_fcoe_fwevt_handler(hw,
3896 msg->opcode, msg->data);
3897 } else if (msg->opcode == CPL_FW6_PLD) {
3899 csio_fcoe_fwevt_handler(hw,
3900 msg->opcode, msg->data);
3901 } else {
3902 csio_warn(hw,
3903 "Unhandled FW msg op %x type %x\n",
3904 msg->opcode, msg->type);
3905 CSIO_INC_STATS(hw, n_evt_drop);
3907 break;
3909 case CSIO_EVT_MBX:
3910 csio_mberr_worker(hw);
3911 break;
3913 case CSIO_EVT_DEV_LOSS:
3914 memcpy(&rn, evt_msg->data, sizeof(rn));
3915 csio_rnode_devloss_handler(rn);
3916 break;
3918 default:
3919 csio_warn(hw, "Unhandled event %x on evtq\n",
3920 evt_msg->type);
3921 CSIO_INC_STATS(hw, n_evt_unexp);
3922 break;
3924 free_evt:
3925 csio_free_evt(hw, evt_msg);
3928 spin_lock_irq(&hw->lock);
3930 hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3931 spin_unlock_irq(&hw->lock);
3935 csio_fwevtq_handler(struct csio_hw *hw)
3937 int rv;
3939 if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
3940 CSIO_INC_STATS(hw, n_int_stray);
3941 return -EINVAL;
3944 rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
3945 csio_process_fwevtq_entry, NULL);
3946 return rv;
3949 /****************************************************************************
3950 * Entry points
3951 ****************************************************************************/
3953 /* Management module */
3955 * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
3956 * mgmt - mgmt module
3957 * @io_req - io request
3959 * Return - 0:if given IO Req exists in active Q.
3960 * -EINVAL :if lookup fails.
3963 csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
3965 struct list_head *tmp;
3967 /* Lookup ioreq in the ACTIVEQ */
3968 list_for_each(tmp, &mgmtm->active_q) {
3969 if (io_req == (struct csio_ioreq *)tmp)
3970 return 0;
3972 return -EINVAL;
3975 #define ECM_MIN_TMO 1000 /* Minimum timeout value for req */
3978 * csio_mgmts_tmo_handler - MGMT IO Timeout handler.
3979 * @data - Event data.
3981 * Return - none.
3983 static void
3984 csio_mgmt_tmo_handler(struct timer_list *t)
3986 struct csio_mgmtm *mgmtm = from_timer(mgmtm, t, mgmt_timer);
3987 struct list_head *tmp;
3988 struct csio_ioreq *io_req;
3990 csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
3992 spin_lock_irq(&mgmtm->hw->lock);
3994 list_for_each(tmp, &mgmtm->active_q) {
3995 io_req = (struct csio_ioreq *) tmp;
3996 io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
3998 if (!io_req->tmo) {
3999 /* Dequeue the request from retry Q. */
4000 tmp = csio_list_prev(tmp);
4001 list_del_init(&io_req->sm.sm_list);
4002 if (io_req->io_cbfn) {
4003 /* io_req will be freed by completion handler */
4004 io_req->wr_status = -ETIMEDOUT;
4005 io_req->io_cbfn(mgmtm->hw, io_req);
4006 } else {
4007 CSIO_DB_ASSERT(0);
4012 /* If retry queue is not empty, re-arm timer */
4013 if (!list_empty(&mgmtm->active_q))
4014 mod_timer(&mgmtm->mgmt_timer,
4015 jiffies + msecs_to_jiffies(ECM_MIN_TMO));
4016 spin_unlock_irq(&mgmtm->hw->lock);
4019 static void
4020 csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
4022 struct csio_hw *hw = mgmtm->hw;
4023 struct csio_ioreq *io_req;
4024 struct list_head *tmp;
4025 uint32_t count;
4027 count = 30;
4028 /* Wait for all outstanding req to complete gracefully */
4029 while ((!list_empty(&mgmtm->active_q)) && count--) {
4030 spin_unlock_irq(&hw->lock);
4031 msleep(2000);
4032 spin_lock_irq(&hw->lock);
4035 /* release outstanding req from ACTIVEQ */
4036 list_for_each(tmp, &mgmtm->active_q) {
4037 io_req = (struct csio_ioreq *) tmp;
4038 tmp = csio_list_prev(tmp);
4039 list_del_init(&io_req->sm.sm_list);
4040 mgmtm->stats.n_active--;
4041 if (io_req->io_cbfn) {
4042 /* io_req will be freed by completion handler */
4043 io_req->wr_status = -ETIMEDOUT;
4044 io_req->io_cbfn(mgmtm->hw, io_req);
4050 * csio_mgmt_init - Mgmt module init entry point
4051 * @mgmtsm - mgmt module
4052 * @hw - HW module
4054 * Initialize mgmt timer, resource wait queue, active queue,
4055 * completion q. Allocate Egress and Ingress
4056 * WR queues and save off the queue index returned by the WR
4057 * module for future use. Allocate and save off mgmt reqs in the
4058 * mgmt_req_freelist for future use. Make sure their SM is initialized
4059 * to uninit state.
4060 * Returns: 0 - on success
4061 * -ENOMEM - on error.
4063 static int
4064 csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
4066 timer_setup(&mgmtm->mgmt_timer, csio_mgmt_tmo_handler, 0);
4068 INIT_LIST_HEAD(&mgmtm->active_q);
4069 INIT_LIST_HEAD(&mgmtm->cbfn_q);
4071 mgmtm->hw = hw;
4072 /*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
4074 return 0;
4078 * csio_mgmtm_exit - MGMT module exit entry point
4079 * @mgmtsm - mgmt module
4081 * This function called during MGMT module uninit.
4082 * Stop timers, free ioreqs allocated.
4083 * Returns: None
4086 static void
4087 csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
4089 del_timer_sync(&mgmtm->mgmt_timer);
4094 * csio_hw_start - Kicks off the HW State machine
4095 * @hw: Pointer to HW module.
4097 * It is assumed that the initialization is a synchronous operation.
4098 * So when we return afer posting the event, the HW SM should be in
4099 * the ready state, if there were no errors during init.
4102 csio_hw_start(struct csio_hw *hw)
4104 spin_lock_irq(&hw->lock);
4105 csio_post_event(&hw->sm, CSIO_HWE_CFG);
4106 spin_unlock_irq(&hw->lock);
4108 if (csio_is_hw_ready(hw))
4109 return 0;
4110 else if (csio_match_state(hw, csio_hws_uninit))
4111 return -EINVAL;
4112 else
4113 return -ENODEV;
4117 csio_hw_stop(struct csio_hw *hw)
4119 csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
4121 if (csio_is_hw_removing(hw))
4122 return 0;
4123 else
4124 return -EINVAL;
4127 /* Max reset retries */
4128 #define CSIO_MAX_RESET_RETRIES 3
4131 * csio_hw_reset - Reset the hardware
4132 * @hw: HW module.
4134 * Caller should hold lock across this function.
4137 csio_hw_reset(struct csio_hw *hw)
4139 if (!csio_is_hw_master(hw))
4140 return -EPERM;
4142 if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
4143 csio_dbg(hw, "Max hw reset attempts reached..");
4144 return -EINVAL;
4147 hw->rst_retries++;
4148 csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
4150 if (csio_is_hw_ready(hw)) {
4151 hw->rst_retries = 0;
4152 hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
4153 return 0;
4154 } else
4155 return -EINVAL;
4159 * csio_hw_get_device_id - Caches the Adapter's vendor & device id.
4160 * @hw: HW module.
4162 static void
4163 csio_hw_get_device_id(struct csio_hw *hw)
4165 /* Is the adapter device id cached already ?*/
4166 if (csio_is_dev_id_cached(hw))
4167 return;
4169 /* Get the PCI vendor & device id */
4170 pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
4171 &hw->params.pci.vendor_id);
4172 pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
4173 &hw->params.pci.device_id);
4175 csio_dev_id_cached(hw);
4176 hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK);
4178 } /* csio_hw_get_device_id */
4181 * csio_hw_set_description - Set the model, description of the hw.
4182 * @hw: HW module.
4183 * @ven_id: PCI Vendor ID
4184 * @dev_id: PCI Device ID
4186 static void
4187 csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
4189 uint32_t adap_type, prot_type;
4191 if (ven_id == CSIO_VENDOR_ID) {
4192 prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
4193 adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
4195 if (prot_type == CSIO_T5_FCOE_ASIC) {
4196 memcpy(hw->hw_ver,
4197 csio_t5_fcoe_adapters[adap_type].model_no, 16);
4198 memcpy(hw->model_desc,
4199 csio_t5_fcoe_adapters[adap_type].description,
4200 32);
4201 } else {
4202 char tempName[32] = "Chelsio FCoE Controller";
4203 memcpy(hw->model_desc, tempName, 32);
4206 } /* csio_hw_set_description */
4209 * csio_hw_init - Initialize HW module.
4210 * @hw: Pointer to HW module.
4212 * Initialize the members of the HW module.
4215 csio_hw_init(struct csio_hw *hw)
4217 int rv = -EINVAL;
4218 uint32_t i;
4219 uint16_t ven_id, dev_id;
4220 struct csio_evt_msg *evt_entry;
4222 INIT_LIST_HEAD(&hw->sm.sm_list);
4223 csio_init_state(&hw->sm, csio_hws_uninit);
4224 spin_lock_init(&hw->lock);
4225 INIT_LIST_HEAD(&hw->sln_head);
4227 /* Get the PCI vendor & device id */
4228 csio_hw_get_device_id(hw);
4230 strcpy(hw->name, CSIO_HW_NAME);
4232 /* Initialize the HW chip ops T5 specific ops */
4233 hw->chip_ops = &t5_ops;
4235 /* Set the model & its description */
4237 ven_id = hw->params.pci.vendor_id;
4238 dev_id = hw->params.pci.device_id;
4240 csio_hw_set_description(hw, ven_id, dev_id);
4242 /* Initialize default log level */
4243 hw->params.log_level = (uint32_t) csio_dbg_level;
4245 csio_set_fwevt_intr_idx(hw, -1);
4246 csio_set_nondata_intr_idx(hw, -1);
4248 /* Init all the modules: Mailbox, WorkRequest and Transport */
4249 if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
4250 goto err;
4252 rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
4253 if (rv)
4254 goto err_mbm_exit;
4256 rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
4257 if (rv)
4258 goto err_wrm_exit;
4260 rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
4261 if (rv)
4262 goto err_scsim_exit;
4263 /* Pre-allocate evtq and initialize them */
4264 INIT_LIST_HEAD(&hw->evt_active_q);
4265 INIT_LIST_HEAD(&hw->evt_free_q);
4266 for (i = 0; i < csio_evtq_sz; i++) {
4268 evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
4269 if (!evt_entry) {
4270 rv = -ENOMEM;
4271 csio_err(hw, "Failed to initialize eventq");
4272 goto err_evtq_cleanup;
4275 list_add_tail(&evt_entry->list, &hw->evt_free_q);
4276 CSIO_INC_STATS(hw, n_evt_freeq);
4279 hw->dev_num = dev_num;
4280 dev_num++;
4282 return 0;
4284 err_evtq_cleanup:
4285 csio_evtq_cleanup(hw);
4286 csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4287 err_scsim_exit:
4288 csio_scsim_exit(csio_hw_to_scsim(hw));
4289 err_wrm_exit:
4290 csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4291 err_mbm_exit:
4292 csio_mbm_exit(csio_hw_to_mbm(hw));
4293 err:
4294 return rv;
4298 * csio_hw_exit - Un-initialize HW module.
4299 * @hw: Pointer to HW module.
4302 void
4303 csio_hw_exit(struct csio_hw *hw)
4305 csio_evtq_cleanup(hw);
4306 csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4307 csio_scsim_exit(csio_hw_to_scsim(hw));
4308 csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4309 csio_mbm_exit(csio_hw_to_mbm(hw));