2 * This file is part of the Chelsio FCoE driver for Linux.
4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 #include <linux/kernel.h>
36 #include <linux/string.h>
37 #include <linux/compiler.h>
38 #include <linux/slab.h>
40 #include <linux/cache.h>
45 #include "csio_defs.h"
47 int csio_intr_coalesce_cnt
; /* value:SGE_INGRESS_RX_THRESHOLD[0] */
48 static int csio_sge_thresh_reg
; /* SGE_INGRESS_RX_THRESHOLD[0] */
50 int csio_intr_coalesce_time
= 10; /* value:SGE_TIMER_VALUE_1 */
51 static int csio_sge_timer_reg
= 1;
53 #define CSIO_SET_FLBUF_SIZE(_hw, _reg, _val) \
54 csio_wr_reg32((_hw), (_val), SGE_FL_BUFFER_SIZE##_reg##_A)
57 csio_get_flbuf_size(struct csio_hw
*hw
, struct csio_sge
*sge
, uint32_t reg
)
59 sge
->sge_fl_buf_size
[reg
] = csio_rd_reg32(hw
, SGE_FL_BUFFER_SIZE0_A
+
60 reg
* sizeof(uint32_t));
63 /* Free list buffer size */
64 static inline uint32_t
65 csio_wr_fl_bufsz(struct csio_sge
*sge
, struct csio_dma_buf
*buf
)
67 return sge
->sge_fl_buf_size
[buf
->paddr
& 0xF];
70 /* Size of the egress queue status page */
71 static inline uint32_t
72 csio_wr_qstat_pgsz(struct csio_hw
*hw
)
74 return (hw
->wrm
.sge
.sge_control
& EGRSTATUSPAGESIZE_F
) ? 128 : 64;
77 /* Ring freelist doorbell */
79 csio_wr_ring_fldb(struct csio_hw
*hw
, struct csio_q
*flq
)
82 * Ring the doorbell only when we have atleast CSIO_QCREDIT_SZ
83 * number of bytes in the freelist queue. This translates to atleast
84 * 8 freelist buffer pointers (since each pointer is 8 bytes).
86 if (flq
->inc_idx
>= 8) {
87 csio_wr_reg32(hw
, DBPRIO_F
| QID_V(flq
->un
.fl
.flid
) |
88 PIDX_T5_V(flq
->inc_idx
/ 8) | DBTYPE_F
,
89 MYPF_REG(SGE_PF_KDOORBELL_A
));
94 /* Write a 0 cidx increment value to enable SGE interrupts for this queue */
96 csio_wr_sge_intr_enable(struct csio_hw
*hw
, uint16_t iqid
)
98 csio_wr_reg32(hw
, CIDXINC_V(0) |
100 TIMERREG_V(X_TIMERREG_RESTART_COUNTER
),
101 MYPF_REG(SGE_PF_GTS_A
));
105 * csio_wr_fill_fl - Populate the FL buffers of a FL queue.
107 * @flq: Freelist queue.
109 * Fill up freelist buffer entries with buffers of size specified
110 * in the size register.
114 csio_wr_fill_fl(struct csio_hw
*hw
, struct csio_q
*flq
)
116 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
117 struct csio_sge
*sge
= &wrm
->sge
;
118 __be64
*d
= (__be64
*)(flq
->vstart
);
119 struct csio_dma_buf
*buf
= &flq
->un
.fl
.bufs
[0];
121 int sreg
= flq
->un
.fl
.sreg
;
122 int n
= flq
->credits
;
125 buf
->len
= sge
->sge_fl_buf_size
[sreg
];
126 buf
->vaddr
= pci_alloc_consistent(hw
->pdev
, buf
->len
,
129 csio_err(hw
, "Could only fill %d buffers!\n", n
+ 1);
133 paddr
= buf
->paddr
| (sreg
& 0xF);
135 *d
++ = cpu_to_be64(paddr
);
143 * csio_wr_update_fl -
145 * @flq: Freelist queue.
150 csio_wr_update_fl(struct csio_hw
*hw
, struct csio_q
*flq
, uint16_t n
)
155 if (unlikely(flq
->pidx
>= flq
->credits
))
156 flq
->pidx
-= (uint16_t)flq
->credits
;
158 CSIO_INC_STATS(flq
, n_flq_refill
);
162 * csio_wr_alloc_q - Allocate a WR queue and initialize it.
164 * @qsize: Size of the queue in bytes
165 * @wrsize: Since of WR in this queue, if fixed.
166 * @type: Type of queue (Ingress/Egress/Freelist)
167 * @owner: Module that owns this queue.
168 * @nflb: Number of freelist buffers for FL.
169 * @sreg: What is the FL buffer size register?
170 * @iq_int_handler: Ingress queue handler in INTx mode.
172 * This function allocates and sets up a queue for the caller
173 * of size qsize, aligned at the required boundary. This is subject to
174 * be free entries being available in the queue array. If one is found,
175 * it is initialized with the allocated queue, marked as being used (owner),
176 * and a handle returned to the caller in form of the queue's index
177 * into the q_arr array.
178 * If user has indicated a freelist (by specifying nflb > 0), create
179 * another queue (with its own index into q_arr) for the freelist. Allocate
180 * memory for DMA buffer metadata (vaddr, len etc). Save off the freelist
181 * idx in the ingress queue's flq.idx. This is how a Freelist is associated
182 * with its owning ingress queue.
185 csio_wr_alloc_q(struct csio_hw
*hw
, uint32_t qsize
, uint32_t wrsize
,
186 uint16_t type
, void *owner
, uint32_t nflb
, int sreg
,
187 iq_handler_t iq_intx_handler
)
189 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
190 struct csio_q
*q
, *flq
;
191 int free_idx
= wrm
->free_qidx
;
192 int ret_idx
= free_idx
;
196 if (free_idx
>= wrm
->num_q
) {
197 csio_err(hw
, "No more free queues.\n");
203 qsz
= ALIGN(qsize
, CSIO_QCREDIT_SZ
) + csio_wr_qstat_pgsz(hw
);
213 csio_err(hw
, "Invalid Ingress queue WR size:%d\n",
219 * Number of elements must be a multiple of 16
220 * So this includes status page size
222 qsz
= ALIGN(qsize
/wrsize
, 16) * wrsize
;
226 qsz
= ALIGN(qsize
/wrsize
, 8) * wrsize
+ csio_wr_qstat_pgsz(hw
);
229 csio_err(hw
, "Invalid queue type: 0x%x\n", type
);
233 q
= wrm
->q_arr
[free_idx
];
235 q
->vstart
= pci_zalloc_consistent(hw
->pdev
, qsz
, &q
->pstart
);
238 "Failed to allocate DMA memory for "
239 "queue at id: %d size: %d\n", free_idx
, qsize
);
245 q
->pidx
= q
->cidx
= q
->inc_idx
= 0;
247 q
->wr_sz
= wrsize
; /* If using fixed size WRs */
251 if (type
== CSIO_INGRESS
) {
252 /* Since queue area is set to zero */
256 * Ingress queue status page size is always the size of
257 * the ingress queue entry.
259 q
->credits
= (qsz
- q
->wr_sz
) / q
->wr_sz
;
260 q
->vwrap
= (void *)((uintptr_t)(q
->vstart
) + qsz
263 /* Allocate memory for FL if requested */
265 flq_idx
= csio_wr_alloc_q(hw
, nflb
* sizeof(__be64
),
266 sizeof(__be64
), CSIO_FREELIST
,
267 owner
, 0, sreg
, NULL
);
270 "Failed to allocate FL queue"
271 " for IQ idx:%d\n", free_idx
);
275 /* Associate the new FL with the Ingress quue */
276 q
->un
.iq
.flq_idx
= flq_idx
;
278 flq
= wrm
->q_arr
[q
->un
.iq
.flq_idx
];
279 flq
->un
.fl
.bufs
= kcalloc(flq
->credits
,
280 sizeof(struct csio_dma_buf
),
282 if (!flq
->un
.fl
.bufs
) {
284 "Failed to allocate FL queue bufs"
285 " for IQ idx:%d\n", free_idx
);
289 flq
->un
.fl
.packen
= 0;
290 flq
->un
.fl
.offset
= 0;
291 flq
->un
.fl
.sreg
= sreg
;
293 /* Fill up the free list buffers */
294 if (csio_wr_fill_fl(hw
, flq
))
298 * Make sure in a FLQ, atleast 1 credit (8 FL buffers)
299 * remains unpopulated,otherwise HW thinks
302 flq
->pidx
= flq
->inc_idx
= flq
->credits
- 8;
304 q
->un
.iq
.flq_idx
= -1;
307 /* Associate the IQ INTx handler. */
308 q
->un
.iq
.iq_intx_handler
= iq_intx_handler
;
310 csio_q_iqid(hw
, ret_idx
) = CSIO_MAX_QID
;
312 } else if (type
== CSIO_EGRESS
) {
313 q
->credits
= (qsz
- csio_wr_qstat_pgsz(hw
)) / CSIO_QCREDIT_SZ
;
314 q
->vwrap
= (void *)((uintptr_t)(q
->vstart
) + qsz
315 - csio_wr_qstat_pgsz(hw
));
316 csio_q_eqid(hw
, ret_idx
) = CSIO_MAX_QID
;
317 } else { /* Freelist */
318 q
->credits
= (qsz
- csio_wr_qstat_pgsz(hw
)) / sizeof(__be64
);
319 q
->vwrap
= (void *)((uintptr_t)(q
->vstart
) + qsz
320 - csio_wr_qstat_pgsz(hw
));
321 csio_q_flid(hw
, ret_idx
) = CSIO_MAX_QID
;
328 * csio_wr_iq_create_rsp - Response handler for IQ creation.
329 * @hw: The HW module.
331 * @iq_idx: Ingress queue that got created.
333 * Handle FW_IQ_CMD mailbox completion. Save off the assigned IQ/FL ids.
336 csio_wr_iq_create_rsp(struct csio_hw
*hw
, struct csio_mb
*mbp
, int iq_idx
)
338 struct csio_iq_params iqp
;
339 enum fw_retval retval
;
343 memset(&iqp
, 0, sizeof(struct csio_iq_params
));
345 csio_mb_iq_alloc_write_rsp(hw
, mbp
, &retval
, &iqp
);
347 if (retval
!= FW_SUCCESS
) {
348 csio_err(hw
, "IQ cmd returned 0x%x!\n", retval
);
349 mempool_free(mbp
, hw
->mb_mempool
);
353 csio_q_iqid(hw
, iq_idx
) = iqp
.iqid
;
354 csio_q_physiqid(hw
, iq_idx
) = iqp
.physiqid
;
355 csio_q_pidx(hw
, iq_idx
) = csio_q_cidx(hw
, iq_idx
) = 0;
356 csio_q_inc_idx(hw
, iq_idx
) = 0;
359 iq_id
= iqp
.iqid
- hw
->wrm
.fw_iq_start
;
361 /* Set the iq-id to iq map table. */
362 if (iq_id
>= CSIO_MAX_IQ
) {
364 "Exceeding MAX_IQ(%d) supported!"
365 " iqid:%d rel_iqid:%d FW iq_start:%d\n",
366 CSIO_MAX_IQ
, iq_id
, iqp
.iqid
, hw
->wrm
.fw_iq_start
);
367 mempool_free(mbp
, hw
->mb_mempool
);
370 csio_q_set_intr_map(hw
, iq_idx
, iq_id
);
373 * During FW_IQ_CMD, FW sets interrupt_sent bit to 1 in the SGE
374 * ingress context of this queue. This will block interrupts to
375 * this queue until the next GTS write. Therefore, we do a
376 * 0-cidx increment GTS write for this queue just to clear the
377 * interrupt_sent bit. This will re-enable interrupts to this
380 csio_wr_sge_intr_enable(hw
, iqp
.physiqid
);
382 flq_idx
= csio_q_iq_flq_idx(hw
, iq_idx
);
384 struct csio_q
*flq
= hw
->wrm
.q_arr
[flq_idx
];
386 csio_q_flid(hw
, flq_idx
) = iqp
.fl0id
;
387 csio_q_cidx(hw
, flq_idx
) = 0;
388 csio_q_pidx(hw
, flq_idx
) = csio_q_credits(hw
, flq_idx
) - 8;
389 csio_q_inc_idx(hw
, flq_idx
) = csio_q_credits(hw
, flq_idx
) - 8;
391 /* Now update SGE about the buffers allocated during init */
392 csio_wr_ring_fldb(hw
, flq
);
395 mempool_free(mbp
, hw
->mb_mempool
);
401 * csio_wr_iq_create - Configure an Ingress queue with FW.
402 * @hw: The HW module.
403 * @priv: Private data object.
404 * @iq_idx: Ingress queue index in the WR module.
406 * @portid: PCIE Channel to be associated with this queue.
407 * @async: Is this a FW asynchronous message handling queue?
408 * @cbfn: Completion callback.
410 * This API configures an ingress queue with FW by issuing a FW_IQ_CMD mailbox
411 * with alloc/write bits set.
414 csio_wr_iq_create(struct csio_hw
*hw
, void *priv
, int iq_idx
,
415 uint32_t vec
, uint8_t portid
, bool async
,
416 void (*cbfn
) (struct csio_hw
*, struct csio_mb
*))
419 struct csio_iq_params iqp
;
422 memset(&iqp
, 0, sizeof(struct csio_iq_params
));
423 csio_q_portid(hw
, iq_idx
) = portid
;
425 mbp
= mempool_alloc(hw
->mb_mempool
, GFP_ATOMIC
);
427 csio_err(hw
, "IQ command out of memory!\n");
431 switch (hw
->intr_mode
) {
434 /* For interrupt forwarding queue only */
435 if (hw
->intr_iq_idx
== iq_idx
)
436 iqp
.iqandst
= X_INTERRUPTDESTINATION_PCIE
;
438 iqp
.iqandst
= X_INTERRUPTDESTINATION_IQ
;
440 csio_q_physiqid(hw
, hw
->intr_iq_idx
);
443 iqp
.iqandst
= X_INTERRUPTDESTINATION_PCIE
;
444 iqp
.iqandstindex
= (uint16_t)vec
;
447 mempool_free(mbp
, hw
->mb_mempool
);
451 /* Pass in the ingress queue cmd parameters */
456 iqp
.type
= FW_IQ_TYPE_FL_INT_CAP
;
457 iqp
.iqasynch
= async
;
458 if (csio_intr_coalesce_cnt
)
459 iqp
.iqanus
= X_UPDATESCHEDULING_COUNTER_OPTTIMER
;
461 iqp
.iqanus
= X_UPDATESCHEDULING_TIMER
;
462 iqp
.iqanud
= X_UPDATEDELIVERY_INTERRUPT
;
463 iqp
.iqpciech
= portid
;
464 iqp
.iqintcntthresh
= (uint8_t)csio_sge_thresh_reg
;
466 switch (csio_q_wr_sz(hw
, iq_idx
)) {
468 iqp
.iqesize
= 0; break;
470 iqp
.iqesize
= 1; break;
472 iqp
.iqesize
= 2; break;
474 iqp
.iqesize
= 3; break;
477 iqp
.iqsize
= csio_q_size(hw
, iq_idx
) /
478 csio_q_wr_sz(hw
, iq_idx
);
479 iqp
.iqaddr
= csio_q_pstart(hw
, iq_idx
);
481 flq_idx
= csio_q_iq_flq_idx(hw
, iq_idx
);
483 enum chip_type chip
= CHELSIO_CHIP_VERSION(hw
->chip_id
);
484 struct csio_q
*flq
= hw
->wrm
.q_arr
[flq_idx
];
487 iqp
.fl0packen
= flq
->un
.fl
.packen
? 1 : 0;
488 iqp
.fl0fbmin
= X_FETCHBURSTMIN_64B
;
489 iqp
.fl0fbmax
= ((chip
== CHELSIO_T5
) ?
490 X_FETCHBURSTMAX_512B
: X_FETCHBURSTMAX_256B
);
491 iqp
.fl0size
= csio_q_size(hw
, flq_idx
) / CSIO_QCREDIT_SZ
;
492 iqp
.fl0addr
= csio_q_pstart(hw
, flq_idx
);
495 csio_mb_iq_alloc_write(hw
, mbp
, priv
, CSIO_MB_DEFAULT_TMO
, &iqp
, cbfn
);
497 if (csio_mb_issue(hw
, mbp
)) {
498 csio_err(hw
, "Issue of IQ cmd failed!\n");
499 mempool_free(mbp
, hw
->mb_mempool
);
506 return csio_wr_iq_create_rsp(hw
, mbp
, iq_idx
);
510 * csio_wr_eq_create_rsp - Response handler for EQ creation.
511 * @hw: The HW module.
513 * @eq_idx: Egress queue that got created.
515 * Handle FW_EQ_OFLD_CMD mailbox completion. Save off the assigned EQ ids.
518 csio_wr_eq_cfg_rsp(struct csio_hw
*hw
, struct csio_mb
*mbp
, int eq_idx
)
520 struct csio_eq_params eqp
;
521 enum fw_retval retval
;
523 memset(&eqp
, 0, sizeof(struct csio_eq_params
));
525 csio_mb_eq_ofld_alloc_write_rsp(hw
, mbp
, &retval
, &eqp
);
527 if (retval
!= FW_SUCCESS
) {
528 csio_err(hw
, "EQ OFLD cmd returned 0x%x!\n", retval
);
529 mempool_free(mbp
, hw
->mb_mempool
);
533 csio_q_eqid(hw
, eq_idx
) = (uint16_t)eqp
.eqid
;
534 csio_q_physeqid(hw
, eq_idx
) = (uint16_t)eqp
.physeqid
;
535 csio_q_pidx(hw
, eq_idx
) = csio_q_cidx(hw
, eq_idx
) = 0;
536 csio_q_inc_idx(hw
, eq_idx
) = 0;
538 mempool_free(mbp
, hw
->mb_mempool
);
544 * csio_wr_eq_create - Configure an Egress queue with FW.
546 * @priv: Private data.
547 * @eq_idx: Egress queue index in the WR module.
548 * @iq_idx: Associated ingress queue index.
549 * @cbfn: Completion callback.
551 * This API configures a offload egress queue with FW by issuing a
552 * FW_EQ_OFLD_CMD (with alloc + write ) mailbox.
555 csio_wr_eq_create(struct csio_hw
*hw
, void *priv
, int eq_idx
,
556 int iq_idx
, uint8_t portid
,
557 void (*cbfn
) (struct csio_hw
*, struct csio_mb
*))
560 struct csio_eq_params eqp
;
562 memset(&eqp
, 0, sizeof(struct csio_eq_params
));
564 mbp
= mempool_alloc(hw
->mb_mempool
, GFP_ATOMIC
);
566 csio_err(hw
, "EQ command out of memory!\n");
573 eqp
.hostfcmode
= X_HOSTFCMODE_STATUS_PAGE
;
574 eqp
.iqid
= csio_q_iqid(hw
, iq_idx
);
575 eqp
.fbmin
= X_FETCHBURSTMIN_64B
;
576 eqp
.fbmax
= X_FETCHBURSTMAX_512B
;
578 eqp
.pciechn
= portid
;
579 eqp
.eqsize
= csio_q_size(hw
, eq_idx
) / CSIO_QCREDIT_SZ
;
580 eqp
.eqaddr
= csio_q_pstart(hw
, eq_idx
);
582 csio_mb_eq_ofld_alloc_write(hw
, mbp
, priv
, CSIO_MB_DEFAULT_TMO
,
585 if (csio_mb_issue(hw
, mbp
)) {
586 csio_err(hw
, "Issue of EQ OFLD cmd failed!\n");
587 mempool_free(mbp
, hw
->mb_mempool
);
594 return csio_wr_eq_cfg_rsp(hw
, mbp
, eq_idx
);
598 * csio_wr_iq_destroy_rsp - Response handler for IQ removal.
599 * @hw: The HW module.
601 * @iq_idx: Ingress queue that was freed.
603 * Handle FW_IQ_CMD (free) mailbox completion.
606 csio_wr_iq_destroy_rsp(struct csio_hw
*hw
, struct csio_mb
*mbp
, int iq_idx
)
608 enum fw_retval retval
= csio_mb_fw_retval(mbp
);
611 if (retval
!= FW_SUCCESS
)
614 mempool_free(mbp
, hw
->mb_mempool
);
620 * csio_wr_iq_destroy - Free an ingress queue.
621 * @hw: The HW module.
622 * @priv: Private data object.
623 * @iq_idx: Ingress queue index to destroy
624 * @cbfn: Completion callback.
626 * This API frees an ingress queue by issuing the FW_IQ_CMD
627 * with the free bit set.
630 csio_wr_iq_destroy(struct csio_hw
*hw
, void *priv
, int iq_idx
,
631 void (*cbfn
)(struct csio_hw
*, struct csio_mb
*))
635 struct csio_iq_params iqp
;
638 memset(&iqp
, 0, sizeof(struct csio_iq_params
));
640 mbp
= mempool_alloc(hw
->mb_mempool
, GFP_ATOMIC
);
646 iqp
.iqid
= csio_q_iqid(hw
, iq_idx
);
647 iqp
.type
= FW_IQ_TYPE_FL_INT_CAP
;
649 flq_idx
= csio_q_iq_flq_idx(hw
, iq_idx
);
651 iqp
.fl0id
= csio_q_flid(hw
, flq_idx
);
657 csio_mb_iq_free(hw
, mbp
, priv
, CSIO_MB_DEFAULT_TMO
, &iqp
, cbfn
);
659 rv
= csio_mb_issue(hw
, mbp
);
661 mempool_free(mbp
, hw
->mb_mempool
);
668 return csio_wr_iq_destroy_rsp(hw
, mbp
, iq_idx
);
672 * csio_wr_eq_destroy_rsp - Response handler for OFLD EQ creation.
673 * @hw: The HW module.
675 * @eq_idx: Egress queue that was freed.
677 * Handle FW_OFLD_EQ_CMD (free) mailbox completion.
680 csio_wr_eq_destroy_rsp(struct csio_hw
*hw
, struct csio_mb
*mbp
, int eq_idx
)
682 enum fw_retval retval
= csio_mb_fw_retval(mbp
);
685 if (retval
!= FW_SUCCESS
)
688 mempool_free(mbp
, hw
->mb_mempool
);
694 * csio_wr_eq_destroy - Free an Egress queue.
695 * @hw: The HW module.
696 * @priv: Private data object.
697 * @eq_idx: Egress queue index to destroy
698 * @cbfn: Completion callback.
700 * This API frees an Egress queue by issuing the FW_EQ_OFLD_CMD
701 * with the free bit set.
704 csio_wr_eq_destroy(struct csio_hw
*hw
, void *priv
, int eq_idx
,
705 void (*cbfn
) (struct csio_hw
*, struct csio_mb
*))
709 struct csio_eq_params eqp
;
711 memset(&eqp
, 0, sizeof(struct csio_eq_params
));
713 mbp
= mempool_alloc(hw
->mb_mempool
, GFP_ATOMIC
);
719 eqp
.eqid
= csio_q_eqid(hw
, eq_idx
);
721 csio_mb_eq_ofld_free(hw
, mbp
, priv
, CSIO_MB_DEFAULT_TMO
, &eqp
, cbfn
);
723 rv
= csio_mb_issue(hw
, mbp
);
725 mempool_free(mbp
, hw
->mb_mempool
);
732 return csio_wr_eq_destroy_rsp(hw
, mbp
, eq_idx
);
736 * csio_wr_cleanup_eq_stpg - Cleanup Egress queue status page
738 * @qidx: Egress queue index
740 * Cleanup the Egress queue status page.
743 csio_wr_cleanup_eq_stpg(struct csio_hw
*hw
, int qidx
)
745 struct csio_q
*q
= csio_hw_to_wrm(hw
)->q_arr
[qidx
];
746 struct csio_qstatus_page
*stp
= (struct csio_qstatus_page
*)q
->vwrap
;
748 memset(stp
, 0, sizeof(*stp
));
752 * csio_wr_cleanup_iq_ftr - Cleanup Footer entries in IQ
754 * @qidx: Ingress queue index
756 * Cleanup the footer entries in the given ingress queue,
757 * set to 1 the internal copy of genbit.
760 csio_wr_cleanup_iq_ftr(struct csio_hw
*hw
, int qidx
)
762 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
763 struct csio_q
*q
= wrm
->q_arr
[qidx
];
765 struct csio_iqwr_footer
*ftr
;
768 /* set to 1 since we are just about zero out genbit */
771 for (i
= 0; i
< q
->credits
; i
++) {
773 wr
= (void *)((uintptr_t)q
->vstart
+
776 ftr
= (struct csio_iqwr_footer
*)((uintptr_t)wr
+
777 (q
->wr_sz
- sizeof(*ftr
)));
778 /* Zero out footer */
779 memset(ftr
, 0, sizeof(*ftr
));
784 csio_wr_destroy_queues(struct csio_hw
*hw
, bool cmd
)
788 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
791 for (i
= 0; i
< wrm
->free_qidx
; i
++) {
796 if (csio_q_eqid(hw
, i
) != CSIO_MAX_QID
) {
797 csio_wr_cleanup_eq_stpg(hw
, i
);
799 csio_q_eqid(hw
, i
) = CSIO_MAX_QID
;
803 rv
= csio_wr_eq_destroy(hw
, NULL
, i
, NULL
);
804 if ((rv
== -EBUSY
) || (rv
== -ETIMEDOUT
))
807 csio_q_eqid(hw
, i
) = CSIO_MAX_QID
;
810 if (csio_q_iqid(hw
, i
) != CSIO_MAX_QID
) {
811 csio_wr_cleanup_iq_ftr(hw
, i
);
813 csio_q_iqid(hw
, i
) = CSIO_MAX_QID
;
814 flq_idx
= csio_q_iq_flq_idx(hw
, i
);
816 csio_q_flid(hw
, flq_idx
) =
821 rv
= csio_wr_iq_destroy(hw
, NULL
, i
, NULL
);
822 if ((rv
== -EBUSY
) || (rv
== -ETIMEDOUT
))
825 csio_q_iqid(hw
, i
) = CSIO_MAX_QID
;
826 flq_idx
= csio_q_iq_flq_idx(hw
, i
);
828 csio_q_flid(hw
, flq_idx
) = CSIO_MAX_QID
;
835 hw
->flags
&= ~CSIO_HWF_Q_FW_ALLOCED
;
841 * csio_wr_get - Get requested size of WR entry/entries from queue.
843 * @qidx: Index of queue.
844 * @size: Cumulative size of Work request(s).
845 * @wrp: Work request pair.
847 * If requested credits are available, return the start address of the
848 * work request in the work request pair. Set pidx accordingly and
851 * NOTE about WR pair:
853 * A WR can start towards the end of a queue, and then continue at the
854 * beginning, since the queue is considered to be circular. This will
855 * require a pair of address/size to be passed back to the caller -
856 * hence Work request pair format.
859 csio_wr_get(struct csio_hw
*hw
, int qidx
, uint32_t size
,
860 struct csio_wr_pair
*wrp
)
862 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
863 struct csio_q
*q
= wrm
->q_arr
[qidx
];
864 void *cwr
= (void *)((uintptr_t)(q
->vstart
) +
865 (q
->pidx
* CSIO_QCREDIT_SZ
));
866 struct csio_qstatus_page
*stp
= (struct csio_qstatus_page
*)q
->vwrap
;
867 uint16_t cidx
= q
->cidx
= ntohs(stp
->cidx
);
868 uint16_t pidx
= q
->pidx
;
869 uint32_t req_sz
= ALIGN(size
, CSIO_QCREDIT_SZ
);
870 int req_credits
= req_sz
/ CSIO_QCREDIT_SZ
;
873 CSIO_DB_ASSERT(q
->owner
!= NULL
);
874 CSIO_DB_ASSERT((qidx
>= 0) && (qidx
< wrm
->free_qidx
));
875 CSIO_DB_ASSERT(cidx
<= q
->credits
);
877 /* Calculate credits */
879 credits
= q
->credits
- (pidx
- cidx
) - 1;
880 } else if (cidx
> pidx
) {
881 credits
= cidx
- pidx
- 1;
883 /* cidx == pidx, empty queue */
884 credits
= q
->credits
;
885 CSIO_INC_STATS(q
, n_qempty
);
889 * Check if we have enough credits.
890 * credits = 1 implies queue is full.
892 if (!credits
|| (req_credits
> credits
)) {
893 CSIO_INC_STATS(q
, n_qfull
);
898 * If we are here, we have enough credits to satisfy the
899 * request. Check if we are near the end of q, and if WR spills over.
900 * If it does, use the first addr/size to cover the queue until
901 * the end. Fit the remainder portion of the request at the top
902 * of queue and return it in the second addr/len. Set pidx
905 if (unlikely(((uintptr_t)cwr
+ req_sz
) > (uintptr_t)(q
->vwrap
))) {
907 wrp
->size1
= (uint32_t)((uintptr_t)q
->vwrap
- (uintptr_t)cwr
);
908 wrp
->addr2
= q
->vstart
;
909 wrp
->size2
= req_sz
- wrp
->size1
;
910 q
->pidx
= (uint16_t)(ALIGN(wrp
->size2
, CSIO_QCREDIT_SZ
) /
912 CSIO_INC_STATS(q
, n_qwrap
);
913 CSIO_INC_STATS(q
, n_eq_wr_split
);
919 q
->pidx
+= (uint16_t)req_credits
;
921 /* We are the end of queue, roll back pidx to top of queue */
922 if (unlikely(q
->pidx
== q
->credits
)) {
924 CSIO_INC_STATS(q
, n_qwrap
);
928 q
->inc_idx
= (uint16_t)req_credits
;
930 CSIO_INC_STATS(q
, n_tot_reqs
);
936 * csio_wr_copy_to_wrp - Copies given data into WR.
937 * @data_buf - Data buffer
938 * @wrp - Work request pair.
939 * @wr_off - Work request offset.
940 * @data_len - Data length.
942 * Copies the given data in Work Request. Work request pair(wrp) specifies
943 * address information of Work request.
947 csio_wr_copy_to_wrp(void *data_buf
, struct csio_wr_pair
*wrp
,
948 uint32_t wr_off
, uint32_t data_len
)
952 /* Number of space available in buffer addr1 of WRP */
953 nbytes
= ((wrp
->size1
- wr_off
) >= data_len
) ?
954 data_len
: (wrp
->size1
- wr_off
);
956 memcpy((uint8_t *) wrp
->addr1
+ wr_off
, data_buf
, nbytes
);
959 /* Write the remaining data from the begining of circular buffer */
961 CSIO_DB_ASSERT(data_len
<= wrp
->size2
);
962 CSIO_DB_ASSERT(wrp
->addr2
!= NULL
);
963 memcpy(wrp
->addr2
, (uint8_t *) data_buf
+ nbytes
, data_len
);
968 * csio_wr_issue - Notify chip of Work request.
970 * @qidx: Index of queue.
971 * @prio: 0: Low priority, 1: High priority
973 * Rings the SGE Doorbell by writing the current producer index of the passed
974 * in queue into the register.
978 csio_wr_issue(struct csio_hw
*hw
, int qidx
, bool prio
)
980 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
981 struct csio_q
*q
= wrm
->q_arr
[qidx
];
983 CSIO_DB_ASSERT((qidx
>= 0) && (qidx
< wrm
->free_qidx
));
986 /* Ring SGE Doorbell writing q->pidx into it */
987 csio_wr_reg32(hw
, DBPRIO_V(prio
) | QID_V(q
->un
.eq
.physeqid
) |
988 PIDX_T5_V(q
->inc_idx
) | DBTYPE_F
,
989 MYPF_REG(SGE_PF_KDOORBELL_A
));
995 static inline uint32_t
996 csio_wr_avail_qcredits(struct csio_q
*q
)
998 if (q
->pidx
> q
->cidx
)
999 return q
->pidx
- q
->cidx
;
1000 else if (q
->cidx
> q
->pidx
)
1001 return q
->credits
- (q
->cidx
- q
->pidx
);
1003 return 0; /* cidx == pidx, empty queue */
1007 * csio_wr_inval_flq_buf - Invalidate a free list buffer entry.
1009 * @flq: The freelist queue.
1011 * Invalidate the driver's version of a freelist buffer entry,
1012 * without freeing the associated the DMA memory. The entry
1013 * to be invalidated is picked up from the current Free list
1018 csio_wr_inval_flq_buf(struct csio_hw
*hw
, struct csio_q
*flq
)
1021 if (flq
->cidx
== flq
->credits
) {
1023 CSIO_INC_STATS(flq
, n_qwrap
);
1028 * csio_wr_process_fl - Process a freelist completion.
1030 * @q: The ingress queue attached to the Freelist.
1031 * @wr: The freelist completion WR in the ingress queue.
1032 * @len_to_qid: The lower 32-bits of the first flit of the RSP footer
1033 * @iq_handler: Caller's handler for this completion.
1034 * @priv: Private pointer of caller
1038 csio_wr_process_fl(struct csio_hw
*hw
, struct csio_q
*q
,
1039 void *wr
, uint32_t len_to_qid
,
1040 void (*iq_handler
)(struct csio_hw
*, void *,
1041 uint32_t, struct csio_fl_dma_buf
*,
1045 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
1046 struct csio_sge
*sge
= &wrm
->sge
;
1047 struct csio_fl_dma_buf flb
;
1048 struct csio_dma_buf
*buf
, *fbuf
;
1049 uint32_t bufsz
, len
, lastlen
= 0;
1051 struct csio_q
*flq
= hw
->wrm
.q_arr
[q
->un
.iq
.flq_idx
];
1053 CSIO_DB_ASSERT(flq
!= NULL
);
1057 if (len
& IQWRF_NEWBUF
) {
1058 if (flq
->un
.fl
.offset
> 0) {
1059 csio_wr_inval_flq_buf(hw
, flq
);
1060 flq
->un
.fl
.offset
= 0;
1062 len
= IQWRF_LEN_GET(len
);
1065 CSIO_DB_ASSERT(len
!= 0);
1069 /* Consume all freelist buffers used for len bytes */
1070 for (n
= 0, fbuf
= flb
.flbufs
; ; n
++, fbuf
++) {
1071 buf
= &flq
->un
.fl
.bufs
[flq
->cidx
];
1072 bufsz
= csio_wr_fl_bufsz(sge
, buf
);
1074 fbuf
->paddr
= buf
->paddr
;
1075 fbuf
->vaddr
= buf
->vaddr
;
1077 flb
.offset
= flq
->un
.fl
.offset
;
1078 lastlen
= min(bufsz
, len
);
1079 fbuf
->len
= lastlen
;
1084 csio_wr_inval_flq_buf(hw
, flq
);
1087 flb
.defer_free
= flq
->un
.fl
.packen
? 0 : 1;
1089 iq_handler(hw
, wr
, q
->wr_sz
- sizeof(struct csio_iqwr_footer
),
1092 if (flq
->un
.fl
.packen
)
1093 flq
->un
.fl
.offset
+= ALIGN(lastlen
, sge
->csio_fl_align
);
1095 csio_wr_inval_flq_buf(hw
, flq
);
1100 * csio_is_new_iqwr - Is this a new Ingress queue entry ?
1101 * @q: Ingress quueue.
1102 * @ftr: Ingress queue WR SGE footer.
1104 * The entry is new if our generation bit matches the corresponding
1105 * bit in the footer of the current WR.
1108 csio_is_new_iqwr(struct csio_q
*q
, struct csio_iqwr_footer
*ftr
)
1110 return (q
->un
.iq
.genbit
== (ftr
->u
.type_gen
>> IQWRF_GEN_SHIFT
));
1114 * csio_wr_process_iq - Process elements in Ingress queue.
1116 * @qidx: Index of queue
1117 * @iq_handler: Handler for this queue
1118 * @priv: Caller's private pointer
1120 * This routine walks through every entry of the ingress queue, calling
1121 * the provided iq_handler with the entry, until the generation bit
1125 csio_wr_process_iq(struct csio_hw
*hw
, struct csio_q
*q
,
1126 void (*iq_handler
)(struct csio_hw
*, void *,
1127 uint32_t, struct csio_fl_dma_buf
*,
1131 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
1132 void *wr
= (void *)((uintptr_t)q
->vstart
+ (q
->cidx
* q
->wr_sz
));
1133 struct csio_iqwr_footer
*ftr
;
1134 uint32_t wr_type
, fw_qid
, qid
;
1135 struct csio_q
*q_completed
;
1136 struct csio_q
*flq
= csio_iq_has_fl(q
) ?
1137 wrm
->q_arr
[q
->un
.iq
.flq_idx
] : NULL
;
1140 /* Get the footer */
1141 ftr
= (struct csio_iqwr_footer
*)((uintptr_t)wr
+
1142 (q
->wr_sz
- sizeof(*ftr
)));
1145 * When q wrapped around last time, driver should have inverted
1146 * ic.genbit as well.
1148 while (csio_is_new_iqwr(q
, ftr
)) {
1150 CSIO_DB_ASSERT(((uintptr_t)wr
+ q
->wr_sz
) <=
1151 (uintptr_t)q
->vwrap
);
1153 wr_type
= IQWRF_TYPE_GET(ftr
->u
.type_gen
);
1156 case X_RSPD_TYPE_CPL
:
1157 /* Subtract footer from WR len */
1158 iq_handler(hw
, wr
, q
->wr_sz
- sizeof(*ftr
), NULL
, priv
);
1160 case X_RSPD_TYPE_FLBUF
:
1161 csio_wr_process_fl(hw
, q
, wr
,
1162 ntohl(ftr
->pldbuflen_qid
),
1165 case X_RSPD_TYPE_INTR
:
1166 fw_qid
= ntohl(ftr
->pldbuflen_qid
);
1167 qid
= fw_qid
- wrm
->fw_iq_start
;
1168 q_completed
= hw
->wrm
.intr_map
[qid
];
1171 csio_q_physiqid(hw
, hw
->intr_iq_idx
))) {
1173 * We are already in the Forward Interrupt
1174 * Interrupt Queue Service! Do-not service
1179 CSIO_DB_ASSERT(q_completed
);
1181 q_completed
->un
.iq
.iq_intx_handler
);
1183 /* Call the queue handler. */
1184 q_completed
->un
.iq
.iq_intx_handler(hw
, NULL
,
1185 0, NULL
, (void *)q_completed
);
1189 csio_warn(hw
, "Unknown resp type 0x%x received\n",
1191 CSIO_INC_STATS(q
, n_rsp_unknown
);
1196 * Ingress *always* has fixed size WR entries. Therefore,
1197 * there should always be complete WRs towards the end of
1200 if (((uintptr_t)wr
+ q
->wr_sz
) == (uintptr_t)q
->vwrap
) {
1202 /* Roll over to start of queue */
1207 q
->un
.iq
.genbit
^= 0x1;
1209 CSIO_INC_STATS(q
, n_qwrap
);
1212 wr
= (void *)((uintptr_t)(q
->vstart
) +
1213 (q
->cidx
* q
->wr_sz
));
1216 ftr
= (struct csio_iqwr_footer
*)((uintptr_t)wr
+
1217 (q
->wr_sz
- sizeof(*ftr
)));
1220 } /* while (q->un.iq.genbit == hdr->genbit) */
1223 * We need to re-arm SGE interrupts in case we got a stray interrupt,
1224 * especially in msix mode. With INTx, this may be a common occurence.
1226 if (unlikely(!q
->inc_idx
)) {
1227 CSIO_INC_STATS(q
, n_stray_comp
);
1232 /* Replenish free list buffers if pending falls below low water mark */
1234 uint32_t avail
= csio_wr_avail_qcredits(flq
);
1236 /* Make sure in FLQ, atleast 1 credit (8 FL buffers)
1237 * remains unpopulated otherwise HW thinks
1240 csio_wr_update_fl(hw
, flq
, (flq
->credits
- 8) - avail
);
1241 csio_wr_ring_fldb(hw
, flq
);
1246 /* Now inform SGE about our incremental index value */
1247 csio_wr_reg32(hw
, CIDXINC_V(q
->inc_idx
) |
1248 INGRESSQID_V(q
->un
.iq
.physiqid
) |
1249 TIMERREG_V(csio_sge_timer_reg
),
1250 MYPF_REG(SGE_PF_GTS_A
));
1251 q
->stats
.n_tot_rsps
+= q
->inc_idx
;
1259 csio_wr_process_iq_idx(struct csio_hw
*hw
, int qidx
,
1260 void (*iq_handler
)(struct csio_hw
*, void *,
1261 uint32_t, struct csio_fl_dma_buf
*,
1265 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
1266 struct csio_q
*iq
= wrm
->q_arr
[qidx
];
1268 return csio_wr_process_iq(hw
, iq
, iq_handler
, priv
);
1272 csio_closest_timer(struct csio_sge
*s
, int time
)
1274 int i
, delta
, match
= 0, min_delta
= INT_MAX
;
1276 for (i
= 0; i
< ARRAY_SIZE(s
->timer_val
); i
++) {
1277 delta
= time
- s
->timer_val
[i
];
1280 if (delta
< min_delta
) {
1289 csio_closest_thresh(struct csio_sge
*s
, int cnt
)
1291 int i
, delta
, match
= 0, min_delta
= INT_MAX
;
1293 for (i
= 0; i
< ARRAY_SIZE(s
->counter_val
); i
++) {
1294 delta
= cnt
- s
->counter_val
[i
];
1297 if (delta
< min_delta
) {
1306 csio_wr_fixup_host_params(struct csio_hw
*hw
)
1308 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
1309 struct csio_sge
*sge
= &wrm
->sge
;
1310 uint32_t clsz
= L1_CACHE_BYTES
;
1311 uint32_t s_hps
= PAGE_SHIFT
- 10;
1312 uint32_t ingpad
= 0;
1313 uint32_t stat_len
= clsz
> 64 ? 128 : 64;
1315 csio_wr_reg32(hw
, HOSTPAGESIZEPF0_V(s_hps
) | HOSTPAGESIZEPF1_V(s_hps
) |
1316 HOSTPAGESIZEPF2_V(s_hps
) | HOSTPAGESIZEPF3_V(s_hps
) |
1317 HOSTPAGESIZEPF4_V(s_hps
) | HOSTPAGESIZEPF5_V(s_hps
) |
1318 HOSTPAGESIZEPF6_V(s_hps
) | HOSTPAGESIZEPF7_V(s_hps
),
1319 SGE_HOST_PAGE_SIZE_A
);
1321 sge
->csio_fl_align
= clsz
< 32 ? 32 : clsz
;
1322 ingpad
= ilog2(sge
->csio_fl_align
) - 5;
1324 csio_set_reg_field(hw
, SGE_CONTROL_A
,
1325 INGPADBOUNDARY_V(INGPADBOUNDARY_M
) |
1326 EGRSTATUSPAGESIZE_F
,
1327 INGPADBOUNDARY_V(ingpad
) |
1328 EGRSTATUSPAGESIZE_V(stat_len
!= 64));
1330 /* FL BUFFER SIZE#0 is Page size i,e already aligned to cache line */
1331 csio_wr_reg32(hw
, PAGE_SIZE
, SGE_FL_BUFFER_SIZE0_A
);
1334 * If using hard params, the following will get set correctly
1335 * in csio_wr_set_sge().
1337 if (hw
->flags
& CSIO_HWF_USING_SOFT_PARAMS
) {
1339 (csio_rd_reg32(hw
, SGE_FL_BUFFER_SIZE2_A
) +
1340 sge
->csio_fl_align
- 1) & ~(sge
->csio_fl_align
- 1),
1341 SGE_FL_BUFFER_SIZE2_A
);
1343 (csio_rd_reg32(hw
, SGE_FL_BUFFER_SIZE3_A
) +
1344 sge
->csio_fl_align
- 1) & ~(sge
->csio_fl_align
- 1),
1345 SGE_FL_BUFFER_SIZE3_A
);
1348 csio_wr_reg32(hw
, HPZ0_V(PAGE_SHIFT
- 12), ULP_RX_TDDP_PSZ_A
);
1350 /* default value of rx_dma_offset of the NIC driver */
1351 csio_set_reg_field(hw
, SGE_CONTROL_A
,
1352 PKTSHIFT_V(PKTSHIFT_M
),
1353 PKTSHIFT_V(CSIO_SGE_RX_DMA_OFFSET
));
1355 csio_hw_tp_wr_bits_indirect(hw
, TP_INGRESS_CONFIG_A
,
1356 CSUM_HAS_PSEUDO_HDR_F
, 0);
1360 csio_init_intr_coalesce_parms(struct csio_hw
*hw
)
1362 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
1363 struct csio_sge
*sge
= &wrm
->sge
;
1365 csio_sge_thresh_reg
= csio_closest_thresh(sge
, csio_intr_coalesce_cnt
);
1366 if (csio_intr_coalesce_cnt
) {
1367 csio_sge_thresh_reg
= 0;
1368 csio_sge_timer_reg
= X_TIMERREG_RESTART_COUNTER
;
1372 csio_sge_timer_reg
= csio_closest_timer(sge
, csio_intr_coalesce_time
);
1376 * csio_wr_get_sge - Get SGE register values.
1379 * Used by non-master functions and by master-functions relying on config file.
1382 csio_wr_get_sge(struct csio_hw
*hw
)
1384 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
1385 struct csio_sge
*sge
= &wrm
->sge
;
1388 u32 timer_value_0_and_1
, timer_value_2_and_3
, timer_value_4_and_5
;
1389 u32 ingress_rx_threshold
;
1391 sge
->sge_control
= csio_rd_reg32(hw
, SGE_CONTROL_A
);
1393 ingpad
= INGPADBOUNDARY_G(sge
->sge_control
);
1396 case X_INGPCIEBOUNDARY_32B
:
1397 sge
->csio_fl_align
= 32; break;
1398 case X_INGPCIEBOUNDARY_64B
:
1399 sge
->csio_fl_align
= 64; break;
1400 case X_INGPCIEBOUNDARY_128B
:
1401 sge
->csio_fl_align
= 128; break;
1402 case X_INGPCIEBOUNDARY_256B
:
1403 sge
->csio_fl_align
= 256; break;
1404 case X_INGPCIEBOUNDARY_512B
:
1405 sge
->csio_fl_align
= 512; break;
1406 case X_INGPCIEBOUNDARY_1024B
:
1407 sge
->csio_fl_align
= 1024; break;
1408 case X_INGPCIEBOUNDARY_2048B
:
1409 sge
->csio_fl_align
= 2048; break;
1410 case X_INGPCIEBOUNDARY_4096B
:
1411 sge
->csio_fl_align
= 4096; break;
1414 for (i
= 0; i
< CSIO_SGE_FL_SIZE_REGS
; i
++)
1415 csio_get_flbuf_size(hw
, sge
, i
);
1417 timer_value_0_and_1
= csio_rd_reg32(hw
, SGE_TIMER_VALUE_0_AND_1_A
);
1418 timer_value_2_and_3
= csio_rd_reg32(hw
, SGE_TIMER_VALUE_2_AND_3_A
);
1419 timer_value_4_and_5
= csio_rd_reg32(hw
, SGE_TIMER_VALUE_4_AND_5_A
);
1421 sge
->timer_val
[0] = (uint16_t)csio_core_ticks_to_us(hw
,
1422 TIMERVALUE0_G(timer_value_0_and_1
));
1423 sge
->timer_val
[1] = (uint16_t)csio_core_ticks_to_us(hw
,
1424 TIMERVALUE1_G(timer_value_0_and_1
));
1425 sge
->timer_val
[2] = (uint16_t)csio_core_ticks_to_us(hw
,
1426 TIMERVALUE2_G(timer_value_2_and_3
));
1427 sge
->timer_val
[3] = (uint16_t)csio_core_ticks_to_us(hw
,
1428 TIMERVALUE3_G(timer_value_2_and_3
));
1429 sge
->timer_val
[4] = (uint16_t)csio_core_ticks_to_us(hw
,
1430 TIMERVALUE4_G(timer_value_4_and_5
));
1431 sge
->timer_val
[5] = (uint16_t)csio_core_ticks_to_us(hw
,
1432 TIMERVALUE5_G(timer_value_4_and_5
));
1434 ingress_rx_threshold
= csio_rd_reg32(hw
, SGE_INGRESS_RX_THRESHOLD_A
);
1435 sge
->counter_val
[0] = THRESHOLD_0_G(ingress_rx_threshold
);
1436 sge
->counter_val
[1] = THRESHOLD_1_G(ingress_rx_threshold
);
1437 sge
->counter_val
[2] = THRESHOLD_2_G(ingress_rx_threshold
);
1438 sge
->counter_val
[3] = THRESHOLD_3_G(ingress_rx_threshold
);
1440 csio_init_intr_coalesce_parms(hw
);
1444 * csio_wr_set_sge - Initialize SGE registers
1447 * Used by Master function to initialize SGE registers in the absence
1451 csio_wr_set_sge(struct csio_hw
*hw
)
1453 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
1454 struct csio_sge
*sge
= &wrm
->sge
;
1458 * Set up our basic SGE mode to deliver CPL messages to our Ingress
1459 * Queue and Packet Date to the Free List.
1461 csio_set_reg_field(hw
, SGE_CONTROL_A
, RXPKTCPLMODE_F
, RXPKTCPLMODE_F
);
1463 sge
->sge_control
= csio_rd_reg32(hw
, SGE_CONTROL_A
);
1465 /* sge->csio_fl_align is set up by csio_wr_fixup_host_params(). */
1468 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
1469 * and generate an interrupt when this occurs so we can recover.
1471 csio_set_reg_field(hw
, SGE_DBFIFO_STATUS_A
,
1472 LP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M
),
1473 LP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH
));
1474 csio_set_reg_field(hw
, SGE_DBFIFO_STATUS2_A
,
1475 HP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M
),
1476 HP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH
));
1478 csio_set_reg_field(hw
, SGE_DOORBELL_CONTROL_A
, ENABLE_DROP_F
,
1481 /* SGE_FL_BUFFER_SIZE0 is set up by csio_wr_fixup_host_params(). */
1483 CSIO_SET_FLBUF_SIZE(hw
, 1, CSIO_SGE_FLBUF_SIZE1
);
1484 csio_wr_reg32(hw
, (CSIO_SGE_FLBUF_SIZE2
+ sge
->csio_fl_align
- 1)
1485 & ~(sge
->csio_fl_align
- 1), SGE_FL_BUFFER_SIZE2_A
);
1486 csio_wr_reg32(hw
, (CSIO_SGE_FLBUF_SIZE3
+ sge
->csio_fl_align
- 1)
1487 & ~(sge
->csio_fl_align
- 1), SGE_FL_BUFFER_SIZE3_A
);
1488 CSIO_SET_FLBUF_SIZE(hw
, 4, CSIO_SGE_FLBUF_SIZE4
);
1489 CSIO_SET_FLBUF_SIZE(hw
, 5, CSIO_SGE_FLBUF_SIZE5
);
1490 CSIO_SET_FLBUF_SIZE(hw
, 6, CSIO_SGE_FLBUF_SIZE6
);
1491 CSIO_SET_FLBUF_SIZE(hw
, 7, CSIO_SGE_FLBUF_SIZE7
);
1492 CSIO_SET_FLBUF_SIZE(hw
, 8, CSIO_SGE_FLBUF_SIZE8
);
1494 for (i
= 0; i
< CSIO_SGE_FL_SIZE_REGS
; i
++)
1495 csio_get_flbuf_size(hw
, sge
, i
);
1497 /* Initialize interrupt coalescing attributes */
1498 sge
->timer_val
[0] = CSIO_SGE_TIMER_VAL_0
;
1499 sge
->timer_val
[1] = CSIO_SGE_TIMER_VAL_1
;
1500 sge
->timer_val
[2] = CSIO_SGE_TIMER_VAL_2
;
1501 sge
->timer_val
[3] = CSIO_SGE_TIMER_VAL_3
;
1502 sge
->timer_val
[4] = CSIO_SGE_TIMER_VAL_4
;
1503 sge
->timer_val
[5] = CSIO_SGE_TIMER_VAL_5
;
1505 sge
->counter_val
[0] = CSIO_SGE_INT_CNT_VAL_0
;
1506 sge
->counter_val
[1] = CSIO_SGE_INT_CNT_VAL_1
;
1507 sge
->counter_val
[2] = CSIO_SGE_INT_CNT_VAL_2
;
1508 sge
->counter_val
[3] = CSIO_SGE_INT_CNT_VAL_3
;
1510 csio_wr_reg32(hw
, THRESHOLD_0_V(sge
->counter_val
[0]) |
1511 THRESHOLD_1_V(sge
->counter_val
[1]) |
1512 THRESHOLD_2_V(sge
->counter_val
[2]) |
1513 THRESHOLD_3_V(sge
->counter_val
[3]),
1514 SGE_INGRESS_RX_THRESHOLD_A
);
1517 TIMERVALUE0_V(csio_us_to_core_ticks(hw
, sge
->timer_val
[0])) |
1518 TIMERVALUE1_V(csio_us_to_core_ticks(hw
, sge
->timer_val
[1])),
1519 SGE_TIMER_VALUE_0_AND_1_A
);
1522 TIMERVALUE2_V(csio_us_to_core_ticks(hw
, sge
->timer_val
[2])) |
1523 TIMERVALUE3_V(csio_us_to_core_ticks(hw
, sge
->timer_val
[3])),
1524 SGE_TIMER_VALUE_2_AND_3_A
);
1527 TIMERVALUE4_V(csio_us_to_core_ticks(hw
, sge
->timer_val
[4])) |
1528 TIMERVALUE5_V(csio_us_to_core_ticks(hw
, sge
->timer_val
[5])),
1529 SGE_TIMER_VALUE_4_AND_5_A
);
1531 csio_init_intr_coalesce_parms(hw
);
1535 csio_wr_sge_init(struct csio_hw
*hw
)
1538 * If we are master and chip is not initialized:
1539 * - If we plan to use the config file, we need to fixup some
1540 * host specific registers, and read the rest of the SGE
1542 * - If we dont plan to use the config file, we need to initialize
1543 * SGE entirely, including fixing the host specific registers.
1544 * If we are master and chip is initialized, just read and work off of
1545 * the already initialized SGE values.
1546 * If we arent the master, we are only allowed to read and work off of
1547 * the already initialized SGE values.
1549 * Therefore, before calling this function, we assume that the master-
1550 * ship of the card, state and whether to use config file or not, have
1551 * already been decided.
1553 if (csio_is_hw_master(hw
)) {
1554 if (hw
->fw_state
!= CSIO_DEV_STATE_INIT
)
1555 csio_wr_fixup_host_params(hw
);
1557 if (hw
->flags
& CSIO_HWF_USING_SOFT_PARAMS
)
1558 csio_wr_get_sge(hw
);
1560 csio_wr_set_sge(hw
);
1562 csio_wr_get_sge(hw
);
1566 * csio_wrm_init - Initialize Work request module.
1570 * Allocates memory for an array of queue pointers starting at q_arr.
1573 csio_wrm_init(struct csio_wrm
*wrm
, struct csio_hw
*hw
)
1578 csio_err(hw
, "Num queues is not set\n");
1582 wrm
->q_arr
= kcalloc(wrm
->num_q
, sizeof(struct csio_q
*), GFP_KERNEL
);
1586 for (i
= 0; i
< wrm
->num_q
; i
++) {
1587 wrm
->q_arr
[i
] = kzalloc(sizeof(struct csio_q
), GFP_KERNEL
);
1588 if (!wrm
->q_arr
[i
]) {
1590 kfree(wrm
->q_arr
[i
]);
1605 * csio_wrm_exit - Initialize Work request module.
1609 * Uninitialize WR module. Free q_arr and pointers in it.
1610 * We have the additional job of freeing the DMA memory associated
1614 csio_wrm_exit(struct csio_wrm
*wrm
, struct csio_hw
*hw
)
1619 struct csio_dma_buf
*buf
;
1621 for (i
= 0; i
< wrm
->num_q
; i
++) {
1624 if (wrm
->free_qidx
&& (i
< wrm
->free_qidx
)) {
1625 if (q
->type
== CSIO_FREELIST
) {
1628 for (j
= 0; j
< q
->credits
; j
++) {
1629 buf
= &q
->un
.fl
.bufs
[j
];
1632 pci_free_consistent(hw
->pdev
, buf
->len
,
1636 kfree(q
->un
.fl
.bufs
);
1638 pci_free_consistent(hw
->pdev
, q
->size
,
1639 q
->vstart
, q
->pstart
);
1644 hw
->flags
&= ~CSIO_HWF_Q_MEM_ALLOCED
;