Linux 4.18.10
[linux/fpc-iii.git] / drivers / spi / spi-bcm2835aux.c
blob3094d818cf06d4751122611bc2eb807e71d965fd
1 /*
2 * Driver for Broadcom BCM2835 auxiliary SPI Controllers
4 * the driver does not rely on the native chipselects at all
5 * but only uses the gpio type chipselects
7 * Based on: spi-bcm2835.c
9 * Copyright (C) 2015 Martin Sperl
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/delay.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_device.h>
33 #include <linux/of_gpio.h>
34 #include <linux/of_irq.h>
35 #include <linux/regmap.h>
36 #include <linux/spi/spi.h>
37 #include <linux/spinlock.h>
40 * spi register defines
42 * note there is garbage in the "official" documentation,
43 * so some data is taken from the file:
44 * brcm_usrlib/dag/vmcsx/vcinclude/bcm2708_chip/aux_io.h
45 * inside of:
46 * http://www.broadcom.com/docs/support/videocore/Brcm_Android_ICS_Graphics_Stack.tar.gz
49 /* SPI register offsets */
50 #define BCM2835_AUX_SPI_CNTL0 0x00
51 #define BCM2835_AUX_SPI_CNTL1 0x04
52 #define BCM2835_AUX_SPI_STAT 0x08
53 #define BCM2835_AUX_SPI_PEEK 0x0C
54 #define BCM2835_AUX_SPI_IO 0x20
55 #define BCM2835_AUX_SPI_TXHOLD 0x30
57 /* Bitfields in CNTL0 */
58 #define BCM2835_AUX_SPI_CNTL0_SPEED 0xFFF00000
59 #define BCM2835_AUX_SPI_CNTL0_SPEED_MAX 0xFFF
60 #define BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT 20
61 #define BCM2835_AUX_SPI_CNTL0_CS 0x000E0000
62 #define BCM2835_AUX_SPI_CNTL0_POSTINPUT 0x00010000
63 #define BCM2835_AUX_SPI_CNTL0_VAR_CS 0x00008000
64 #define BCM2835_AUX_SPI_CNTL0_VAR_WIDTH 0x00004000
65 #define BCM2835_AUX_SPI_CNTL0_DOUTHOLD 0x00003000
66 #define BCM2835_AUX_SPI_CNTL0_ENABLE 0x00000800
67 #define BCM2835_AUX_SPI_CNTL0_IN_RISING 0x00000400
68 #define BCM2835_AUX_SPI_CNTL0_CLEARFIFO 0x00000200
69 #define BCM2835_AUX_SPI_CNTL0_OUT_RISING 0x00000100
70 #define BCM2835_AUX_SPI_CNTL0_CPOL 0x00000080
71 #define BCM2835_AUX_SPI_CNTL0_MSBF_OUT 0x00000040
72 #define BCM2835_AUX_SPI_CNTL0_SHIFTLEN 0x0000003F
74 /* Bitfields in CNTL1 */
75 #define BCM2835_AUX_SPI_CNTL1_CSHIGH 0x00000700
76 #define BCM2835_AUX_SPI_CNTL1_TXEMPTY 0x00000080
77 #define BCM2835_AUX_SPI_CNTL1_IDLE 0x00000040
78 #define BCM2835_AUX_SPI_CNTL1_MSBF_IN 0x00000002
79 #define BCM2835_AUX_SPI_CNTL1_KEEP_IN 0x00000001
81 /* Bitfields in STAT */
82 #define BCM2835_AUX_SPI_STAT_TX_LVL 0xFF000000
83 #define BCM2835_AUX_SPI_STAT_RX_LVL 0x00FF0000
84 #define BCM2835_AUX_SPI_STAT_TX_FULL 0x00000400
85 #define BCM2835_AUX_SPI_STAT_TX_EMPTY 0x00000200
86 #define BCM2835_AUX_SPI_STAT_RX_FULL 0x00000100
87 #define BCM2835_AUX_SPI_STAT_RX_EMPTY 0x00000080
88 #define BCM2835_AUX_SPI_STAT_BUSY 0x00000040
89 #define BCM2835_AUX_SPI_STAT_BITCOUNT 0x0000003F
91 /* timeout values */
92 #define BCM2835_AUX_SPI_POLLING_LIMIT_US 30
93 #define BCM2835_AUX_SPI_POLLING_JIFFIES 2
95 struct bcm2835aux_spi {
96 void __iomem *regs;
97 struct clk *clk;
98 int irq;
99 u32 cntl[2];
100 const u8 *tx_buf;
101 u8 *rx_buf;
102 int tx_len;
103 int rx_len;
104 int pending;
107 static inline u32 bcm2835aux_rd(struct bcm2835aux_spi *bs, unsigned reg)
109 return readl(bs->regs + reg);
112 static inline void bcm2835aux_wr(struct bcm2835aux_spi *bs, unsigned reg,
113 u32 val)
115 writel(val, bs->regs + reg);
118 static inline void bcm2835aux_rd_fifo(struct bcm2835aux_spi *bs)
120 u32 data;
121 int count = min(bs->rx_len, 3);
123 data = bcm2835aux_rd(bs, BCM2835_AUX_SPI_IO);
124 if (bs->rx_buf) {
125 switch (count) {
126 case 4:
127 *bs->rx_buf++ = (data >> 24) & 0xff;
128 /* fallthrough */
129 case 3:
130 *bs->rx_buf++ = (data >> 16) & 0xff;
131 /* fallthrough */
132 case 2:
133 *bs->rx_buf++ = (data >> 8) & 0xff;
134 /* fallthrough */
135 case 1:
136 *bs->rx_buf++ = (data >> 0) & 0xff;
137 /* fallthrough - no default */
140 bs->rx_len -= count;
141 bs->pending -= count;
144 static inline void bcm2835aux_wr_fifo(struct bcm2835aux_spi *bs)
146 u32 data;
147 u8 byte;
148 int count;
149 int i;
151 /* gather up to 3 bytes to write to the FIFO */
152 count = min(bs->tx_len, 3);
153 data = 0;
154 for (i = 0; i < count; i++) {
155 byte = bs->tx_buf ? *bs->tx_buf++ : 0;
156 data |= byte << (8 * (2 - i));
159 /* and set the variable bit-length */
160 data |= (count * 8) << 24;
162 /* and decrement length */
163 bs->tx_len -= count;
164 bs->pending += count;
166 /* write to the correct TX-register */
167 if (bs->tx_len)
168 bcm2835aux_wr(bs, BCM2835_AUX_SPI_TXHOLD, data);
169 else
170 bcm2835aux_wr(bs, BCM2835_AUX_SPI_IO, data);
173 static void bcm2835aux_spi_reset_hw(struct bcm2835aux_spi *bs)
175 /* disable spi clearing fifo and interrupts */
176 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, 0);
177 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0,
178 BCM2835_AUX_SPI_CNTL0_CLEARFIFO);
181 static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id)
183 struct spi_master *master = dev_id;
184 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
185 irqreturn_t ret = IRQ_NONE;
187 /* IRQ may be shared, so return if our interrupts are disabled */
188 if (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_CNTL1) &
189 (BCM2835_AUX_SPI_CNTL1_TXEMPTY | BCM2835_AUX_SPI_CNTL1_IDLE)))
190 return ret;
192 /* check if we have data to read */
193 while (bs->rx_len &&
194 (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
195 BCM2835_AUX_SPI_STAT_RX_EMPTY))) {
196 bcm2835aux_rd_fifo(bs);
197 ret = IRQ_HANDLED;
200 /* check if we have data to write */
201 while (bs->tx_len &&
202 (bs->pending < 12) &&
203 (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
204 BCM2835_AUX_SPI_STAT_TX_FULL))) {
205 bcm2835aux_wr_fifo(bs);
206 ret = IRQ_HANDLED;
209 /* and check if we have reached "done" */
210 while (bs->rx_len &&
211 (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
212 BCM2835_AUX_SPI_STAT_BUSY))) {
213 bcm2835aux_rd_fifo(bs);
214 ret = IRQ_HANDLED;
217 if (!bs->tx_len) {
218 /* disable tx fifo empty interrupt */
219 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
220 BCM2835_AUX_SPI_CNTL1_IDLE);
223 /* and if rx_len is 0 then disable interrupts and wake up completion */
224 if (!bs->rx_len) {
225 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
226 complete(&master->xfer_completion);
229 /* and return */
230 return ret;
233 static int __bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
234 struct spi_device *spi,
235 struct spi_transfer *tfr)
237 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
239 /* enable interrupts */
240 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
241 BCM2835_AUX_SPI_CNTL1_TXEMPTY |
242 BCM2835_AUX_SPI_CNTL1_IDLE);
244 /* and wait for finish... */
245 return 1;
248 static int bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
249 struct spi_device *spi,
250 struct spi_transfer *tfr)
252 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
254 /* fill in registers and fifos before enabling interrupts */
255 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
256 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
258 /* fill in tx fifo with data before enabling interrupts */
259 while ((bs->tx_len) &&
260 (bs->pending < 12) &&
261 (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
262 BCM2835_AUX_SPI_STAT_TX_FULL))) {
263 bcm2835aux_wr_fifo(bs);
266 /* now run the interrupt mode */
267 return __bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
270 static int bcm2835aux_spi_transfer_one_poll(struct spi_master *master,
271 struct spi_device *spi,
272 struct spi_transfer *tfr)
274 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
275 unsigned long timeout;
276 u32 stat;
278 /* configure spi */
279 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
280 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
282 /* set the timeout */
283 timeout = jiffies + BCM2835_AUX_SPI_POLLING_JIFFIES;
285 /* loop until finished the transfer */
286 while (bs->rx_len) {
287 /* read status */
288 stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT);
290 /* fill in tx fifo with remaining data */
291 if ((bs->tx_len) && (!(stat & BCM2835_AUX_SPI_STAT_TX_FULL))) {
292 bcm2835aux_wr_fifo(bs);
293 continue;
296 /* read data from fifo for both cases */
297 if (!(stat & BCM2835_AUX_SPI_STAT_RX_EMPTY)) {
298 bcm2835aux_rd_fifo(bs);
299 continue;
301 if (!(stat & BCM2835_AUX_SPI_STAT_BUSY)) {
302 bcm2835aux_rd_fifo(bs);
303 continue;
306 /* there is still data pending to read check the timeout */
307 if (bs->rx_len && time_after(jiffies, timeout)) {
308 dev_dbg_ratelimited(&spi->dev,
309 "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
310 jiffies - timeout,
311 bs->tx_len, bs->rx_len);
312 /* forward to interrupt handler */
313 return __bcm2835aux_spi_transfer_one_irq(master,
314 spi, tfr);
318 /* and return without waiting for completion */
319 return 0;
322 static int bcm2835aux_spi_transfer_one(struct spi_master *master,
323 struct spi_device *spi,
324 struct spi_transfer *tfr)
326 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
327 unsigned long spi_hz, clk_hz, speed;
328 unsigned long spi_used_hz;
330 /* calculate the registers to handle
332 * note that we use the variable data mode, which
333 * is not optimal for longer transfers as we waste registers
334 * resulting (potentially) in more interrupts when transferring
335 * more than 12 bytes
338 /* set clock */
339 spi_hz = tfr->speed_hz;
340 clk_hz = clk_get_rate(bs->clk);
342 if (spi_hz >= clk_hz / 2) {
343 speed = 0;
344 } else if (spi_hz) {
345 speed = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1;
346 if (speed > BCM2835_AUX_SPI_CNTL0_SPEED_MAX)
347 speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
348 } else { /* the slowest we can go */
349 speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
351 /* mask out old speed from previous spi_transfer */
352 bs->cntl[0] &= ~(BCM2835_AUX_SPI_CNTL0_SPEED);
353 /* set the new speed */
354 bs->cntl[0] |= speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT;
356 spi_used_hz = clk_hz / (2 * (speed + 1));
358 /* set transmit buffers and length */
359 bs->tx_buf = tfr->tx_buf;
360 bs->rx_buf = tfr->rx_buf;
361 bs->tx_len = tfr->len;
362 bs->rx_len = tfr->len;
363 bs->pending = 0;
365 /* Calculate the estimated time in us the transfer runs. Note that
366 * there are are 2 idle clocks cycles after each chunk getting
367 * transferred - in our case the chunk size is 3 bytes, so we
368 * approximate this by 9 cycles/byte. This is used to find the number
369 * of Hz per byte per polling limit. E.g., we can transfer 1 byte in
370 * 30 µs per 300,000 Hz of bus clock.
372 #define HZ_PER_BYTE ((9 * 1000000) / BCM2835_AUX_SPI_POLLING_LIMIT_US)
373 /* run in polling mode for short transfers */
374 if (tfr->len < spi_used_hz / HZ_PER_BYTE)
375 return bcm2835aux_spi_transfer_one_poll(master, spi, tfr);
377 /* run in interrupt mode for all others */
378 return bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
379 #undef HZ_PER_BYTE
382 static int bcm2835aux_spi_prepare_message(struct spi_master *master,
383 struct spi_message *msg)
385 struct spi_device *spi = msg->spi;
386 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
388 bs->cntl[0] = BCM2835_AUX_SPI_CNTL0_ENABLE |
389 BCM2835_AUX_SPI_CNTL0_VAR_WIDTH |
390 BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
391 bs->cntl[1] = BCM2835_AUX_SPI_CNTL1_MSBF_IN;
393 /* handle all the modes */
394 if (spi->mode & SPI_CPOL) {
395 bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPOL;
396 bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_OUT_RISING;
397 } else {
398 bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_IN_RISING;
400 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
401 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
403 return 0;
406 static int bcm2835aux_spi_unprepare_message(struct spi_master *master,
407 struct spi_message *msg)
409 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
411 bcm2835aux_spi_reset_hw(bs);
413 return 0;
416 static void bcm2835aux_spi_handle_err(struct spi_master *master,
417 struct spi_message *msg)
419 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
421 bcm2835aux_spi_reset_hw(bs);
424 static int bcm2835aux_spi_probe(struct platform_device *pdev)
426 struct spi_master *master;
427 struct bcm2835aux_spi *bs;
428 struct resource *res;
429 unsigned long clk_hz;
430 int err;
432 master = spi_alloc_master(&pdev->dev, sizeof(*bs));
433 if (!master) {
434 dev_err(&pdev->dev, "spi_alloc_master() failed\n");
435 return -ENOMEM;
438 platform_set_drvdata(pdev, master);
439 master->mode_bits = (SPI_CPOL | SPI_CS_HIGH | SPI_NO_CS);
440 master->bits_per_word_mask = SPI_BPW_MASK(8);
441 master->num_chipselect = -1;
442 master->transfer_one = bcm2835aux_spi_transfer_one;
443 master->handle_err = bcm2835aux_spi_handle_err;
444 master->prepare_message = bcm2835aux_spi_prepare_message;
445 master->unprepare_message = bcm2835aux_spi_unprepare_message;
446 master->dev.of_node = pdev->dev.of_node;
448 bs = spi_master_get_devdata(master);
450 /* the main area */
451 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
452 bs->regs = devm_ioremap_resource(&pdev->dev, res);
453 if (IS_ERR(bs->regs)) {
454 err = PTR_ERR(bs->regs);
455 goto out_master_put;
458 bs->clk = devm_clk_get(&pdev->dev, NULL);
459 if ((!bs->clk) || (IS_ERR(bs->clk))) {
460 err = PTR_ERR(bs->clk);
461 dev_err(&pdev->dev, "could not get clk: %d\n", err);
462 goto out_master_put;
465 bs->irq = platform_get_irq(pdev, 0);
466 if (bs->irq <= 0) {
467 dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq);
468 err = bs->irq ? bs->irq : -ENODEV;
469 goto out_master_put;
472 /* this also enables the HW block */
473 err = clk_prepare_enable(bs->clk);
474 if (err) {
475 dev_err(&pdev->dev, "could not prepare clock: %d\n", err);
476 goto out_master_put;
479 /* just checking if the clock returns a sane value */
480 clk_hz = clk_get_rate(bs->clk);
481 if (!clk_hz) {
482 dev_err(&pdev->dev, "clock returns 0 Hz\n");
483 err = -ENODEV;
484 goto out_clk_disable;
487 /* reset SPI-HW block */
488 bcm2835aux_spi_reset_hw(bs);
490 err = devm_request_irq(&pdev->dev, bs->irq,
491 bcm2835aux_spi_interrupt,
492 IRQF_SHARED,
493 dev_name(&pdev->dev), master);
494 if (err) {
495 dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
496 goto out_clk_disable;
499 err = devm_spi_register_master(&pdev->dev, master);
500 if (err) {
501 dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
502 goto out_clk_disable;
505 return 0;
507 out_clk_disable:
508 clk_disable_unprepare(bs->clk);
509 out_master_put:
510 spi_master_put(master);
511 return err;
514 static int bcm2835aux_spi_remove(struct platform_device *pdev)
516 struct spi_master *master = platform_get_drvdata(pdev);
517 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
519 bcm2835aux_spi_reset_hw(bs);
521 /* disable the HW block by releasing the clock */
522 clk_disable_unprepare(bs->clk);
524 return 0;
527 static const struct of_device_id bcm2835aux_spi_match[] = {
528 { .compatible = "brcm,bcm2835-aux-spi", },
531 MODULE_DEVICE_TABLE(of, bcm2835aux_spi_match);
533 static struct platform_driver bcm2835aux_spi_driver = {
534 .driver = {
535 .name = "spi-bcm2835aux",
536 .of_match_table = bcm2835aux_spi_match,
538 .probe = bcm2835aux_spi_probe,
539 .remove = bcm2835aux_spi_remove,
541 module_platform_driver(bcm2835aux_spi_driver);
543 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835 aux");
544 MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>");
545 MODULE_LICENSE("GPL v2");