Linux 4.18.10
[linux/fpc-iii.git] / drivers / spi / spi-pxa2xx.c
blob14f4ea59caff7a235faafc7c5cfb91776bcc68a9
1 /*
2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3 * Copyright (C) 2013, Intel Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/bitops.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/ioport.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/pci.h>
26 #include <linux/platform_device.h>
27 #include <linux/spi/pxa2xx_spi.h>
28 #include <linux/spi/spi.h>
29 #include <linux/delay.h>
30 #include <linux/gpio.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/slab.h>
33 #include <linux/clk.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/acpi.h>
37 #include "spi-pxa2xx.h"
39 MODULE_AUTHOR("Stephen Street");
40 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
41 MODULE_LICENSE("GPL");
42 MODULE_ALIAS("platform:pxa2xx-spi");
44 #define TIMOUT_DFLT 1000
47 * for testing SSCR1 changes that require SSP restart, basically
48 * everything except the service and interrupt enables, the pxa270 developer
49 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
50 * list, but the PXA255 dev man says all bits without really meaning the
51 * service and interrupt enables
53 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
54 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
55 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
56 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
57 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
58 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
60 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
61 | QUARK_X1000_SSCR1_EFWR \
62 | QUARK_X1000_SSCR1_RFT \
63 | QUARK_X1000_SSCR1_TFT \
64 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
66 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
67 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
68 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
69 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
70 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
71 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
73 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
74 #define LPSS_CS_CONTROL_SW_MODE BIT(0)
75 #define LPSS_CS_CONTROL_CS_HIGH BIT(1)
76 #define LPSS_CAPS_CS_EN_SHIFT 9
77 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT)
79 struct lpss_config {
80 /* LPSS offset from drv_data->ioaddr */
81 unsigned offset;
82 /* Register offsets from drv_data->lpss_base or -1 */
83 int reg_general;
84 int reg_ssp;
85 int reg_cs_ctrl;
86 int reg_capabilities;
87 /* FIFO thresholds */
88 u32 rx_threshold;
89 u32 tx_threshold_lo;
90 u32 tx_threshold_hi;
91 /* Chip select control */
92 unsigned cs_sel_shift;
93 unsigned cs_sel_mask;
94 unsigned cs_num;
97 /* Keep these sorted with enum pxa_ssp_type */
98 static const struct lpss_config lpss_platforms[] = {
99 { /* LPSS_LPT_SSP */
100 .offset = 0x800,
101 .reg_general = 0x08,
102 .reg_ssp = 0x0c,
103 .reg_cs_ctrl = 0x18,
104 .reg_capabilities = -1,
105 .rx_threshold = 64,
106 .tx_threshold_lo = 160,
107 .tx_threshold_hi = 224,
109 { /* LPSS_BYT_SSP */
110 .offset = 0x400,
111 .reg_general = 0x08,
112 .reg_ssp = 0x0c,
113 .reg_cs_ctrl = 0x18,
114 .reg_capabilities = -1,
115 .rx_threshold = 64,
116 .tx_threshold_lo = 160,
117 .tx_threshold_hi = 224,
119 { /* LPSS_BSW_SSP */
120 .offset = 0x400,
121 .reg_general = 0x08,
122 .reg_ssp = 0x0c,
123 .reg_cs_ctrl = 0x18,
124 .reg_capabilities = -1,
125 .rx_threshold = 64,
126 .tx_threshold_lo = 160,
127 .tx_threshold_hi = 224,
128 .cs_sel_shift = 2,
129 .cs_sel_mask = 1 << 2,
130 .cs_num = 2,
132 { /* LPSS_SPT_SSP */
133 .offset = 0x200,
134 .reg_general = -1,
135 .reg_ssp = 0x20,
136 .reg_cs_ctrl = 0x24,
137 .reg_capabilities = -1,
138 .rx_threshold = 1,
139 .tx_threshold_lo = 32,
140 .tx_threshold_hi = 56,
142 { /* LPSS_BXT_SSP */
143 .offset = 0x200,
144 .reg_general = -1,
145 .reg_ssp = 0x20,
146 .reg_cs_ctrl = 0x24,
147 .reg_capabilities = 0xfc,
148 .rx_threshold = 1,
149 .tx_threshold_lo = 16,
150 .tx_threshold_hi = 48,
151 .cs_sel_shift = 8,
152 .cs_sel_mask = 3 << 8,
154 { /* LPSS_CNL_SSP */
155 .offset = 0x200,
156 .reg_general = -1,
157 .reg_ssp = 0x20,
158 .reg_cs_ctrl = 0x24,
159 .reg_capabilities = 0xfc,
160 .rx_threshold = 1,
161 .tx_threshold_lo = 32,
162 .tx_threshold_hi = 56,
163 .cs_sel_shift = 8,
164 .cs_sel_mask = 3 << 8,
168 static inline const struct lpss_config
169 *lpss_get_config(const struct driver_data *drv_data)
171 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
174 static bool is_lpss_ssp(const struct driver_data *drv_data)
176 switch (drv_data->ssp_type) {
177 case LPSS_LPT_SSP:
178 case LPSS_BYT_SSP:
179 case LPSS_BSW_SSP:
180 case LPSS_SPT_SSP:
181 case LPSS_BXT_SSP:
182 case LPSS_CNL_SSP:
183 return true;
184 default:
185 return false;
189 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
191 return drv_data->ssp_type == QUARK_X1000_SSP;
194 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
196 switch (drv_data->ssp_type) {
197 case QUARK_X1000_SSP:
198 return QUARK_X1000_SSCR1_CHANGE_MASK;
199 case CE4100_SSP:
200 return CE4100_SSCR1_CHANGE_MASK;
201 default:
202 return SSCR1_CHANGE_MASK;
206 static u32
207 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
209 switch (drv_data->ssp_type) {
210 case QUARK_X1000_SSP:
211 return RX_THRESH_QUARK_X1000_DFLT;
212 case CE4100_SSP:
213 return RX_THRESH_CE4100_DFLT;
214 default:
215 return RX_THRESH_DFLT;
219 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
221 u32 mask;
223 switch (drv_data->ssp_type) {
224 case QUARK_X1000_SSP:
225 mask = QUARK_X1000_SSSR_TFL_MASK;
226 break;
227 case CE4100_SSP:
228 mask = CE4100_SSSR_TFL_MASK;
229 break;
230 default:
231 mask = SSSR_TFL_MASK;
232 break;
235 return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
238 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
239 u32 *sccr1_reg)
241 u32 mask;
243 switch (drv_data->ssp_type) {
244 case QUARK_X1000_SSP:
245 mask = QUARK_X1000_SSCR1_RFT;
246 break;
247 case CE4100_SSP:
248 mask = CE4100_SSCR1_RFT;
249 break;
250 default:
251 mask = SSCR1_RFT;
252 break;
254 *sccr1_reg &= ~mask;
257 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
258 u32 *sccr1_reg, u32 threshold)
260 switch (drv_data->ssp_type) {
261 case QUARK_X1000_SSP:
262 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
263 break;
264 case CE4100_SSP:
265 *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
266 break;
267 default:
268 *sccr1_reg |= SSCR1_RxTresh(threshold);
269 break;
273 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
274 u32 clk_div, u8 bits)
276 switch (drv_data->ssp_type) {
277 case QUARK_X1000_SSP:
278 return clk_div
279 | QUARK_X1000_SSCR0_Motorola
280 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
281 | SSCR0_SSE;
282 default:
283 return clk_div
284 | SSCR0_Motorola
285 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
286 | SSCR0_SSE
287 | (bits > 16 ? SSCR0_EDSS : 0);
292 * Read and write LPSS SSP private registers. Caller must first check that
293 * is_lpss_ssp() returns true before these can be called.
295 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
297 WARN_ON(!drv_data->lpss_base);
298 return readl(drv_data->lpss_base + offset);
301 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
302 unsigned offset, u32 value)
304 WARN_ON(!drv_data->lpss_base);
305 writel(value, drv_data->lpss_base + offset);
309 * lpss_ssp_setup - perform LPSS SSP specific setup
310 * @drv_data: pointer to the driver private data
312 * Perform LPSS SSP specific setup. This function must be called first if
313 * one is going to use LPSS SSP private registers.
315 static void lpss_ssp_setup(struct driver_data *drv_data)
317 const struct lpss_config *config;
318 u32 value;
320 config = lpss_get_config(drv_data);
321 drv_data->lpss_base = drv_data->ioaddr + config->offset;
323 /* Enable software chip select control */
324 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
325 value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
326 value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
327 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
329 /* Enable multiblock DMA transfers */
330 if (drv_data->master_info->enable_dma) {
331 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
333 if (config->reg_general >= 0) {
334 value = __lpss_ssp_read_priv(drv_data,
335 config->reg_general);
336 value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
337 __lpss_ssp_write_priv(drv_data,
338 config->reg_general, value);
343 static void lpss_ssp_select_cs(struct spi_device *spi,
344 const struct lpss_config *config)
346 struct driver_data *drv_data =
347 spi_controller_get_devdata(spi->controller);
348 u32 value, cs;
350 if (!config->cs_sel_mask)
351 return;
353 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
355 cs = spi->chip_select;
356 cs <<= config->cs_sel_shift;
357 if (cs != (value & config->cs_sel_mask)) {
359 * When switching another chip select output active the
360 * output must be selected first and wait 2 ssp_clk cycles
361 * before changing state to active. Otherwise a short
362 * glitch will occur on the previous chip select since
363 * output select is latched but state control is not.
365 value &= ~config->cs_sel_mask;
366 value |= cs;
367 __lpss_ssp_write_priv(drv_data,
368 config->reg_cs_ctrl, value);
369 ndelay(1000000000 /
370 (drv_data->master->max_speed_hz / 2));
374 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
376 struct driver_data *drv_data =
377 spi_controller_get_devdata(spi->controller);
378 const struct lpss_config *config;
379 u32 value;
381 config = lpss_get_config(drv_data);
383 if (enable)
384 lpss_ssp_select_cs(spi, config);
386 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
387 if (enable)
388 value &= ~LPSS_CS_CONTROL_CS_HIGH;
389 else
390 value |= LPSS_CS_CONTROL_CS_HIGH;
391 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
394 static void cs_assert(struct spi_device *spi)
396 struct chip_data *chip = spi_get_ctldata(spi);
397 struct driver_data *drv_data =
398 spi_controller_get_devdata(spi->controller);
400 if (drv_data->ssp_type == CE4100_SSP) {
401 pxa2xx_spi_write(drv_data, SSSR, chip->frm);
402 return;
405 if (chip->cs_control) {
406 chip->cs_control(PXA2XX_CS_ASSERT);
407 return;
410 if (chip->gpiod_cs) {
411 gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
412 return;
415 if (is_lpss_ssp(drv_data))
416 lpss_ssp_cs_control(spi, true);
419 static void cs_deassert(struct spi_device *spi)
421 struct chip_data *chip = spi_get_ctldata(spi);
422 struct driver_data *drv_data =
423 spi_controller_get_devdata(spi->controller);
424 unsigned long timeout;
426 if (drv_data->ssp_type == CE4100_SSP)
427 return;
429 /* Wait until SSP becomes idle before deasserting the CS */
430 timeout = jiffies + msecs_to_jiffies(10);
431 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
432 !time_after(jiffies, timeout))
433 cpu_relax();
435 if (chip->cs_control) {
436 chip->cs_control(PXA2XX_CS_DEASSERT);
437 return;
440 if (chip->gpiod_cs) {
441 gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
442 return;
445 if (is_lpss_ssp(drv_data))
446 lpss_ssp_cs_control(spi, false);
449 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
451 if (level)
452 cs_deassert(spi);
453 else
454 cs_assert(spi);
457 int pxa2xx_spi_flush(struct driver_data *drv_data)
459 unsigned long limit = loops_per_jiffy << 1;
461 do {
462 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
463 pxa2xx_spi_read(drv_data, SSDR);
464 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
465 write_SSSR_CS(drv_data, SSSR_ROR);
467 return limit;
470 static int null_writer(struct driver_data *drv_data)
472 u8 n_bytes = drv_data->n_bytes;
474 if (pxa2xx_spi_txfifo_full(drv_data)
475 || (drv_data->tx == drv_data->tx_end))
476 return 0;
478 pxa2xx_spi_write(drv_data, SSDR, 0);
479 drv_data->tx += n_bytes;
481 return 1;
484 static int null_reader(struct driver_data *drv_data)
486 u8 n_bytes = drv_data->n_bytes;
488 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
489 && (drv_data->rx < drv_data->rx_end)) {
490 pxa2xx_spi_read(drv_data, SSDR);
491 drv_data->rx += n_bytes;
494 return drv_data->rx == drv_data->rx_end;
497 static int u8_writer(struct driver_data *drv_data)
499 if (pxa2xx_spi_txfifo_full(drv_data)
500 || (drv_data->tx == drv_data->tx_end))
501 return 0;
503 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
504 ++drv_data->tx;
506 return 1;
509 static int u8_reader(struct driver_data *drv_data)
511 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
512 && (drv_data->rx < drv_data->rx_end)) {
513 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
514 ++drv_data->rx;
517 return drv_data->rx == drv_data->rx_end;
520 static int u16_writer(struct driver_data *drv_data)
522 if (pxa2xx_spi_txfifo_full(drv_data)
523 || (drv_data->tx == drv_data->tx_end))
524 return 0;
526 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
527 drv_data->tx += 2;
529 return 1;
532 static int u16_reader(struct driver_data *drv_data)
534 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
535 && (drv_data->rx < drv_data->rx_end)) {
536 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
537 drv_data->rx += 2;
540 return drv_data->rx == drv_data->rx_end;
543 static int u32_writer(struct driver_data *drv_data)
545 if (pxa2xx_spi_txfifo_full(drv_data)
546 || (drv_data->tx == drv_data->tx_end))
547 return 0;
549 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
550 drv_data->tx += 4;
552 return 1;
555 static int u32_reader(struct driver_data *drv_data)
557 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
558 && (drv_data->rx < drv_data->rx_end)) {
559 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
560 drv_data->rx += 4;
563 return drv_data->rx == drv_data->rx_end;
566 static void reset_sccr1(struct driver_data *drv_data)
568 struct chip_data *chip =
569 spi_get_ctldata(drv_data->master->cur_msg->spi);
570 u32 sccr1_reg;
572 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
573 switch (drv_data->ssp_type) {
574 case QUARK_X1000_SSP:
575 sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
576 break;
577 case CE4100_SSP:
578 sccr1_reg &= ~CE4100_SSCR1_RFT;
579 break;
580 default:
581 sccr1_reg &= ~SSCR1_RFT;
582 break;
584 sccr1_reg |= chip->threshold;
585 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
588 static void int_error_stop(struct driver_data *drv_data, const char* msg)
590 /* Stop and reset SSP */
591 write_SSSR_CS(drv_data, drv_data->clear_sr);
592 reset_sccr1(drv_data);
593 if (!pxa25x_ssp_comp(drv_data))
594 pxa2xx_spi_write(drv_data, SSTO, 0);
595 pxa2xx_spi_flush(drv_data);
596 pxa2xx_spi_write(drv_data, SSCR0,
597 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
599 dev_err(&drv_data->pdev->dev, "%s\n", msg);
601 drv_data->master->cur_msg->status = -EIO;
602 spi_finalize_current_transfer(drv_data->master);
605 static void int_transfer_complete(struct driver_data *drv_data)
607 /* Clear and disable interrupts */
608 write_SSSR_CS(drv_data, drv_data->clear_sr);
609 reset_sccr1(drv_data);
610 if (!pxa25x_ssp_comp(drv_data))
611 pxa2xx_spi_write(drv_data, SSTO, 0);
613 spi_finalize_current_transfer(drv_data->master);
616 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
618 u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
619 drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
621 u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
623 if (irq_status & SSSR_ROR) {
624 int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
625 return IRQ_HANDLED;
628 if (irq_status & SSSR_TINT) {
629 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
630 if (drv_data->read(drv_data)) {
631 int_transfer_complete(drv_data);
632 return IRQ_HANDLED;
636 /* Drain rx fifo, Fill tx fifo and prevent overruns */
637 do {
638 if (drv_data->read(drv_data)) {
639 int_transfer_complete(drv_data);
640 return IRQ_HANDLED;
642 } while (drv_data->write(drv_data));
644 if (drv_data->read(drv_data)) {
645 int_transfer_complete(drv_data);
646 return IRQ_HANDLED;
649 if (drv_data->tx == drv_data->tx_end) {
650 u32 bytes_left;
651 u32 sccr1_reg;
653 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
654 sccr1_reg &= ~SSCR1_TIE;
657 * PXA25x_SSP has no timeout, set up rx threshould for the
658 * remaining RX bytes.
660 if (pxa25x_ssp_comp(drv_data)) {
661 u32 rx_thre;
663 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
665 bytes_left = drv_data->rx_end - drv_data->rx;
666 switch (drv_data->n_bytes) {
667 case 4:
668 bytes_left >>= 1;
669 case 2:
670 bytes_left >>= 1;
673 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
674 if (rx_thre > bytes_left)
675 rx_thre = bytes_left;
677 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
679 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
682 /* We did something */
683 return IRQ_HANDLED;
686 static void handle_bad_msg(struct driver_data *drv_data)
688 pxa2xx_spi_write(drv_data, SSCR0,
689 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
690 pxa2xx_spi_write(drv_data, SSCR1,
691 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
692 if (!pxa25x_ssp_comp(drv_data))
693 pxa2xx_spi_write(drv_data, SSTO, 0);
694 write_SSSR_CS(drv_data, drv_data->clear_sr);
696 dev_err(&drv_data->pdev->dev,
697 "bad message state in interrupt handler\n");
700 static irqreturn_t ssp_int(int irq, void *dev_id)
702 struct driver_data *drv_data = dev_id;
703 u32 sccr1_reg;
704 u32 mask = drv_data->mask_sr;
705 u32 status;
708 * The IRQ might be shared with other peripherals so we must first
709 * check that are we RPM suspended or not. If we are we assume that
710 * the IRQ was not for us (we shouldn't be RPM suspended when the
711 * interrupt is enabled).
713 if (pm_runtime_suspended(&drv_data->pdev->dev))
714 return IRQ_NONE;
717 * If the device is not yet in RPM suspended state and we get an
718 * interrupt that is meant for another device, check if status bits
719 * are all set to one. That means that the device is already
720 * powered off.
722 status = pxa2xx_spi_read(drv_data, SSSR);
723 if (status == ~0)
724 return IRQ_NONE;
726 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
728 /* Ignore possible writes if we don't need to write */
729 if (!(sccr1_reg & SSCR1_TIE))
730 mask &= ~SSSR_TFS;
732 /* Ignore RX timeout interrupt if it is disabled */
733 if (!(sccr1_reg & SSCR1_TINTE))
734 mask &= ~SSSR_TINT;
736 if (!(status & mask))
737 return IRQ_NONE;
739 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
740 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
742 if (!drv_data->master->cur_msg) {
743 handle_bad_msg(drv_data);
744 /* Never fail */
745 return IRQ_HANDLED;
748 return drv_data->transfer_handler(drv_data);
752 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
753 * input frequency by fractions of 2^24. It also has a divider by 5.
755 * There are formulas to get baud rate value for given input frequency and
756 * divider parameters, such as DDS_CLK_RATE and SCR:
758 * Fsys = 200MHz
760 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1)
761 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2)
763 * DDS_CLK_RATE either 2^n or 2^n / 5.
764 * SCR is in range 0 .. 255
766 * Divisor = 5^i * 2^j * 2 * k
767 * i = [0, 1] i = 1 iff j = 0 or j > 3
768 * j = [0, 23] j = 0 iff i = 1
769 * k = [1, 256]
770 * Special case: j = 0, i = 1: Divisor = 2 / 5
772 * Accordingly to the specification the recommended values for DDS_CLK_RATE
773 * are:
774 * Case 1: 2^n, n = [0, 23]
775 * Case 2: 2^24 * 2 / 5 (0x666666)
776 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333)
778 * In all cases the lowest possible value is better.
780 * The function calculates parameters for all cases and chooses the one closest
781 * to the asked baud rate.
783 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
785 unsigned long xtal = 200000000;
786 unsigned long fref = xtal / 2; /* mandatory division by 2,
787 see (2) */
788 /* case 3 */
789 unsigned long fref1 = fref / 2; /* case 1 */
790 unsigned long fref2 = fref * 2 / 5; /* case 2 */
791 unsigned long scale;
792 unsigned long q, q1, q2;
793 long r, r1, r2;
794 u32 mul;
796 /* Case 1 */
798 /* Set initial value for DDS_CLK_RATE */
799 mul = (1 << 24) >> 1;
801 /* Calculate initial quot */
802 q1 = DIV_ROUND_UP(fref1, rate);
804 /* Scale q1 if it's too big */
805 if (q1 > 256) {
806 /* Scale q1 to range [1, 512] */
807 scale = fls_long(q1 - 1);
808 if (scale > 9) {
809 q1 >>= scale - 9;
810 mul >>= scale - 9;
813 /* Round the result if we have a remainder */
814 q1 += q1 & 1;
817 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
818 scale = __ffs(q1);
819 q1 >>= scale;
820 mul >>= scale;
822 /* Get the remainder */
823 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
825 /* Case 2 */
827 q2 = DIV_ROUND_UP(fref2, rate);
828 r2 = abs(fref2 / q2 - rate);
831 * Choose the best between two: less remainder we have the better. We
832 * can't go case 2 if q2 is greater than 256 since SCR register can
833 * hold only values 0 .. 255.
835 if (r2 >= r1 || q2 > 256) {
836 /* case 1 is better */
837 r = r1;
838 q = q1;
839 } else {
840 /* case 2 is better */
841 r = r2;
842 q = q2;
843 mul = (1 << 24) * 2 / 5;
846 /* Check case 3 only if the divisor is big enough */
847 if (fref / rate >= 80) {
848 u64 fssp;
849 u32 m;
851 /* Calculate initial quot */
852 q1 = DIV_ROUND_UP(fref, rate);
853 m = (1 << 24) / q1;
855 /* Get the remainder */
856 fssp = (u64)fref * m;
857 do_div(fssp, 1 << 24);
858 r1 = abs(fssp - rate);
860 /* Choose this one if it suits better */
861 if (r1 < r) {
862 /* case 3 is better */
863 q = 1;
864 mul = m;
868 *dds = mul;
869 return q - 1;
872 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
874 unsigned long ssp_clk = drv_data->master->max_speed_hz;
875 const struct ssp_device *ssp = drv_data->ssp;
877 rate = min_t(int, ssp_clk, rate);
879 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
880 return (ssp_clk / (2 * rate) - 1) & 0xff;
881 else
882 return (ssp_clk / rate - 1) & 0xfff;
885 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
886 int rate)
888 struct chip_data *chip =
889 spi_get_ctldata(drv_data->master->cur_msg->spi);
890 unsigned int clk_div;
892 switch (drv_data->ssp_type) {
893 case QUARK_X1000_SSP:
894 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
895 break;
896 default:
897 clk_div = ssp_get_clk_div(drv_data, rate);
898 break;
900 return clk_div << 8;
903 static bool pxa2xx_spi_can_dma(struct spi_controller *master,
904 struct spi_device *spi,
905 struct spi_transfer *xfer)
907 struct chip_data *chip = spi_get_ctldata(spi);
909 return chip->enable_dma &&
910 xfer->len <= MAX_DMA_LEN &&
911 xfer->len >= chip->dma_burst_size;
914 static int pxa2xx_spi_transfer_one(struct spi_controller *master,
915 struct spi_device *spi,
916 struct spi_transfer *transfer)
918 struct driver_data *drv_data = spi_controller_get_devdata(master);
919 struct spi_message *message = master->cur_msg;
920 struct chip_data *chip = spi_get_ctldata(message->spi);
921 u32 dma_thresh = chip->dma_threshold;
922 u32 dma_burst = chip->dma_burst_size;
923 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
924 u32 clk_div;
925 u8 bits;
926 u32 speed;
927 u32 cr0;
928 u32 cr1;
929 int err;
930 int dma_mapped;
932 /* Check if we can DMA this transfer */
933 if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
935 /* reject already-mapped transfers; PIO won't always work */
936 if (message->is_dma_mapped
937 || transfer->rx_dma || transfer->tx_dma) {
938 dev_err(&drv_data->pdev->dev,
939 "Mapped transfer length of %u is greater than %d\n",
940 transfer->len, MAX_DMA_LEN);
941 return -EINVAL;
944 /* warn ... we force this to PIO mode */
945 dev_warn_ratelimited(&message->spi->dev,
946 "DMA disabled for transfer length %ld greater than %d\n",
947 (long)transfer->len, MAX_DMA_LEN);
950 /* Setup the transfer state based on the type of transfer */
951 if (pxa2xx_spi_flush(drv_data) == 0) {
952 dev_err(&drv_data->pdev->dev, "Flush failed\n");
953 return -EIO;
955 drv_data->n_bytes = chip->n_bytes;
956 drv_data->tx = (void *)transfer->tx_buf;
957 drv_data->tx_end = drv_data->tx + transfer->len;
958 drv_data->rx = transfer->rx_buf;
959 drv_data->rx_end = drv_data->rx + transfer->len;
960 drv_data->write = drv_data->tx ? chip->write : null_writer;
961 drv_data->read = drv_data->rx ? chip->read : null_reader;
963 /* Change speed and bit per word on a per transfer */
964 bits = transfer->bits_per_word;
965 speed = transfer->speed_hz;
967 clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
969 if (bits <= 8) {
970 drv_data->n_bytes = 1;
971 drv_data->read = drv_data->read != null_reader ?
972 u8_reader : null_reader;
973 drv_data->write = drv_data->write != null_writer ?
974 u8_writer : null_writer;
975 } else if (bits <= 16) {
976 drv_data->n_bytes = 2;
977 drv_data->read = drv_data->read != null_reader ?
978 u16_reader : null_reader;
979 drv_data->write = drv_data->write != null_writer ?
980 u16_writer : null_writer;
981 } else if (bits <= 32) {
982 drv_data->n_bytes = 4;
983 drv_data->read = drv_data->read != null_reader ?
984 u32_reader : null_reader;
985 drv_data->write = drv_data->write != null_writer ?
986 u32_writer : null_writer;
989 * if bits/word is changed in dma mode, then must check the
990 * thresholds and burst also
992 if (chip->enable_dma) {
993 if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
994 message->spi,
995 bits, &dma_burst,
996 &dma_thresh))
997 dev_warn_ratelimited(&message->spi->dev,
998 "DMA burst size reduced to match bits_per_word\n");
1001 dma_mapped = master->can_dma &&
1002 master->can_dma(master, message->spi, transfer) &&
1003 master->cur_msg_mapped;
1004 if (dma_mapped) {
1006 /* Ensure we have the correct interrupt handler */
1007 drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1009 err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1010 if (err)
1011 return err;
1013 /* Clear status and start DMA engine */
1014 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1015 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1017 pxa2xx_spi_dma_start(drv_data);
1018 } else {
1019 /* Ensure we have the correct interrupt handler */
1020 drv_data->transfer_handler = interrupt_transfer;
1022 /* Clear status */
1023 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1024 write_SSSR_CS(drv_data, drv_data->clear_sr);
1027 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1028 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1029 if (!pxa25x_ssp_comp(drv_data))
1030 dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1031 master->max_speed_hz
1032 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1033 dma_mapped ? "DMA" : "PIO");
1034 else
1035 dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1036 master->max_speed_hz / 2
1037 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1038 dma_mapped ? "DMA" : "PIO");
1040 if (is_lpss_ssp(drv_data)) {
1041 if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1042 != chip->lpss_rx_threshold)
1043 pxa2xx_spi_write(drv_data, SSIRF,
1044 chip->lpss_rx_threshold);
1045 if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1046 != chip->lpss_tx_threshold)
1047 pxa2xx_spi_write(drv_data, SSITF,
1048 chip->lpss_tx_threshold);
1051 if (is_quark_x1000_ssp(drv_data) &&
1052 (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1053 pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1055 /* see if we need to reload the config registers */
1056 if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1057 || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1058 != (cr1 & change_mask)) {
1059 /* stop the SSP, and update the other bits */
1060 pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1061 if (!pxa25x_ssp_comp(drv_data))
1062 pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1063 /* first set CR1 without interrupt and service enables */
1064 pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1065 /* restart the SSP */
1066 pxa2xx_spi_write(drv_data, SSCR0, cr0);
1068 } else {
1069 if (!pxa25x_ssp_comp(drv_data))
1070 pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1074 * Release the data by enabling service requests and interrupts,
1075 * without changing any mode bits
1077 pxa2xx_spi_write(drv_data, SSCR1, cr1);
1079 return 1;
1082 static void pxa2xx_spi_handle_err(struct spi_controller *master,
1083 struct spi_message *msg)
1085 struct driver_data *drv_data = spi_controller_get_devdata(master);
1087 /* Disable the SSP */
1088 pxa2xx_spi_write(drv_data, SSCR0,
1089 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1090 /* Clear and disable interrupts and service requests */
1091 write_SSSR_CS(drv_data, drv_data->clear_sr);
1092 pxa2xx_spi_write(drv_data, SSCR1,
1093 pxa2xx_spi_read(drv_data, SSCR1)
1094 & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1095 if (!pxa25x_ssp_comp(drv_data))
1096 pxa2xx_spi_write(drv_data, SSTO, 0);
1099 * Stop the DMA if running. Note DMA callback handler may have unset
1100 * the dma_running already, which is fine as stopping is not needed
1101 * then but we shouldn't rely this flag for anything else than
1102 * stopping. For instance to differentiate between PIO and DMA
1103 * transfers.
1105 if (atomic_read(&drv_data->dma_running))
1106 pxa2xx_spi_dma_stop(drv_data);
1109 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *master)
1111 struct driver_data *drv_data = spi_controller_get_devdata(master);
1113 /* Disable the SSP now */
1114 pxa2xx_spi_write(drv_data, SSCR0,
1115 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1117 return 0;
1120 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1121 struct pxa2xx_spi_chip *chip_info)
1123 struct driver_data *drv_data =
1124 spi_controller_get_devdata(spi->controller);
1125 struct gpio_desc *gpiod;
1126 int err = 0;
1128 if (chip == NULL)
1129 return 0;
1131 if (drv_data->cs_gpiods) {
1132 gpiod = drv_data->cs_gpiods[spi->chip_select];
1133 if (gpiod) {
1134 chip->gpiod_cs = gpiod;
1135 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1136 gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1139 return 0;
1142 if (chip_info == NULL)
1143 return 0;
1145 /* NOTE: setup() can be called multiple times, possibly with
1146 * different chip_info, release previously requested GPIO
1148 if (chip->gpiod_cs) {
1149 gpiod_put(chip->gpiod_cs);
1150 chip->gpiod_cs = NULL;
1153 /* If (*cs_control) is provided, ignore GPIO chip select */
1154 if (chip_info->cs_control) {
1155 chip->cs_control = chip_info->cs_control;
1156 return 0;
1159 if (gpio_is_valid(chip_info->gpio_cs)) {
1160 err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1161 if (err) {
1162 dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1163 chip_info->gpio_cs);
1164 return err;
1167 gpiod = gpio_to_desc(chip_info->gpio_cs);
1168 chip->gpiod_cs = gpiod;
1169 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1171 err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1174 return err;
1177 static int setup(struct spi_device *spi)
1179 struct pxa2xx_spi_chip *chip_info;
1180 struct chip_data *chip;
1181 const struct lpss_config *config;
1182 struct driver_data *drv_data =
1183 spi_controller_get_devdata(spi->controller);
1184 uint tx_thres, tx_hi_thres, rx_thres;
1186 switch (drv_data->ssp_type) {
1187 case QUARK_X1000_SSP:
1188 tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1189 tx_hi_thres = 0;
1190 rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1191 break;
1192 case CE4100_SSP:
1193 tx_thres = TX_THRESH_CE4100_DFLT;
1194 tx_hi_thres = 0;
1195 rx_thres = RX_THRESH_CE4100_DFLT;
1196 break;
1197 case LPSS_LPT_SSP:
1198 case LPSS_BYT_SSP:
1199 case LPSS_BSW_SSP:
1200 case LPSS_SPT_SSP:
1201 case LPSS_BXT_SSP:
1202 case LPSS_CNL_SSP:
1203 config = lpss_get_config(drv_data);
1204 tx_thres = config->tx_threshold_lo;
1205 tx_hi_thres = config->tx_threshold_hi;
1206 rx_thres = config->rx_threshold;
1207 break;
1208 default:
1209 tx_thres = TX_THRESH_DFLT;
1210 tx_hi_thres = 0;
1211 rx_thres = RX_THRESH_DFLT;
1212 break;
1215 /* Only alloc on first setup */
1216 chip = spi_get_ctldata(spi);
1217 if (!chip) {
1218 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1219 if (!chip)
1220 return -ENOMEM;
1222 if (drv_data->ssp_type == CE4100_SSP) {
1223 if (spi->chip_select > 4) {
1224 dev_err(&spi->dev,
1225 "failed setup: cs number must not be > 4.\n");
1226 kfree(chip);
1227 return -EINVAL;
1230 chip->frm = spi->chip_select;
1232 chip->enable_dma = drv_data->master_info->enable_dma;
1233 chip->timeout = TIMOUT_DFLT;
1236 /* protocol drivers may change the chip settings, so...
1237 * if chip_info exists, use it */
1238 chip_info = spi->controller_data;
1240 /* chip_info isn't always needed */
1241 chip->cr1 = 0;
1242 if (chip_info) {
1243 if (chip_info->timeout)
1244 chip->timeout = chip_info->timeout;
1245 if (chip_info->tx_threshold)
1246 tx_thres = chip_info->tx_threshold;
1247 if (chip_info->tx_hi_threshold)
1248 tx_hi_thres = chip_info->tx_hi_threshold;
1249 if (chip_info->rx_threshold)
1250 rx_thres = chip_info->rx_threshold;
1251 chip->dma_threshold = 0;
1252 if (chip_info->enable_loopback)
1253 chip->cr1 = SSCR1_LBM;
1256 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1257 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1258 | SSITF_TxHiThresh(tx_hi_thres);
1260 /* set dma burst and threshold outside of chip_info path so that if
1261 * chip_info goes away after setting chip->enable_dma, the
1262 * burst and threshold can still respond to changes in bits_per_word */
1263 if (chip->enable_dma) {
1264 /* set up legal burst and threshold for dma */
1265 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1266 spi->bits_per_word,
1267 &chip->dma_burst_size,
1268 &chip->dma_threshold)) {
1269 dev_warn(&spi->dev,
1270 "in setup: DMA burst size reduced to match bits_per_word\n");
1274 switch (drv_data->ssp_type) {
1275 case QUARK_X1000_SSP:
1276 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1277 & QUARK_X1000_SSCR1_RFT)
1278 | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1279 & QUARK_X1000_SSCR1_TFT);
1280 break;
1281 case CE4100_SSP:
1282 chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1283 (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1284 break;
1285 default:
1286 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1287 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1288 break;
1291 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1292 chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1293 | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1295 if (spi->mode & SPI_LOOP)
1296 chip->cr1 |= SSCR1_LBM;
1298 if (spi->bits_per_word <= 8) {
1299 chip->n_bytes = 1;
1300 chip->read = u8_reader;
1301 chip->write = u8_writer;
1302 } else if (spi->bits_per_word <= 16) {
1303 chip->n_bytes = 2;
1304 chip->read = u16_reader;
1305 chip->write = u16_writer;
1306 } else if (spi->bits_per_word <= 32) {
1307 chip->n_bytes = 4;
1308 chip->read = u32_reader;
1309 chip->write = u32_writer;
1312 spi_set_ctldata(spi, chip);
1314 if (drv_data->ssp_type == CE4100_SSP)
1315 return 0;
1317 return setup_cs(spi, chip, chip_info);
1320 static void cleanup(struct spi_device *spi)
1322 struct chip_data *chip = spi_get_ctldata(spi);
1323 struct driver_data *drv_data =
1324 spi_controller_get_devdata(spi->controller);
1326 if (!chip)
1327 return;
1329 if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1330 chip->gpiod_cs)
1331 gpiod_put(chip->gpiod_cs);
1333 kfree(chip);
1336 #ifdef CONFIG_PCI
1337 #ifdef CONFIG_ACPI
1339 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1340 { "INT33C0", LPSS_LPT_SSP },
1341 { "INT33C1", LPSS_LPT_SSP },
1342 { "INT3430", LPSS_LPT_SSP },
1343 { "INT3431", LPSS_LPT_SSP },
1344 { "80860F0E", LPSS_BYT_SSP },
1345 { "8086228E", LPSS_BSW_SSP },
1346 { },
1348 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1350 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1352 unsigned int devid;
1353 int port_id = -1;
1355 if (adev && adev->pnp.unique_id &&
1356 !kstrtouint(adev->pnp.unique_id, 0, &devid))
1357 port_id = devid;
1358 return port_id;
1360 #else /* !CONFIG_ACPI */
1361 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1363 return -1;
1365 #endif
1368 * PCI IDs of compound devices that integrate both host controller and private
1369 * integrated DMA engine. Please note these are not used in module
1370 * autoloading and probing in this module but matching the LPSS SSP type.
1372 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1373 /* SPT-LP */
1374 { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1375 { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1376 /* SPT-H */
1377 { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1378 { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1379 /* KBL-H */
1380 { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1381 { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1382 /* BXT A-Step */
1383 { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1384 { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1385 { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1386 /* BXT B-Step */
1387 { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1388 { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1389 { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1390 /* GLK */
1391 { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1392 { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1393 { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1394 /* ICL-LP */
1395 { PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1396 { PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1397 { PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1398 /* APL */
1399 { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1400 { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1401 { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1402 /* CNL-LP */
1403 { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1404 { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1405 { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1406 /* CNL-H */
1407 { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1408 { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1409 { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1410 { },
1413 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1415 struct device *dev = param;
1417 if (dev != chan->device->dev->parent)
1418 return false;
1420 return true;
1423 static struct pxa2xx_spi_master *
1424 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1426 struct pxa2xx_spi_master *pdata;
1427 struct acpi_device *adev;
1428 struct ssp_device *ssp;
1429 struct resource *res;
1430 const struct acpi_device_id *adev_id = NULL;
1431 const struct pci_device_id *pcidev_id = NULL;
1432 int type;
1434 adev = ACPI_COMPANION(&pdev->dev);
1436 if (dev_is_pci(pdev->dev.parent))
1437 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1438 to_pci_dev(pdev->dev.parent));
1439 else if (adev)
1440 adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1441 &pdev->dev);
1442 else
1443 return NULL;
1445 if (adev_id)
1446 type = (int)adev_id->driver_data;
1447 else if (pcidev_id)
1448 type = (int)pcidev_id->driver_data;
1449 else
1450 return NULL;
1452 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1453 if (!pdata)
1454 return NULL;
1456 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1457 if (!res)
1458 return NULL;
1460 ssp = &pdata->ssp;
1462 ssp->phys_base = res->start;
1463 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1464 if (IS_ERR(ssp->mmio_base))
1465 return NULL;
1467 if (pcidev_id) {
1468 pdata->tx_param = pdev->dev.parent;
1469 pdata->rx_param = pdev->dev.parent;
1470 pdata->dma_filter = pxa2xx_spi_idma_filter;
1473 ssp->clk = devm_clk_get(&pdev->dev, NULL);
1474 ssp->irq = platform_get_irq(pdev, 0);
1475 ssp->type = type;
1476 ssp->pdev = pdev;
1477 ssp->port_id = pxa2xx_spi_get_port_id(adev);
1479 pdata->num_chipselect = 1;
1480 pdata->enable_dma = true;
1482 return pdata;
1485 #else /* !CONFIG_PCI */
1486 static inline struct pxa2xx_spi_master *
1487 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1489 return NULL;
1491 #endif
1493 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *master,
1494 unsigned int cs)
1496 struct driver_data *drv_data = spi_controller_get_devdata(master);
1498 if (has_acpi_companion(&drv_data->pdev->dev)) {
1499 switch (drv_data->ssp_type) {
1501 * For Atoms the ACPI DeviceSelection used by the Windows
1502 * driver starts from 1 instead of 0 so translate it here
1503 * to match what Linux expects.
1505 case LPSS_BYT_SSP:
1506 case LPSS_BSW_SSP:
1507 return cs - 1;
1509 default:
1510 break;
1514 return cs;
1517 static int pxa2xx_spi_probe(struct platform_device *pdev)
1519 struct device *dev = &pdev->dev;
1520 struct pxa2xx_spi_master *platform_info;
1521 struct spi_controller *master;
1522 struct driver_data *drv_data;
1523 struct ssp_device *ssp;
1524 const struct lpss_config *config;
1525 int status, count;
1526 u32 tmp;
1528 platform_info = dev_get_platdata(dev);
1529 if (!platform_info) {
1530 platform_info = pxa2xx_spi_init_pdata(pdev);
1531 if (!platform_info) {
1532 dev_err(&pdev->dev, "missing platform data\n");
1533 return -ENODEV;
1537 ssp = pxa_ssp_request(pdev->id, pdev->name);
1538 if (!ssp)
1539 ssp = &platform_info->ssp;
1541 if (!ssp->mmio_base) {
1542 dev_err(&pdev->dev, "failed to get ssp\n");
1543 return -ENODEV;
1546 master = spi_alloc_master(dev, sizeof(struct driver_data));
1547 if (!master) {
1548 dev_err(&pdev->dev, "cannot alloc spi_master\n");
1549 pxa_ssp_free(ssp);
1550 return -ENOMEM;
1552 drv_data = spi_controller_get_devdata(master);
1553 drv_data->master = master;
1554 drv_data->master_info = platform_info;
1555 drv_data->pdev = pdev;
1556 drv_data->ssp = ssp;
1558 master->dev.of_node = pdev->dev.of_node;
1559 /* the spi->mode bits understood by this driver: */
1560 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1562 master->bus_num = ssp->port_id;
1563 master->dma_alignment = DMA_ALIGNMENT;
1564 master->cleanup = cleanup;
1565 master->setup = setup;
1566 master->set_cs = pxa2xx_spi_set_cs;
1567 master->transfer_one = pxa2xx_spi_transfer_one;
1568 master->handle_err = pxa2xx_spi_handle_err;
1569 master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1570 master->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1571 master->auto_runtime_pm = true;
1572 master->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1574 drv_data->ssp_type = ssp->type;
1576 drv_data->ioaddr = ssp->mmio_base;
1577 drv_data->ssdr_physical = ssp->phys_base + SSDR;
1578 if (pxa25x_ssp_comp(drv_data)) {
1579 switch (drv_data->ssp_type) {
1580 case QUARK_X1000_SSP:
1581 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1582 break;
1583 default:
1584 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1585 break;
1588 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1589 drv_data->dma_cr1 = 0;
1590 drv_data->clear_sr = SSSR_ROR;
1591 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1592 } else {
1593 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1594 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1595 drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1596 drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1597 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1600 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1601 drv_data);
1602 if (status < 0) {
1603 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1604 goto out_error_master_alloc;
1607 /* Setup DMA if requested */
1608 if (platform_info->enable_dma) {
1609 status = pxa2xx_spi_dma_setup(drv_data);
1610 if (status) {
1611 dev_dbg(dev, "no DMA channels available, using PIO\n");
1612 platform_info->enable_dma = false;
1613 } else {
1614 master->can_dma = pxa2xx_spi_can_dma;
1618 /* Enable SOC clock */
1619 status = clk_prepare_enable(ssp->clk);
1620 if (status)
1621 goto out_error_dma_irq_alloc;
1623 master->max_speed_hz = clk_get_rate(ssp->clk);
1625 /* Load default SSP configuration */
1626 pxa2xx_spi_write(drv_data, SSCR0, 0);
1627 switch (drv_data->ssp_type) {
1628 case QUARK_X1000_SSP:
1629 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1630 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1631 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1633 /* using the Motorola SPI protocol and use 8 bit frame */
1634 tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1635 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1636 break;
1637 case CE4100_SSP:
1638 tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1639 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1640 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1641 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1642 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1643 break;
1644 default:
1645 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1646 SSCR1_TxTresh(TX_THRESH_DFLT);
1647 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1648 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1649 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1650 break;
1653 if (!pxa25x_ssp_comp(drv_data))
1654 pxa2xx_spi_write(drv_data, SSTO, 0);
1656 if (!is_quark_x1000_ssp(drv_data))
1657 pxa2xx_spi_write(drv_data, SSPSP, 0);
1659 if (is_lpss_ssp(drv_data)) {
1660 lpss_ssp_setup(drv_data);
1661 config = lpss_get_config(drv_data);
1662 if (config->reg_capabilities >= 0) {
1663 tmp = __lpss_ssp_read_priv(drv_data,
1664 config->reg_capabilities);
1665 tmp &= LPSS_CAPS_CS_EN_MASK;
1666 tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1667 platform_info->num_chipselect = ffz(tmp);
1668 } else if (config->cs_num) {
1669 platform_info->num_chipselect = config->cs_num;
1672 master->num_chipselect = platform_info->num_chipselect;
1674 count = gpiod_count(&pdev->dev, "cs");
1675 if (count > 0) {
1676 int i;
1678 master->num_chipselect = max_t(int, count,
1679 master->num_chipselect);
1681 drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1682 master->num_chipselect, sizeof(struct gpio_desc *),
1683 GFP_KERNEL);
1684 if (!drv_data->cs_gpiods) {
1685 status = -ENOMEM;
1686 goto out_error_clock_enabled;
1689 for (i = 0; i < master->num_chipselect; i++) {
1690 struct gpio_desc *gpiod;
1692 gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1693 if (IS_ERR(gpiod)) {
1694 /* Means use native chip select */
1695 if (PTR_ERR(gpiod) == -ENOENT)
1696 continue;
1698 status = (int)PTR_ERR(gpiod);
1699 goto out_error_clock_enabled;
1700 } else {
1701 drv_data->cs_gpiods[i] = gpiod;
1706 pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1707 pm_runtime_use_autosuspend(&pdev->dev);
1708 pm_runtime_set_active(&pdev->dev);
1709 pm_runtime_enable(&pdev->dev);
1711 /* Register with the SPI framework */
1712 platform_set_drvdata(pdev, drv_data);
1713 status = devm_spi_register_controller(&pdev->dev, master);
1714 if (status != 0) {
1715 dev_err(&pdev->dev, "problem registering spi master\n");
1716 goto out_error_clock_enabled;
1719 return status;
1721 out_error_clock_enabled:
1722 pm_runtime_put_noidle(&pdev->dev);
1723 pm_runtime_disable(&pdev->dev);
1724 clk_disable_unprepare(ssp->clk);
1726 out_error_dma_irq_alloc:
1727 pxa2xx_spi_dma_release(drv_data);
1728 free_irq(ssp->irq, drv_data);
1730 out_error_master_alloc:
1731 spi_controller_put(master);
1732 pxa_ssp_free(ssp);
1733 return status;
1736 static int pxa2xx_spi_remove(struct platform_device *pdev)
1738 struct driver_data *drv_data = platform_get_drvdata(pdev);
1739 struct ssp_device *ssp;
1741 if (!drv_data)
1742 return 0;
1743 ssp = drv_data->ssp;
1745 pm_runtime_get_sync(&pdev->dev);
1747 /* Disable the SSP at the peripheral and SOC level */
1748 pxa2xx_spi_write(drv_data, SSCR0, 0);
1749 clk_disable_unprepare(ssp->clk);
1751 /* Release DMA */
1752 if (drv_data->master_info->enable_dma)
1753 pxa2xx_spi_dma_release(drv_data);
1755 pm_runtime_put_noidle(&pdev->dev);
1756 pm_runtime_disable(&pdev->dev);
1758 /* Release IRQ */
1759 free_irq(ssp->irq, drv_data);
1761 /* Release SSP */
1762 pxa_ssp_free(ssp);
1764 return 0;
1767 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1769 int status = 0;
1771 if ((status = pxa2xx_spi_remove(pdev)) != 0)
1772 dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1775 #ifdef CONFIG_PM_SLEEP
1776 static int pxa2xx_spi_suspend(struct device *dev)
1778 struct driver_data *drv_data = dev_get_drvdata(dev);
1779 struct ssp_device *ssp = drv_data->ssp;
1780 int status;
1782 status = spi_controller_suspend(drv_data->master);
1783 if (status != 0)
1784 return status;
1785 pxa2xx_spi_write(drv_data, SSCR0, 0);
1787 if (!pm_runtime_suspended(dev))
1788 clk_disable_unprepare(ssp->clk);
1790 return 0;
1793 static int pxa2xx_spi_resume(struct device *dev)
1795 struct driver_data *drv_data = dev_get_drvdata(dev);
1796 struct ssp_device *ssp = drv_data->ssp;
1797 int status;
1799 /* Enable the SSP clock */
1800 if (!pm_runtime_suspended(dev)) {
1801 status = clk_prepare_enable(ssp->clk);
1802 if (status)
1803 return status;
1806 /* Restore LPSS private register bits */
1807 if (is_lpss_ssp(drv_data))
1808 lpss_ssp_setup(drv_data);
1810 /* Start the queue running */
1811 status = spi_controller_resume(drv_data->master);
1812 if (status != 0) {
1813 dev_err(dev, "problem starting queue (%d)\n", status);
1814 return status;
1817 return 0;
1819 #endif
1821 #ifdef CONFIG_PM
1822 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1824 struct driver_data *drv_data = dev_get_drvdata(dev);
1826 clk_disable_unprepare(drv_data->ssp->clk);
1827 return 0;
1830 static int pxa2xx_spi_runtime_resume(struct device *dev)
1832 struct driver_data *drv_data = dev_get_drvdata(dev);
1833 int status;
1835 status = clk_prepare_enable(drv_data->ssp->clk);
1836 return status;
1838 #endif
1840 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1841 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1842 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1843 pxa2xx_spi_runtime_resume, NULL)
1846 static struct platform_driver driver = {
1847 .driver = {
1848 .name = "pxa2xx-spi",
1849 .pm = &pxa2xx_spi_pm_ops,
1850 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1852 .probe = pxa2xx_spi_probe,
1853 .remove = pxa2xx_spi_remove,
1854 .shutdown = pxa2xx_spi_shutdown,
1857 static int __init pxa2xx_spi_init(void)
1859 return platform_driver_register(&driver);
1861 subsys_initcall(pxa2xx_spi_init);
1863 static void __exit pxa2xx_spi_exit(void)
1865 platform_driver_unregister(&driver);
1867 module_exit(pxa2xx_spi_exit);