Linux 4.18.10
[linux/fpc-iii.git] / drivers / video / fbdev / intelfb / intelfbhw.c
blob57aff7450bce7fa5ed1aac88f4a28e26f227faa0
1 /*
2 * intelfb
4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7 * 2004 Sylvain Meyer
9 * This driver consists of two parts. The first part (intelfbdrv.c) provides
10 * the basic fbdev interfaces, is derived in part from the radeonfb and
11 * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
12 * provides the code to program the hardware. Most of it is derived from
13 * the i810/i830 XFree86 driver. The HW-specific code is covered here
14 * under a dual license (GPL and MIT/XFree86 license).
16 * Author: David Dawes
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/delay.h>
28 #include <linux/fb.h>
29 #include <linux/ioport.h>
30 #include <linux/init.h>
31 #include <linux/pci.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pagemap.h>
34 #include <linux/interrupt.h>
36 #include <asm/io.h>
38 #include "intelfb.h"
39 #include "intelfbhw.h"
41 struct pll_min_max {
42 int min_m, max_m, min_m1, max_m1;
43 int min_m2, max_m2, min_n, max_n;
44 int min_p, max_p, min_p1, max_p1;
45 int min_vco, max_vco, p_transition_clk, ref_clk;
46 int p_inc_lo, p_inc_hi;
49 #define PLLS_I8xx 0
50 #define PLLS_I9xx 1
51 #define PLLS_MAX 2
53 static struct pll_min_max plls[PLLS_MAX] = {
54 { 108, 140, 18, 26,
55 6, 16, 3, 16,
56 4, 128, 0, 31,
57 930000, 1400000, 165000, 48000,
58 4, 2 }, /* I8xx */
60 { 75, 120, 10, 20,
61 5, 9, 4, 7,
62 5, 80, 1, 8,
63 1400000, 2800000, 200000, 96000,
64 10, 5 } /* I9xx */
67 int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
69 u32 tmp;
70 if (!pdev || !dinfo)
71 return 1;
73 switch (pdev->device) {
74 case PCI_DEVICE_ID_INTEL_830M:
75 dinfo->name = "Intel(R) 830M";
76 dinfo->chipset = INTEL_830M;
77 dinfo->mobile = 1;
78 dinfo->pll_index = PLLS_I8xx;
79 return 0;
80 case PCI_DEVICE_ID_INTEL_845G:
81 dinfo->name = "Intel(R) 845G";
82 dinfo->chipset = INTEL_845G;
83 dinfo->mobile = 0;
84 dinfo->pll_index = PLLS_I8xx;
85 return 0;
86 case PCI_DEVICE_ID_INTEL_854:
87 dinfo->mobile = 1;
88 dinfo->name = "Intel(R) 854";
89 dinfo->chipset = INTEL_854;
90 return 0;
91 case PCI_DEVICE_ID_INTEL_85XGM:
92 tmp = 0;
93 dinfo->mobile = 1;
94 dinfo->pll_index = PLLS_I8xx;
95 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
96 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
97 INTEL_85X_VARIANT_MASK) {
98 case INTEL_VAR_855GME:
99 dinfo->name = "Intel(R) 855GME";
100 dinfo->chipset = INTEL_855GME;
101 return 0;
102 case INTEL_VAR_855GM:
103 dinfo->name = "Intel(R) 855GM";
104 dinfo->chipset = INTEL_855GM;
105 return 0;
106 case INTEL_VAR_852GME:
107 dinfo->name = "Intel(R) 852GME";
108 dinfo->chipset = INTEL_852GME;
109 return 0;
110 case INTEL_VAR_852GM:
111 dinfo->name = "Intel(R) 852GM";
112 dinfo->chipset = INTEL_852GM;
113 return 0;
114 default:
115 dinfo->name = "Intel(R) 852GM/855GM";
116 dinfo->chipset = INTEL_85XGM;
117 return 0;
119 break;
120 case PCI_DEVICE_ID_INTEL_865G:
121 dinfo->name = "Intel(R) 865G";
122 dinfo->chipset = INTEL_865G;
123 dinfo->mobile = 0;
124 dinfo->pll_index = PLLS_I8xx;
125 return 0;
126 case PCI_DEVICE_ID_INTEL_915G:
127 dinfo->name = "Intel(R) 915G";
128 dinfo->chipset = INTEL_915G;
129 dinfo->mobile = 0;
130 dinfo->pll_index = PLLS_I9xx;
131 return 0;
132 case PCI_DEVICE_ID_INTEL_915GM:
133 dinfo->name = "Intel(R) 915GM";
134 dinfo->chipset = INTEL_915GM;
135 dinfo->mobile = 1;
136 dinfo->pll_index = PLLS_I9xx;
137 return 0;
138 case PCI_DEVICE_ID_INTEL_945G:
139 dinfo->name = "Intel(R) 945G";
140 dinfo->chipset = INTEL_945G;
141 dinfo->mobile = 0;
142 dinfo->pll_index = PLLS_I9xx;
143 return 0;
144 case PCI_DEVICE_ID_INTEL_945GM:
145 dinfo->name = "Intel(R) 945GM";
146 dinfo->chipset = INTEL_945GM;
147 dinfo->mobile = 1;
148 dinfo->pll_index = PLLS_I9xx;
149 return 0;
150 case PCI_DEVICE_ID_INTEL_945GME:
151 dinfo->name = "Intel(R) 945GME";
152 dinfo->chipset = INTEL_945GME;
153 dinfo->mobile = 1;
154 dinfo->pll_index = PLLS_I9xx;
155 return 0;
156 case PCI_DEVICE_ID_INTEL_965G:
157 dinfo->name = "Intel(R) 965G";
158 dinfo->chipset = INTEL_965G;
159 dinfo->mobile = 0;
160 dinfo->pll_index = PLLS_I9xx;
161 return 0;
162 case PCI_DEVICE_ID_INTEL_965GM:
163 dinfo->name = "Intel(R) 965GM";
164 dinfo->chipset = INTEL_965GM;
165 dinfo->mobile = 1;
166 dinfo->pll_index = PLLS_I9xx;
167 return 0;
168 default:
169 return 1;
173 int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
174 int *stolen_size)
176 struct pci_dev *bridge_dev;
177 u16 tmp;
178 int stolen_overhead;
180 if (!pdev || !aperture_size || !stolen_size)
181 return 1;
183 /* Find the bridge device. It is always 0:0.0 */
184 bridge_dev = pci_get_domain_bus_and_slot(pci_domain_nr(pdev->bus), 0,
185 PCI_DEVFN(0, 0));
186 if (!bridge_dev) {
187 ERR_MSG("cannot find bridge device\n");
188 return 1;
191 /* Get the fb aperture size and "stolen" memory amount. */
192 tmp = 0;
193 pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
194 pci_dev_put(bridge_dev);
196 switch (pdev->device) {
197 case PCI_DEVICE_ID_INTEL_915G:
198 case PCI_DEVICE_ID_INTEL_915GM:
199 case PCI_DEVICE_ID_INTEL_945G:
200 case PCI_DEVICE_ID_INTEL_945GM:
201 case PCI_DEVICE_ID_INTEL_945GME:
202 case PCI_DEVICE_ID_INTEL_965G:
203 case PCI_DEVICE_ID_INTEL_965GM:
204 /* 915, 945 and 965 chipsets support a 256MB aperture.
205 Aperture size is determined by inspected the
206 base address of the aperture. */
207 if (pci_resource_start(pdev, 2) & 0x08000000)
208 *aperture_size = MB(128);
209 else
210 *aperture_size = MB(256);
211 break;
212 default:
213 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
214 *aperture_size = MB(64);
215 else
216 *aperture_size = MB(128);
217 break;
220 /* Stolen memory size is reduced by the GTT and the popup.
221 GTT is 1K per MB of aperture size, and popup is 4K. */
222 stolen_overhead = (*aperture_size / MB(1)) + 4;
223 switch(pdev->device) {
224 case PCI_DEVICE_ID_INTEL_830M:
225 case PCI_DEVICE_ID_INTEL_845G:
226 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
227 case INTEL_830_GMCH_GMS_STOLEN_512:
228 *stolen_size = KB(512) - KB(stolen_overhead);
229 return 0;
230 case INTEL_830_GMCH_GMS_STOLEN_1024:
231 *stolen_size = MB(1) - KB(stolen_overhead);
232 return 0;
233 case INTEL_830_GMCH_GMS_STOLEN_8192:
234 *stolen_size = MB(8) - KB(stolen_overhead);
235 return 0;
236 case INTEL_830_GMCH_GMS_LOCAL:
237 ERR_MSG("only local memory found\n");
238 return 1;
239 case INTEL_830_GMCH_GMS_DISABLED:
240 ERR_MSG("video memory is disabled\n");
241 return 1;
242 default:
243 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
244 tmp & INTEL_830_GMCH_GMS_MASK);
245 return 1;
247 break;
248 default:
249 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
250 case INTEL_855_GMCH_GMS_STOLEN_1M:
251 *stolen_size = MB(1) - KB(stolen_overhead);
252 return 0;
253 case INTEL_855_GMCH_GMS_STOLEN_4M:
254 *stolen_size = MB(4) - KB(stolen_overhead);
255 return 0;
256 case INTEL_855_GMCH_GMS_STOLEN_8M:
257 *stolen_size = MB(8) - KB(stolen_overhead);
258 return 0;
259 case INTEL_855_GMCH_GMS_STOLEN_16M:
260 *stolen_size = MB(16) - KB(stolen_overhead);
261 return 0;
262 case INTEL_855_GMCH_GMS_STOLEN_32M:
263 *stolen_size = MB(32) - KB(stolen_overhead);
264 return 0;
265 case INTEL_915G_GMCH_GMS_STOLEN_48M:
266 *stolen_size = MB(48) - KB(stolen_overhead);
267 return 0;
268 case INTEL_915G_GMCH_GMS_STOLEN_64M:
269 *stolen_size = MB(64) - KB(stolen_overhead);
270 return 0;
271 case INTEL_855_GMCH_GMS_DISABLED:
272 ERR_MSG("video memory is disabled\n");
273 return 0;
274 default:
275 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
276 tmp & INTEL_855_GMCH_GMS_MASK);
277 return 1;
282 int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
284 int dvo = 0;
286 if (INREG(LVDS) & PORT_ENABLE)
287 dvo |= LVDS_PORT;
288 if (INREG(DVOA) & PORT_ENABLE)
289 dvo |= DVOA_PORT;
290 if (INREG(DVOB) & PORT_ENABLE)
291 dvo |= DVOB_PORT;
292 if (INREG(DVOC) & PORT_ENABLE)
293 dvo |= DVOC_PORT;
295 return dvo;
298 const char * intelfbhw_dvo_to_string(int dvo)
300 if (dvo & DVOA_PORT)
301 return "DVO port A";
302 else if (dvo & DVOB_PORT)
303 return "DVO port B";
304 else if (dvo & DVOC_PORT)
305 return "DVO port C";
306 else if (dvo & LVDS_PORT)
307 return "LVDS port";
308 else
309 return NULL;
313 int intelfbhw_validate_mode(struct intelfb_info *dinfo,
314 struct fb_var_screeninfo *var)
316 int bytes_per_pixel;
317 int tmp;
319 #if VERBOSE > 0
320 DBG_MSG("intelfbhw_validate_mode\n");
321 #endif
323 bytes_per_pixel = var->bits_per_pixel / 8;
324 if (bytes_per_pixel == 3)
325 bytes_per_pixel = 4;
327 /* Check if enough video memory. */
328 tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
329 if (tmp > dinfo->fb.size) {
330 WRN_MSG("Not enough video ram for mode "
331 "(%d KByte vs %d KByte).\n",
332 BtoKB(tmp), BtoKB(dinfo->fb.size));
333 return 1;
336 /* Check if x/y limits are OK. */
337 if (var->xres - 1 > HACTIVE_MASK) {
338 WRN_MSG("X resolution too large (%d vs %d).\n",
339 var->xres, HACTIVE_MASK + 1);
340 return 1;
342 if (var->yres - 1 > VACTIVE_MASK) {
343 WRN_MSG("Y resolution too large (%d vs %d).\n",
344 var->yres, VACTIVE_MASK + 1);
345 return 1;
347 if (var->xres < 4) {
348 WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
349 return 1;
351 if (var->yres < 4) {
352 WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
353 return 1;
356 /* Check for doublescan modes. */
357 if (var->vmode & FB_VMODE_DOUBLE) {
358 WRN_MSG("Mode is double-scan.\n");
359 return 1;
362 if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
363 WRN_MSG("Odd number of lines in interlaced mode\n");
364 return 1;
367 /* Check if clock is OK. */
368 tmp = 1000000000 / var->pixclock;
369 if (tmp < MIN_CLOCK) {
370 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
371 (tmp + 500) / 1000, MIN_CLOCK / 1000);
372 return 1;
374 if (tmp > MAX_CLOCK) {
375 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
376 (tmp + 500) / 1000, MAX_CLOCK / 1000);
377 return 1;
380 return 0;
383 int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
385 struct intelfb_info *dinfo = GET_DINFO(info);
386 u32 offset, xoffset, yoffset;
388 #if VERBOSE > 0
389 DBG_MSG("intelfbhw_pan_display\n");
390 #endif
392 xoffset = ROUND_DOWN_TO(var->xoffset, 8);
393 yoffset = var->yoffset;
395 if ((xoffset + info->var.xres > info->var.xres_virtual) ||
396 (yoffset + info->var.yres > info->var.yres_virtual))
397 return -EINVAL;
399 offset = (yoffset * dinfo->pitch) +
400 (xoffset * info->var.bits_per_pixel) / 8;
402 offset += dinfo->fb.offset << 12;
404 dinfo->vsync.pan_offset = offset;
405 if ((var->activate & FB_ACTIVATE_VBL) &&
406 !intelfbhw_enable_irq(dinfo))
407 dinfo->vsync.pan_display = 1;
408 else {
409 dinfo->vsync.pan_display = 0;
410 OUTREG(DSPABASE, offset);
413 return 0;
416 /* Blank the screen. */
417 void intelfbhw_do_blank(int blank, struct fb_info *info)
419 struct intelfb_info *dinfo = GET_DINFO(info);
420 u32 tmp;
422 #if VERBOSE > 0
423 DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
424 #endif
426 /* Turn plane A on or off */
427 tmp = INREG(DSPACNTR);
428 if (blank)
429 tmp &= ~DISPPLANE_PLANE_ENABLE;
430 else
431 tmp |= DISPPLANE_PLANE_ENABLE;
432 OUTREG(DSPACNTR, tmp);
433 /* Flush */
434 tmp = INREG(DSPABASE);
435 OUTREG(DSPABASE, tmp);
437 /* Turn off/on the HW cursor */
438 #if VERBOSE > 0
439 DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
440 #endif
441 if (dinfo->cursor_on) {
442 if (blank)
443 intelfbhw_cursor_hide(dinfo);
444 else
445 intelfbhw_cursor_show(dinfo);
446 dinfo->cursor_on = 1;
448 dinfo->cursor_blanked = blank;
450 /* Set DPMS level */
451 tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
452 switch (blank) {
453 case FB_BLANK_UNBLANK:
454 case FB_BLANK_NORMAL:
455 tmp |= ADPA_DPMS_D0;
456 break;
457 case FB_BLANK_VSYNC_SUSPEND:
458 tmp |= ADPA_DPMS_D1;
459 break;
460 case FB_BLANK_HSYNC_SUSPEND:
461 tmp |= ADPA_DPMS_D2;
462 break;
463 case FB_BLANK_POWERDOWN:
464 tmp |= ADPA_DPMS_D3;
465 break;
467 OUTREG(ADPA, tmp);
469 return;
473 /* Check which pipe is connected to an active display plane. */
474 int intelfbhw_active_pipe(const struct intelfb_hwstate *hw)
476 int pipe = -1;
478 /* keep old default behaviour - prefer PIPE_A */
479 if (hw->disp_b_ctrl & DISPPLANE_PLANE_ENABLE) {
480 pipe = (hw->disp_b_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
481 pipe &= PIPE_MASK;
482 if (unlikely(pipe == PIPE_A))
483 return PIPE_A;
485 if (hw->disp_a_ctrl & DISPPLANE_PLANE_ENABLE) {
486 pipe = (hw->disp_a_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
487 pipe &= PIPE_MASK;
488 if (likely(pipe == PIPE_A))
489 return PIPE_A;
491 /* Impossible that no pipe is selected - return PIPE_A */
492 WARN_ON(pipe == -1);
493 if (unlikely(pipe == -1))
494 pipe = PIPE_A;
496 return pipe;
499 void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
500 unsigned red, unsigned green, unsigned blue,
501 unsigned transp)
503 u32 palette_reg = (dinfo->pipe == PIPE_A) ?
504 PALETTE_A : PALETTE_B;
506 #if VERBOSE > 0
507 DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
508 regno, red, green, blue);
509 #endif
511 OUTREG(palette_reg + (regno << 2),
512 (red << PALETTE_8_RED_SHIFT) |
513 (green << PALETTE_8_GREEN_SHIFT) |
514 (blue << PALETTE_8_BLUE_SHIFT));
518 int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
519 struct intelfb_hwstate *hw, int flag)
521 int i;
523 #if VERBOSE > 0
524 DBG_MSG("intelfbhw_read_hw_state\n");
525 #endif
527 if (!hw || !dinfo)
528 return -1;
530 /* Read in as much of the HW state as possible. */
531 hw->vga0_divisor = INREG(VGA0_DIVISOR);
532 hw->vga1_divisor = INREG(VGA1_DIVISOR);
533 hw->vga_pd = INREG(VGAPD);
534 hw->dpll_a = INREG(DPLL_A);
535 hw->dpll_b = INREG(DPLL_B);
536 hw->fpa0 = INREG(FPA0);
537 hw->fpa1 = INREG(FPA1);
538 hw->fpb0 = INREG(FPB0);
539 hw->fpb1 = INREG(FPB1);
541 if (flag == 1)
542 return flag;
544 #if 0
545 /* This seems to be a problem with the 852GM/855GM */
546 for (i = 0; i < PALETTE_8_ENTRIES; i++) {
547 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
548 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
550 #endif
552 if (flag == 2)
553 return flag;
555 hw->htotal_a = INREG(HTOTAL_A);
556 hw->hblank_a = INREG(HBLANK_A);
557 hw->hsync_a = INREG(HSYNC_A);
558 hw->vtotal_a = INREG(VTOTAL_A);
559 hw->vblank_a = INREG(VBLANK_A);
560 hw->vsync_a = INREG(VSYNC_A);
561 hw->src_size_a = INREG(SRC_SIZE_A);
562 hw->bclrpat_a = INREG(BCLRPAT_A);
563 hw->htotal_b = INREG(HTOTAL_B);
564 hw->hblank_b = INREG(HBLANK_B);
565 hw->hsync_b = INREG(HSYNC_B);
566 hw->vtotal_b = INREG(VTOTAL_B);
567 hw->vblank_b = INREG(VBLANK_B);
568 hw->vsync_b = INREG(VSYNC_B);
569 hw->src_size_b = INREG(SRC_SIZE_B);
570 hw->bclrpat_b = INREG(BCLRPAT_B);
572 if (flag == 3)
573 return flag;
575 hw->adpa = INREG(ADPA);
576 hw->dvoa = INREG(DVOA);
577 hw->dvob = INREG(DVOB);
578 hw->dvoc = INREG(DVOC);
579 hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
580 hw->dvob_srcdim = INREG(DVOB_SRCDIM);
581 hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
582 hw->lvds = INREG(LVDS);
584 if (flag == 4)
585 return flag;
587 hw->pipe_a_conf = INREG(PIPEACONF);
588 hw->pipe_b_conf = INREG(PIPEBCONF);
589 hw->disp_arb = INREG(DISPARB);
591 if (flag == 5)
592 return flag;
594 hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
595 hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
596 hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
597 hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
599 if (flag == 6)
600 return flag;
602 for (i = 0; i < 4; i++) {
603 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
604 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
607 if (flag == 7)
608 return flag;
610 hw->cursor_size = INREG(CURSOR_SIZE);
612 if (flag == 8)
613 return flag;
615 hw->disp_a_ctrl = INREG(DSPACNTR);
616 hw->disp_b_ctrl = INREG(DSPBCNTR);
617 hw->disp_a_base = INREG(DSPABASE);
618 hw->disp_b_base = INREG(DSPBBASE);
619 hw->disp_a_stride = INREG(DSPASTRIDE);
620 hw->disp_b_stride = INREG(DSPBSTRIDE);
622 if (flag == 9)
623 return flag;
625 hw->vgacntrl = INREG(VGACNTRL);
627 if (flag == 10)
628 return flag;
630 hw->add_id = INREG(ADD_ID);
632 if (flag == 11)
633 return flag;
635 for (i = 0; i < 7; i++) {
636 hw->swf0x[i] = INREG(SWF00 + (i << 2));
637 hw->swf1x[i] = INREG(SWF10 + (i << 2));
638 if (i < 3)
639 hw->swf3x[i] = INREG(SWF30 + (i << 2));
642 for (i = 0; i < 8; i++)
643 hw->fence[i] = INREG(FENCE + (i << 2));
645 hw->instpm = INREG(INSTPM);
646 hw->mem_mode = INREG(MEM_MODE);
647 hw->fw_blc_0 = INREG(FW_BLC_0);
648 hw->fw_blc_1 = INREG(FW_BLC_1);
650 hw->hwstam = INREG16(HWSTAM);
651 hw->ier = INREG16(IER);
652 hw->iir = INREG16(IIR);
653 hw->imr = INREG16(IMR);
655 return 0;
659 static int calc_vclock3(int index, int m, int n, int p)
661 if (p == 0 || n == 0)
662 return 0;
663 return plls[index].ref_clk * m / n / p;
666 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
667 int lvds)
669 struct pll_min_max *pll = &plls[index];
670 u32 m, vco, p;
672 m = (5 * (m1 + 2)) + (m2 + 2);
673 n += 2;
674 vco = pll->ref_clk * m / n;
676 if (index == PLLS_I8xx)
677 p = ((p1 + 2) * (1 << (p2 + 1)));
678 else
679 p = ((p1) * (p2 ? 5 : 10));
680 return vco / p;
683 #if REGDUMP
684 static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
685 int *o_p1, int *o_p2)
687 int p1, p2;
689 if (IS_I9XX(dinfo)) {
690 if (dpll & DPLL_P1_FORCE_DIV2)
691 p1 = 1;
692 else
693 p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
695 p1 = ffs(p1);
697 p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
698 } else {
699 if (dpll & DPLL_P1_FORCE_DIV2)
700 p1 = 0;
701 else
702 p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
703 p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
706 *o_p1 = p1;
707 *o_p2 = p2;
709 #endif
712 void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
713 struct intelfb_hwstate *hw)
715 #if REGDUMP
716 int i, m1, m2, n, p1, p2;
717 int index = dinfo->pll_index;
718 DBG_MSG("intelfbhw_print_hw_state\n");
720 if (!hw)
721 return;
722 /* Read in as much of the HW state as possible. */
723 printk("hw state dump start\n");
724 printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
725 printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
726 printk(" VGAPD: 0x%08x\n", hw->vga_pd);
727 n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
728 m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
729 m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
731 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
733 printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
734 m1, m2, n, p1, p2);
735 printk(" VGA0: clock is %d\n",
736 calc_vclock(index, m1, m2, n, p1, p2, 0));
738 n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
739 m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
740 m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
742 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
743 printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
744 m1, m2, n, p1, p2);
745 printk(" VGA1: clock is %d\n",
746 calc_vclock(index, m1, m2, n, p1, p2, 0));
748 printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
749 printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
750 printk(" FPA0: 0x%08x\n", hw->fpa0);
751 printk(" FPA1: 0x%08x\n", hw->fpa1);
752 printk(" FPB0: 0x%08x\n", hw->fpb0);
753 printk(" FPB1: 0x%08x\n", hw->fpb1);
755 n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
756 m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
757 m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
759 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
761 printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
762 m1, m2, n, p1, p2);
763 printk(" PLLA0: clock is %d\n",
764 calc_vclock(index, m1, m2, n, p1, p2, 0));
766 n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
767 m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
768 m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
770 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
772 printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
773 m1, m2, n, p1, p2);
774 printk(" PLLA1: clock is %d\n",
775 calc_vclock(index, m1, m2, n, p1, p2, 0));
777 #if 0
778 printk(" PALETTE_A:\n");
779 for (i = 0; i < PALETTE_8_ENTRIES)
780 printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
781 printk(" PALETTE_B:\n");
782 for (i = 0; i < PALETTE_8_ENTRIES)
783 printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
784 #endif
786 printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
787 printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
788 printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
789 printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
790 printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
791 printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
792 printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
793 printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
794 printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
795 printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
796 printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
797 printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
798 printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
799 printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
800 printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
801 printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
803 printk(" ADPA: 0x%08x\n", hw->adpa);
804 printk(" DVOA: 0x%08x\n", hw->dvoa);
805 printk(" DVOB: 0x%08x\n", hw->dvob);
806 printk(" DVOC: 0x%08x\n", hw->dvoc);
807 printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
808 printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
809 printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
810 printk(" LVDS: 0x%08x\n", hw->lvds);
812 printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
813 printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
814 printk(" DISPARB: 0x%08x\n", hw->disp_arb);
816 printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
817 printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
818 printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
819 printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
821 printk(" CURSOR_A_PALETTE: ");
822 for (i = 0; i < 4; i++) {
823 printk("0x%08x", hw->cursor_a_palette[i]);
824 if (i < 3)
825 printk(", ");
827 printk("\n");
828 printk(" CURSOR_B_PALETTE: ");
829 for (i = 0; i < 4; i++) {
830 printk("0x%08x", hw->cursor_b_palette[i]);
831 if (i < 3)
832 printk(", ");
834 printk("\n");
836 printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
838 printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
839 printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
840 printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
841 printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
842 printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
843 printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
845 printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
846 printk(" ADD_ID: 0x%08x\n", hw->add_id);
848 for (i = 0; i < 7; i++) {
849 printk(" SWF0%d 0x%08x\n", i,
850 hw->swf0x[i]);
852 for (i = 0; i < 7; i++) {
853 printk(" SWF1%d 0x%08x\n", i,
854 hw->swf1x[i]);
856 for (i = 0; i < 3; i++) {
857 printk(" SWF3%d 0x%08x\n", i,
858 hw->swf3x[i]);
860 for (i = 0; i < 8; i++)
861 printk(" FENCE%d 0x%08x\n", i,
862 hw->fence[i]);
864 printk(" INSTPM 0x%08x\n", hw->instpm);
865 printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
866 printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
867 printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
869 printk(" HWSTAM 0x%04x\n", hw->hwstam);
870 printk(" IER 0x%04x\n", hw->ier);
871 printk(" IIR 0x%04x\n", hw->iir);
872 printk(" IMR 0x%04x\n", hw->imr);
873 printk("hw state dump end\n");
874 #endif
879 /* Split the M parameter into M1 and M2. */
880 static int splitm(int index, unsigned int m, unsigned int *retm1,
881 unsigned int *retm2)
883 int m1, m2;
884 int testm;
885 struct pll_min_max *pll = &plls[index];
887 /* no point optimising too much - brute force m */
888 for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
889 for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
890 testm = (5 * (m1 + 2)) + (m2 + 2);
891 if (testm == m) {
892 *retm1 = (unsigned int)m1;
893 *retm2 = (unsigned int)m2;
894 return 0;
898 return 1;
901 /* Split the P parameter into P1 and P2. */
902 static int splitp(int index, unsigned int p, unsigned int *retp1,
903 unsigned int *retp2)
905 int p1, p2;
906 struct pll_min_max *pll = &plls[index];
908 if (index == PLLS_I9xx) {
909 p2 = (p % 10) ? 1 : 0;
911 p1 = p / (p2 ? 5 : 10);
913 *retp1 = (unsigned int)p1;
914 *retp2 = (unsigned int)p2;
915 return 0;
918 if (p % 4 == 0)
919 p2 = 1;
920 else
921 p2 = 0;
922 p1 = (p / (1 << (p2 + 1))) - 2;
923 if (p % 4 == 0 && p1 < pll->min_p1) {
924 p2 = 0;
925 p1 = (p / (1 << (p2 + 1))) - 2;
927 if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
928 (p1 + 2) * (1 << (p2 + 1)) != p) {
929 return 1;
930 } else {
931 *retp1 = (unsigned int)p1;
932 *retp2 = (unsigned int)p2;
933 return 0;
937 static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
938 u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
940 u32 m1, m2, n, p1, p2, n1, testm;
941 u32 f_vco, p, p_best = 0, m, f_out = 0;
942 u32 err_best = 10000000;
943 u32 n_best = 0, m_best = 0, f_err;
944 u32 p_min, p_max, p_inc, div_max;
945 struct pll_min_max *pll = &plls[index];
947 DBG_MSG("Clock is %d\n", clock);
949 div_max = pll->max_vco / clock;
951 p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
952 p_min = p_inc;
953 p_max = ROUND_DOWN_TO(div_max, p_inc);
954 if (p_min < pll->min_p)
955 p_min = pll->min_p;
956 if (p_max > pll->max_p)
957 p_max = pll->max_p;
959 DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
961 p = p_min;
962 do {
963 if (splitp(index, p, &p1, &p2)) {
964 WRN_MSG("cannot split p = %d\n", p);
965 p += p_inc;
966 continue;
968 n = pll->min_n;
969 f_vco = clock * p;
971 do {
972 m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
973 if (m < pll->min_m)
974 m = pll->min_m + 1;
975 if (m > pll->max_m)
976 m = pll->max_m - 1;
977 for (testm = m - 1; testm <= m; testm++) {
978 f_out = calc_vclock3(index, testm, n, p);
979 if (splitm(index, testm, &m1, &m2)) {
980 WRN_MSG("cannot split m = %d\n",
981 testm);
982 continue;
984 if (clock > f_out)
985 f_err = clock - f_out;
986 else/* slightly bias the error for bigger clocks */
987 f_err = f_out - clock + 1;
989 if (f_err < err_best) {
990 m_best = testm;
991 n_best = n;
992 p_best = p;
993 err_best = f_err;
996 n++;
997 } while ((n <= pll->max_n) && (f_out >= clock));
998 p += p_inc;
999 } while ((p <= p_max));
1001 if (!m_best) {
1002 WRN_MSG("cannot find parameters for clock %d\n", clock);
1003 return 1;
1005 m = m_best;
1006 n = n_best;
1007 p = p_best;
1008 splitm(index, m, &m1, &m2);
1009 splitp(index, p, &p1, &p2);
1010 n1 = n - 2;
1012 DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
1013 "f: %d (%d), VCO: %d\n",
1014 m, m1, m2, n, n1, p, p1, p2,
1015 calc_vclock3(index, m, n, p),
1016 calc_vclock(index, m1, m2, n1, p1, p2, 0),
1017 calc_vclock3(index, m, n, p) * p);
1018 *retm1 = m1;
1019 *retm2 = m2;
1020 *retn = n1;
1021 *retp1 = p1;
1022 *retp2 = p2;
1023 *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
1025 return 0;
1028 static __inline__ int check_overflow(u32 value, u32 limit,
1029 const char *description)
1031 if (value > limit) {
1032 WRN_MSG("%s value %d exceeds limit %d\n",
1033 description, value, limit);
1034 return 1;
1036 return 0;
1039 /* It is assumed that hw is filled in with the initial state information. */
1040 int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
1041 struct intelfb_hwstate *hw,
1042 struct fb_var_screeninfo *var)
1044 int pipe = intelfbhw_active_pipe(hw);
1045 u32 *dpll, *fp0, *fp1;
1046 u32 m1, m2, n, p1, p2, clock_target, clock;
1047 u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
1048 u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
1049 u32 vsync_pol, hsync_pol;
1050 u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
1051 u32 stride_alignment;
1053 DBG_MSG("intelfbhw_mode_to_hw\n");
1055 /* Disable VGA */
1056 hw->vgacntrl |= VGA_DISABLE;
1058 /* Set which pipe's registers will be set. */
1059 if (pipe == PIPE_B) {
1060 dpll = &hw->dpll_b;
1061 fp0 = &hw->fpb0;
1062 fp1 = &hw->fpb1;
1063 hs = &hw->hsync_b;
1064 hb = &hw->hblank_b;
1065 ht = &hw->htotal_b;
1066 vs = &hw->vsync_b;
1067 vb = &hw->vblank_b;
1068 vt = &hw->vtotal_b;
1069 ss = &hw->src_size_b;
1070 pipe_conf = &hw->pipe_b_conf;
1071 } else {
1072 dpll = &hw->dpll_a;
1073 fp0 = &hw->fpa0;
1074 fp1 = &hw->fpa1;
1075 hs = &hw->hsync_a;
1076 hb = &hw->hblank_a;
1077 ht = &hw->htotal_a;
1078 vs = &hw->vsync_a;
1079 vb = &hw->vblank_a;
1080 vt = &hw->vtotal_a;
1081 ss = &hw->src_size_a;
1082 pipe_conf = &hw->pipe_a_conf;
1085 /* Use ADPA register for sync control. */
1086 hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1088 /* sync polarity */
1089 hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1090 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1091 vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1092 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1093 hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1094 (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1095 hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1096 (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1098 /* Connect correct pipe to the analog port DAC */
1099 hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1100 hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1102 /* Set DPMS state to D0 (on) */
1103 hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1104 hw->adpa |= ADPA_DPMS_D0;
1106 hw->adpa |= ADPA_DAC_ENABLE;
1108 *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1109 *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1110 *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1112 /* Desired clock in kHz */
1113 clock_target = 1000000000 / var->pixclock;
1115 if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1116 &n, &p1, &p2, &clock)) {
1117 WRN_MSG("calc_pll_params failed\n");
1118 return 1;
1121 /* Check for overflow. */
1122 if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1123 return 1;
1124 if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1125 return 1;
1126 if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1127 return 1;
1128 if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1129 return 1;
1130 if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1131 return 1;
1133 *dpll &= ~DPLL_P1_FORCE_DIV2;
1134 *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1135 (DPLL_P1_MASK << DPLL_P1_SHIFT));
1137 if (IS_I9XX(dinfo)) {
1138 *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1139 *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1140 } else
1141 *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1143 *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1144 (m1 << FP_M1_DIVISOR_SHIFT) |
1145 (m2 << FP_M2_DIVISOR_SHIFT);
1146 *fp1 = *fp0;
1148 hw->dvob &= ~PORT_ENABLE;
1149 hw->dvoc &= ~PORT_ENABLE;
1151 /* Use display plane A. */
1152 hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1153 hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1154 hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1155 switch (intelfb_var_to_depth(var)) {
1156 case 8:
1157 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1158 break;
1159 case 15:
1160 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1161 break;
1162 case 16:
1163 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1164 break;
1165 case 24:
1166 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1167 break;
1169 hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1170 hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1172 /* Set CRTC registers. */
1173 hactive = var->xres;
1174 hsync_start = hactive + var->right_margin;
1175 hsync_end = hsync_start + var->hsync_len;
1176 htotal = hsync_end + var->left_margin;
1177 hblank_start = hactive;
1178 hblank_end = htotal;
1180 DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1181 hactive, hsync_start, hsync_end, htotal, hblank_start,
1182 hblank_end);
1184 vactive = var->yres;
1185 if (var->vmode & FB_VMODE_INTERLACED)
1186 vactive--; /* the chip adds 2 halflines automatically */
1187 vsync_start = vactive + var->lower_margin;
1188 vsync_end = vsync_start + var->vsync_len;
1189 vtotal = vsync_end + var->upper_margin;
1190 vblank_start = vactive;
1191 vblank_end = vsync_end + 1;
1193 DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1194 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1195 vblank_end);
1197 /* Adjust for register values, and check for overflow. */
1198 hactive--;
1199 if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1200 return 1;
1201 hsync_start--;
1202 if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1203 return 1;
1204 hsync_end--;
1205 if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1206 return 1;
1207 htotal--;
1208 if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1209 return 1;
1210 hblank_start--;
1211 if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1212 return 1;
1213 hblank_end--;
1214 if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1215 return 1;
1217 vactive--;
1218 if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1219 return 1;
1220 vsync_start--;
1221 if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1222 return 1;
1223 vsync_end--;
1224 if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1225 return 1;
1226 vtotal--;
1227 if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1228 return 1;
1229 vblank_start--;
1230 if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1231 return 1;
1232 vblank_end--;
1233 if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1234 return 1;
1236 *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1237 *hb = (hblank_start << HBLANKSTART_SHIFT) |
1238 (hblank_end << HSYNCEND_SHIFT);
1239 *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1241 *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1242 *vb = (vblank_start << VBLANKSTART_SHIFT) |
1243 (vblank_end << VSYNCEND_SHIFT);
1244 *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1245 *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1246 (vactive << SRC_SIZE_VERT_SHIFT);
1248 hw->disp_a_stride = dinfo->pitch;
1249 DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1251 hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1252 var->xoffset * var->bits_per_pixel / 8;
1254 hw->disp_a_base += dinfo->fb.offset << 12;
1256 /* Check stride alignment. */
1257 stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1258 STRIDE_ALIGNMENT;
1259 if (hw->disp_a_stride % stride_alignment != 0) {
1260 WRN_MSG("display stride %d has bad alignment %d\n",
1261 hw->disp_a_stride, stride_alignment);
1262 return 1;
1265 /* Set the palette to 8-bit mode. */
1266 *pipe_conf &= ~PIPECONF_GAMMA;
1268 if (var->vmode & FB_VMODE_INTERLACED)
1269 *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
1270 else
1271 *pipe_conf &= ~PIPECONF_INTERLACE_MASK;
1273 return 0;
1276 /* Program a (non-VGA) video mode. */
1277 int intelfbhw_program_mode(struct intelfb_info *dinfo,
1278 const struct intelfb_hwstate *hw, int blank)
1280 u32 tmp;
1281 const u32 *dpll, *fp0, *fp1, *pipe_conf;
1282 const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1283 u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
1284 u32 hsync_reg, htotal_reg, hblank_reg;
1285 u32 vsync_reg, vtotal_reg, vblank_reg;
1286 u32 src_size_reg;
1287 u32 count, tmp_val[3];
1289 /* Assume single pipe */
1291 #if VERBOSE > 0
1292 DBG_MSG("intelfbhw_program_mode\n");
1293 #endif
1295 /* Disable VGA */
1296 tmp = INREG(VGACNTRL);
1297 tmp |= VGA_DISABLE;
1298 OUTREG(VGACNTRL, tmp);
1300 dinfo->pipe = intelfbhw_active_pipe(hw);
1302 if (dinfo->pipe == PIPE_B) {
1303 dpll = &hw->dpll_b;
1304 fp0 = &hw->fpb0;
1305 fp1 = &hw->fpb1;
1306 pipe_conf = &hw->pipe_b_conf;
1307 hs = &hw->hsync_b;
1308 hb = &hw->hblank_b;
1309 ht = &hw->htotal_b;
1310 vs = &hw->vsync_b;
1311 vb = &hw->vblank_b;
1312 vt = &hw->vtotal_b;
1313 ss = &hw->src_size_b;
1314 dpll_reg = DPLL_B;
1315 fp0_reg = FPB0;
1316 fp1_reg = FPB1;
1317 pipe_conf_reg = PIPEBCONF;
1318 pipe_stat_reg = PIPEBSTAT;
1319 hsync_reg = HSYNC_B;
1320 htotal_reg = HTOTAL_B;
1321 hblank_reg = HBLANK_B;
1322 vsync_reg = VSYNC_B;
1323 vtotal_reg = VTOTAL_B;
1324 vblank_reg = VBLANK_B;
1325 src_size_reg = SRC_SIZE_B;
1326 } else {
1327 dpll = &hw->dpll_a;
1328 fp0 = &hw->fpa0;
1329 fp1 = &hw->fpa1;
1330 pipe_conf = &hw->pipe_a_conf;
1331 hs = &hw->hsync_a;
1332 hb = &hw->hblank_a;
1333 ht = &hw->htotal_a;
1334 vs = &hw->vsync_a;
1335 vb = &hw->vblank_a;
1336 vt = &hw->vtotal_a;
1337 ss = &hw->src_size_a;
1338 dpll_reg = DPLL_A;
1339 fp0_reg = FPA0;
1340 fp1_reg = FPA1;
1341 pipe_conf_reg = PIPEACONF;
1342 pipe_stat_reg = PIPEASTAT;
1343 hsync_reg = HSYNC_A;
1344 htotal_reg = HTOTAL_A;
1345 hblank_reg = HBLANK_A;
1346 vsync_reg = VSYNC_A;
1347 vtotal_reg = VTOTAL_A;
1348 vblank_reg = VBLANK_A;
1349 src_size_reg = SRC_SIZE_A;
1352 /* turn off pipe */
1353 tmp = INREG(pipe_conf_reg);
1354 tmp &= ~PIPECONF_ENABLE;
1355 OUTREG(pipe_conf_reg, tmp);
1357 count = 0;
1358 do {
1359 tmp_val[count % 3] = INREG(PIPEA_DSL);
1360 if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
1361 break;
1362 count++;
1363 udelay(1);
1364 if (count % 200 == 0) {
1365 tmp = INREG(pipe_conf_reg);
1366 tmp &= ~PIPECONF_ENABLE;
1367 OUTREG(pipe_conf_reg, tmp);
1369 } while (count < 2000);
1371 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1373 /* Disable planes A and B. */
1374 tmp = INREG(DSPACNTR);
1375 tmp &= ~DISPPLANE_PLANE_ENABLE;
1376 OUTREG(DSPACNTR, tmp);
1377 tmp = INREG(DSPBCNTR);
1378 tmp &= ~DISPPLANE_PLANE_ENABLE;
1379 OUTREG(DSPBCNTR, tmp);
1381 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1382 mdelay(20);
1384 OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1385 OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1386 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1388 /* Disable Sync */
1389 tmp = INREG(ADPA);
1390 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1391 tmp |= ADPA_DPMS_D3;
1392 OUTREG(ADPA, tmp);
1394 /* do some funky magic - xyzzy */
1395 OUTREG(0x61204, 0xabcd0000);
1397 /* turn off PLL */
1398 tmp = INREG(dpll_reg);
1399 tmp &= ~DPLL_VCO_ENABLE;
1400 OUTREG(dpll_reg, tmp);
1402 /* Set PLL parameters */
1403 OUTREG(fp0_reg, *fp0);
1404 OUTREG(fp1_reg, *fp1);
1406 /* Enable PLL */
1407 OUTREG(dpll_reg, *dpll);
1409 /* Set DVOs B/C */
1410 OUTREG(DVOB, hw->dvob);
1411 OUTREG(DVOC, hw->dvoc);
1413 /* undo funky magic */
1414 OUTREG(0x61204, 0x00000000);
1416 /* Set ADPA */
1417 OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1418 OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1420 /* Set pipe parameters */
1421 OUTREG(hsync_reg, *hs);
1422 OUTREG(hblank_reg, *hb);
1423 OUTREG(htotal_reg, *ht);
1424 OUTREG(vsync_reg, *vs);
1425 OUTREG(vblank_reg, *vb);
1426 OUTREG(vtotal_reg, *vt);
1427 OUTREG(src_size_reg, *ss);
1429 switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
1430 FB_VMODE_ODD_FLD_FIRST)) {
1431 case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
1432 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
1433 break;
1434 case FB_VMODE_INTERLACED: /* even lines first */
1435 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
1436 break;
1437 default: /* non-interlaced */
1438 OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
1440 /* Enable pipe */
1441 OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1443 /* Enable sync */
1444 tmp = INREG(ADPA);
1445 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1446 tmp |= ADPA_DPMS_D0;
1447 OUTREG(ADPA, tmp);
1449 /* setup display plane */
1450 if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1452 * i830M errata: the display plane must be enabled
1453 * to allow writes to the other bits in the plane
1454 * control register.
1456 tmp = INREG(DSPACNTR);
1457 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1458 tmp |= DISPPLANE_PLANE_ENABLE;
1459 OUTREG(DSPACNTR, tmp);
1460 OUTREG(DSPACNTR,
1461 hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1462 mdelay(1);
1466 OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1467 OUTREG(DSPASTRIDE, hw->disp_a_stride);
1468 OUTREG(DSPABASE, hw->disp_a_base);
1470 /* Enable plane */
1471 if (!blank) {
1472 tmp = INREG(DSPACNTR);
1473 tmp |= DISPPLANE_PLANE_ENABLE;
1474 OUTREG(DSPACNTR, tmp);
1475 OUTREG(DSPABASE, hw->disp_a_base);
1478 return 0;
1481 /* forward declarations */
1482 static void refresh_ring(struct intelfb_info *dinfo);
1483 static void reset_state(struct intelfb_info *dinfo);
1484 static void do_flush(struct intelfb_info *dinfo);
1486 static u32 get_ring_space(struct intelfb_info *dinfo)
1488 u32 ring_space;
1490 if (dinfo->ring_tail >= dinfo->ring_head)
1491 ring_space = dinfo->ring.size -
1492 (dinfo->ring_tail - dinfo->ring_head);
1493 else
1494 ring_space = dinfo->ring_head - dinfo->ring_tail;
1496 if (ring_space > RING_MIN_FREE)
1497 ring_space -= RING_MIN_FREE;
1498 else
1499 ring_space = 0;
1501 return ring_space;
1504 static int wait_ring(struct intelfb_info *dinfo, int n)
1506 int i = 0;
1507 unsigned long end;
1508 u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1510 #if VERBOSE > 0
1511 DBG_MSG("wait_ring: %d\n", n);
1512 #endif
1514 end = jiffies + (HZ * 3);
1515 while (dinfo->ring_space < n) {
1516 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1517 dinfo->ring_space = get_ring_space(dinfo);
1519 if (dinfo->ring_head != last_head) {
1520 end = jiffies + (HZ * 3);
1521 last_head = dinfo->ring_head;
1523 i++;
1524 if (time_before(end, jiffies)) {
1525 if (!i) {
1526 /* Try again */
1527 reset_state(dinfo);
1528 refresh_ring(dinfo);
1529 do_flush(dinfo);
1530 end = jiffies + (HZ * 3);
1531 i = 1;
1532 } else {
1533 WRN_MSG("ring buffer : space: %d wanted %d\n",
1534 dinfo->ring_space, n);
1535 WRN_MSG("lockup - turning off hardware "
1536 "acceleration\n");
1537 dinfo->ring_lockup = 1;
1538 break;
1541 udelay(1);
1543 return i;
1546 static void do_flush(struct intelfb_info *dinfo)
1548 START_RING(2);
1549 OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1550 OUT_RING(MI_NOOP);
1551 ADVANCE_RING();
1554 void intelfbhw_do_sync(struct intelfb_info *dinfo)
1556 #if VERBOSE > 0
1557 DBG_MSG("intelfbhw_do_sync\n");
1558 #endif
1560 if (!dinfo->accel)
1561 return;
1564 * Send a flush, then wait until the ring is empty. This is what
1565 * the XFree86 driver does, and actually it doesn't seem a lot worse
1566 * than the recommended method (both have problems).
1568 do_flush(dinfo);
1569 wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1570 dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1573 static void refresh_ring(struct intelfb_info *dinfo)
1575 #if VERBOSE > 0
1576 DBG_MSG("refresh_ring\n");
1577 #endif
1579 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1580 dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1581 dinfo->ring_space = get_ring_space(dinfo);
1584 static void reset_state(struct intelfb_info *dinfo)
1586 int i;
1587 u32 tmp;
1589 #if VERBOSE > 0
1590 DBG_MSG("reset_state\n");
1591 #endif
1593 for (i = 0; i < FENCE_NUM; i++)
1594 OUTREG(FENCE + (i << 2), 0);
1596 /* Flush the ring buffer if it's enabled. */
1597 tmp = INREG(PRI_RING_LENGTH);
1598 if (tmp & RING_ENABLE) {
1599 #if VERBOSE > 0
1600 DBG_MSG("reset_state: ring was enabled\n");
1601 #endif
1602 refresh_ring(dinfo);
1603 intelfbhw_do_sync(dinfo);
1604 DO_RING_IDLE();
1607 OUTREG(PRI_RING_LENGTH, 0);
1608 OUTREG(PRI_RING_HEAD, 0);
1609 OUTREG(PRI_RING_TAIL, 0);
1610 OUTREG(PRI_RING_START, 0);
1613 /* Stop the 2D engine, and turn off the ring buffer. */
1614 void intelfbhw_2d_stop(struct intelfb_info *dinfo)
1616 #if VERBOSE > 0
1617 DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
1618 dinfo->accel, dinfo->ring_active);
1619 #endif
1621 if (!dinfo->accel)
1622 return;
1624 dinfo->ring_active = 0;
1625 reset_state(dinfo);
1629 * Enable the ring buffer, and initialise the 2D engine.
1630 * It is assumed that the graphics engine has been stopped by previously
1631 * calling intelfb_2d_stop().
1633 void intelfbhw_2d_start(struct intelfb_info *dinfo)
1635 #if VERBOSE > 0
1636 DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1637 dinfo->accel, dinfo->ring_active);
1638 #endif
1640 if (!dinfo->accel)
1641 return;
1643 /* Initialise the primary ring buffer. */
1644 OUTREG(PRI_RING_LENGTH, 0);
1645 OUTREG(PRI_RING_TAIL, 0);
1646 OUTREG(PRI_RING_HEAD, 0);
1648 OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1649 OUTREG(PRI_RING_LENGTH,
1650 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1651 RING_NO_REPORT | RING_ENABLE);
1652 refresh_ring(dinfo);
1653 dinfo->ring_active = 1;
1656 /* 2D fillrect (solid fill or invert) */
1657 void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
1658 u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
1660 u32 br00, br09, br13, br14, br16;
1662 #if VERBOSE > 0
1663 DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1664 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1665 #endif
1667 br00 = COLOR_BLT_CMD;
1668 br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1669 br13 = (rop << ROP_SHIFT) | pitch;
1670 br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1671 br16 = color;
1673 switch (bpp) {
1674 case 8:
1675 br13 |= COLOR_DEPTH_8;
1676 break;
1677 case 16:
1678 br13 |= COLOR_DEPTH_16;
1679 break;
1680 case 32:
1681 br13 |= COLOR_DEPTH_32;
1682 br00 |= WRITE_ALPHA | WRITE_RGB;
1683 break;
1686 START_RING(6);
1687 OUT_RING(br00);
1688 OUT_RING(br13);
1689 OUT_RING(br14);
1690 OUT_RING(br09);
1691 OUT_RING(br16);
1692 OUT_RING(MI_NOOP);
1693 ADVANCE_RING();
1695 #if VERBOSE > 0
1696 DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1697 dinfo->ring_tail, dinfo->ring_space);
1698 #endif
1701 void
1702 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1703 u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1705 u32 br00, br09, br11, br12, br13, br22, br23, br26;
1707 #if VERBOSE > 0
1708 DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1709 curx, cury, dstx, dsty, w, h, pitch, bpp);
1710 #endif
1712 br00 = XY_SRC_COPY_BLT_CMD;
1713 br09 = dinfo->fb_start;
1714 br11 = (pitch << PITCH_SHIFT);
1715 br12 = dinfo->fb_start;
1716 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1717 br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1718 br23 = ((dstx + w) << WIDTH_SHIFT) |
1719 ((dsty + h) << HEIGHT_SHIFT);
1720 br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1722 switch (bpp) {
1723 case 8:
1724 br13 |= COLOR_DEPTH_8;
1725 break;
1726 case 16:
1727 br13 |= COLOR_DEPTH_16;
1728 break;
1729 case 32:
1730 br13 |= COLOR_DEPTH_32;
1731 br00 |= WRITE_ALPHA | WRITE_RGB;
1732 break;
1735 START_RING(8);
1736 OUT_RING(br00);
1737 OUT_RING(br13);
1738 OUT_RING(br22);
1739 OUT_RING(br23);
1740 OUT_RING(br09);
1741 OUT_RING(br26);
1742 OUT_RING(br11);
1743 OUT_RING(br12);
1744 ADVANCE_RING();
1747 int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1748 u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
1749 u32 bpp)
1751 int nbytes, ndwords, pad, tmp;
1752 u32 br00, br09, br13, br18, br19, br22, br23;
1753 int dat, ix, iy, iw;
1754 int i, j;
1756 #if VERBOSE > 0
1757 DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1758 #endif
1760 /* size in bytes of a padded scanline */
1761 nbytes = ROUND_UP_TO(w, 16) / 8;
1763 /* Total bytes of padded scanline data to write out. */
1764 nbytes = nbytes * h;
1767 * Check if the glyph data exceeds the immediate mode limit.
1768 * It would take a large font (1K pixels) to hit this limit.
1770 if (nbytes > MAX_MONO_IMM_SIZE)
1771 return 0;
1773 /* Src data is packaged a dword (32-bit) at a time. */
1774 ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1777 * Ring has to be padded to a quad word. But because the command starts
1778 with 7 bytes, pad only if there is an even number of ndwords
1780 pad = !(ndwords % 2);
1782 tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1783 br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1784 br09 = dinfo->fb_start;
1785 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1786 br18 = bg;
1787 br19 = fg;
1788 br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1789 br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1791 switch (bpp) {
1792 case 8:
1793 br13 |= COLOR_DEPTH_8;
1794 break;
1795 case 16:
1796 br13 |= COLOR_DEPTH_16;
1797 break;
1798 case 32:
1799 br13 |= COLOR_DEPTH_32;
1800 br00 |= WRITE_ALPHA | WRITE_RGB;
1801 break;
1804 START_RING(8 + ndwords);
1805 OUT_RING(br00);
1806 OUT_RING(br13);
1807 OUT_RING(br22);
1808 OUT_RING(br23);
1809 OUT_RING(br09);
1810 OUT_RING(br18);
1811 OUT_RING(br19);
1812 ix = iy = 0;
1813 iw = ROUND_UP_TO(w, 8) / 8;
1814 while (ndwords--) {
1815 dat = 0;
1816 for (j = 0; j < 2; ++j) {
1817 for (i = 0; i < 2; ++i) {
1818 if (ix != iw || i == 0)
1819 dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1821 if (ix == iw && iy != (h-1)) {
1822 ix = 0;
1823 ++iy;
1826 OUT_RING(dat);
1828 if (pad)
1829 OUT_RING(MI_NOOP);
1830 ADVANCE_RING();
1832 return 1;
1835 /* HW cursor functions. */
1836 void intelfbhw_cursor_init(struct intelfb_info *dinfo)
1838 u32 tmp;
1840 #if VERBOSE > 0
1841 DBG_MSG("intelfbhw_cursor_init\n");
1842 #endif
1844 if (dinfo->mobile || IS_I9XX(dinfo)) {
1845 if (!dinfo->cursor.physical)
1846 return;
1847 tmp = INREG(CURSOR_A_CONTROL);
1848 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1849 CURSOR_MEM_TYPE_LOCAL |
1850 (1 << CURSOR_PIPE_SELECT_SHIFT));
1851 tmp |= CURSOR_MODE_DISABLE;
1852 OUTREG(CURSOR_A_CONTROL, tmp);
1853 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1854 } else {
1855 tmp = INREG(CURSOR_CONTROL);
1856 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1857 CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1858 tmp |= CURSOR_FORMAT_3C;
1859 OUTREG(CURSOR_CONTROL, tmp);
1860 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1861 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1862 (64 << CURSOR_SIZE_V_SHIFT);
1863 OUTREG(CURSOR_SIZE, tmp);
1867 void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1869 u32 tmp;
1871 #if VERBOSE > 0
1872 DBG_MSG("intelfbhw_cursor_hide\n");
1873 #endif
1875 dinfo->cursor_on = 0;
1876 if (dinfo->mobile || IS_I9XX(dinfo)) {
1877 if (!dinfo->cursor.physical)
1878 return;
1879 tmp = INREG(CURSOR_A_CONTROL);
1880 tmp &= ~CURSOR_MODE_MASK;
1881 tmp |= CURSOR_MODE_DISABLE;
1882 OUTREG(CURSOR_A_CONTROL, tmp);
1883 /* Flush changes */
1884 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1885 } else {
1886 tmp = INREG(CURSOR_CONTROL);
1887 tmp &= ~CURSOR_ENABLE;
1888 OUTREG(CURSOR_CONTROL, tmp);
1892 void intelfbhw_cursor_show(struct intelfb_info *dinfo)
1894 u32 tmp;
1896 #if VERBOSE > 0
1897 DBG_MSG("intelfbhw_cursor_show\n");
1898 #endif
1900 dinfo->cursor_on = 1;
1902 if (dinfo->cursor_blanked)
1903 return;
1905 if (dinfo->mobile || IS_I9XX(dinfo)) {
1906 if (!dinfo->cursor.physical)
1907 return;
1908 tmp = INREG(CURSOR_A_CONTROL);
1909 tmp &= ~CURSOR_MODE_MASK;
1910 tmp |= CURSOR_MODE_64_4C_AX;
1911 OUTREG(CURSOR_A_CONTROL, tmp);
1912 /* Flush changes */
1913 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1914 } else {
1915 tmp = INREG(CURSOR_CONTROL);
1916 tmp |= CURSOR_ENABLE;
1917 OUTREG(CURSOR_CONTROL, tmp);
1921 void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1923 u32 tmp;
1925 #if VERBOSE > 0
1926 DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1927 #endif
1930 * Sets the position. The coordinates are assumed to already
1931 * have any offset adjusted. Assume that the cursor is never
1932 * completely off-screen, and that x, y are always >= 0.
1935 tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1936 ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1937 OUTREG(CURSOR_A_POSITION, tmp);
1939 if (IS_I9XX(dinfo))
1940 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1943 void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1945 #if VERBOSE > 0
1946 DBG_MSG("intelfbhw_cursor_setcolor\n");
1947 #endif
1949 OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1950 OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1951 OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1952 OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1955 void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1956 u8 *data)
1958 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1959 int i, j, w = width / 8;
1960 int mod = width % 8, t_mask, d_mask;
1962 #if VERBOSE > 0
1963 DBG_MSG("intelfbhw_cursor_load\n");
1964 #endif
1966 if (!dinfo->cursor.virtual)
1967 return;
1969 t_mask = 0xff >> mod;
1970 d_mask = ~(0xff >> mod);
1971 for (i = height; i--; ) {
1972 for (j = 0; j < w; j++) {
1973 writeb(0x00, addr + j);
1974 writeb(*(data++), addr + j+8);
1976 if (mod) {
1977 writeb(t_mask, addr + j);
1978 writeb(*(data++) & d_mask, addr + j+8);
1980 addr += 16;
1984 void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
1986 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1987 int i, j;
1989 #if VERBOSE > 0
1990 DBG_MSG("intelfbhw_cursor_reset\n");
1991 #endif
1993 if (!dinfo->cursor.virtual)
1994 return;
1996 for (i = 64; i--; ) {
1997 for (j = 0; j < 8; j++) {
1998 writeb(0xff, addr + j+0);
1999 writeb(0x00, addr + j+8);
2001 addr += 16;
2005 static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
2007 u16 tmp;
2008 struct intelfb_info *dinfo = dev_id;
2010 spin_lock(&dinfo->int_lock);
2012 tmp = INREG16(IIR);
2013 if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2014 tmp &= PIPE_A_EVENT_INTERRUPT;
2015 else
2016 tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2018 if (tmp == 0) {
2019 spin_unlock(&dinfo->int_lock);
2020 return IRQ_RETVAL(0); /* not us */
2023 /* clear status bits 0-15 ASAP and don't touch bits 16-31 */
2024 OUTREG(PIPEASTAT, INREG(PIPEASTAT));
2026 OUTREG16(IIR, tmp);
2027 if (dinfo->vsync.pan_display) {
2028 dinfo->vsync.pan_display = 0;
2029 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2032 dinfo->vsync.count++;
2033 wake_up_interruptible(&dinfo->vsync.wait);
2035 spin_unlock(&dinfo->int_lock);
2037 return IRQ_RETVAL(1);
2040 int intelfbhw_enable_irq(struct intelfb_info *dinfo)
2042 u16 tmp;
2043 if (!test_and_set_bit(0, &dinfo->irq_flags)) {
2044 if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
2045 "intelfb", dinfo)) {
2046 clear_bit(0, &dinfo->irq_flags);
2047 return -EINVAL;
2050 spin_lock_irq(&dinfo->int_lock);
2051 OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
2052 OUTREG16(IMR, 0);
2053 } else
2054 spin_lock_irq(&dinfo->int_lock);
2056 if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2057 tmp = PIPE_A_EVENT_INTERRUPT;
2058 else
2059 tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2060 if (tmp != INREG16(IER)) {
2061 DBG_MSG("changing IER to 0x%X\n", tmp);
2062 OUTREG16(IER, tmp);
2065 spin_unlock_irq(&dinfo->int_lock);
2066 return 0;
2069 void intelfbhw_disable_irq(struct intelfb_info *dinfo)
2071 if (test_and_clear_bit(0, &dinfo->irq_flags)) {
2072 if (dinfo->vsync.pan_display) {
2073 dinfo->vsync.pan_display = 0;
2074 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2076 spin_lock_irq(&dinfo->int_lock);
2077 OUTREG16(HWSTAM, 0xffff);
2078 OUTREG16(IMR, 0xffff);
2079 OUTREG16(IER, 0x0);
2081 OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
2082 spin_unlock_irq(&dinfo->int_lock);
2084 free_irq(dinfo->pdev->irq, dinfo);
2088 int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
2090 struct intelfb_vsync *vsync;
2091 unsigned int count;
2092 int ret;
2094 switch (pipe) {
2095 case 0:
2096 vsync = &dinfo->vsync;
2097 break;
2098 default:
2099 return -ENODEV;
2102 ret = intelfbhw_enable_irq(dinfo);
2103 if (ret)
2104 return ret;
2106 count = vsync->count;
2107 ret = wait_event_interruptible_timeout(vsync->wait,
2108 count != vsync->count, HZ / 10);
2109 if (ret < 0)
2110 return ret;
2111 if (ret == 0) {
2112 DBG_MSG("wait_for_vsync timed out!\n");
2113 return -ETIMEDOUT;
2116 return 0;