Linux 4.18.10
[linux/fpc-iii.git] / drivers / video / fbdev / via / via-core.c
blobb041eb27a9bff7aac488968306c83102b6c4edfd
1 /*
2 * Copyright 1998-2009 VIA Technologies, Inc. All Rights Reserved.
3 * Copyright 2001-2008 S3 Graphics, Inc. All Rights Reserved.
4 * Copyright 2009 Jonathan Corbet <corbet@lwn.net>
5 */
7 /*
8 * Core code for the Via multifunction framebuffer device.
9 */
10 #include <linux/via-core.h>
11 #include <linux/via_i2c.h>
12 #include <linux/via-gpio.h>
13 #include "global.h"
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/list.h>
19 #include <linux/pm.h>
22 * The default port config.
24 static struct via_port_cfg adap_configs[] = {
25 [VIA_PORT_26] = { VIA_PORT_I2C, VIA_MODE_I2C, VIASR, 0x26 },
26 [VIA_PORT_31] = { VIA_PORT_I2C, VIA_MODE_I2C, VIASR, 0x31 },
27 [VIA_PORT_25] = { VIA_PORT_GPIO, VIA_MODE_GPIO, VIASR, 0x25 },
28 [VIA_PORT_2C] = { VIA_PORT_GPIO, VIA_MODE_I2C, VIASR, 0x2c },
29 [VIA_PORT_3D] = { VIA_PORT_GPIO, VIA_MODE_GPIO, VIASR, 0x3d },
30 { 0, 0, 0, 0 }
34 * The OLPC XO-1.5 puts the camera power and reset lines onto
35 * GPIO 2C.
37 static struct via_port_cfg olpc_adap_configs[] = {
38 [VIA_PORT_26] = { VIA_PORT_I2C, VIA_MODE_I2C, VIASR, 0x26 },
39 [VIA_PORT_31] = { VIA_PORT_I2C, VIA_MODE_I2C, VIASR, 0x31 },
40 [VIA_PORT_25] = { VIA_PORT_GPIO, VIA_MODE_GPIO, VIASR, 0x25 },
41 [VIA_PORT_2C] = { VIA_PORT_GPIO, VIA_MODE_GPIO, VIASR, 0x2c },
42 [VIA_PORT_3D] = { VIA_PORT_GPIO, VIA_MODE_GPIO, VIASR, 0x3d },
43 { 0, 0, 0, 0 }
47 * We currently only support one viafb device (will there ever be
48 * more than one?), so just declare it globally here.
50 static struct viafb_dev global_dev;
54 * Basic register access; spinlock required.
56 static inline void viafb_mmio_write(int reg, u32 v)
58 iowrite32(v, global_dev.engine_mmio + reg);
61 static inline int viafb_mmio_read(int reg)
63 return ioread32(global_dev.engine_mmio + reg);
66 /* ---------------------------------------------------------------------- */
68 * Interrupt management. We have a single IRQ line for a lot of
69 * different functions, so we need to share it. The design here
70 * is that we don't want to reimplement the shared IRQ code here;
71 * we also want to avoid having contention for a single handler thread.
72 * So each subdev driver which needs interrupts just requests
73 * them directly from the kernel. We just have what's needed for
74 * overall access to the interrupt control register.
78 * Which interrupts are enabled now?
80 static u32 viafb_enabled_ints;
82 static void viafb_int_init(void)
84 viafb_enabled_ints = 0;
86 viafb_mmio_write(VDE_INTERRUPT, 0);
90 * Allow subdevs to ask for specific interrupts to be enabled. These
91 * functions must be called with reg_lock held
93 void viafb_irq_enable(u32 mask)
95 viafb_enabled_ints |= mask;
96 viafb_mmio_write(VDE_INTERRUPT, viafb_enabled_ints | VDE_I_ENABLE);
98 EXPORT_SYMBOL_GPL(viafb_irq_enable);
100 void viafb_irq_disable(u32 mask)
102 viafb_enabled_ints &= ~mask;
103 if (viafb_enabled_ints == 0)
104 viafb_mmio_write(VDE_INTERRUPT, 0); /* Disable entirely */
105 else
106 viafb_mmio_write(VDE_INTERRUPT,
107 viafb_enabled_ints | VDE_I_ENABLE);
109 EXPORT_SYMBOL_GPL(viafb_irq_disable);
111 /* ---------------------------------------------------------------------- */
113 * Currently, the camera driver is the only user of the DMA code, so we
114 * only compile it in if the camera driver is being built. Chances are,
115 * most viafb systems will not need to have this extra code for a while.
116 * As soon as another user comes long, the ifdef can be removed.
118 #if IS_ENABLED(CONFIG_VIDEO_VIA_CAMERA)
120 * Access to the DMA engine. This currently provides what the camera
121 * driver needs (i.e. outgoing only) but is easily expandable if need
122 * be.
126 * There are four DMA channels in the vx855. For now, we only
127 * use one of them, though. Most of the time, the DMA channel
128 * will be idle, so we keep the IRQ handler unregistered except
129 * when some subsystem has indicated an interest.
131 static int viafb_dma_users;
132 static DECLARE_COMPLETION(viafb_dma_completion);
134 * This mutex protects viafb_dma_users and our global interrupt
135 * registration state; it also serializes access to the DMA
136 * engine.
138 static DEFINE_MUTEX(viafb_dma_lock);
141 * The VX855 DMA descriptor (used for s/g transfers) looks
142 * like this.
144 struct viafb_vx855_dma_descr {
145 u32 addr_low; /* Low part of phys addr */
146 u32 addr_high; /* High 12 bits of addr */
147 u32 fb_offset; /* Offset into FB memory */
148 u32 seg_size; /* Size, 16-byte units */
149 u32 tile_mode; /* "tile mode" setting */
150 u32 next_desc_low; /* Next descriptor addr */
151 u32 next_desc_high;
152 u32 pad; /* Fill out to 64 bytes */
156 * Flags added to the "next descriptor low" pointers
158 #define VIAFB_DMA_MAGIC 0x01 /* ??? Just has to be there */
159 #define VIAFB_DMA_FINAL_SEGMENT 0x02 /* Final segment */
162 * The completion IRQ handler.
164 static irqreturn_t viafb_dma_irq(int irq, void *data)
166 int csr;
167 irqreturn_t ret = IRQ_NONE;
169 spin_lock(&global_dev.reg_lock);
170 csr = viafb_mmio_read(VDMA_CSR0);
171 if (csr & VDMA_C_DONE) {
172 viafb_mmio_write(VDMA_CSR0, VDMA_C_DONE);
173 complete(&viafb_dma_completion);
174 ret = IRQ_HANDLED;
176 spin_unlock(&global_dev.reg_lock);
177 return ret;
181 * Indicate a need for DMA functionality.
183 int viafb_request_dma(void)
185 int ret = 0;
188 * Only VX855 is supported currently.
190 if (global_dev.chip_type != UNICHROME_VX855)
191 return -ENODEV;
193 * Note the new user and set up our interrupt handler
194 * if need be.
196 mutex_lock(&viafb_dma_lock);
197 viafb_dma_users++;
198 if (viafb_dma_users == 1) {
199 ret = request_irq(global_dev.pdev->irq, viafb_dma_irq,
200 IRQF_SHARED, "via-dma", &viafb_dma_users);
201 if (ret)
202 viafb_dma_users--;
203 else
204 viafb_irq_enable(VDE_I_DMA0TDEN);
206 mutex_unlock(&viafb_dma_lock);
207 return ret;
209 EXPORT_SYMBOL_GPL(viafb_request_dma);
211 void viafb_release_dma(void)
213 mutex_lock(&viafb_dma_lock);
214 viafb_dma_users--;
215 if (viafb_dma_users == 0) {
216 viafb_irq_disable(VDE_I_DMA0TDEN);
217 free_irq(global_dev.pdev->irq, &viafb_dma_users);
219 mutex_unlock(&viafb_dma_lock);
221 EXPORT_SYMBOL_GPL(viafb_release_dma);
224 #if 0
226 * Copy a single buffer from FB memory, synchronously. This code works
227 * but is not currently used.
229 void viafb_dma_copy_out(unsigned int offset, dma_addr_t paddr, int len)
231 unsigned long flags;
232 int csr;
234 mutex_lock(&viafb_dma_lock);
235 init_completion(&viafb_dma_completion);
237 * Program the controller.
239 spin_lock_irqsave(&global_dev.reg_lock, flags);
240 viafb_mmio_write(VDMA_CSR0, VDMA_C_ENABLE|VDMA_C_DONE);
241 /* Enable ints; must happen after CSR0 write! */
242 viafb_mmio_write(VDMA_MR0, VDMA_MR_TDIE);
243 viafb_mmio_write(VDMA_MARL0, (int) (paddr & 0xfffffff0));
244 viafb_mmio_write(VDMA_MARH0, (int) ((paddr >> 28) & 0xfff));
245 /* Data sheet suggests DAR0 should be <<4, but it lies */
246 viafb_mmio_write(VDMA_DAR0, offset);
247 viafb_mmio_write(VDMA_DQWCR0, len >> 4);
248 viafb_mmio_write(VDMA_TMR0, 0);
249 viafb_mmio_write(VDMA_DPRL0, 0);
250 viafb_mmio_write(VDMA_DPRH0, 0);
251 viafb_mmio_write(VDMA_PMR0, 0);
252 csr = viafb_mmio_read(VDMA_CSR0);
253 viafb_mmio_write(VDMA_CSR0, VDMA_C_ENABLE|VDMA_C_START);
254 spin_unlock_irqrestore(&global_dev.reg_lock, flags);
256 * Now we just wait until the interrupt handler says
257 * we're done.
259 wait_for_completion_interruptible(&viafb_dma_completion);
260 viafb_mmio_write(VDMA_MR0, 0); /* Reset int enable */
261 mutex_unlock(&viafb_dma_lock);
263 EXPORT_SYMBOL_GPL(viafb_dma_copy_out);
264 #endif
267 * Do a scatter/gather DMA copy from FB memory. You must have done
268 * a successful call to viafb_request_dma() first.
270 int viafb_dma_copy_out_sg(unsigned int offset, struct scatterlist *sg, int nsg)
272 struct viafb_vx855_dma_descr *descr;
273 void *descrpages;
274 dma_addr_t descr_handle;
275 unsigned long flags;
276 int i;
277 struct scatterlist *sgentry;
278 dma_addr_t nextdesc;
281 * Get a place to put the descriptors.
283 descrpages = dma_alloc_coherent(&global_dev.pdev->dev,
284 nsg*sizeof(struct viafb_vx855_dma_descr),
285 &descr_handle, GFP_KERNEL);
286 if (descrpages == NULL) {
287 dev_err(&global_dev.pdev->dev, "Unable to get descr page.\n");
288 return -ENOMEM;
290 mutex_lock(&viafb_dma_lock);
292 * Fill them in.
294 descr = descrpages;
295 nextdesc = descr_handle + sizeof(struct viafb_vx855_dma_descr);
296 for_each_sg(sg, sgentry, nsg, i) {
297 dma_addr_t paddr = sg_dma_address(sgentry);
298 descr->addr_low = paddr & 0xfffffff0;
299 descr->addr_high = ((u64) paddr >> 32) & 0x0fff;
300 descr->fb_offset = offset;
301 descr->seg_size = sg_dma_len(sgentry) >> 4;
302 descr->tile_mode = 0;
303 descr->next_desc_low = (nextdesc&0xfffffff0) | VIAFB_DMA_MAGIC;
304 descr->next_desc_high = ((u64) nextdesc >> 32) & 0x0fff;
305 descr->pad = 0xffffffff; /* VIA driver does this */
306 offset += sg_dma_len(sgentry);
307 nextdesc += sizeof(struct viafb_vx855_dma_descr);
308 descr++;
310 descr[-1].next_desc_low = VIAFB_DMA_FINAL_SEGMENT|VIAFB_DMA_MAGIC;
312 * Program the engine.
314 spin_lock_irqsave(&global_dev.reg_lock, flags);
315 init_completion(&viafb_dma_completion);
316 viafb_mmio_write(VDMA_DQWCR0, 0);
317 viafb_mmio_write(VDMA_CSR0, VDMA_C_ENABLE|VDMA_C_DONE);
318 viafb_mmio_write(VDMA_MR0, VDMA_MR_TDIE | VDMA_MR_CHAIN);
319 viafb_mmio_write(VDMA_DPRL0, descr_handle | VIAFB_DMA_MAGIC);
320 viafb_mmio_write(VDMA_DPRH0,
321 (((u64)descr_handle >> 32) & 0x0fff) | 0xf0000);
322 (void) viafb_mmio_read(VDMA_CSR0);
323 viafb_mmio_write(VDMA_CSR0, VDMA_C_ENABLE|VDMA_C_START);
324 spin_unlock_irqrestore(&global_dev.reg_lock, flags);
326 * Now we just wait until the interrupt handler says
327 * we're done. Except that, actually, we need to wait a little
328 * longer: the interrupts seem to jump the gun a little and we
329 * get corrupted frames sometimes.
331 wait_for_completion_timeout(&viafb_dma_completion, 1);
332 msleep(1);
333 if ((viafb_mmio_read(VDMA_CSR0)&VDMA_C_DONE) == 0)
334 printk(KERN_ERR "VIA DMA timeout!\n");
336 * Clean up and we're done.
338 viafb_mmio_write(VDMA_CSR0, VDMA_C_DONE);
339 viafb_mmio_write(VDMA_MR0, 0); /* Reset int enable */
340 mutex_unlock(&viafb_dma_lock);
341 dma_free_coherent(&global_dev.pdev->dev,
342 nsg*sizeof(struct viafb_vx855_dma_descr), descrpages,
343 descr_handle);
344 return 0;
346 EXPORT_SYMBOL_GPL(viafb_dma_copy_out_sg);
347 #endif /* CONFIG_VIDEO_VIA_CAMERA */
349 /* ---------------------------------------------------------------------- */
351 * Figure out how big our framebuffer memory is. Kind of ugly,
352 * but evidently we can't trust the information found in the
353 * fbdev configuration area.
355 static u16 via_function3[] = {
356 CLE266_FUNCTION3, KM400_FUNCTION3, CN400_FUNCTION3, CN700_FUNCTION3,
357 CX700_FUNCTION3, KM800_FUNCTION3, KM890_FUNCTION3, P4M890_FUNCTION3,
358 P4M900_FUNCTION3, VX800_FUNCTION3, VX855_FUNCTION3, VX900_FUNCTION3,
361 /* Get the BIOS-configured framebuffer size from PCI configuration space
362 * of function 3 in the respective chipset */
363 static int viafb_get_fb_size_from_pci(int chip_type)
365 int i;
366 u8 offset = 0;
367 u32 FBSize;
368 u32 VideoMemSize;
370 /* search for the "FUNCTION3" device in this chipset */
371 for (i = 0; i < ARRAY_SIZE(via_function3); i++) {
372 struct pci_dev *pdev;
374 pdev = pci_get_device(PCI_VENDOR_ID_VIA, via_function3[i],
375 NULL);
376 if (!pdev)
377 continue;
379 DEBUG_MSG(KERN_INFO "Device ID = %x\n", pdev->device);
381 switch (pdev->device) {
382 case CLE266_FUNCTION3:
383 case KM400_FUNCTION3:
384 offset = 0xE0;
385 break;
386 case CN400_FUNCTION3:
387 case CN700_FUNCTION3:
388 case CX700_FUNCTION3:
389 case KM800_FUNCTION3:
390 case KM890_FUNCTION3:
391 case P4M890_FUNCTION3:
392 case P4M900_FUNCTION3:
393 case VX800_FUNCTION3:
394 case VX855_FUNCTION3:
395 case VX900_FUNCTION3:
396 /*case CN750_FUNCTION3: */
397 offset = 0xA0;
398 break;
401 if (!offset)
402 break;
404 pci_read_config_dword(pdev, offset, &FBSize);
405 pci_dev_put(pdev);
408 if (!offset) {
409 printk(KERN_ERR "cannot determine framebuffer size\n");
410 return -EIO;
413 FBSize = FBSize & 0x00007000;
414 DEBUG_MSG(KERN_INFO "FB Size = %x\n", FBSize);
416 if (chip_type < UNICHROME_CX700) {
417 switch (FBSize) {
418 case 0x00004000:
419 VideoMemSize = (16 << 20); /*16M */
420 break;
422 case 0x00005000:
423 VideoMemSize = (32 << 20); /*32M */
424 break;
426 case 0x00006000:
427 VideoMemSize = (64 << 20); /*64M */
428 break;
430 default:
431 VideoMemSize = (32 << 20); /*32M */
432 break;
434 } else {
435 switch (FBSize) {
436 case 0x00001000:
437 VideoMemSize = (8 << 20); /*8M */
438 break;
440 case 0x00002000:
441 VideoMemSize = (16 << 20); /*16M */
442 break;
444 case 0x00003000:
445 VideoMemSize = (32 << 20); /*32M */
446 break;
448 case 0x00004000:
449 VideoMemSize = (64 << 20); /*64M */
450 break;
452 case 0x00005000:
453 VideoMemSize = (128 << 20); /*128M */
454 break;
456 case 0x00006000:
457 VideoMemSize = (256 << 20); /*256M */
458 break;
460 case 0x00007000: /* Only on VX855/875 */
461 VideoMemSize = (512 << 20); /*512M */
462 break;
464 default:
465 VideoMemSize = (32 << 20); /*32M */
466 break;
470 return VideoMemSize;
475 * Figure out and map our MMIO regions.
477 static int via_pci_setup_mmio(struct viafb_dev *vdev)
479 int ret;
481 * Hook up to the device registers. Note that we soldier
482 * on if it fails; the framebuffer can operate (without
483 * acceleration) without this region.
485 vdev->engine_start = pci_resource_start(vdev->pdev, 1);
486 vdev->engine_len = pci_resource_len(vdev->pdev, 1);
487 vdev->engine_mmio = ioremap_nocache(vdev->engine_start,
488 vdev->engine_len);
489 if (vdev->engine_mmio == NULL)
490 dev_err(&vdev->pdev->dev,
491 "Unable to map engine MMIO; operation will be "
492 "slow and crippled.\n");
494 * Map in framebuffer memory. For now, failure here is
495 * fatal. Unfortunately, in the absence of significant
496 * vmalloc space, failure here is also entirely plausible.
497 * Eventually we want to move away from mapping this
498 * entire region.
500 if (vdev->chip_type == UNICHROME_VX900)
501 vdev->fbmem_start = pci_resource_start(vdev->pdev, 2);
502 else
503 vdev->fbmem_start = pci_resource_start(vdev->pdev, 0);
504 ret = vdev->fbmem_len = viafb_get_fb_size_from_pci(vdev->chip_type);
505 if (ret < 0)
506 goto out_unmap;
508 /* try to map less memory on failure, 8 MB should be still enough */
509 for (; vdev->fbmem_len >= 8 << 20; vdev->fbmem_len /= 2) {
510 vdev->fbmem = ioremap_wc(vdev->fbmem_start, vdev->fbmem_len);
511 if (vdev->fbmem)
512 break;
515 if (vdev->fbmem == NULL) {
516 ret = -ENOMEM;
517 goto out_unmap;
519 return 0;
520 out_unmap:
521 iounmap(vdev->engine_mmio);
522 return ret;
525 static void via_pci_teardown_mmio(struct viafb_dev *vdev)
527 iounmap(vdev->fbmem);
528 iounmap(vdev->engine_mmio);
532 * Create our subsidiary devices.
534 static struct viafb_subdev_info {
535 char *name;
536 struct platform_device *platdev;
537 } viafb_subdevs[] = {
539 .name = "viafb-gpio",
542 .name = "viafb-i2c",
544 #if IS_ENABLED(CONFIG_VIDEO_VIA_CAMERA)
546 .name = "viafb-camera",
548 #endif
550 #define N_SUBDEVS ARRAY_SIZE(viafb_subdevs)
552 static int via_create_subdev(struct viafb_dev *vdev,
553 struct viafb_subdev_info *info)
555 int ret;
557 info->platdev = platform_device_alloc(info->name, -1);
558 if (!info->platdev) {
559 dev_err(&vdev->pdev->dev, "Unable to allocate pdev %s\n",
560 info->name);
561 return -ENOMEM;
563 info->platdev->dev.parent = &vdev->pdev->dev;
564 info->platdev->dev.platform_data = vdev;
565 ret = platform_device_add(info->platdev);
566 if (ret) {
567 dev_err(&vdev->pdev->dev, "Unable to add pdev %s\n",
568 info->name);
569 platform_device_put(info->platdev);
570 info->platdev = NULL;
572 return ret;
575 static int via_setup_subdevs(struct viafb_dev *vdev)
577 int i;
580 * Ignore return values. Even if some of the devices
581 * fail to be created, we'll still be able to use some
582 * of the rest.
584 for (i = 0; i < N_SUBDEVS; i++)
585 via_create_subdev(vdev, viafb_subdevs + i);
586 return 0;
589 static void via_teardown_subdevs(void)
591 int i;
593 for (i = 0; i < N_SUBDEVS; i++)
594 if (viafb_subdevs[i].platdev) {
595 viafb_subdevs[i].platdev->dev.platform_data = NULL;
596 platform_device_unregister(viafb_subdevs[i].platdev);
601 * Power management functions
603 #ifdef CONFIG_PM
604 static LIST_HEAD(viafb_pm_hooks);
605 static DEFINE_MUTEX(viafb_pm_hooks_lock);
607 void viafb_pm_register(struct viafb_pm_hooks *hooks)
609 INIT_LIST_HEAD(&hooks->list);
611 mutex_lock(&viafb_pm_hooks_lock);
612 list_add_tail(&hooks->list, &viafb_pm_hooks);
613 mutex_unlock(&viafb_pm_hooks_lock);
615 EXPORT_SYMBOL_GPL(viafb_pm_register);
617 void viafb_pm_unregister(struct viafb_pm_hooks *hooks)
619 mutex_lock(&viafb_pm_hooks_lock);
620 list_del(&hooks->list);
621 mutex_unlock(&viafb_pm_hooks_lock);
623 EXPORT_SYMBOL_GPL(viafb_pm_unregister);
625 static int via_suspend(struct pci_dev *pdev, pm_message_t state)
627 struct viafb_pm_hooks *hooks;
629 if (state.event != PM_EVENT_SUSPEND)
630 return 0;
632 * "I've occasionally hit a few drivers that caused suspend
633 * failures, and each and every time it was a driver bug, and
634 * the right thing to do was to just ignore the error and suspend
635 * anyway - returning an error code and trying to undo the suspend
636 * is not what anybody ever really wants, even if our model
637 *_allows_ for it."
638 * -- Linus Torvalds, Dec. 7, 2009
640 mutex_lock(&viafb_pm_hooks_lock);
641 list_for_each_entry_reverse(hooks, &viafb_pm_hooks, list)
642 hooks->suspend(hooks->private);
643 mutex_unlock(&viafb_pm_hooks_lock);
645 pci_save_state(pdev);
646 pci_disable_device(pdev);
647 pci_set_power_state(pdev, pci_choose_state(pdev, state));
648 return 0;
651 static int via_resume(struct pci_dev *pdev)
653 struct viafb_pm_hooks *hooks;
655 /* Get the bus side powered up */
656 pci_set_power_state(pdev, PCI_D0);
657 pci_restore_state(pdev);
658 if (pci_enable_device(pdev))
659 return 0;
661 pci_set_master(pdev);
663 /* Now bring back any subdevs */
664 mutex_lock(&viafb_pm_hooks_lock);
665 list_for_each_entry(hooks, &viafb_pm_hooks, list)
666 hooks->resume(hooks->private);
667 mutex_unlock(&viafb_pm_hooks_lock);
669 return 0;
671 #endif /* CONFIG_PM */
673 static int via_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
675 int ret;
677 ret = pci_enable_device(pdev);
678 if (ret)
679 return ret;
682 * Global device initialization.
684 memset(&global_dev, 0, sizeof(global_dev));
685 global_dev.pdev = pdev;
686 global_dev.chip_type = ent->driver_data;
687 global_dev.port_cfg = adap_configs;
688 if (machine_is_olpc())
689 global_dev.port_cfg = olpc_adap_configs;
691 spin_lock_init(&global_dev.reg_lock);
692 ret = via_pci_setup_mmio(&global_dev);
693 if (ret)
694 goto out_disable;
696 * Set up interrupts and create our subdevices. Continue even if
697 * some things fail.
699 viafb_int_init();
700 via_setup_subdevs(&global_dev);
702 * Set up the framebuffer device
704 ret = via_fb_pci_probe(&global_dev);
705 if (ret)
706 goto out_subdevs;
707 return 0;
709 out_subdevs:
710 via_teardown_subdevs();
711 via_pci_teardown_mmio(&global_dev);
712 out_disable:
713 pci_disable_device(pdev);
714 return ret;
717 static void via_pci_remove(struct pci_dev *pdev)
719 via_teardown_subdevs();
720 via_fb_pci_remove(pdev);
721 via_pci_teardown_mmio(&global_dev);
722 pci_disable_device(pdev);
726 static const struct pci_device_id via_pci_table[] = {
727 { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_CLE266_DID),
728 .driver_data = UNICHROME_CLE266 },
729 { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_K400_DID),
730 .driver_data = UNICHROME_K400 },
731 { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_K800_DID),
732 .driver_data = UNICHROME_K800 },
733 { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_PM800_DID),
734 .driver_data = UNICHROME_PM800 },
735 { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_CN700_DID),
736 .driver_data = UNICHROME_CN700 },
737 { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_CX700_DID),
738 .driver_data = UNICHROME_CX700 },
739 { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_CN750_DID),
740 .driver_data = UNICHROME_CN750 },
741 { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_K8M890_DID),
742 .driver_data = UNICHROME_K8M890 },
743 { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_P4M890_DID),
744 .driver_data = UNICHROME_P4M890 },
745 { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_P4M900_DID),
746 .driver_data = UNICHROME_P4M900 },
747 { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_VX800_DID),
748 .driver_data = UNICHROME_VX800 },
749 { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_VX855_DID),
750 .driver_data = UNICHROME_VX855 },
751 { PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_VX900_DID),
752 .driver_data = UNICHROME_VX900 },
755 MODULE_DEVICE_TABLE(pci, via_pci_table);
757 static struct pci_driver via_driver = {
758 .name = "viafb",
759 .id_table = via_pci_table,
760 .probe = via_pci_probe,
761 .remove = via_pci_remove,
762 #ifdef CONFIG_PM
763 .suspend = via_suspend,
764 .resume = via_resume,
765 #endif
768 static int __init via_core_init(void)
770 int ret;
772 ret = viafb_init();
773 if (ret)
774 return ret;
775 viafb_i2c_init();
776 viafb_gpio_init();
777 return pci_register_driver(&via_driver);
780 static void __exit via_core_exit(void)
782 pci_unregister_driver(&via_driver);
783 viafb_gpio_exit();
784 viafb_i2c_exit();
785 viafb_exit();
788 module_init(via_core_init);
789 module_exit(via_core_exit);