Linux 4.18.10
[linux/fpc-iii.git] / drivers / w1 / masters / ds2490.c
blobc423bdb982bbad900cc2205edec4cf2477c1072b
1 /*
2 * ds2490.c USB to one wire bridge
4 * Copyright (c) 2004 Evgeniy Polyakov <zbr@ioremap.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mod_devicetable.h>
25 #include <linux/usb.h>
26 #include <linux/slab.h>
28 #include <linux/w1.h>
30 /* USB Standard */
31 /* USB Control request vendor type */
32 #define VENDOR 0x40
34 /* COMMAND TYPE CODES */
35 #define CONTROL_CMD 0x00
36 #define COMM_CMD 0x01
37 #define MODE_CMD 0x02
39 /* CONTROL COMMAND CODES */
40 #define CTL_RESET_DEVICE 0x0000
41 #define CTL_START_EXE 0x0001
42 #define CTL_RESUME_EXE 0x0002
43 #define CTL_HALT_EXE_IDLE 0x0003
44 #define CTL_HALT_EXE_DONE 0x0004
45 #define CTL_FLUSH_COMM_CMDS 0x0007
46 #define CTL_FLUSH_RCV_BUFFER 0x0008
47 #define CTL_FLUSH_XMT_BUFFER 0x0009
48 #define CTL_GET_COMM_CMDS 0x000A
50 /* MODE COMMAND CODES */
51 #define MOD_PULSE_EN 0x0000
52 #define MOD_SPEED_CHANGE_EN 0x0001
53 #define MOD_1WIRE_SPEED 0x0002
54 #define MOD_STRONG_PU_DURATION 0x0003
55 #define MOD_PULLDOWN_SLEWRATE 0x0004
56 #define MOD_PROG_PULSE_DURATION 0x0005
57 #define MOD_WRITE1_LOWTIME 0x0006
58 #define MOD_DSOW0_TREC 0x0007
60 /* COMMUNICATION COMMAND CODES */
61 #define COMM_ERROR_ESCAPE 0x0601
62 #define COMM_SET_DURATION 0x0012
63 #define COMM_BIT_IO 0x0020
64 #define COMM_PULSE 0x0030
65 #define COMM_1_WIRE_RESET 0x0042
66 #define COMM_BYTE_IO 0x0052
67 #define COMM_MATCH_ACCESS 0x0064
68 #define COMM_BLOCK_IO 0x0074
69 #define COMM_READ_STRAIGHT 0x0080
70 #define COMM_DO_RELEASE 0x6092
71 #define COMM_SET_PATH 0x00A2
72 #define COMM_WRITE_SRAM_PAGE 0x00B2
73 #define COMM_WRITE_EPROM 0x00C4
74 #define COMM_READ_CRC_PROT_PAGE 0x00D4
75 #define COMM_READ_REDIRECT_PAGE_CRC 0x21E4
76 #define COMM_SEARCH_ACCESS 0x00F4
78 /* Communication command bits */
79 #define COMM_TYPE 0x0008
80 #define COMM_SE 0x0008
81 #define COMM_D 0x0008
82 #define COMM_Z 0x0008
83 #define COMM_CH 0x0008
84 #define COMM_SM 0x0008
85 #define COMM_R 0x0008
86 #define COMM_IM 0x0001
88 #define COMM_PS 0x4000
89 #define COMM_PST 0x4000
90 #define COMM_CIB 0x4000
91 #define COMM_RTS 0x4000
92 #define COMM_DT 0x2000
93 #define COMM_SPU 0x1000
94 #define COMM_F 0x0800
95 #define COMM_NTF 0x0400
96 #define COMM_ICP 0x0200
97 #define COMM_RST 0x0100
99 #define PULSE_PROG 0x01
100 #define PULSE_SPUE 0x02
102 #define BRANCH_MAIN 0xCC
103 #define BRANCH_AUX 0x33
105 /* Status flags */
106 #define ST_SPUA 0x01 /* Strong Pull-up is active */
107 #define ST_PRGA 0x02 /* 12V programming pulse is being generated */
108 #define ST_12VP 0x04 /* external 12V programming voltage is present */
109 #define ST_PMOD 0x08 /* DS2490 powered from USB and external sources */
110 #define ST_HALT 0x10 /* DS2490 is currently halted */
111 #define ST_IDLE 0x20 /* DS2490 is currently idle */
112 #define ST_EPOF 0x80
113 /* Status transfer size, 16 bytes status, 16 byte result flags */
114 #define ST_SIZE 0x20
116 /* Result Register flags */
117 #define RR_DETECT 0xA5 /* New device detected */
118 #define RR_NRS 0x01 /* Reset no presence or ... */
119 #define RR_SH 0x02 /* short on reset or set path */
120 #define RR_APP 0x04 /* alarming presence on reset */
121 #define RR_VPP 0x08 /* 12V expected not seen */
122 #define RR_CMP 0x10 /* compare error */
123 #define RR_CRC 0x20 /* CRC error detected */
124 #define RR_RDP 0x40 /* redirected page */
125 #define RR_EOS 0x80 /* end of search error */
127 #define SPEED_NORMAL 0x00
128 #define SPEED_FLEXIBLE 0x01
129 #define SPEED_OVERDRIVE 0x02
131 #define NUM_EP 4
132 #define EP_CONTROL 0
133 #define EP_STATUS 1
134 #define EP_DATA_OUT 2
135 #define EP_DATA_IN 3
137 struct ds_device
139 struct list_head ds_entry;
141 struct usb_device *udev;
142 struct usb_interface *intf;
144 int ep[NUM_EP];
146 /* Strong PullUp
147 * 0: pullup not active, else duration in milliseconds
149 int spu_sleep;
150 /* spu_bit contains COMM_SPU or 0 depending on if the strong pullup
151 * should be active or not for writes.
153 u16 spu_bit;
155 u8 st_buf[ST_SIZE];
156 u8 byte_buf;
158 struct w1_bus_master master;
161 struct ds_status
163 u8 enable;
164 u8 speed;
165 u8 pullup_dur;
166 u8 ppuls_dur;
167 u8 pulldown_slew;
168 u8 write1_time;
169 u8 write0_time;
170 u8 reserved0;
171 u8 status;
172 u8 command0;
173 u8 command1;
174 u8 command_buffer_status;
175 u8 data_out_buffer_status;
176 u8 data_in_buffer_status;
177 u8 reserved1;
178 u8 reserved2;
181 static LIST_HEAD(ds_devices);
182 static DEFINE_MUTEX(ds_mutex);
184 static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
186 int err;
188 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
189 CONTROL_CMD, VENDOR, value, index, NULL, 0, 1000);
190 if (err < 0) {
191 pr_err("Failed to send command control message %x.%x: err=%d.\n",
192 value, index, err);
193 return err;
196 return err;
199 static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
201 int err;
203 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
204 MODE_CMD, VENDOR, value, index, NULL, 0, 1000);
205 if (err < 0) {
206 pr_err("Failed to send mode control message %x.%x: err=%d.\n",
207 value, index, err);
208 return err;
211 return err;
214 static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
216 int err;
218 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
219 COMM_CMD, VENDOR, value, index, NULL, 0, 1000);
220 if (err < 0) {
221 pr_err("Failed to send control message %x.%x: err=%d.\n",
222 value, index, err);
223 return err;
226 return err;
229 static inline void ds_print_msg(unsigned char *buf, unsigned char *str, int off)
231 pr_info("%45s: %8x\n", str, buf[off]);
234 static void ds_dump_status(struct ds_device *dev, unsigned char *buf, int count)
236 int i;
238 pr_info("0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
239 for (i=0; i<count; ++i)
240 pr_info("%02x ", buf[i]);
241 pr_info("\n");
243 if (count >= 16) {
244 ds_print_msg(buf, "enable flag", 0);
245 ds_print_msg(buf, "1-wire speed", 1);
246 ds_print_msg(buf, "strong pullup duration", 2);
247 ds_print_msg(buf, "programming pulse duration", 3);
248 ds_print_msg(buf, "pulldown slew rate control", 4);
249 ds_print_msg(buf, "write-1 low time", 5);
250 ds_print_msg(buf, "data sample offset/write-0 recovery time",
252 ds_print_msg(buf, "reserved (test register)", 7);
253 ds_print_msg(buf, "device status flags", 8);
254 ds_print_msg(buf, "communication command byte 1", 9);
255 ds_print_msg(buf, "communication command byte 2", 10);
256 ds_print_msg(buf, "communication command buffer status", 11);
257 ds_print_msg(buf, "1-wire data output buffer status", 12);
258 ds_print_msg(buf, "1-wire data input buffer status", 13);
259 ds_print_msg(buf, "reserved", 14);
260 ds_print_msg(buf, "reserved", 15);
262 for (i = 16; i < count; ++i) {
263 if (buf[i] == RR_DETECT) {
264 ds_print_msg(buf, "new device detect", i);
265 continue;
267 ds_print_msg(buf, "Result Register Value: ", i);
268 if (buf[i] & RR_NRS)
269 pr_info("NRS: Reset no presence or ...\n");
270 if (buf[i] & RR_SH)
271 pr_info("SH: short on reset or set path\n");
272 if (buf[i] & RR_APP)
273 pr_info("APP: alarming presence on reset\n");
274 if (buf[i] & RR_VPP)
275 pr_info("VPP: 12V expected not seen\n");
276 if (buf[i] & RR_CMP)
277 pr_info("CMP: compare error\n");
278 if (buf[i] & RR_CRC)
279 pr_info("CRC: CRC error detected\n");
280 if (buf[i] & RR_RDP)
281 pr_info("RDP: redirected page\n");
282 if (buf[i] & RR_EOS)
283 pr_info("EOS: end of search error\n");
287 static int ds_recv_status(struct ds_device *dev, struct ds_status *st,
288 bool dump)
290 int count, err;
292 if (st)
293 memset(st, 0, sizeof(*st));
295 count = 0;
296 err = usb_interrupt_msg(dev->udev,
297 usb_rcvintpipe(dev->udev,
298 dev->ep[EP_STATUS]),
299 dev->st_buf, sizeof(dev->st_buf),
300 &count, 1000);
301 if (err < 0) {
302 pr_err("Failed to read 1-wire data from 0x%x: err=%d.\n",
303 dev->ep[EP_STATUS], err);
304 return err;
307 if (dump)
308 ds_dump_status(dev, dev->st_buf, count);
310 if (st && count >= sizeof(*st))
311 memcpy(st, dev->st_buf, sizeof(*st));
313 return count;
316 static void ds_reset_device(struct ds_device *dev)
318 ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
319 /* Always allow strong pullup which allow individual writes to use
320 * the strong pullup.
322 if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE))
323 pr_err("ds_reset_device: Error allowing strong pullup\n");
324 /* Chip strong pullup time was cleared. */
325 if (dev->spu_sleep) {
326 /* lower 4 bits are 0, see ds_set_pullup */
327 u8 del = dev->spu_sleep>>4;
328 if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del))
329 pr_err("ds_reset_device: Error setting duration\n");
333 static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
335 int count, err;
337 /* Careful on size. If size is less than what is available in
338 * the input buffer, the device fails the bulk transfer and
339 * clears the input buffer. It could read the maximum size of
340 * the data buffer, but then do you return the first, last, or
341 * some set of the middle size bytes? As long as the rest of
342 * the code is correct there will be size bytes waiting. A
343 * call to ds_wait_status will wait until the device is idle
344 * and any data to be received would have been available.
346 count = 0;
347 err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
348 buf, size, &count, 1000);
349 if (err < 0) {
350 pr_info("Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
351 usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
352 ds_recv_status(dev, NULL, true);
353 return err;
356 #if 0
358 int i;
360 printk("%s: count=%d: ", __func__, count);
361 for (i=0; i<count; ++i)
362 printk("%02x ", buf[i]);
363 printk("\n");
365 #endif
366 return count;
369 static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
371 int count, err;
373 count = 0;
374 err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
375 if (err < 0) {
376 pr_err("Failed to write 1-wire data to ep0x%x: "
377 "err=%d.\n", dev->ep[EP_DATA_OUT], err);
378 return err;
381 return err;
384 #if 0
386 int ds_stop_pulse(struct ds_device *dev, int limit)
388 struct ds_status st;
389 int count = 0, err = 0;
391 do {
392 err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
393 if (err)
394 break;
395 err = ds_send_control(dev, CTL_RESUME_EXE, 0);
396 if (err)
397 break;
398 err = ds_recv_status(dev, &st, false);
399 if (err)
400 break;
402 if ((st.status & ST_SPUA) == 0) {
403 err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
404 if (err)
405 break;
407 } while(++count < limit);
409 return err;
412 int ds_detect(struct ds_device *dev, struct ds_status *st)
414 int err;
416 err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
417 if (err)
418 return err;
420 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
421 if (err)
422 return err;
424 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
425 if (err)
426 return err;
428 err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
429 if (err)
430 return err;
432 err = ds_dump_status(dev, st);
434 return err;
437 #endif /* 0 */
439 static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
441 int err, count = 0;
443 do {
444 st->status = 0;
445 err = ds_recv_status(dev, st, false);
446 #if 0
447 if (err >= 0) {
448 int i;
449 printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
450 for (i=0; i<err; ++i)
451 printk("%02x ", dev->st_buf[i]);
452 printk("\n");
454 #endif
455 } while (!(st->status & ST_IDLE) && !(err < 0) && ++count < 100);
457 if (err >= 16 && st->status & ST_EPOF) {
458 pr_info("Resetting device after ST_EPOF.\n");
459 ds_reset_device(dev);
460 /* Always dump the device status. */
461 count = 101;
464 /* Dump the status for errors or if there is extended return data.
465 * The extended status includes new device detection (maybe someone
466 * can do something with it).
468 if (err > 16 || count >= 100 || err < 0)
469 ds_dump_status(dev, dev->st_buf, err);
471 /* Extended data isn't an error. Well, a short is, but the dump
472 * would have already told the user that and we can't do anything
473 * about it in software anyway.
475 if (count >= 100 || err < 0)
476 return -1;
477 else
478 return 0;
481 static int ds_reset(struct ds_device *dev)
483 int err;
485 /* Other potentionally interesting flags for reset.
487 * COMM_NTF: Return result register feedback. This could be used to
488 * detect some conditions such as short, alarming presence, or
489 * detect if a new device was detected.
491 * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE:
492 * Select the data transfer rate.
494 err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL);
495 if (err)
496 return err;
498 return 0;
501 #if 0
502 static int ds_set_speed(struct ds_device *dev, int speed)
504 int err;
506 if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
507 return -EINVAL;
509 if (speed != SPEED_OVERDRIVE)
510 speed = SPEED_FLEXIBLE;
512 speed &= 0xff;
514 err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
515 if (err)
516 return err;
518 return err;
520 #endif /* 0 */
522 static int ds_set_pullup(struct ds_device *dev, int delay)
524 int err = 0;
525 u8 del = 1 + (u8)(delay >> 4);
526 /* Just storing delay would not get the trunication and roundup. */
527 int ms = del<<4;
529 /* Enable spu_bit if a delay is set. */
530 dev->spu_bit = delay ? COMM_SPU : 0;
531 /* If delay is zero, it has already been disabled, if the time is
532 * the same as the hardware was last programmed to, there is also
533 * nothing more to do. Compare with the recalculated value ms
534 * rather than del or delay which can have a different value.
536 if (delay == 0 || ms == dev->spu_sleep)
537 return err;
539 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
540 if (err)
541 return err;
543 dev->spu_sleep = ms;
545 return err;
548 static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
550 int err;
551 struct ds_status st;
553 err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
555 if (err)
556 return err;
558 ds_wait_status(dev, &st);
560 err = ds_recv_data(dev, tbit, sizeof(*tbit));
561 if (err < 0)
562 return err;
564 return 0;
567 #if 0
568 static int ds_write_bit(struct ds_device *dev, u8 bit)
570 int err;
571 struct ds_status st;
573 /* Set COMM_ICP to write without a readback. Note, this will
574 * produce one time slot, a down followed by an up with COMM_D
575 * only determing the timing.
577 err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
578 (bit ? COMM_D : 0), 0);
579 if (err)
580 return err;
582 ds_wait_status(dev, &st);
584 return 0;
586 #endif
588 static int ds_write_byte(struct ds_device *dev, u8 byte)
590 int err;
591 struct ds_status st;
593 err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte);
594 if (err)
595 return err;
597 if (dev->spu_bit)
598 msleep(dev->spu_sleep);
600 err = ds_wait_status(dev, &st);
601 if (err)
602 return err;
604 err = ds_recv_data(dev, &dev->byte_buf, 1);
605 if (err < 0)
606 return err;
608 return !(byte == dev->byte_buf);
611 static int ds_read_byte(struct ds_device *dev, u8 *byte)
613 int err;
614 struct ds_status st;
616 err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff);
617 if (err)
618 return err;
620 ds_wait_status(dev, &st);
622 err = ds_recv_data(dev, byte, sizeof(*byte));
623 if (err < 0)
624 return err;
626 return 0;
629 static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
631 struct ds_status st;
632 int err;
634 if (len > 64*1024)
635 return -E2BIG;
637 memset(buf, 0xFF, len);
639 err = ds_send_data(dev, buf, len);
640 if (err < 0)
641 return err;
643 err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
644 if (err)
645 return err;
647 ds_wait_status(dev, &st);
649 memset(buf, 0x00, len);
650 err = ds_recv_data(dev, buf, len);
652 return err;
655 static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
657 int err;
658 struct ds_status st;
660 err = ds_send_data(dev, buf, len);
661 if (err < 0)
662 return err;
664 err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len);
665 if (err)
666 return err;
668 if (dev->spu_bit)
669 msleep(dev->spu_sleep);
671 ds_wait_status(dev, &st);
673 err = ds_recv_data(dev, buf, len);
674 if (err < 0)
675 return err;
677 return !(err == len);
680 static void ds9490r_search(void *data, struct w1_master *master,
681 u8 search_type, w1_slave_found_callback callback)
683 /* When starting with an existing id, the first id returned will
684 * be that device (if it is still on the bus most likely).
686 * If the number of devices found is less than or equal to the
687 * search_limit, that number of IDs will be returned. If there are
688 * more, search_limit IDs will be returned followed by a non-zero
689 * discrepency value.
691 struct ds_device *dev = data;
692 int err;
693 u16 value, index;
694 struct ds_status st;
695 int search_limit;
696 int found = 0;
697 int i;
699 /* DS18b20 spec, 13.16 ms per device, 75 per second, sleep for
700 * discovering 8 devices (1 bulk transfer and 1/2 FIFO size) at a time.
702 const unsigned long jtime = msecs_to_jiffies(1000*8/75);
703 /* FIFO 128 bytes, bulk packet size 64, read a multiple of the
704 * packet size.
706 const size_t bufsize = 2 * 64;
707 u64 *buf;
709 buf = kmalloc(bufsize, GFP_KERNEL);
710 if (!buf)
711 return;
713 mutex_lock(&master->bus_mutex);
715 /* address to start searching at */
716 if (ds_send_data(dev, (u8 *)&master->search_id, 8) < 0)
717 goto search_out;
718 master->search_id = 0;
720 value = COMM_SEARCH_ACCESS | COMM_IM | COMM_RST | COMM_SM | COMM_F |
721 COMM_RTS;
722 search_limit = master->max_slave_count;
723 if (search_limit > 255)
724 search_limit = 0;
725 index = search_type | (search_limit << 8);
726 if (ds_send_control(dev, value, index) < 0)
727 goto search_out;
729 do {
730 schedule_timeout(jtime);
732 err = ds_recv_status(dev, &st, false);
733 if (err < 0 || err < sizeof(st))
734 break;
736 if (st.data_in_buffer_status) {
737 /* Bulk in can receive partial ids, but when it does
738 * they fail crc and will be discarded anyway.
739 * That has only been seen when status in buffer
740 * is 0 and bulk is read anyway, so don't read
741 * bulk without first checking if status says there
742 * is data to read.
744 err = ds_recv_data(dev, (u8 *)buf, bufsize);
745 if (err < 0)
746 break;
747 for (i = 0; i < err/8; ++i) {
748 ++found;
749 if (found <= search_limit)
750 callback(master, buf[i]);
751 /* can't know if there will be a discrepancy
752 * value after until the next id */
753 if (found == search_limit)
754 master->search_id = buf[i];
758 if (test_bit(W1_ABORT_SEARCH, &master->flags))
759 break;
760 } while (!(st.status & (ST_IDLE | ST_HALT)));
762 /* only continue the search if some weren't found */
763 if (found <= search_limit) {
764 master->search_id = 0;
765 } else if (!test_bit(W1_WARN_MAX_COUNT, &master->flags)) {
766 /* Only max_slave_count will be scanned in a search,
767 * but it will start where it left off next search
768 * until all ids are identified and then it will start
769 * over. A continued search will report the previous
770 * last id as the first id (provided it is still on the
771 * bus).
773 dev_info(&dev->udev->dev, "%s: max_slave_count %d reached, "
774 "will continue next search.\n", __func__,
775 master->max_slave_count);
776 set_bit(W1_WARN_MAX_COUNT, &master->flags);
778 search_out:
779 mutex_unlock(&master->bus_mutex);
780 kfree(buf);
783 #if 0
785 * FIXME: if this disabled code is ever used in the future all ds_send_data()
786 * calls must be changed to use a DMAable buffer.
788 static int ds_match_access(struct ds_device *dev, u64 init)
790 int err;
791 struct ds_status st;
793 err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
794 if (err)
795 return err;
797 ds_wait_status(dev, &st);
799 err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
800 if (err)
801 return err;
803 ds_wait_status(dev, &st);
805 return 0;
808 static int ds_set_path(struct ds_device *dev, u64 init)
810 int err;
811 struct ds_status st;
812 u8 buf[9];
814 memcpy(buf, &init, 8);
815 buf[8] = BRANCH_MAIN;
817 err = ds_send_data(dev, buf, sizeof(buf));
818 if (err)
819 return err;
821 ds_wait_status(dev, &st);
823 err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
824 if (err)
825 return err;
827 ds_wait_status(dev, &st);
829 return 0;
832 #endif /* 0 */
834 static u8 ds9490r_touch_bit(void *data, u8 bit)
836 struct ds_device *dev = data;
838 if (ds_touch_bit(dev, bit, &dev->byte_buf))
839 return 0;
841 return dev->byte_buf;
844 #if 0
845 static void ds9490r_write_bit(void *data, u8 bit)
847 struct ds_device *dev = data;
849 ds_write_bit(dev, bit);
852 static u8 ds9490r_read_bit(void *data)
854 struct ds_device *dev = data;
855 int err;
857 err = ds_touch_bit(dev, 1, &dev->byte_buf);
858 if (err)
859 return 0;
861 return dev->byte_buf & 1;
863 #endif
865 static void ds9490r_write_byte(void *data, u8 byte)
867 struct ds_device *dev = data;
869 ds_write_byte(dev, byte);
872 static u8 ds9490r_read_byte(void *data)
874 struct ds_device *dev = data;
875 int err;
877 err = ds_read_byte(dev, &dev->byte_buf);
878 if (err)
879 return 0;
881 return dev->byte_buf;
884 static void ds9490r_write_block(void *data, const u8 *buf, int len)
886 struct ds_device *dev = data;
887 u8 *tbuf;
889 if (len <= 0)
890 return;
892 tbuf = kmemdup(buf, len, GFP_KERNEL);
893 if (!tbuf)
894 return;
896 ds_write_block(dev, tbuf, len);
898 kfree(tbuf);
901 static u8 ds9490r_read_block(void *data, u8 *buf, int len)
903 struct ds_device *dev = data;
904 int err;
905 u8 *tbuf;
907 if (len <= 0)
908 return 0;
910 tbuf = kmalloc(len, GFP_KERNEL);
911 if (!tbuf)
912 return 0;
914 err = ds_read_block(dev, tbuf, len);
915 if (err >= 0)
916 memcpy(buf, tbuf, len);
918 kfree(tbuf);
920 return err >= 0 ? len : 0;
923 static u8 ds9490r_reset(void *data)
925 struct ds_device *dev = data;
926 int err;
928 err = ds_reset(dev);
929 if (err)
930 return 1;
932 return 0;
935 static u8 ds9490r_set_pullup(void *data, int delay)
937 struct ds_device *dev = data;
939 if (ds_set_pullup(dev, delay))
940 return 1;
942 return 0;
945 static int ds_w1_init(struct ds_device *dev)
947 memset(&dev->master, 0, sizeof(struct w1_bus_master));
949 /* Reset the device as it can be in a bad state.
950 * This is necessary because a block write will wait for data
951 * to be placed in the output buffer and block any later
952 * commands which will keep accumulating and the device will
953 * not be idle. Another case is removing the ds2490 module
954 * while a bus search is in progress, somehow a few commands
955 * get through, but the input transfers fail leaving data in
956 * the input buffer. This will cause the next read to fail
957 * see the note in ds_recv_data.
959 ds_reset_device(dev);
961 dev->master.data = dev;
962 dev->master.touch_bit = &ds9490r_touch_bit;
963 /* read_bit and write_bit in w1_bus_master are expected to set and
964 * sample the line level. For write_bit that means it is expected to
965 * set it to that value and leave it there. ds2490 only supports an
966 * individual time slot at the lowest level. The requirement from
967 * pulling the bus state down to reading the state is 15us, something
968 * that isn't realistic on the USB bus anyway.
969 dev->master.read_bit = &ds9490r_read_bit;
970 dev->master.write_bit = &ds9490r_write_bit;
972 dev->master.read_byte = &ds9490r_read_byte;
973 dev->master.write_byte = &ds9490r_write_byte;
974 dev->master.read_block = &ds9490r_read_block;
975 dev->master.write_block = &ds9490r_write_block;
976 dev->master.reset_bus = &ds9490r_reset;
977 dev->master.set_pullup = &ds9490r_set_pullup;
978 dev->master.search = &ds9490r_search;
980 return w1_add_master_device(&dev->master);
983 static void ds_w1_fini(struct ds_device *dev)
985 w1_remove_master_device(&dev->master);
988 static int ds_probe(struct usb_interface *intf,
989 const struct usb_device_id *udev_id)
991 struct usb_device *udev = interface_to_usbdev(intf);
992 struct usb_endpoint_descriptor *endpoint;
993 struct usb_host_interface *iface_desc;
994 struct ds_device *dev;
995 int i, err, alt;
997 dev = kzalloc(sizeof(struct ds_device), GFP_KERNEL);
998 if (!dev) {
999 pr_info("Failed to allocate new DS9490R structure.\n");
1000 return -ENOMEM;
1002 dev->udev = usb_get_dev(udev);
1003 if (!dev->udev) {
1004 err = -ENOMEM;
1005 goto err_out_free;
1007 memset(dev->ep, 0, sizeof(dev->ep));
1009 usb_set_intfdata(intf, dev);
1011 err = usb_reset_configuration(dev->udev);
1012 if (err) {
1013 dev_err(&dev->udev->dev,
1014 "Failed to reset configuration: err=%d.\n", err);
1015 goto err_out_clear;
1018 /* alternative 3, 1ms interrupt (greatly speeds search), 64 byte bulk */
1019 alt = 3;
1020 err = usb_set_interface(dev->udev,
1021 intf->altsetting[alt].desc.bInterfaceNumber, alt);
1022 if (err) {
1023 dev_err(&dev->udev->dev, "Failed to set alternative setting %d "
1024 "for %d interface: err=%d.\n", alt,
1025 intf->altsetting[alt].desc.bInterfaceNumber, err);
1026 goto err_out_clear;
1029 iface_desc = &intf->altsetting[alt];
1030 if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
1031 pr_info("Num endpoints=%d. It is not DS9490R.\n",
1032 iface_desc->desc.bNumEndpoints);
1033 err = -EINVAL;
1034 goto err_out_clear;
1038 * This loop doesn'd show control 0 endpoint,
1039 * so we will fill only 1-3 endpoints entry.
1041 for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
1042 endpoint = &iface_desc->endpoint[i].desc;
1044 dev->ep[i+1] = endpoint->bEndpointAddress;
1045 #if 0
1046 printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
1047 i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
1048 (endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
1049 endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
1050 #endif
1053 err = ds_w1_init(dev);
1054 if (err)
1055 goto err_out_clear;
1057 mutex_lock(&ds_mutex);
1058 list_add_tail(&dev->ds_entry, &ds_devices);
1059 mutex_unlock(&ds_mutex);
1061 return 0;
1063 err_out_clear:
1064 usb_set_intfdata(intf, NULL);
1065 usb_put_dev(dev->udev);
1066 err_out_free:
1067 kfree(dev);
1068 return err;
1071 static void ds_disconnect(struct usb_interface *intf)
1073 struct ds_device *dev;
1075 dev = usb_get_intfdata(intf);
1076 if (!dev)
1077 return;
1079 mutex_lock(&ds_mutex);
1080 list_del(&dev->ds_entry);
1081 mutex_unlock(&ds_mutex);
1083 ds_w1_fini(dev);
1085 usb_set_intfdata(intf, NULL);
1087 usb_put_dev(dev->udev);
1088 kfree(dev);
1091 static const struct usb_device_id ds_id_table[] = {
1092 { USB_DEVICE(0x04fa, 0x2490) },
1093 { },
1095 MODULE_DEVICE_TABLE(usb, ds_id_table);
1097 static struct usb_driver ds_driver = {
1098 .name = "DS9490R",
1099 .probe = ds_probe,
1100 .disconnect = ds_disconnect,
1101 .id_table = ds_id_table,
1103 module_usb_driver(ds_driver);
1105 MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>");
1106 MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");
1107 MODULE_LICENSE("GPL");