Linux 4.18.10
[linux/fpc-iii.git] / fs / aio.c
blob27454594e37a1e1ca6a7ad25524090954d50a1de
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #define pr_fmt(fmt) "%s: " fmt, __func__
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
23 #include <linux/sched/signal.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
44 #include <asm/kmap_types.h>
45 #include <linux/uaccess.h>
47 #include "internal.h"
49 #define KIOCB_KEY 0
51 #define AIO_RING_MAGIC 0xa10a10a1
52 #define AIO_RING_COMPAT_FEATURES 1
53 #define AIO_RING_INCOMPAT_FEATURES 0
54 struct aio_ring {
55 unsigned id; /* kernel internal index number */
56 unsigned nr; /* number of io_events */
57 unsigned head; /* Written to by userland or under ring_lock
58 * mutex by aio_read_events_ring(). */
59 unsigned tail;
61 unsigned magic;
62 unsigned compat_features;
63 unsigned incompat_features;
64 unsigned header_length; /* size of aio_ring */
67 struct io_event io_events[0];
68 }; /* 128 bytes + ring size */
70 #define AIO_RING_PAGES 8
72 struct kioctx_table {
73 struct rcu_head rcu;
74 unsigned nr;
75 struct kioctx __rcu *table[];
78 struct kioctx_cpu {
79 unsigned reqs_available;
82 struct ctx_rq_wait {
83 struct completion comp;
84 atomic_t count;
87 struct kioctx {
88 struct percpu_ref users;
89 atomic_t dead;
91 struct percpu_ref reqs;
93 unsigned long user_id;
95 struct __percpu kioctx_cpu *cpu;
98 * For percpu reqs_available, number of slots we move to/from global
99 * counter at a time:
101 unsigned req_batch;
103 * This is what userspace passed to io_setup(), it's not used for
104 * anything but counting against the global max_reqs quota.
106 * The real limit is nr_events - 1, which will be larger (see
107 * aio_setup_ring())
109 unsigned max_reqs;
111 /* Size of ringbuffer, in units of struct io_event */
112 unsigned nr_events;
114 unsigned long mmap_base;
115 unsigned long mmap_size;
117 struct page **ring_pages;
118 long nr_pages;
120 struct rcu_work free_rwork; /* see free_ioctx() */
123 * signals when all in-flight requests are done
125 struct ctx_rq_wait *rq_wait;
127 struct {
129 * This counts the number of available slots in the ringbuffer,
130 * so we avoid overflowing it: it's decremented (if positive)
131 * when allocating a kiocb and incremented when the resulting
132 * io_event is pulled off the ringbuffer.
134 * We batch accesses to it with a percpu version.
136 atomic_t reqs_available;
137 } ____cacheline_aligned_in_smp;
139 struct {
140 spinlock_t ctx_lock;
141 struct list_head active_reqs; /* used for cancellation */
142 } ____cacheline_aligned_in_smp;
144 struct {
145 struct mutex ring_lock;
146 wait_queue_head_t wait;
147 } ____cacheline_aligned_in_smp;
149 struct {
150 unsigned tail;
151 unsigned completed_events;
152 spinlock_t completion_lock;
153 } ____cacheline_aligned_in_smp;
155 struct page *internal_pages[AIO_RING_PAGES];
156 struct file *aio_ring_file;
158 unsigned id;
161 struct fsync_iocb {
162 struct work_struct work;
163 struct file *file;
164 bool datasync;
167 struct aio_kiocb {
168 union {
169 struct kiocb rw;
170 struct fsync_iocb fsync;
173 struct kioctx *ki_ctx;
174 kiocb_cancel_fn *ki_cancel;
176 struct iocb __user *ki_user_iocb; /* user's aiocb */
177 __u64 ki_user_data; /* user's data for completion */
179 struct list_head ki_list; /* the aio core uses this
180 * for cancellation */
183 * If the aio_resfd field of the userspace iocb is not zero,
184 * this is the underlying eventfd context to deliver events to.
186 struct eventfd_ctx *ki_eventfd;
189 /*------ sysctl variables----*/
190 static DEFINE_SPINLOCK(aio_nr_lock);
191 unsigned long aio_nr; /* current system wide number of aio requests */
192 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
193 /*----end sysctl variables---*/
195 static struct kmem_cache *kiocb_cachep;
196 static struct kmem_cache *kioctx_cachep;
198 static struct vfsmount *aio_mnt;
200 static const struct file_operations aio_ring_fops;
201 static const struct address_space_operations aio_ctx_aops;
203 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
205 struct qstr this = QSTR_INIT("[aio]", 5);
206 struct file *file;
207 struct path path;
208 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
209 if (IS_ERR(inode))
210 return ERR_CAST(inode);
212 inode->i_mapping->a_ops = &aio_ctx_aops;
213 inode->i_mapping->private_data = ctx;
214 inode->i_size = PAGE_SIZE * nr_pages;
216 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
217 if (!path.dentry) {
218 iput(inode);
219 return ERR_PTR(-ENOMEM);
221 path.mnt = mntget(aio_mnt);
223 d_instantiate(path.dentry, inode);
224 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
225 if (IS_ERR(file)) {
226 path_put(&path);
227 return file;
230 file->f_flags = O_RDWR;
231 return file;
234 static struct dentry *aio_mount(struct file_system_type *fs_type,
235 int flags, const char *dev_name, void *data)
237 static const struct dentry_operations ops = {
238 .d_dname = simple_dname,
240 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
241 AIO_RING_MAGIC);
243 if (!IS_ERR(root))
244 root->d_sb->s_iflags |= SB_I_NOEXEC;
245 return root;
248 /* aio_setup
249 * Creates the slab caches used by the aio routines, panic on
250 * failure as this is done early during the boot sequence.
252 static int __init aio_setup(void)
254 static struct file_system_type aio_fs = {
255 .name = "aio",
256 .mount = aio_mount,
257 .kill_sb = kill_anon_super,
259 aio_mnt = kern_mount(&aio_fs);
260 if (IS_ERR(aio_mnt))
261 panic("Failed to create aio fs mount.");
263 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
264 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
265 return 0;
267 __initcall(aio_setup);
269 static void put_aio_ring_file(struct kioctx *ctx)
271 struct file *aio_ring_file = ctx->aio_ring_file;
272 struct address_space *i_mapping;
274 if (aio_ring_file) {
275 truncate_setsize(file_inode(aio_ring_file), 0);
277 /* Prevent further access to the kioctx from migratepages */
278 i_mapping = aio_ring_file->f_mapping;
279 spin_lock(&i_mapping->private_lock);
280 i_mapping->private_data = NULL;
281 ctx->aio_ring_file = NULL;
282 spin_unlock(&i_mapping->private_lock);
284 fput(aio_ring_file);
288 static void aio_free_ring(struct kioctx *ctx)
290 int i;
292 /* Disconnect the kiotx from the ring file. This prevents future
293 * accesses to the kioctx from page migration.
295 put_aio_ring_file(ctx);
297 for (i = 0; i < ctx->nr_pages; i++) {
298 struct page *page;
299 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
300 page_count(ctx->ring_pages[i]));
301 page = ctx->ring_pages[i];
302 if (!page)
303 continue;
304 ctx->ring_pages[i] = NULL;
305 put_page(page);
308 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
309 kfree(ctx->ring_pages);
310 ctx->ring_pages = NULL;
314 static int aio_ring_mremap(struct vm_area_struct *vma)
316 struct file *file = vma->vm_file;
317 struct mm_struct *mm = vma->vm_mm;
318 struct kioctx_table *table;
319 int i, res = -EINVAL;
321 spin_lock(&mm->ioctx_lock);
322 rcu_read_lock();
323 table = rcu_dereference(mm->ioctx_table);
324 for (i = 0; i < table->nr; i++) {
325 struct kioctx *ctx;
327 ctx = rcu_dereference(table->table[i]);
328 if (ctx && ctx->aio_ring_file == file) {
329 if (!atomic_read(&ctx->dead)) {
330 ctx->user_id = ctx->mmap_base = vma->vm_start;
331 res = 0;
333 break;
337 rcu_read_unlock();
338 spin_unlock(&mm->ioctx_lock);
339 return res;
342 static const struct vm_operations_struct aio_ring_vm_ops = {
343 .mremap = aio_ring_mremap,
344 #if IS_ENABLED(CONFIG_MMU)
345 .fault = filemap_fault,
346 .map_pages = filemap_map_pages,
347 .page_mkwrite = filemap_page_mkwrite,
348 #endif
351 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
353 vma->vm_flags |= VM_DONTEXPAND;
354 vma->vm_ops = &aio_ring_vm_ops;
355 return 0;
358 static const struct file_operations aio_ring_fops = {
359 .mmap = aio_ring_mmap,
362 #if IS_ENABLED(CONFIG_MIGRATION)
363 static int aio_migratepage(struct address_space *mapping, struct page *new,
364 struct page *old, enum migrate_mode mode)
366 struct kioctx *ctx;
367 unsigned long flags;
368 pgoff_t idx;
369 int rc;
372 * We cannot support the _NO_COPY case here, because copy needs to
373 * happen under the ctx->completion_lock. That does not work with the
374 * migration workflow of MIGRATE_SYNC_NO_COPY.
376 if (mode == MIGRATE_SYNC_NO_COPY)
377 return -EINVAL;
379 rc = 0;
381 /* mapping->private_lock here protects against the kioctx teardown. */
382 spin_lock(&mapping->private_lock);
383 ctx = mapping->private_data;
384 if (!ctx) {
385 rc = -EINVAL;
386 goto out;
389 /* The ring_lock mutex. The prevents aio_read_events() from writing
390 * to the ring's head, and prevents page migration from mucking in
391 * a partially initialized kiotx.
393 if (!mutex_trylock(&ctx->ring_lock)) {
394 rc = -EAGAIN;
395 goto out;
398 idx = old->index;
399 if (idx < (pgoff_t)ctx->nr_pages) {
400 /* Make sure the old page hasn't already been changed */
401 if (ctx->ring_pages[idx] != old)
402 rc = -EAGAIN;
403 } else
404 rc = -EINVAL;
406 if (rc != 0)
407 goto out_unlock;
409 /* Writeback must be complete */
410 BUG_ON(PageWriteback(old));
411 get_page(new);
413 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
414 if (rc != MIGRATEPAGE_SUCCESS) {
415 put_page(new);
416 goto out_unlock;
419 /* Take completion_lock to prevent other writes to the ring buffer
420 * while the old page is copied to the new. This prevents new
421 * events from being lost.
423 spin_lock_irqsave(&ctx->completion_lock, flags);
424 migrate_page_copy(new, old);
425 BUG_ON(ctx->ring_pages[idx] != old);
426 ctx->ring_pages[idx] = new;
427 spin_unlock_irqrestore(&ctx->completion_lock, flags);
429 /* The old page is no longer accessible. */
430 put_page(old);
432 out_unlock:
433 mutex_unlock(&ctx->ring_lock);
434 out:
435 spin_unlock(&mapping->private_lock);
436 return rc;
438 #endif
440 static const struct address_space_operations aio_ctx_aops = {
441 .set_page_dirty = __set_page_dirty_no_writeback,
442 #if IS_ENABLED(CONFIG_MIGRATION)
443 .migratepage = aio_migratepage,
444 #endif
447 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
449 struct aio_ring *ring;
450 struct mm_struct *mm = current->mm;
451 unsigned long size, unused;
452 int nr_pages;
453 int i;
454 struct file *file;
456 /* Compensate for the ring buffer's head/tail overlap entry */
457 nr_events += 2; /* 1 is required, 2 for good luck */
459 size = sizeof(struct aio_ring);
460 size += sizeof(struct io_event) * nr_events;
462 nr_pages = PFN_UP(size);
463 if (nr_pages < 0)
464 return -EINVAL;
466 file = aio_private_file(ctx, nr_pages);
467 if (IS_ERR(file)) {
468 ctx->aio_ring_file = NULL;
469 return -ENOMEM;
472 ctx->aio_ring_file = file;
473 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
474 / sizeof(struct io_event);
476 ctx->ring_pages = ctx->internal_pages;
477 if (nr_pages > AIO_RING_PAGES) {
478 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
479 GFP_KERNEL);
480 if (!ctx->ring_pages) {
481 put_aio_ring_file(ctx);
482 return -ENOMEM;
486 for (i = 0; i < nr_pages; i++) {
487 struct page *page;
488 page = find_or_create_page(file->f_mapping,
489 i, GFP_HIGHUSER | __GFP_ZERO);
490 if (!page)
491 break;
492 pr_debug("pid(%d) page[%d]->count=%d\n",
493 current->pid, i, page_count(page));
494 SetPageUptodate(page);
495 unlock_page(page);
497 ctx->ring_pages[i] = page;
499 ctx->nr_pages = i;
501 if (unlikely(i != nr_pages)) {
502 aio_free_ring(ctx);
503 return -ENOMEM;
506 ctx->mmap_size = nr_pages * PAGE_SIZE;
507 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
509 if (down_write_killable(&mm->mmap_sem)) {
510 ctx->mmap_size = 0;
511 aio_free_ring(ctx);
512 return -EINTR;
515 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
516 PROT_READ | PROT_WRITE,
517 MAP_SHARED, 0, &unused, NULL);
518 up_write(&mm->mmap_sem);
519 if (IS_ERR((void *)ctx->mmap_base)) {
520 ctx->mmap_size = 0;
521 aio_free_ring(ctx);
522 return -ENOMEM;
525 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
527 ctx->user_id = ctx->mmap_base;
528 ctx->nr_events = nr_events; /* trusted copy */
530 ring = kmap_atomic(ctx->ring_pages[0]);
531 ring->nr = nr_events; /* user copy */
532 ring->id = ~0U;
533 ring->head = ring->tail = 0;
534 ring->magic = AIO_RING_MAGIC;
535 ring->compat_features = AIO_RING_COMPAT_FEATURES;
536 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
537 ring->header_length = sizeof(struct aio_ring);
538 kunmap_atomic(ring);
539 flush_dcache_page(ctx->ring_pages[0]);
541 return 0;
544 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
545 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
546 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
548 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
550 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
551 struct kioctx *ctx = req->ki_ctx;
552 unsigned long flags;
554 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
555 return;
557 spin_lock_irqsave(&ctx->ctx_lock, flags);
558 list_add_tail(&req->ki_list, &ctx->active_reqs);
559 req->ki_cancel = cancel;
560 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
562 EXPORT_SYMBOL(kiocb_set_cancel_fn);
565 * free_ioctx() should be RCU delayed to synchronize against the RCU
566 * protected lookup_ioctx() and also needs process context to call
567 * aio_free_ring(). Use rcu_work.
569 static void free_ioctx(struct work_struct *work)
571 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
572 free_rwork);
573 pr_debug("freeing %p\n", ctx);
575 aio_free_ring(ctx);
576 free_percpu(ctx->cpu);
577 percpu_ref_exit(&ctx->reqs);
578 percpu_ref_exit(&ctx->users);
579 kmem_cache_free(kioctx_cachep, ctx);
582 static void free_ioctx_reqs(struct percpu_ref *ref)
584 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
586 /* At this point we know that there are no any in-flight requests */
587 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
588 complete(&ctx->rq_wait->comp);
590 /* Synchronize against RCU protected table->table[] dereferences */
591 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
592 queue_rcu_work(system_wq, &ctx->free_rwork);
596 * When this function runs, the kioctx has been removed from the "hash table"
597 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
598 * now it's safe to cancel any that need to be.
600 static void free_ioctx_users(struct percpu_ref *ref)
602 struct kioctx *ctx = container_of(ref, struct kioctx, users);
603 struct aio_kiocb *req;
605 spin_lock_irq(&ctx->ctx_lock);
607 while (!list_empty(&ctx->active_reqs)) {
608 req = list_first_entry(&ctx->active_reqs,
609 struct aio_kiocb, ki_list);
610 req->ki_cancel(&req->rw);
611 list_del_init(&req->ki_list);
614 spin_unlock_irq(&ctx->ctx_lock);
616 percpu_ref_kill(&ctx->reqs);
617 percpu_ref_put(&ctx->reqs);
620 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
622 unsigned i, new_nr;
623 struct kioctx_table *table, *old;
624 struct aio_ring *ring;
626 spin_lock(&mm->ioctx_lock);
627 table = rcu_dereference_raw(mm->ioctx_table);
629 while (1) {
630 if (table)
631 for (i = 0; i < table->nr; i++)
632 if (!rcu_access_pointer(table->table[i])) {
633 ctx->id = i;
634 rcu_assign_pointer(table->table[i], ctx);
635 spin_unlock(&mm->ioctx_lock);
637 /* While kioctx setup is in progress,
638 * we are protected from page migration
639 * changes ring_pages by ->ring_lock.
641 ring = kmap_atomic(ctx->ring_pages[0]);
642 ring->id = ctx->id;
643 kunmap_atomic(ring);
644 return 0;
647 new_nr = (table ? table->nr : 1) * 4;
648 spin_unlock(&mm->ioctx_lock);
650 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
651 new_nr, GFP_KERNEL);
652 if (!table)
653 return -ENOMEM;
655 table->nr = new_nr;
657 spin_lock(&mm->ioctx_lock);
658 old = rcu_dereference_raw(mm->ioctx_table);
660 if (!old) {
661 rcu_assign_pointer(mm->ioctx_table, table);
662 } else if (table->nr > old->nr) {
663 memcpy(table->table, old->table,
664 old->nr * sizeof(struct kioctx *));
666 rcu_assign_pointer(mm->ioctx_table, table);
667 kfree_rcu(old, rcu);
668 } else {
669 kfree(table);
670 table = old;
675 static void aio_nr_sub(unsigned nr)
677 spin_lock(&aio_nr_lock);
678 if (WARN_ON(aio_nr - nr > aio_nr))
679 aio_nr = 0;
680 else
681 aio_nr -= nr;
682 spin_unlock(&aio_nr_lock);
685 /* ioctx_alloc
686 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
688 static struct kioctx *ioctx_alloc(unsigned nr_events)
690 struct mm_struct *mm = current->mm;
691 struct kioctx *ctx;
692 int err = -ENOMEM;
695 * Store the original nr_events -- what userspace passed to io_setup(),
696 * for counting against the global limit -- before it changes.
698 unsigned int max_reqs = nr_events;
701 * We keep track of the number of available ringbuffer slots, to prevent
702 * overflow (reqs_available), and we also use percpu counters for this.
704 * So since up to half the slots might be on other cpu's percpu counters
705 * and unavailable, double nr_events so userspace sees what they
706 * expected: additionally, we move req_batch slots to/from percpu
707 * counters at a time, so make sure that isn't 0:
709 nr_events = max(nr_events, num_possible_cpus() * 4);
710 nr_events *= 2;
712 /* Prevent overflows */
713 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
714 pr_debug("ENOMEM: nr_events too high\n");
715 return ERR_PTR(-EINVAL);
718 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
719 return ERR_PTR(-EAGAIN);
721 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
722 if (!ctx)
723 return ERR_PTR(-ENOMEM);
725 ctx->max_reqs = max_reqs;
727 spin_lock_init(&ctx->ctx_lock);
728 spin_lock_init(&ctx->completion_lock);
729 mutex_init(&ctx->ring_lock);
730 /* Protect against page migration throughout kiotx setup by keeping
731 * the ring_lock mutex held until setup is complete. */
732 mutex_lock(&ctx->ring_lock);
733 init_waitqueue_head(&ctx->wait);
735 INIT_LIST_HEAD(&ctx->active_reqs);
737 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
738 goto err;
740 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
741 goto err;
743 ctx->cpu = alloc_percpu(struct kioctx_cpu);
744 if (!ctx->cpu)
745 goto err;
747 err = aio_setup_ring(ctx, nr_events);
748 if (err < 0)
749 goto err;
751 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
752 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
753 if (ctx->req_batch < 1)
754 ctx->req_batch = 1;
756 /* limit the number of system wide aios */
757 spin_lock(&aio_nr_lock);
758 if (aio_nr + ctx->max_reqs > aio_max_nr ||
759 aio_nr + ctx->max_reqs < aio_nr) {
760 spin_unlock(&aio_nr_lock);
761 err = -EAGAIN;
762 goto err_ctx;
764 aio_nr += ctx->max_reqs;
765 spin_unlock(&aio_nr_lock);
767 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
768 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
770 err = ioctx_add_table(ctx, mm);
771 if (err)
772 goto err_cleanup;
774 /* Release the ring_lock mutex now that all setup is complete. */
775 mutex_unlock(&ctx->ring_lock);
777 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
778 ctx, ctx->user_id, mm, ctx->nr_events);
779 return ctx;
781 err_cleanup:
782 aio_nr_sub(ctx->max_reqs);
783 err_ctx:
784 atomic_set(&ctx->dead, 1);
785 if (ctx->mmap_size)
786 vm_munmap(ctx->mmap_base, ctx->mmap_size);
787 aio_free_ring(ctx);
788 err:
789 mutex_unlock(&ctx->ring_lock);
790 free_percpu(ctx->cpu);
791 percpu_ref_exit(&ctx->reqs);
792 percpu_ref_exit(&ctx->users);
793 kmem_cache_free(kioctx_cachep, ctx);
794 pr_debug("error allocating ioctx %d\n", err);
795 return ERR_PTR(err);
798 /* kill_ioctx
799 * Cancels all outstanding aio requests on an aio context. Used
800 * when the processes owning a context have all exited to encourage
801 * the rapid destruction of the kioctx.
803 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
804 struct ctx_rq_wait *wait)
806 struct kioctx_table *table;
808 spin_lock(&mm->ioctx_lock);
809 if (atomic_xchg(&ctx->dead, 1)) {
810 spin_unlock(&mm->ioctx_lock);
811 return -EINVAL;
814 table = rcu_dereference_raw(mm->ioctx_table);
815 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
816 RCU_INIT_POINTER(table->table[ctx->id], NULL);
817 spin_unlock(&mm->ioctx_lock);
819 /* free_ioctx_reqs() will do the necessary RCU synchronization */
820 wake_up_all(&ctx->wait);
823 * It'd be more correct to do this in free_ioctx(), after all
824 * the outstanding kiocbs have finished - but by then io_destroy
825 * has already returned, so io_setup() could potentially return
826 * -EAGAIN with no ioctxs actually in use (as far as userspace
827 * could tell).
829 aio_nr_sub(ctx->max_reqs);
831 if (ctx->mmap_size)
832 vm_munmap(ctx->mmap_base, ctx->mmap_size);
834 ctx->rq_wait = wait;
835 percpu_ref_kill(&ctx->users);
836 return 0;
840 * exit_aio: called when the last user of mm goes away. At this point, there is
841 * no way for any new requests to be submited or any of the io_* syscalls to be
842 * called on the context.
844 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
845 * them.
847 void exit_aio(struct mm_struct *mm)
849 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
850 struct ctx_rq_wait wait;
851 int i, skipped;
853 if (!table)
854 return;
856 atomic_set(&wait.count, table->nr);
857 init_completion(&wait.comp);
859 skipped = 0;
860 for (i = 0; i < table->nr; ++i) {
861 struct kioctx *ctx =
862 rcu_dereference_protected(table->table[i], true);
864 if (!ctx) {
865 skipped++;
866 continue;
870 * We don't need to bother with munmap() here - exit_mmap(mm)
871 * is coming and it'll unmap everything. And we simply can't,
872 * this is not necessarily our ->mm.
873 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
874 * that it needs to unmap the area, just set it to 0.
876 ctx->mmap_size = 0;
877 kill_ioctx(mm, ctx, &wait);
880 if (!atomic_sub_and_test(skipped, &wait.count)) {
881 /* Wait until all IO for the context are done. */
882 wait_for_completion(&wait.comp);
885 RCU_INIT_POINTER(mm->ioctx_table, NULL);
886 kfree(table);
889 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
891 struct kioctx_cpu *kcpu;
892 unsigned long flags;
894 local_irq_save(flags);
895 kcpu = this_cpu_ptr(ctx->cpu);
896 kcpu->reqs_available += nr;
898 while (kcpu->reqs_available >= ctx->req_batch * 2) {
899 kcpu->reqs_available -= ctx->req_batch;
900 atomic_add(ctx->req_batch, &ctx->reqs_available);
903 local_irq_restore(flags);
906 static bool get_reqs_available(struct kioctx *ctx)
908 struct kioctx_cpu *kcpu;
909 bool ret = false;
910 unsigned long flags;
912 local_irq_save(flags);
913 kcpu = this_cpu_ptr(ctx->cpu);
914 if (!kcpu->reqs_available) {
915 int old, avail = atomic_read(&ctx->reqs_available);
917 do {
918 if (avail < ctx->req_batch)
919 goto out;
921 old = avail;
922 avail = atomic_cmpxchg(&ctx->reqs_available,
923 avail, avail - ctx->req_batch);
924 } while (avail != old);
926 kcpu->reqs_available += ctx->req_batch;
929 ret = true;
930 kcpu->reqs_available--;
931 out:
932 local_irq_restore(flags);
933 return ret;
936 /* refill_reqs_available
937 * Updates the reqs_available reference counts used for tracking the
938 * number of free slots in the completion ring. This can be called
939 * from aio_complete() (to optimistically update reqs_available) or
940 * from aio_get_req() (the we're out of events case). It must be
941 * called holding ctx->completion_lock.
943 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
944 unsigned tail)
946 unsigned events_in_ring, completed;
948 /* Clamp head since userland can write to it. */
949 head %= ctx->nr_events;
950 if (head <= tail)
951 events_in_ring = tail - head;
952 else
953 events_in_ring = ctx->nr_events - (head - tail);
955 completed = ctx->completed_events;
956 if (events_in_ring < completed)
957 completed -= events_in_ring;
958 else
959 completed = 0;
961 if (!completed)
962 return;
964 ctx->completed_events -= completed;
965 put_reqs_available(ctx, completed);
968 /* user_refill_reqs_available
969 * Called to refill reqs_available when aio_get_req() encounters an
970 * out of space in the completion ring.
972 static void user_refill_reqs_available(struct kioctx *ctx)
974 spin_lock_irq(&ctx->completion_lock);
975 if (ctx->completed_events) {
976 struct aio_ring *ring;
977 unsigned head;
979 /* Access of ring->head may race with aio_read_events_ring()
980 * here, but that's okay since whether we read the old version
981 * or the new version, and either will be valid. The important
982 * part is that head cannot pass tail since we prevent
983 * aio_complete() from updating tail by holding
984 * ctx->completion_lock. Even if head is invalid, the check
985 * against ctx->completed_events below will make sure we do the
986 * safe/right thing.
988 ring = kmap_atomic(ctx->ring_pages[0]);
989 head = ring->head;
990 kunmap_atomic(ring);
992 refill_reqs_available(ctx, head, ctx->tail);
995 spin_unlock_irq(&ctx->completion_lock);
998 /* aio_get_req
999 * Allocate a slot for an aio request.
1000 * Returns NULL if no requests are free.
1002 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1004 struct aio_kiocb *req;
1006 if (!get_reqs_available(ctx)) {
1007 user_refill_reqs_available(ctx);
1008 if (!get_reqs_available(ctx))
1009 return NULL;
1012 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1013 if (unlikely(!req))
1014 goto out_put;
1016 percpu_ref_get(&ctx->reqs);
1017 INIT_LIST_HEAD(&req->ki_list);
1018 req->ki_ctx = ctx;
1019 return req;
1020 out_put:
1021 put_reqs_available(ctx, 1);
1022 return NULL;
1025 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1027 struct aio_ring __user *ring = (void __user *)ctx_id;
1028 struct mm_struct *mm = current->mm;
1029 struct kioctx *ctx, *ret = NULL;
1030 struct kioctx_table *table;
1031 unsigned id;
1033 if (get_user(id, &ring->id))
1034 return NULL;
1036 rcu_read_lock();
1037 table = rcu_dereference(mm->ioctx_table);
1039 if (!table || id >= table->nr)
1040 goto out;
1042 ctx = rcu_dereference(table->table[id]);
1043 if (ctx && ctx->user_id == ctx_id) {
1044 if (percpu_ref_tryget_live(&ctx->users))
1045 ret = ctx;
1047 out:
1048 rcu_read_unlock();
1049 return ret;
1052 /* aio_complete
1053 * Called when the io request on the given iocb is complete.
1055 static void aio_complete(struct aio_kiocb *iocb, long res, long res2)
1057 struct kioctx *ctx = iocb->ki_ctx;
1058 struct aio_ring *ring;
1059 struct io_event *ev_page, *event;
1060 unsigned tail, pos, head;
1061 unsigned long flags;
1064 * Add a completion event to the ring buffer. Must be done holding
1065 * ctx->completion_lock to prevent other code from messing with the tail
1066 * pointer since we might be called from irq context.
1068 spin_lock_irqsave(&ctx->completion_lock, flags);
1070 tail = ctx->tail;
1071 pos = tail + AIO_EVENTS_OFFSET;
1073 if (++tail >= ctx->nr_events)
1074 tail = 0;
1076 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1077 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1079 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1080 event->data = iocb->ki_user_data;
1081 event->res = res;
1082 event->res2 = res2;
1084 kunmap_atomic(ev_page);
1085 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1087 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1088 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1089 res, res2);
1091 /* after flagging the request as done, we
1092 * must never even look at it again
1094 smp_wmb(); /* make event visible before updating tail */
1096 ctx->tail = tail;
1098 ring = kmap_atomic(ctx->ring_pages[0]);
1099 head = ring->head;
1100 ring->tail = tail;
1101 kunmap_atomic(ring);
1102 flush_dcache_page(ctx->ring_pages[0]);
1104 ctx->completed_events++;
1105 if (ctx->completed_events > 1)
1106 refill_reqs_available(ctx, head, tail);
1107 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1109 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1112 * Check if the user asked us to deliver the result through an
1113 * eventfd. The eventfd_signal() function is safe to be called
1114 * from IRQ context.
1116 if (iocb->ki_eventfd) {
1117 eventfd_signal(iocb->ki_eventfd, 1);
1118 eventfd_ctx_put(iocb->ki_eventfd);
1121 kmem_cache_free(kiocb_cachep, iocb);
1124 * We have to order our ring_info tail store above and test
1125 * of the wait list below outside the wait lock. This is
1126 * like in wake_up_bit() where clearing a bit has to be
1127 * ordered with the unlocked test.
1129 smp_mb();
1131 if (waitqueue_active(&ctx->wait))
1132 wake_up(&ctx->wait);
1134 percpu_ref_put(&ctx->reqs);
1137 /* aio_read_events_ring
1138 * Pull an event off of the ioctx's event ring. Returns the number of
1139 * events fetched
1141 static long aio_read_events_ring(struct kioctx *ctx,
1142 struct io_event __user *event, long nr)
1144 struct aio_ring *ring;
1145 unsigned head, tail, pos;
1146 long ret = 0;
1147 int copy_ret;
1150 * The mutex can block and wake us up and that will cause
1151 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1152 * and repeat. This should be rare enough that it doesn't cause
1153 * peformance issues. See the comment in read_events() for more detail.
1155 sched_annotate_sleep();
1156 mutex_lock(&ctx->ring_lock);
1158 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1159 ring = kmap_atomic(ctx->ring_pages[0]);
1160 head = ring->head;
1161 tail = ring->tail;
1162 kunmap_atomic(ring);
1165 * Ensure that once we've read the current tail pointer, that
1166 * we also see the events that were stored up to the tail.
1168 smp_rmb();
1170 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1172 if (head == tail)
1173 goto out;
1175 head %= ctx->nr_events;
1176 tail %= ctx->nr_events;
1178 while (ret < nr) {
1179 long avail;
1180 struct io_event *ev;
1181 struct page *page;
1183 avail = (head <= tail ? tail : ctx->nr_events) - head;
1184 if (head == tail)
1185 break;
1187 pos = head + AIO_EVENTS_OFFSET;
1188 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1189 pos %= AIO_EVENTS_PER_PAGE;
1191 avail = min(avail, nr - ret);
1192 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1194 ev = kmap(page);
1195 copy_ret = copy_to_user(event + ret, ev + pos,
1196 sizeof(*ev) * avail);
1197 kunmap(page);
1199 if (unlikely(copy_ret)) {
1200 ret = -EFAULT;
1201 goto out;
1204 ret += avail;
1205 head += avail;
1206 head %= ctx->nr_events;
1209 ring = kmap_atomic(ctx->ring_pages[0]);
1210 ring->head = head;
1211 kunmap_atomic(ring);
1212 flush_dcache_page(ctx->ring_pages[0]);
1214 pr_debug("%li h%u t%u\n", ret, head, tail);
1215 out:
1216 mutex_unlock(&ctx->ring_lock);
1218 return ret;
1221 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1222 struct io_event __user *event, long *i)
1224 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1226 if (ret > 0)
1227 *i += ret;
1229 if (unlikely(atomic_read(&ctx->dead)))
1230 ret = -EINVAL;
1232 if (!*i)
1233 *i = ret;
1235 return ret < 0 || *i >= min_nr;
1238 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1239 struct io_event __user *event,
1240 ktime_t until)
1242 long ret = 0;
1245 * Note that aio_read_events() is being called as the conditional - i.e.
1246 * we're calling it after prepare_to_wait() has set task state to
1247 * TASK_INTERRUPTIBLE.
1249 * But aio_read_events() can block, and if it blocks it's going to flip
1250 * the task state back to TASK_RUNNING.
1252 * This should be ok, provided it doesn't flip the state back to
1253 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1254 * will only happen if the mutex_lock() call blocks, and we then find
1255 * the ringbuffer empty. So in practice we should be ok, but it's
1256 * something to be aware of when touching this code.
1258 if (until == 0)
1259 aio_read_events(ctx, min_nr, nr, event, &ret);
1260 else
1261 wait_event_interruptible_hrtimeout(ctx->wait,
1262 aio_read_events(ctx, min_nr, nr, event, &ret),
1263 until);
1264 return ret;
1267 /* sys_io_setup:
1268 * Create an aio_context capable of receiving at least nr_events.
1269 * ctxp must not point to an aio_context that already exists, and
1270 * must be initialized to 0 prior to the call. On successful
1271 * creation of the aio_context, *ctxp is filled in with the resulting
1272 * handle. May fail with -EINVAL if *ctxp is not initialized,
1273 * if the specified nr_events exceeds internal limits. May fail
1274 * with -EAGAIN if the specified nr_events exceeds the user's limit
1275 * of available events. May fail with -ENOMEM if insufficient kernel
1276 * resources are available. May fail with -EFAULT if an invalid
1277 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1278 * implemented.
1280 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1282 struct kioctx *ioctx = NULL;
1283 unsigned long ctx;
1284 long ret;
1286 ret = get_user(ctx, ctxp);
1287 if (unlikely(ret))
1288 goto out;
1290 ret = -EINVAL;
1291 if (unlikely(ctx || nr_events == 0)) {
1292 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1293 ctx, nr_events);
1294 goto out;
1297 ioctx = ioctx_alloc(nr_events);
1298 ret = PTR_ERR(ioctx);
1299 if (!IS_ERR(ioctx)) {
1300 ret = put_user(ioctx->user_id, ctxp);
1301 if (ret)
1302 kill_ioctx(current->mm, ioctx, NULL);
1303 percpu_ref_put(&ioctx->users);
1306 out:
1307 return ret;
1310 #ifdef CONFIG_COMPAT
1311 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1313 struct kioctx *ioctx = NULL;
1314 unsigned long ctx;
1315 long ret;
1317 ret = get_user(ctx, ctx32p);
1318 if (unlikely(ret))
1319 goto out;
1321 ret = -EINVAL;
1322 if (unlikely(ctx || nr_events == 0)) {
1323 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1324 ctx, nr_events);
1325 goto out;
1328 ioctx = ioctx_alloc(nr_events);
1329 ret = PTR_ERR(ioctx);
1330 if (!IS_ERR(ioctx)) {
1331 /* truncating is ok because it's a user address */
1332 ret = put_user((u32)ioctx->user_id, ctx32p);
1333 if (ret)
1334 kill_ioctx(current->mm, ioctx, NULL);
1335 percpu_ref_put(&ioctx->users);
1338 out:
1339 return ret;
1341 #endif
1343 /* sys_io_destroy:
1344 * Destroy the aio_context specified. May cancel any outstanding
1345 * AIOs and block on completion. Will fail with -ENOSYS if not
1346 * implemented. May fail with -EINVAL if the context pointed to
1347 * is invalid.
1349 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1351 struct kioctx *ioctx = lookup_ioctx(ctx);
1352 if (likely(NULL != ioctx)) {
1353 struct ctx_rq_wait wait;
1354 int ret;
1356 init_completion(&wait.comp);
1357 atomic_set(&wait.count, 1);
1359 /* Pass requests_done to kill_ioctx() where it can be set
1360 * in a thread-safe way. If we try to set it here then we have
1361 * a race condition if two io_destroy() called simultaneously.
1363 ret = kill_ioctx(current->mm, ioctx, &wait);
1364 percpu_ref_put(&ioctx->users);
1366 /* Wait until all IO for the context are done. Otherwise kernel
1367 * keep using user-space buffers even if user thinks the context
1368 * is destroyed.
1370 if (!ret)
1371 wait_for_completion(&wait.comp);
1373 return ret;
1375 pr_debug("EINVAL: invalid context id\n");
1376 return -EINVAL;
1379 static void aio_remove_iocb(struct aio_kiocb *iocb)
1381 struct kioctx *ctx = iocb->ki_ctx;
1382 unsigned long flags;
1384 spin_lock_irqsave(&ctx->ctx_lock, flags);
1385 list_del(&iocb->ki_list);
1386 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1389 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1391 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1393 if (!list_empty_careful(&iocb->ki_list))
1394 aio_remove_iocb(iocb);
1396 if (kiocb->ki_flags & IOCB_WRITE) {
1397 struct inode *inode = file_inode(kiocb->ki_filp);
1400 * Tell lockdep we inherited freeze protection from submission
1401 * thread.
1403 if (S_ISREG(inode->i_mode))
1404 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1405 file_end_write(kiocb->ki_filp);
1408 fput(kiocb->ki_filp);
1409 aio_complete(iocb, res, res2);
1412 static int aio_prep_rw(struct kiocb *req, struct iocb *iocb)
1414 int ret;
1416 req->ki_filp = fget(iocb->aio_fildes);
1417 if (unlikely(!req->ki_filp))
1418 return -EBADF;
1419 req->ki_complete = aio_complete_rw;
1420 req->ki_pos = iocb->aio_offset;
1421 req->ki_flags = iocb_flags(req->ki_filp);
1422 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1423 req->ki_flags |= IOCB_EVENTFD;
1424 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1425 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1427 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1428 * aio_reqprio is interpreted as an I/O scheduling
1429 * class and priority.
1431 ret = ioprio_check_cap(iocb->aio_reqprio);
1432 if (ret) {
1433 pr_debug("aio ioprio check cap error: %d\n", ret);
1434 return ret;
1437 req->ki_ioprio = iocb->aio_reqprio;
1438 } else
1439 req->ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1441 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1442 if (unlikely(ret))
1443 fput(req->ki_filp);
1444 return ret;
1447 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1448 bool vectored, bool compat, struct iov_iter *iter)
1450 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1451 size_t len = iocb->aio_nbytes;
1453 if (!vectored) {
1454 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1455 *iovec = NULL;
1456 return ret;
1458 #ifdef CONFIG_COMPAT
1459 if (compat)
1460 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1461 iter);
1462 #endif
1463 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1466 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1468 switch (ret) {
1469 case -EIOCBQUEUED:
1470 break;
1471 case -ERESTARTSYS:
1472 case -ERESTARTNOINTR:
1473 case -ERESTARTNOHAND:
1474 case -ERESTART_RESTARTBLOCK:
1476 * There's no easy way to restart the syscall since other AIO's
1477 * may be already running. Just fail this IO with EINTR.
1479 ret = -EINTR;
1480 /*FALLTHRU*/
1481 default:
1482 aio_complete_rw(req, ret, 0);
1486 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1487 bool compat)
1489 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1490 struct iov_iter iter;
1491 struct file *file;
1492 ssize_t ret;
1494 ret = aio_prep_rw(req, iocb);
1495 if (ret)
1496 return ret;
1497 file = req->ki_filp;
1499 ret = -EBADF;
1500 if (unlikely(!(file->f_mode & FMODE_READ)))
1501 goto out_fput;
1502 ret = -EINVAL;
1503 if (unlikely(!file->f_op->read_iter))
1504 goto out_fput;
1506 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1507 if (ret)
1508 goto out_fput;
1509 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1510 if (!ret)
1511 aio_rw_done(req, call_read_iter(file, req, &iter));
1512 kfree(iovec);
1513 out_fput:
1514 if (unlikely(ret))
1515 fput(file);
1516 return ret;
1519 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1520 bool compat)
1522 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1523 struct iov_iter iter;
1524 struct file *file;
1525 ssize_t ret;
1527 ret = aio_prep_rw(req, iocb);
1528 if (ret)
1529 return ret;
1530 file = req->ki_filp;
1532 ret = -EBADF;
1533 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1534 goto out_fput;
1535 ret = -EINVAL;
1536 if (unlikely(!file->f_op->write_iter))
1537 goto out_fput;
1539 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1540 if (ret)
1541 goto out_fput;
1542 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1543 if (!ret) {
1545 * Open-code file_start_write here to grab freeze protection,
1546 * which will be released by another thread in
1547 * aio_complete_rw(). Fool lockdep by telling it the lock got
1548 * released so that it doesn't complain about the held lock when
1549 * we return to userspace.
1551 if (S_ISREG(file_inode(file)->i_mode)) {
1552 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
1553 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1555 req->ki_flags |= IOCB_WRITE;
1556 aio_rw_done(req, call_write_iter(file, req, &iter));
1558 kfree(iovec);
1559 out_fput:
1560 if (unlikely(ret))
1561 fput(file);
1562 return ret;
1565 static void aio_fsync_work(struct work_struct *work)
1567 struct fsync_iocb *req = container_of(work, struct fsync_iocb, work);
1568 int ret;
1570 ret = vfs_fsync(req->file, req->datasync);
1571 fput(req->file);
1572 aio_complete(container_of(req, struct aio_kiocb, fsync), ret, 0);
1575 static int aio_fsync(struct fsync_iocb *req, struct iocb *iocb, bool datasync)
1577 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1578 iocb->aio_rw_flags))
1579 return -EINVAL;
1581 req->file = fget(iocb->aio_fildes);
1582 if (unlikely(!req->file))
1583 return -EBADF;
1584 if (unlikely(!req->file->f_op->fsync)) {
1585 fput(req->file);
1586 return -EINVAL;
1589 req->datasync = datasync;
1590 INIT_WORK(&req->work, aio_fsync_work);
1591 schedule_work(&req->work);
1592 return 0;
1595 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1596 bool compat)
1598 struct aio_kiocb *req;
1599 struct iocb iocb;
1600 ssize_t ret;
1602 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1603 return -EFAULT;
1605 /* enforce forwards compatibility on users */
1606 if (unlikely(iocb.aio_reserved2)) {
1607 pr_debug("EINVAL: reserve field set\n");
1608 return -EINVAL;
1611 /* prevent overflows */
1612 if (unlikely(
1613 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1614 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1615 ((ssize_t)iocb.aio_nbytes < 0)
1616 )) {
1617 pr_debug("EINVAL: overflow check\n");
1618 return -EINVAL;
1621 req = aio_get_req(ctx);
1622 if (unlikely(!req))
1623 return -EAGAIN;
1625 if (iocb.aio_flags & IOCB_FLAG_RESFD) {
1627 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1628 * instance of the file* now. The file descriptor must be
1629 * an eventfd() fd, and will be signaled for each completed
1630 * event using the eventfd_signal() function.
1632 req->ki_eventfd = eventfd_ctx_fdget((int) iocb.aio_resfd);
1633 if (IS_ERR(req->ki_eventfd)) {
1634 ret = PTR_ERR(req->ki_eventfd);
1635 req->ki_eventfd = NULL;
1636 goto out_put_req;
1640 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1641 if (unlikely(ret)) {
1642 pr_debug("EFAULT: aio_key\n");
1643 goto out_put_req;
1646 req->ki_user_iocb = user_iocb;
1647 req->ki_user_data = iocb.aio_data;
1649 switch (iocb.aio_lio_opcode) {
1650 case IOCB_CMD_PREAD:
1651 ret = aio_read(&req->rw, &iocb, false, compat);
1652 break;
1653 case IOCB_CMD_PWRITE:
1654 ret = aio_write(&req->rw, &iocb, false, compat);
1655 break;
1656 case IOCB_CMD_PREADV:
1657 ret = aio_read(&req->rw, &iocb, true, compat);
1658 break;
1659 case IOCB_CMD_PWRITEV:
1660 ret = aio_write(&req->rw, &iocb, true, compat);
1661 break;
1662 case IOCB_CMD_FSYNC:
1663 ret = aio_fsync(&req->fsync, &iocb, false);
1664 break;
1665 case IOCB_CMD_FDSYNC:
1666 ret = aio_fsync(&req->fsync, &iocb, true);
1667 break;
1668 default:
1669 pr_debug("invalid aio operation %d\n", iocb.aio_lio_opcode);
1670 ret = -EINVAL;
1671 break;
1675 * If ret is 0, we'd either done aio_complete() ourselves or have
1676 * arranged for that to be done asynchronously. Anything non-zero
1677 * means that we need to destroy req ourselves.
1679 if (ret)
1680 goto out_put_req;
1681 return 0;
1682 out_put_req:
1683 put_reqs_available(ctx, 1);
1684 percpu_ref_put(&ctx->reqs);
1685 if (req->ki_eventfd)
1686 eventfd_ctx_put(req->ki_eventfd);
1687 kmem_cache_free(kiocb_cachep, req);
1688 return ret;
1691 /* sys_io_submit:
1692 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1693 * the number of iocbs queued. May return -EINVAL if the aio_context
1694 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1695 * *iocbpp[0] is not properly initialized, if the operation specified
1696 * is invalid for the file descriptor in the iocb. May fail with
1697 * -EFAULT if any of the data structures point to invalid data. May
1698 * fail with -EBADF if the file descriptor specified in the first
1699 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1700 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1701 * fail with -ENOSYS if not implemented.
1703 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1704 struct iocb __user * __user *, iocbpp)
1706 struct kioctx *ctx;
1707 long ret = 0;
1708 int i = 0;
1709 struct blk_plug plug;
1711 if (unlikely(nr < 0))
1712 return -EINVAL;
1714 ctx = lookup_ioctx(ctx_id);
1715 if (unlikely(!ctx)) {
1716 pr_debug("EINVAL: invalid context id\n");
1717 return -EINVAL;
1720 if (nr > ctx->nr_events)
1721 nr = ctx->nr_events;
1723 blk_start_plug(&plug);
1724 for (i = 0; i < nr; i++) {
1725 struct iocb __user *user_iocb;
1727 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1728 ret = -EFAULT;
1729 break;
1732 ret = io_submit_one(ctx, user_iocb, false);
1733 if (ret)
1734 break;
1736 blk_finish_plug(&plug);
1738 percpu_ref_put(&ctx->users);
1739 return i ? i : ret;
1742 #ifdef CONFIG_COMPAT
1743 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1744 int, nr, compat_uptr_t __user *, iocbpp)
1746 struct kioctx *ctx;
1747 long ret = 0;
1748 int i = 0;
1749 struct blk_plug plug;
1751 if (unlikely(nr < 0))
1752 return -EINVAL;
1754 ctx = lookup_ioctx(ctx_id);
1755 if (unlikely(!ctx)) {
1756 pr_debug("EINVAL: invalid context id\n");
1757 return -EINVAL;
1760 if (nr > ctx->nr_events)
1761 nr = ctx->nr_events;
1763 blk_start_plug(&plug);
1764 for (i = 0; i < nr; i++) {
1765 compat_uptr_t user_iocb;
1767 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1768 ret = -EFAULT;
1769 break;
1772 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1773 if (ret)
1774 break;
1776 blk_finish_plug(&plug);
1778 percpu_ref_put(&ctx->users);
1779 return i ? i : ret;
1781 #endif
1783 /* lookup_kiocb
1784 * Finds a given iocb for cancellation.
1786 static struct aio_kiocb *
1787 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb)
1789 struct aio_kiocb *kiocb;
1791 assert_spin_locked(&ctx->ctx_lock);
1793 /* TODO: use a hash or array, this sucks. */
1794 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1795 if (kiocb->ki_user_iocb == iocb)
1796 return kiocb;
1798 return NULL;
1801 /* sys_io_cancel:
1802 * Attempts to cancel an iocb previously passed to io_submit. If
1803 * the operation is successfully cancelled, the resulting event is
1804 * copied into the memory pointed to by result without being placed
1805 * into the completion queue and 0 is returned. May fail with
1806 * -EFAULT if any of the data structures pointed to are invalid.
1807 * May fail with -EINVAL if aio_context specified by ctx_id is
1808 * invalid. May fail with -EAGAIN if the iocb specified was not
1809 * cancelled. Will fail with -ENOSYS if not implemented.
1811 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1812 struct io_event __user *, result)
1814 struct kioctx *ctx;
1815 struct aio_kiocb *kiocb;
1816 int ret = -EINVAL;
1817 u32 key;
1819 if (unlikely(get_user(key, &iocb->aio_key)))
1820 return -EFAULT;
1821 if (unlikely(key != KIOCB_KEY))
1822 return -EINVAL;
1824 ctx = lookup_ioctx(ctx_id);
1825 if (unlikely(!ctx))
1826 return -EINVAL;
1828 spin_lock_irq(&ctx->ctx_lock);
1829 kiocb = lookup_kiocb(ctx, iocb);
1830 if (kiocb) {
1831 ret = kiocb->ki_cancel(&kiocb->rw);
1832 list_del_init(&kiocb->ki_list);
1834 spin_unlock_irq(&ctx->ctx_lock);
1836 if (!ret) {
1838 * The result argument is no longer used - the io_event is
1839 * always delivered via the ring buffer. -EINPROGRESS indicates
1840 * cancellation is progress:
1842 ret = -EINPROGRESS;
1845 percpu_ref_put(&ctx->users);
1847 return ret;
1850 static long do_io_getevents(aio_context_t ctx_id,
1851 long min_nr,
1852 long nr,
1853 struct io_event __user *events,
1854 struct timespec64 *ts)
1856 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
1857 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1858 long ret = -EINVAL;
1860 if (likely(ioctx)) {
1861 if (likely(min_nr <= nr && min_nr >= 0))
1862 ret = read_events(ioctx, min_nr, nr, events, until);
1863 percpu_ref_put(&ioctx->users);
1866 return ret;
1869 /* io_getevents:
1870 * Attempts to read at least min_nr events and up to nr events from
1871 * the completion queue for the aio_context specified by ctx_id. If
1872 * it succeeds, the number of read events is returned. May fail with
1873 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1874 * out of range, if timeout is out of range. May fail with -EFAULT
1875 * if any of the memory specified is invalid. May return 0 or
1876 * < min_nr if the timeout specified by timeout has elapsed
1877 * before sufficient events are available, where timeout == NULL
1878 * specifies an infinite timeout. Note that the timeout pointed to by
1879 * timeout is relative. Will fail with -ENOSYS if not implemented.
1881 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1882 long, min_nr,
1883 long, nr,
1884 struct io_event __user *, events,
1885 struct timespec __user *, timeout)
1887 struct timespec64 ts;
1888 int ret;
1890 if (timeout && unlikely(get_timespec64(&ts, timeout)))
1891 return -EFAULT;
1893 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
1894 if (!ret && signal_pending(current))
1895 ret = -EINTR;
1896 return ret;
1899 struct __aio_sigset {
1900 const sigset_t __user *sigmask;
1901 size_t sigsetsize;
1904 SYSCALL_DEFINE6(io_pgetevents,
1905 aio_context_t, ctx_id,
1906 long, min_nr,
1907 long, nr,
1908 struct io_event __user *, events,
1909 struct timespec __user *, timeout,
1910 const struct __aio_sigset __user *, usig)
1912 struct __aio_sigset ksig = { NULL, };
1913 sigset_t ksigmask, sigsaved;
1914 struct timespec64 ts;
1915 int ret;
1917 if (timeout && unlikely(get_timespec64(&ts, timeout)))
1918 return -EFAULT;
1920 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
1921 return -EFAULT;
1923 if (ksig.sigmask) {
1924 if (ksig.sigsetsize != sizeof(sigset_t))
1925 return -EINVAL;
1926 if (copy_from_user(&ksigmask, ksig.sigmask, sizeof(ksigmask)))
1927 return -EFAULT;
1928 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1929 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1932 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
1933 if (signal_pending(current)) {
1934 if (ksig.sigmask) {
1935 current->saved_sigmask = sigsaved;
1936 set_restore_sigmask();
1939 if (!ret)
1940 ret = -ERESTARTNOHAND;
1941 } else {
1942 if (ksig.sigmask)
1943 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1946 return ret;
1949 #ifdef CONFIG_COMPAT
1950 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
1951 compat_long_t, min_nr,
1952 compat_long_t, nr,
1953 struct io_event __user *, events,
1954 struct compat_timespec __user *, timeout)
1956 struct timespec64 t;
1957 int ret;
1959 if (timeout && compat_get_timespec64(&t, timeout))
1960 return -EFAULT;
1962 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
1963 if (!ret && signal_pending(current))
1964 ret = -EINTR;
1965 return ret;
1969 struct __compat_aio_sigset {
1970 compat_sigset_t __user *sigmask;
1971 compat_size_t sigsetsize;
1974 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
1975 compat_aio_context_t, ctx_id,
1976 compat_long_t, min_nr,
1977 compat_long_t, nr,
1978 struct io_event __user *, events,
1979 struct compat_timespec __user *, timeout,
1980 const struct __compat_aio_sigset __user *, usig)
1982 struct __compat_aio_sigset ksig = { NULL, };
1983 sigset_t ksigmask, sigsaved;
1984 struct timespec64 t;
1985 int ret;
1987 if (timeout && compat_get_timespec64(&t, timeout))
1988 return -EFAULT;
1990 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
1991 return -EFAULT;
1993 if (ksig.sigmask) {
1994 if (ksig.sigsetsize != sizeof(compat_sigset_t))
1995 return -EINVAL;
1996 if (get_compat_sigset(&ksigmask, ksig.sigmask))
1997 return -EFAULT;
1998 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1999 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2002 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2003 if (signal_pending(current)) {
2004 if (ksig.sigmask) {
2005 current->saved_sigmask = sigsaved;
2006 set_restore_sigmask();
2008 if (!ret)
2009 ret = -ERESTARTNOHAND;
2010 } else {
2011 if (ksig.sigmask)
2012 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2015 return ret;
2017 #endif