2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #define pr_fmt(fmt) "%s: " fmt, __func__
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
23 #include <linux/sched/signal.h>
25 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
44 #include <asm/kmap_types.h>
45 #include <linux/uaccess.h>
51 #define AIO_RING_MAGIC 0xa10a10a1
52 #define AIO_RING_COMPAT_FEATURES 1
53 #define AIO_RING_INCOMPAT_FEATURES 0
55 unsigned id
; /* kernel internal index number */
56 unsigned nr
; /* number of io_events */
57 unsigned head
; /* Written to by userland or under ring_lock
58 * mutex by aio_read_events_ring(). */
62 unsigned compat_features
;
63 unsigned incompat_features
;
64 unsigned header_length
; /* size of aio_ring */
67 struct io_event io_events
[0];
68 }; /* 128 bytes + ring size */
70 #define AIO_RING_PAGES 8
75 struct kioctx __rcu
*table
[];
79 unsigned reqs_available
;
83 struct completion comp
;
88 struct percpu_ref users
;
91 struct percpu_ref reqs
;
93 unsigned long user_id
;
95 struct __percpu kioctx_cpu
*cpu
;
98 * For percpu reqs_available, number of slots we move to/from global
103 * This is what userspace passed to io_setup(), it's not used for
104 * anything but counting against the global max_reqs quota.
106 * The real limit is nr_events - 1, which will be larger (see
111 /* Size of ringbuffer, in units of struct io_event */
114 unsigned long mmap_base
;
115 unsigned long mmap_size
;
117 struct page
**ring_pages
;
120 struct rcu_work free_rwork
; /* see free_ioctx() */
123 * signals when all in-flight requests are done
125 struct ctx_rq_wait
*rq_wait
;
129 * This counts the number of available slots in the ringbuffer,
130 * so we avoid overflowing it: it's decremented (if positive)
131 * when allocating a kiocb and incremented when the resulting
132 * io_event is pulled off the ringbuffer.
134 * We batch accesses to it with a percpu version.
136 atomic_t reqs_available
;
137 } ____cacheline_aligned_in_smp
;
141 struct list_head active_reqs
; /* used for cancellation */
142 } ____cacheline_aligned_in_smp
;
145 struct mutex ring_lock
;
146 wait_queue_head_t wait
;
147 } ____cacheline_aligned_in_smp
;
151 unsigned completed_events
;
152 spinlock_t completion_lock
;
153 } ____cacheline_aligned_in_smp
;
155 struct page
*internal_pages
[AIO_RING_PAGES
];
156 struct file
*aio_ring_file
;
162 struct work_struct work
;
170 struct fsync_iocb fsync
;
173 struct kioctx
*ki_ctx
;
174 kiocb_cancel_fn
*ki_cancel
;
176 struct iocb __user
*ki_user_iocb
; /* user's aiocb */
177 __u64 ki_user_data
; /* user's data for completion */
179 struct list_head ki_list
; /* the aio core uses this
180 * for cancellation */
183 * If the aio_resfd field of the userspace iocb is not zero,
184 * this is the underlying eventfd context to deliver events to.
186 struct eventfd_ctx
*ki_eventfd
;
189 /*------ sysctl variables----*/
190 static DEFINE_SPINLOCK(aio_nr_lock
);
191 unsigned long aio_nr
; /* current system wide number of aio requests */
192 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
193 /*----end sysctl variables---*/
195 static struct kmem_cache
*kiocb_cachep
;
196 static struct kmem_cache
*kioctx_cachep
;
198 static struct vfsmount
*aio_mnt
;
200 static const struct file_operations aio_ring_fops
;
201 static const struct address_space_operations aio_ctx_aops
;
203 static struct file
*aio_private_file(struct kioctx
*ctx
, loff_t nr_pages
)
205 struct qstr
this = QSTR_INIT("[aio]", 5);
208 struct inode
*inode
= alloc_anon_inode(aio_mnt
->mnt_sb
);
210 return ERR_CAST(inode
);
212 inode
->i_mapping
->a_ops
= &aio_ctx_aops
;
213 inode
->i_mapping
->private_data
= ctx
;
214 inode
->i_size
= PAGE_SIZE
* nr_pages
;
216 path
.dentry
= d_alloc_pseudo(aio_mnt
->mnt_sb
, &this);
219 return ERR_PTR(-ENOMEM
);
221 path
.mnt
= mntget(aio_mnt
);
223 d_instantiate(path
.dentry
, inode
);
224 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
, &aio_ring_fops
);
230 file
->f_flags
= O_RDWR
;
234 static struct dentry
*aio_mount(struct file_system_type
*fs_type
,
235 int flags
, const char *dev_name
, void *data
)
237 static const struct dentry_operations ops
= {
238 .d_dname
= simple_dname
,
240 struct dentry
*root
= mount_pseudo(fs_type
, "aio:", NULL
, &ops
,
244 root
->d_sb
->s_iflags
|= SB_I_NOEXEC
;
249 * Creates the slab caches used by the aio routines, panic on
250 * failure as this is done early during the boot sequence.
252 static int __init
aio_setup(void)
254 static struct file_system_type aio_fs
= {
257 .kill_sb
= kill_anon_super
,
259 aio_mnt
= kern_mount(&aio_fs
);
261 panic("Failed to create aio fs mount.");
263 kiocb_cachep
= KMEM_CACHE(aio_kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
264 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
267 __initcall(aio_setup
);
269 static void put_aio_ring_file(struct kioctx
*ctx
)
271 struct file
*aio_ring_file
= ctx
->aio_ring_file
;
272 struct address_space
*i_mapping
;
275 truncate_setsize(file_inode(aio_ring_file
), 0);
277 /* Prevent further access to the kioctx from migratepages */
278 i_mapping
= aio_ring_file
->f_mapping
;
279 spin_lock(&i_mapping
->private_lock
);
280 i_mapping
->private_data
= NULL
;
281 ctx
->aio_ring_file
= NULL
;
282 spin_unlock(&i_mapping
->private_lock
);
288 static void aio_free_ring(struct kioctx
*ctx
)
292 /* Disconnect the kiotx from the ring file. This prevents future
293 * accesses to the kioctx from page migration.
295 put_aio_ring_file(ctx
);
297 for (i
= 0; i
< ctx
->nr_pages
; i
++) {
299 pr_debug("pid(%d) [%d] page->count=%d\n", current
->pid
, i
,
300 page_count(ctx
->ring_pages
[i
]));
301 page
= ctx
->ring_pages
[i
];
304 ctx
->ring_pages
[i
] = NULL
;
308 if (ctx
->ring_pages
&& ctx
->ring_pages
!= ctx
->internal_pages
) {
309 kfree(ctx
->ring_pages
);
310 ctx
->ring_pages
= NULL
;
314 static int aio_ring_mremap(struct vm_area_struct
*vma
)
316 struct file
*file
= vma
->vm_file
;
317 struct mm_struct
*mm
= vma
->vm_mm
;
318 struct kioctx_table
*table
;
319 int i
, res
= -EINVAL
;
321 spin_lock(&mm
->ioctx_lock
);
323 table
= rcu_dereference(mm
->ioctx_table
);
324 for (i
= 0; i
< table
->nr
; i
++) {
327 ctx
= rcu_dereference(table
->table
[i
]);
328 if (ctx
&& ctx
->aio_ring_file
== file
) {
329 if (!atomic_read(&ctx
->dead
)) {
330 ctx
->user_id
= ctx
->mmap_base
= vma
->vm_start
;
338 spin_unlock(&mm
->ioctx_lock
);
342 static const struct vm_operations_struct aio_ring_vm_ops
= {
343 .mremap
= aio_ring_mremap
,
344 #if IS_ENABLED(CONFIG_MMU)
345 .fault
= filemap_fault
,
346 .map_pages
= filemap_map_pages
,
347 .page_mkwrite
= filemap_page_mkwrite
,
351 static int aio_ring_mmap(struct file
*file
, struct vm_area_struct
*vma
)
353 vma
->vm_flags
|= VM_DONTEXPAND
;
354 vma
->vm_ops
= &aio_ring_vm_ops
;
358 static const struct file_operations aio_ring_fops
= {
359 .mmap
= aio_ring_mmap
,
362 #if IS_ENABLED(CONFIG_MIGRATION)
363 static int aio_migratepage(struct address_space
*mapping
, struct page
*new,
364 struct page
*old
, enum migrate_mode mode
)
372 * We cannot support the _NO_COPY case here, because copy needs to
373 * happen under the ctx->completion_lock. That does not work with the
374 * migration workflow of MIGRATE_SYNC_NO_COPY.
376 if (mode
== MIGRATE_SYNC_NO_COPY
)
381 /* mapping->private_lock here protects against the kioctx teardown. */
382 spin_lock(&mapping
->private_lock
);
383 ctx
= mapping
->private_data
;
389 /* The ring_lock mutex. The prevents aio_read_events() from writing
390 * to the ring's head, and prevents page migration from mucking in
391 * a partially initialized kiotx.
393 if (!mutex_trylock(&ctx
->ring_lock
)) {
399 if (idx
< (pgoff_t
)ctx
->nr_pages
) {
400 /* Make sure the old page hasn't already been changed */
401 if (ctx
->ring_pages
[idx
] != old
)
409 /* Writeback must be complete */
410 BUG_ON(PageWriteback(old
));
413 rc
= migrate_page_move_mapping(mapping
, new, old
, NULL
, mode
, 1);
414 if (rc
!= MIGRATEPAGE_SUCCESS
) {
419 /* Take completion_lock to prevent other writes to the ring buffer
420 * while the old page is copied to the new. This prevents new
421 * events from being lost.
423 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
424 migrate_page_copy(new, old
);
425 BUG_ON(ctx
->ring_pages
[idx
] != old
);
426 ctx
->ring_pages
[idx
] = new;
427 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
429 /* The old page is no longer accessible. */
433 mutex_unlock(&ctx
->ring_lock
);
435 spin_unlock(&mapping
->private_lock
);
440 static const struct address_space_operations aio_ctx_aops
= {
441 .set_page_dirty
= __set_page_dirty_no_writeback
,
442 #if IS_ENABLED(CONFIG_MIGRATION)
443 .migratepage
= aio_migratepage
,
447 static int aio_setup_ring(struct kioctx
*ctx
, unsigned int nr_events
)
449 struct aio_ring
*ring
;
450 struct mm_struct
*mm
= current
->mm
;
451 unsigned long size
, unused
;
456 /* Compensate for the ring buffer's head/tail overlap entry */
457 nr_events
+= 2; /* 1 is required, 2 for good luck */
459 size
= sizeof(struct aio_ring
);
460 size
+= sizeof(struct io_event
) * nr_events
;
462 nr_pages
= PFN_UP(size
);
466 file
= aio_private_file(ctx
, nr_pages
);
468 ctx
->aio_ring_file
= NULL
;
472 ctx
->aio_ring_file
= file
;
473 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
))
474 / sizeof(struct io_event
);
476 ctx
->ring_pages
= ctx
->internal_pages
;
477 if (nr_pages
> AIO_RING_PAGES
) {
478 ctx
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*),
480 if (!ctx
->ring_pages
) {
481 put_aio_ring_file(ctx
);
486 for (i
= 0; i
< nr_pages
; i
++) {
488 page
= find_or_create_page(file
->f_mapping
,
489 i
, GFP_HIGHUSER
| __GFP_ZERO
);
492 pr_debug("pid(%d) page[%d]->count=%d\n",
493 current
->pid
, i
, page_count(page
));
494 SetPageUptodate(page
);
497 ctx
->ring_pages
[i
] = page
;
501 if (unlikely(i
!= nr_pages
)) {
506 ctx
->mmap_size
= nr_pages
* PAGE_SIZE
;
507 pr_debug("attempting mmap of %lu bytes\n", ctx
->mmap_size
);
509 if (down_write_killable(&mm
->mmap_sem
)) {
515 ctx
->mmap_base
= do_mmap_pgoff(ctx
->aio_ring_file
, 0, ctx
->mmap_size
,
516 PROT_READ
| PROT_WRITE
,
517 MAP_SHARED
, 0, &unused
, NULL
);
518 up_write(&mm
->mmap_sem
);
519 if (IS_ERR((void *)ctx
->mmap_base
)) {
525 pr_debug("mmap address: 0x%08lx\n", ctx
->mmap_base
);
527 ctx
->user_id
= ctx
->mmap_base
;
528 ctx
->nr_events
= nr_events
; /* trusted copy */
530 ring
= kmap_atomic(ctx
->ring_pages
[0]);
531 ring
->nr
= nr_events
; /* user copy */
533 ring
->head
= ring
->tail
= 0;
534 ring
->magic
= AIO_RING_MAGIC
;
535 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
536 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
537 ring
->header_length
= sizeof(struct aio_ring
);
539 flush_dcache_page(ctx
->ring_pages
[0]);
544 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
545 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
546 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
548 void kiocb_set_cancel_fn(struct kiocb
*iocb
, kiocb_cancel_fn
*cancel
)
550 struct aio_kiocb
*req
= container_of(iocb
, struct aio_kiocb
, rw
);
551 struct kioctx
*ctx
= req
->ki_ctx
;
554 if (WARN_ON_ONCE(!list_empty(&req
->ki_list
)))
557 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
558 list_add_tail(&req
->ki_list
, &ctx
->active_reqs
);
559 req
->ki_cancel
= cancel
;
560 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
562 EXPORT_SYMBOL(kiocb_set_cancel_fn
);
565 * free_ioctx() should be RCU delayed to synchronize against the RCU
566 * protected lookup_ioctx() and also needs process context to call
567 * aio_free_ring(). Use rcu_work.
569 static void free_ioctx(struct work_struct
*work
)
571 struct kioctx
*ctx
= container_of(to_rcu_work(work
), struct kioctx
,
573 pr_debug("freeing %p\n", ctx
);
576 free_percpu(ctx
->cpu
);
577 percpu_ref_exit(&ctx
->reqs
);
578 percpu_ref_exit(&ctx
->users
);
579 kmem_cache_free(kioctx_cachep
, ctx
);
582 static void free_ioctx_reqs(struct percpu_ref
*ref
)
584 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, reqs
);
586 /* At this point we know that there are no any in-flight requests */
587 if (ctx
->rq_wait
&& atomic_dec_and_test(&ctx
->rq_wait
->count
))
588 complete(&ctx
->rq_wait
->comp
);
590 /* Synchronize against RCU protected table->table[] dereferences */
591 INIT_RCU_WORK(&ctx
->free_rwork
, free_ioctx
);
592 queue_rcu_work(system_wq
, &ctx
->free_rwork
);
596 * When this function runs, the kioctx has been removed from the "hash table"
597 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
598 * now it's safe to cancel any that need to be.
600 static void free_ioctx_users(struct percpu_ref
*ref
)
602 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, users
);
603 struct aio_kiocb
*req
;
605 spin_lock_irq(&ctx
->ctx_lock
);
607 while (!list_empty(&ctx
->active_reqs
)) {
608 req
= list_first_entry(&ctx
->active_reqs
,
609 struct aio_kiocb
, ki_list
);
610 req
->ki_cancel(&req
->rw
);
611 list_del_init(&req
->ki_list
);
614 spin_unlock_irq(&ctx
->ctx_lock
);
616 percpu_ref_kill(&ctx
->reqs
);
617 percpu_ref_put(&ctx
->reqs
);
620 static int ioctx_add_table(struct kioctx
*ctx
, struct mm_struct
*mm
)
623 struct kioctx_table
*table
, *old
;
624 struct aio_ring
*ring
;
626 spin_lock(&mm
->ioctx_lock
);
627 table
= rcu_dereference_raw(mm
->ioctx_table
);
631 for (i
= 0; i
< table
->nr
; i
++)
632 if (!rcu_access_pointer(table
->table
[i
])) {
634 rcu_assign_pointer(table
->table
[i
], ctx
);
635 spin_unlock(&mm
->ioctx_lock
);
637 /* While kioctx setup is in progress,
638 * we are protected from page migration
639 * changes ring_pages by ->ring_lock.
641 ring
= kmap_atomic(ctx
->ring_pages
[0]);
647 new_nr
= (table
? table
->nr
: 1) * 4;
648 spin_unlock(&mm
->ioctx_lock
);
650 table
= kzalloc(sizeof(*table
) + sizeof(struct kioctx
*) *
657 spin_lock(&mm
->ioctx_lock
);
658 old
= rcu_dereference_raw(mm
->ioctx_table
);
661 rcu_assign_pointer(mm
->ioctx_table
, table
);
662 } else if (table
->nr
> old
->nr
) {
663 memcpy(table
->table
, old
->table
,
664 old
->nr
* sizeof(struct kioctx
*));
666 rcu_assign_pointer(mm
->ioctx_table
, table
);
675 static void aio_nr_sub(unsigned nr
)
677 spin_lock(&aio_nr_lock
);
678 if (WARN_ON(aio_nr
- nr
> aio_nr
))
682 spin_unlock(&aio_nr_lock
);
686 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
688 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
690 struct mm_struct
*mm
= current
->mm
;
695 * Store the original nr_events -- what userspace passed to io_setup(),
696 * for counting against the global limit -- before it changes.
698 unsigned int max_reqs
= nr_events
;
701 * We keep track of the number of available ringbuffer slots, to prevent
702 * overflow (reqs_available), and we also use percpu counters for this.
704 * So since up to half the slots might be on other cpu's percpu counters
705 * and unavailable, double nr_events so userspace sees what they
706 * expected: additionally, we move req_batch slots to/from percpu
707 * counters at a time, so make sure that isn't 0:
709 nr_events
= max(nr_events
, num_possible_cpus() * 4);
712 /* Prevent overflows */
713 if (nr_events
> (0x10000000U
/ sizeof(struct io_event
))) {
714 pr_debug("ENOMEM: nr_events too high\n");
715 return ERR_PTR(-EINVAL
);
718 if (!nr_events
|| (unsigned long)max_reqs
> aio_max_nr
)
719 return ERR_PTR(-EAGAIN
);
721 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
723 return ERR_PTR(-ENOMEM
);
725 ctx
->max_reqs
= max_reqs
;
727 spin_lock_init(&ctx
->ctx_lock
);
728 spin_lock_init(&ctx
->completion_lock
);
729 mutex_init(&ctx
->ring_lock
);
730 /* Protect against page migration throughout kiotx setup by keeping
731 * the ring_lock mutex held until setup is complete. */
732 mutex_lock(&ctx
->ring_lock
);
733 init_waitqueue_head(&ctx
->wait
);
735 INIT_LIST_HEAD(&ctx
->active_reqs
);
737 if (percpu_ref_init(&ctx
->users
, free_ioctx_users
, 0, GFP_KERNEL
))
740 if (percpu_ref_init(&ctx
->reqs
, free_ioctx_reqs
, 0, GFP_KERNEL
))
743 ctx
->cpu
= alloc_percpu(struct kioctx_cpu
);
747 err
= aio_setup_ring(ctx
, nr_events
);
751 atomic_set(&ctx
->reqs_available
, ctx
->nr_events
- 1);
752 ctx
->req_batch
= (ctx
->nr_events
- 1) / (num_possible_cpus() * 4);
753 if (ctx
->req_batch
< 1)
756 /* limit the number of system wide aios */
757 spin_lock(&aio_nr_lock
);
758 if (aio_nr
+ ctx
->max_reqs
> aio_max_nr
||
759 aio_nr
+ ctx
->max_reqs
< aio_nr
) {
760 spin_unlock(&aio_nr_lock
);
764 aio_nr
+= ctx
->max_reqs
;
765 spin_unlock(&aio_nr_lock
);
767 percpu_ref_get(&ctx
->users
); /* io_setup() will drop this ref */
768 percpu_ref_get(&ctx
->reqs
); /* free_ioctx_users() will drop this */
770 err
= ioctx_add_table(ctx
, mm
);
774 /* Release the ring_lock mutex now that all setup is complete. */
775 mutex_unlock(&ctx
->ring_lock
);
777 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
778 ctx
, ctx
->user_id
, mm
, ctx
->nr_events
);
782 aio_nr_sub(ctx
->max_reqs
);
784 atomic_set(&ctx
->dead
, 1);
786 vm_munmap(ctx
->mmap_base
, ctx
->mmap_size
);
789 mutex_unlock(&ctx
->ring_lock
);
790 free_percpu(ctx
->cpu
);
791 percpu_ref_exit(&ctx
->reqs
);
792 percpu_ref_exit(&ctx
->users
);
793 kmem_cache_free(kioctx_cachep
, ctx
);
794 pr_debug("error allocating ioctx %d\n", err
);
799 * Cancels all outstanding aio requests on an aio context. Used
800 * when the processes owning a context have all exited to encourage
801 * the rapid destruction of the kioctx.
803 static int kill_ioctx(struct mm_struct
*mm
, struct kioctx
*ctx
,
804 struct ctx_rq_wait
*wait
)
806 struct kioctx_table
*table
;
808 spin_lock(&mm
->ioctx_lock
);
809 if (atomic_xchg(&ctx
->dead
, 1)) {
810 spin_unlock(&mm
->ioctx_lock
);
814 table
= rcu_dereference_raw(mm
->ioctx_table
);
815 WARN_ON(ctx
!= rcu_access_pointer(table
->table
[ctx
->id
]));
816 RCU_INIT_POINTER(table
->table
[ctx
->id
], NULL
);
817 spin_unlock(&mm
->ioctx_lock
);
819 /* free_ioctx_reqs() will do the necessary RCU synchronization */
820 wake_up_all(&ctx
->wait
);
823 * It'd be more correct to do this in free_ioctx(), after all
824 * the outstanding kiocbs have finished - but by then io_destroy
825 * has already returned, so io_setup() could potentially return
826 * -EAGAIN with no ioctxs actually in use (as far as userspace
829 aio_nr_sub(ctx
->max_reqs
);
832 vm_munmap(ctx
->mmap_base
, ctx
->mmap_size
);
835 percpu_ref_kill(&ctx
->users
);
840 * exit_aio: called when the last user of mm goes away. At this point, there is
841 * no way for any new requests to be submited or any of the io_* syscalls to be
842 * called on the context.
844 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
847 void exit_aio(struct mm_struct
*mm
)
849 struct kioctx_table
*table
= rcu_dereference_raw(mm
->ioctx_table
);
850 struct ctx_rq_wait wait
;
856 atomic_set(&wait
.count
, table
->nr
);
857 init_completion(&wait
.comp
);
860 for (i
= 0; i
< table
->nr
; ++i
) {
862 rcu_dereference_protected(table
->table
[i
], true);
870 * We don't need to bother with munmap() here - exit_mmap(mm)
871 * is coming and it'll unmap everything. And we simply can't,
872 * this is not necessarily our ->mm.
873 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
874 * that it needs to unmap the area, just set it to 0.
877 kill_ioctx(mm
, ctx
, &wait
);
880 if (!atomic_sub_and_test(skipped
, &wait
.count
)) {
881 /* Wait until all IO for the context are done. */
882 wait_for_completion(&wait
.comp
);
885 RCU_INIT_POINTER(mm
->ioctx_table
, NULL
);
889 static void put_reqs_available(struct kioctx
*ctx
, unsigned nr
)
891 struct kioctx_cpu
*kcpu
;
894 local_irq_save(flags
);
895 kcpu
= this_cpu_ptr(ctx
->cpu
);
896 kcpu
->reqs_available
+= nr
;
898 while (kcpu
->reqs_available
>= ctx
->req_batch
* 2) {
899 kcpu
->reqs_available
-= ctx
->req_batch
;
900 atomic_add(ctx
->req_batch
, &ctx
->reqs_available
);
903 local_irq_restore(flags
);
906 static bool get_reqs_available(struct kioctx
*ctx
)
908 struct kioctx_cpu
*kcpu
;
912 local_irq_save(flags
);
913 kcpu
= this_cpu_ptr(ctx
->cpu
);
914 if (!kcpu
->reqs_available
) {
915 int old
, avail
= atomic_read(&ctx
->reqs_available
);
918 if (avail
< ctx
->req_batch
)
922 avail
= atomic_cmpxchg(&ctx
->reqs_available
,
923 avail
, avail
- ctx
->req_batch
);
924 } while (avail
!= old
);
926 kcpu
->reqs_available
+= ctx
->req_batch
;
930 kcpu
->reqs_available
--;
932 local_irq_restore(flags
);
936 /* refill_reqs_available
937 * Updates the reqs_available reference counts used for tracking the
938 * number of free slots in the completion ring. This can be called
939 * from aio_complete() (to optimistically update reqs_available) or
940 * from aio_get_req() (the we're out of events case). It must be
941 * called holding ctx->completion_lock.
943 static void refill_reqs_available(struct kioctx
*ctx
, unsigned head
,
946 unsigned events_in_ring
, completed
;
948 /* Clamp head since userland can write to it. */
949 head
%= ctx
->nr_events
;
951 events_in_ring
= tail
- head
;
953 events_in_ring
= ctx
->nr_events
- (head
- tail
);
955 completed
= ctx
->completed_events
;
956 if (events_in_ring
< completed
)
957 completed
-= events_in_ring
;
964 ctx
->completed_events
-= completed
;
965 put_reqs_available(ctx
, completed
);
968 /* user_refill_reqs_available
969 * Called to refill reqs_available when aio_get_req() encounters an
970 * out of space in the completion ring.
972 static void user_refill_reqs_available(struct kioctx
*ctx
)
974 spin_lock_irq(&ctx
->completion_lock
);
975 if (ctx
->completed_events
) {
976 struct aio_ring
*ring
;
979 /* Access of ring->head may race with aio_read_events_ring()
980 * here, but that's okay since whether we read the old version
981 * or the new version, and either will be valid. The important
982 * part is that head cannot pass tail since we prevent
983 * aio_complete() from updating tail by holding
984 * ctx->completion_lock. Even if head is invalid, the check
985 * against ctx->completed_events below will make sure we do the
988 ring
= kmap_atomic(ctx
->ring_pages
[0]);
992 refill_reqs_available(ctx
, head
, ctx
->tail
);
995 spin_unlock_irq(&ctx
->completion_lock
);
999 * Allocate a slot for an aio request.
1000 * Returns NULL if no requests are free.
1002 static inline struct aio_kiocb
*aio_get_req(struct kioctx
*ctx
)
1004 struct aio_kiocb
*req
;
1006 if (!get_reqs_available(ctx
)) {
1007 user_refill_reqs_available(ctx
);
1008 if (!get_reqs_available(ctx
))
1012 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
|__GFP_ZERO
);
1016 percpu_ref_get(&ctx
->reqs
);
1017 INIT_LIST_HEAD(&req
->ki_list
);
1021 put_reqs_available(ctx
, 1);
1025 static struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
1027 struct aio_ring __user
*ring
= (void __user
*)ctx_id
;
1028 struct mm_struct
*mm
= current
->mm
;
1029 struct kioctx
*ctx
, *ret
= NULL
;
1030 struct kioctx_table
*table
;
1033 if (get_user(id
, &ring
->id
))
1037 table
= rcu_dereference(mm
->ioctx_table
);
1039 if (!table
|| id
>= table
->nr
)
1042 ctx
= rcu_dereference(table
->table
[id
]);
1043 if (ctx
&& ctx
->user_id
== ctx_id
) {
1044 if (percpu_ref_tryget_live(&ctx
->users
))
1053 * Called when the io request on the given iocb is complete.
1055 static void aio_complete(struct aio_kiocb
*iocb
, long res
, long res2
)
1057 struct kioctx
*ctx
= iocb
->ki_ctx
;
1058 struct aio_ring
*ring
;
1059 struct io_event
*ev_page
, *event
;
1060 unsigned tail
, pos
, head
;
1061 unsigned long flags
;
1064 * Add a completion event to the ring buffer. Must be done holding
1065 * ctx->completion_lock to prevent other code from messing with the tail
1066 * pointer since we might be called from irq context.
1068 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
1071 pos
= tail
+ AIO_EVENTS_OFFSET
;
1073 if (++tail
>= ctx
->nr_events
)
1076 ev_page
= kmap_atomic(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1077 event
= ev_page
+ pos
% AIO_EVENTS_PER_PAGE
;
1079 event
->obj
= (u64
)(unsigned long)iocb
->ki_user_iocb
;
1080 event
->data
= iocb
->ki_user_data
;
1084 kunmap_atomic(ev_page
);
1085 flush_dcache_page(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1087 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1088 ctx
, tail
, iocb
, iocb
->ki_user_iocb
, iocb
->ki_user_data
,
1091 /* after flagging the request as done, we
1092 * must never even look at it again
1094 smp_wmb(); /* make event visible before updating tail */
1098 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1101 kunmap_atomic(ring
);
1102 flush_dcache_page(ctx
->ring_pages
[0]);
1104 ctx
->completed_events
++;
1105 if (ctx
->completed_events
> 1)
1106 refill_reqs_available(ctx
, head
, tail
);
1107 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
1109 pr_debug("added to ring %p at [%u]\n", iocb
, tail
);
1112 * Check if the user asked us to deliver the result through an
1113 * eventfd. The eventfd_signal() function is safe to be called
1116 if (iocb
->ki_eventfd
) {
1117 eventfd_signal(iocb
->ki_eventfd
, 1);
1118 eventfd_ctx_put(iocb
->ki_eventfd
);
1121 kmem_cache_free(kiocb_cachep
, iocb
);
1124 * We have to order our ring_info tail store above and test
1125 * of the wait list below outside the wait lock. This is
1126 * like in wake_up_bit() where clearing a bit has to be
1127 * ordered with the unlocked test.
1131 if (waitqueue_active(&ctx
->wait
))
1132 wake_up(&ctx
->wait
);
1134 percpu_ref_put(&ctx
->reqs
);
1137 /* aio_read_events_ring
1138 * Pull an event off of the ioctx's event ring. Returns the number of
1141 static long aio_read_events_ring(struct kioctx
*ctx
,
1142 struct io_event __user
*event
, long nr
)
1144 struct aio_ring
*ring
;
1145 unsigned head
, tail
, pos
;
1150 * The mutex can block and wake us up and that will cause
1151 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1152 * and repeat. This should be rare enough that it doesn't cause
1153 * peformance issues. See the comment in read_events() for more detail.
1155 sched_annotate_sleep();
1156 mutex_lock(&ctx
->ring_lock
);
1158 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1159 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1162 kunmap_atomic(ring
);
1165 * Ensure that once we've read the current tail pointer, that
1166 * we also see the events that were stored up to the tail.
1170 pr_debug("h%u t%u m%u\n", head
, tail
, ctx
->nr_events
);
1175 head
%= ctx
->nr_events
;
1176 tail
%= ctx
->nr_events
;
1180 struct io_event
*ev
;
1183 avail
= (head
<= tail
? tail
: ctx
->nr_events
) - head
;
1187 pos
= head
+ AIO_EVENTS_OFFSET
;
1188 page
= ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
];
1189 pos
%= AIO_EVENTS_PER_PAGE
;
1191 avail
= min(avail
, nr
- ret
);
1192 avail
= min_t(long, avail
, AIO_EVENTS_PER_PAGE
- pos
);
1195 copy_ret
= copy_to_user(event
+ ret
, ev
+ pos
,
1196 sizeof(*ev
) * avail
);
1199 if (unlikely(copy_ret
)) {
1206 head
%= ctx
->nr_events
;
1209 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1211 kunmap_atomic(ring
);
1212 flush_dcache_page(ctx
->ring_pages
[0]);
1214 pr_debug("%li h%u t%u\n", ret
, head
, tail
);
1216 mutex_unlock(&ctx
->ring_lock
);
1221 static bool aio_read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1222 struct io_event __user
*event
, long *i
)
1224 long ret
= aio_read_events_ring(ctx
, event
+ *i
, nr
- *i
);
1229 if (unlikely(atomic_read(&ctx
->dead
)))
1235 return ret
< 0 || *i
>= min_nr
;
1238 static long read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1239 struct io_event __user
*event
,
1245 * Note that aio_read_events() is being called as the conditional - i.e.
1246 * we're calling it after prepare_to_wait() has set task state to
1247 * TASK_INTERRUPTIBLE.
1249 * But aio_read_events() can block, and if it blocks it's going to flip
1250 * the task state back to TASK_RUNNING.
1252 * This should be ok, provided it doesn't flip the state back to
1253 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1254 * will only happen if the mutex_lock() call blocks, and we then find
1255 * the ringbuffer empty. So in practice we should be ok, but it's
1256 * something to be aware of when touching this code.
1259 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
);
1261 wait_event_interruptible_hrtimeout(ctx
->wait
,
1262 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
),
1268 * Create an aio_context capable of receiving at least nr_events.
1269 * ctxp must not point to an aio_context that already exists, and
1270 * must be initialized to 0 prior to the call. On successful
1271 * creation of the aio_context, *ctxp is filled in with the resulting
1272 * handle. May fail with -EINVAL if *ctxp is not initialized,
1273 * if the specified nr_events exceeds internal limits. May fail
1274 * with -EAGAIN if the specified nr_events exceeds the user's limit
1275 * of available events. May fail with -ENOMEM if insufficient kernel
1276 * resources are available. May fail with -EFAULT if an invalid
1277 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1280 SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, aio_context_t __user
*, ctxp
)
1282 struct kioctx
*ioctx
= NULL
;
1286 ret
= get_user(ctx
, ctxp
);
1291 if (unlikely(ctx
|| nr_events
== 0)) {
1292 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1297 ioctx
= ioctx_alloc(nr_events
);
1298 ret
= PTR_ERR(ioctx
);
1299 if (!IS_ERR(ioctx
)) {
1300 ret
= put_user(ioctx
->user_id
, ctxp
);
1302 kill_ioctx(current
->mm
, ioctx
, NULL
);
1303 percpu_ref_put(&ioctx
->users
);
1310 #ifdef CONFIG_COMPAT
1311 COMPAT_SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, u32 __user
*, ctx32p
)
1313 struct kioctx
*ioctx
= NULL
;
1317 ret
= get_user(ctx
, ctx32p
);
1322 if (unlikely(ctx
|| nr_events
== 0)) {
1323 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1328 ioctx
= ioctx_alloc(nr_events
);
1329 ret
= PTR_ERR(ioctx
);
1330 if (!IS_ERR(ioctx
)) {
1331 /* truncating is ok because it's a user address */
1332 ret
= put_user((u32
)ioctx
->user_id
, ctx32p
);
1334 kill_ioctx(current
->mm
, ioctx
, NULL
);
1335 percpu_ref_put(&ioctx
->users
);
1344 * Destroy the aio_context specified. May cancel any outstanding
1345 * AIOs and block on completion. Will fail with -ENOSYS if not
1346 * implemented. May fail with -EINVAL if the context pointed to
1349 SYSCALL_DEFINE1(io_destroy
, aio_context_t
, ctx
)
1351 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1352 if (likely(NULL
!= ioctx
)) {
1353 struct ctx_rq_wait wait
;
1356 init_completion(&wait
.comp
);
1357 atomic_set(&wait
.count
, 1);
1359 /* Pass requests_done to kill_ioctx() where it can be set
1360 * in a thread-safe way. If we try to set it here then we have
1361 * a race condition if two io_destroy() called simultaneously.
1363 ret
= kill_ioctx(current
->mm
, ioctx
, &wait
);
1364 percpu_ref_put(&ioctx
->users
);
1366 /* Wait until all IO for the context are done. Otherwise kernel
1367 * keep using user-space buffers even if user thinks the context
1371 wait_for_completion(&wait
.comp
);
1375 pr_debug("EINVAL: invalid context id\n");
1379 static void aio_remove_iocb(struct aio_kiocb
*iocb
)
1381 struct kioctx
*ctx
= iocb
->ki_ctx
;
1382 unsigned long flags
;
1384 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
1385 list_del(&iocb
->ki_list
);
1386 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1389 static void aio_complete_rw(struct kiocb
*kiocb
, long res
, long res2
)
1391 struct aio_kiocb
*iocb
= container_of(kiocb
, struct aio_kiocb
, rw
);
1393 if (!list_empty_careful(&iocb
->ki_list
))
1394 aio_remove_iocb(iocb
);
1396 if (kiocb
->ki_flags
& IOCB_WRITE
) {
1397 struct inode
*inode
= file_inode(kiocb
->ki_filp
);
1400 * Tell lockdep we inherited freeze protection from submission
1403 if (S_ISREG(inode
->i_mode
))
1404 __sb_writers_acquired(inode
->i_sb
, SB_FREEZE_WRITE
);
1405 file_end_write(kiocb
->ki_filp
);
1408 fput(kiocb
->ki_filp
);
1409 aio_complete(iocb
, res
, res2
);
1412 static int aio_prep_rw(struct kiocb
*req
, struct iocb
*iocb
)
1416 req
->ki_filp
= fget(iocb
->aio_fildes
);
1417 if (unlikely(!req
->ki_filp
))
1419 req
->ki_complete
= aio_complete_rw
;
1420 req
->ki_pos
= iocb
->aio_offset
;
1421 req
->ki_flags
= iocb_flags(req
->ki_filp
);
1422 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
)
1423 req
->ki_flags
|= IOCB_EVENTFD
;
1424 req
->ki_hint
= ki_hint_validate(file_write_hint(req
->ki_filp
));
1425 if (iocb
->aio_flags
& IOCB_FLAG_IOPRIO
) {
1427 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1428 * aio_reqprio is interpreted as an I/O scheduling
1429 * class and priority.
1431 ret
= ioprio_check_cap(iocb
->aio_reqprio
);
1433 pr_debug("aio ioprio check cap error: %d\n", ret
);
1437 req
->ki_ioprio
= iocb
->aio_reqprio
;
1439 req
->ki_ioprio
= IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE
, 0);
1441 ret
= kiocb_set_rw_flags(req
, iocb
->aio_rw_flags
);
1447 static int aio_setup_rw(int rw
, struct iocb
*iocb
, struct iovec
**iovec
,
1448 bool vectored
, bool compat
, struct iov_iter
*iter
)
1450 void __user
*buf
= (void __user
*)(uintptr_t)iocb
->aio_buf
;
1451 size_t len
= iocb
->aio_nbytes
;
1454 ssize_t ret
= import_single_range(rw
, buf
, len
, *iovec
, iter
);
1458 #ifdef CONFIG_COMPAT
1460 return compat_import_iovec(rw
, buf
, len
, UIO_FASTIOV
, iovec
,
1463 return import_iovec(rw
, buf
, len
, UIO_FASTIOV
, iovec
, iter
);
1466 static inline void aio_rw_done(struct kiocb
*req
, ssize_t ret
)
1472 case -ERESTARTNOINTR
:
1473 case -ERESTARTNOHAND
:
1474 case -ERESTART_RESTARTBLOCK
:
1476 * There's no easy way to restart the syscall since other AIO's
1477 * may be already running. Just fail this IO with EINTR.
1482 aio_complete_rw(req
, ret
, 0);
1486 static ssize_t
aio_read(struct kiocb
*req
, struct iocb
*iocb
, bool vectored
,
1489 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
1490 struct iov_iter iter
;
1494 ret
= aio_prep_rw(req
, iocb
);
1497 file
= req
->ki_filp
;
1500 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1503 if (unlikely(!file
->f_op
->read_iter
))
1506 ret
= aio_setup_rw(READ
, iocb
, &iovec
, vectored
, compat
, &iter
);
1509 ret
= rw_verify_area(READ
, file
, &req
->ki_pos
, iov_iter_count(&iter
));
1511 aio_rw_done(req
, call_read_iter(file
, req
, &iter
));
1519 static ssize_t
aio_write(struct kiocb
*req
, struct iocb
*iocb
, bool vectored
,
1522 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
1523 struct iov_iter iter
;
1527 ret
= aio_prep_rw(req
, iocb
);
1530 file
= req
->ki_filp
;
1533 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1536 if (unlikely(!file
->f_op
->write_iter
))
1539 ret
= aio_setup_rw(WRITE
, iocb
, &iovec
, vectored
, compat
, &iter
);
1542 ret
= rw_verify_area(WRITE
, file
, &req
->ki_pos
, iov_iter_count(&iter
));
1545 * Open-code file_start_write here to grab freeze protection,
1546 * which will be released by another thread in
1547 * aio_complete_rw(). Fool lockdep by telling it the lock got
1548 * released so that it doesn't complain about the held lock when
1549 * we return to userspace.
1551 if (S_ISREG(file_inode(file
)->i_mode
)) {
1552 __sb_start_write(file_inode(file
)->i_sb
, SB_FREEZE_WRITE
, true);
1553 __sb_writers_release(file_inode(file
)->i_sb
, SB_FREEZE_WRITE
);
1555 req
->ki_flags
|= IOCB_WRITE
;
1556 aio_rw_done(req
, call_write_iter(file
, req
, &iter
));
1565 static void aio_fsync_work(struct work_struct
*work
)
1567 struct fsync_iocb
*req
= container_of(work
, struct fsync_iocb
, work
);
1570 ret
= vfs_fsync(req
->file
, req
->datasync
);
1572 aio_complete(container_of(req
, struct aio_kiocb
, fsync
), ret
, 0);
1575 static int aio_fsync(struct fsync_iocb
*req
, struct iocb
*iocb
, bool datasync
)
1577 if (unlikely(iocb
->aio_buf
|| iocb
->aio_offset
|| iocb
->aio_nbytes
||
1578 iocb
->aio_rw_flags
))
1581 req
->file
= fget(iocb
->aio_fildes
);
1582 if (unlikely(!req
->file
))
1584 if (unlikely(!req
->file
->f_op
->fsync
)) {
1589 req
->datasync
= datasync
;
1590 INIT_WORK(&req
->work
, aio_fsync_work
);
1591 schedule_work(&req
->work
);
1595 static int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1598 struct aio_kiocb
*req
;
1602 if (unlikely(copy_from_user(&iocb
, user_iocb
, sizeof(iocb
))))
1605 /* enforce forwards compatibility on users */
1606 if (unlikely(iocb
.aio_reserved2
)) {
1607 pr_debug("EINVAL: reserve field set\n");
1611 /* prevent overflows */
1613 (iocb
.aio_buf
!= (unsigned long)iocb
.aio_buf
) ||
1614 (iocb
.aio_nbytes
!= (size_t)iocb
.aio_nbytes
) ||
1615 ((ssize_t
)iocb
.aio_nbytes
< 0)
1617 pr_debug("EINVAL: overflow check\n");
1621 req
= aio_get_req(ctx
);
1625 if (iocb
.aio_flags
& IOCB_FLAG_RESFD
) {
1627 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1628 * instance of the file* now. The file descriptor must be
1629 * an eventfd() fd, and will be signaled for each completed
1630 * event using the eventfd_signal() function.
1632 req
->ki_eventfd
= eventfd_ctx_fdget((int) iocb
.aio_resfd
);
1633 if (IS_ERR(req
->ki_eventfd
)) {
1634 ret
= PTR_ERR(req
->ki_eventfd
);
1635 req
->ki_eventfd
= NULL
;
1640 ret
= put_user(KIOCB_KEY
, &user_iocb
->aio_key
);
1641 if (unlikely(ret
)) {
1642 pr_debug("EFAULT: aio_key\n");
1646 req
->ki_user_iocb
= user_iocb
;
1647 req
->ki_user_data
= iocb
.aio_data
;
1649 switch (iocb
.aio_lio_opcode
) {
1650 case IOCB_CMD_PREAD
:
1651 ret
= aio_read(&req
->rw
, &iocb
, false, compat
);
1653 case IOCB_CMD_PWRITE
:
1654 ret
= aio_write(&req
->rw
, &iocb
, false, compat
);
1656 case IOCB_CMD_PREADV
:
1657 ret
= aio_read(&req
->rw
, &iocb
, true, compat
);
1659 case IOCB_CMD_PWRITEV
:
1660 ret
= aio_write(&req
->rw
, &iocb
, true, compat
);
1662 case IOCB_CMD_FSYNC
:
1663 ret
= aio_fsync(&req
->fsync
, &iocb
, false);
1665 case IOCB_CMD_FDSYNC
:
1666 ret
= aio_fsync(&req
->fsync
, &iocb
, true);
1669 pr_debug("invalid aio operation %d\n", iocb
.aio_lio_opcode
);
1675 * If ret is 0, we'd either done aio_complete() ourselves or have
1676 * arranged for that to be done asynchronously. Anything non-zero
1677 * means that we need to destroy req ourselves.
1683 put_reqs_available(ctx
, 1);
1684 percpu_ref_put(&ctx
->reqs
);
1685 if (req
->ki_eventfd
)
1686 eventfd_ctx_put(req
->ki_eventfd
);
1687 kmem_cache_free(kiocb_cachep
, req
);
1692 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1693 * the number of iocbs queued. May return -EINVAL if the aio_context
1694 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1695 * *iocbpp[0] is not properly initialized, if the operation specified
1696 * is invalid for the file descriptor in the iocb. May fail with
1697 * -EFAULT if any of the data structures point to invalid data. May
1698 * fail with -EBADF if the file descriptor specified in the first
1699 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1700 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1701 * fail with -ENOSYS if not implemented.
1703 SYSCALL_DEFINE3(io_submit
, aio_context_t
, ctx_id
, long, nr
,
1704 struct iocb __user
* __user
*, iocbpp
)
1709 struct blk_plug plug
;
1711 if (unlikely(nr
< 0))
1714 ctx
= lookup_ioctx(ctx_id
);
1715 if (unlikely(!ctx
)) {
1716 pr_debug("EINVAL: invalid context id\n");
1720 if (nr
> ctx
->nr_events
)
1721 nr
= ctx
->nr_events
;
1723 blk_start_plug(&plug
);
1724 for (i
= 0; i
< nr
; i
++) {
1725 struct iocb __user
*user_iocb
;
1727 if (unlikely(get_user(user_iocb
, iocbpp
+ i
))) {
1732 ret
= io_submit_one(ctx
, user_iocb
, false);
1736 blk_finish_plug(&plug
);
1738 percpu_ref_put(&ctx
->users
);
1742 #ifdef CONFIG_COMPAT
1743 COMPAT_SYSCALL_DEFINE3(io_submit
, compat_aio_context_t
, ctx_id
,
1744 int, nr
, compat_uptr_t __user
*, iocbpp
)
1749 struct blk_plug plug
;
1751 if (unlikely(nr
< 0))
1754 ctx
= lookup_ioctx(ctx_id
);
1755 if (unlikely(!ctx
)) {
1756 pr_debug("EINVAL: invalid context id\n");
1760 if (nr
> ctx
->nr_events
)
1761 nr
= ctx
->nr_events
;
1763 blk_start_plug(&plug
);
1764 for (i
= 0; i
< nr
; i
++) {
1765 compat_uptr_t user_iocb
;
1767 if (unlikely(get_user(user_iocb
, iocbpp
+ i
))) {
1772 ret
= io_submit_one(ctx
, compat_ptr(user_iocb
), true);
1776 blk_finish_plug(&plug
);
1778 percpu_ref_put(&ctx
->users
);
1784 * Finds a given iocb for cancellation.
1786 static struct aio_kiocb
*
1787 lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
)
1789 struct aio_kiocb
*kiocb
;
1791 assert_spin_locked(&ctx
->ctx_lock
);
1793 /* TODO: use a hash or array, this sucks. */
1794 list_for_each_entry(kiocb
, &ctx
->active_reqs
, ki_list
) {
1795 if (kiocb
->ki_user_iocb
== iocb
)
1802 * Attempts to cancel an iocb previously passed to io_submit. If
1803 * the operation is successfully cancelled, the resulting event is
1804 * copied into the memory pointed to by result without being placed
1805 * into the completion queue and 0 is returned. May fail with
1806 * -EFAULT if any of the data structures pointed to are invalid.
1807 * May fail with -EINVAL if aio_context specified by ctx_id is
1808 * invalid. May fail with -EAGAIN if the iocb specified was not
1809 * cancelled. Will fail with -ENOSYS if not implemented.
1811 SYSCALL_DEFINE3(io_cancel
, aio_context_t
, ctx_id
, struct iocb __user
*, iocb
,
1812 struct io_event __user
*, result
)
1815 struct aio_kiocb
*kiocb
;
1819 if (unlikely(get_user(key
, &iocb
->aio_key
)))
1821 if (unlikely(key
!= KIOCB_KEY
))
1824 ctx
= lookup_ioctx(ctx_id
);
1828 spin_lock_irq(&ctx
->ctx_lock
);
1829 kiocb
= lookup_kiocb(ctx
, iocb
);
1831 ret
= kiocb
->ki_cancel(&kiocb
->rw
);
1832 list_del_init(&kiocb
->ki_list
);
1834 spin_unlock_irq(&ctx
->ctx_lock
);
1838 * The result argument is no longer used - the io_event is
1839 * always delivered via the ring buffer. -EINPROGRESS indicates
1840 * cancellation is progress:
1845 percpu_ref_put(&ctx
->users
);
1850 static long do_io_getevents(aio_context_t ctx_id
,
1853 struct io_event __user
*events
,
1854 struct timespec64
*ts
)
1856 ktime_t until
= ts
? timespec64_to_ktime(*ts
) : KTIME_MAX
;
1857 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1860 if (likely(ioctx
)) {
1861 if (likely(min_nr
<= nr
&& min_nr
>= 0))
1862 ret
= read_events(ioctx
, min_nr
, nr
, events
, until
);
1863 percpu_ref_put(&ioctx
->users
);
1870 * Attempts to read at least min_nr events and up to nr events from
1871 * the completion queue for the aio_context specified by ctx_id. If
1872 * it succeeds, the number of read events is returned. May fail with
1873 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1874 * out of range, if timeout is out of range. May fail with -EFAULT
1875 * if any of the memory specified is invalid. May return 0 or
1876 * < min_nr if the timeout specified by timeout has elapsed
1877 * before sufficient events are available, where timeout == NULL
1878 * specifies an infinite timeout. Note that the timeout pointed to by
1879 * timeout is relative. Will fail with -ENOSYS if not implemented.
1881 SYSCALL_DEFINE5(io_getevents
, aio_context_t
, ctx_id
,
1884 struct io_event __user
*, events
,
1885 struct timespec __user
*, timeout
)
1887 struct timespec64 ts
;
1890 if (timeout
&& unlikely(get_timespec64(&ts
, timeout
)))
1893 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &ts
: NULL
);
1894 if (!ret
&& signal_pending(current
))
1899 struct __aio_sigset
{
1900 const sigset_t __user
*sigmask
;
1904 SYSCALL_DEFINE6(io_pgetevents
,
1905 aio_context_t
, ctx_id
,
1908 struct io_event __user
*, events
,
1909 struct timespec __user
*, timeout
,
1910 const struct __aio_sigset __user
*, usig
)
1912 struct __aio_sigset ksig
= { NULL
, };
1913 sigset_t ksigmask
, sigsaved
;
1914 struct timespec64 ts
;
1917 if (timeout
&& unlikely(get_timespec64(&ts
, timeout
)))
1920 if (usig
&& copy_from_user(&ksig
, usig
, sizeof(ksig
)))
1924 if (ksig
.sigsetsize
!= sizeof(sigset_t
))
1926 if (copy_from_user(&ksigmask
, ksig
.sigmask
, sizeof(ksigmask
)))
1928 sigdelsetmask(&ksigmask
, sigmask(SIGKILL
) | sigmask(SIGSTOP
));
1929 sigprocmask(SIG_SETMASK
, &ksigmask
, &sigsaved
);
1932 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &ts
: NULL
);
1933 if (signal_pending(current
)) {
1935 current
->saved_sigmask
= sigsaved
;
1936 set_restore_sigmask();
1940 ret
= -ERESTARTNOHAND
;
1943 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
1949 #ifdef CONFIG_COMPAT
1950 COMPAT_SYSCALL_DEFINE5(io_getevents
, compat_aio_context_t
, ctx_id
,
1951 compat_long_t
, min_nr
,
1953 struct io_event __user
*, events
,
1954 struct compat_timespec __user
*, timeout
)
1956 struct timespec64 t
;
1959 if (timeout
&& compat_get_timespec64(&t
, timeout
))
1962 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &t
: NULL
);
1963 if (!ret
&& signal_pending(current
))
1969 struct __compat_aio_sigset
{
1970 compat_sigset_t __user
*sigmask
;
1971 compat_size_t sigsetsize
;
1974 COMPAT_SYSCALL_DEFINE6(io_pgetevents
,
1975 compat_aio_context_t
, ctx_id
,
1976 compat_long_t
, min_nr
,
1978 struct io_event __user
*, events
,
1979 struct compat_timespec __user
*, timeout
,
1980 const struct __compat_aio_sigset __user
*, usig
)
1982 struct __compat_aio_sigset ksig
= { NULL
, };
1983 sigset_t ksigmask
, sigsaved
;
1984 struct timespec64 t
;
1987 if (timeout
&& compat_get_timespec64(&t
, timeout
))
1990 if (usig
&& copy_from_user(&ksig
, usig
, sizeof(ksig
)))
1994 if (ksig
.sigsetsize
!= sizeof(compat_sigset_t
))
1996 if (get_compat_sigset(&ksigmask
, ksig
.sigmask
))
1998 sigdelsetmask(&ksigmask
, sigmask(SIGKILL
) | sigmask(SIGSTOP
));
1999 sigprocmask(SIG_SETMASK
, &ksigmask
, &sigsaved
);
2002 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &t
: NULL
);
2003 if (signal_pending(current
)) {
2005 current
->saved_sigmask
= sigsaved
;
2006 set_restore_sigmask();
2009 ret
= -ERESTARTNOHAND
;
2012 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);