Linux 4.18.10
[linux/fpc-iii.git] / mm / memblock.c
blob4b5d245fafc17cbde5c2de63ee516e5f30924cf6
1 /*
2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/kmemleak.h>
21 #include <linux/seq_file.h>
22 #include <linux/memblock.h>
23 #include <linux/bootmem.h>
25 #include <asm/sections.h>
26 #include <linux/io.h>
28 #include "internal.h"
30 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
31 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
32 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
33 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
34 #endif
36 struct memblock memblock __initdata_memblock = {
37 .memory.regions = memblock_memory_init_regions,
38 .memory.cnt = 1, /* empty dummy entry */
39 .memory.max = INIT_MEMBLOCK_REGIONS,
40 .memory.name = "memory",
42 .reserved.regions = memblock_reserved_init_regions,
43 .reserved.cnt = 1, /* empty dummy entry */
44 .reserved.max = INIT_MEMBLOCK_REGIONS,
45 .reserved.name = "reserved",
47 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
48 .physmem.regions = memblock_physmem_init_regions,
49 .physmem.cnt = 1, /* empty dummy entry */
50 .physmem.max = INIT_PHYSMEM_REGIONS,
51 .physmem.name = "physmem",
52 #endif
54 .bottom_up = false,
55 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
58 int memblock_debug __initdata_memblock;
59 static bool system_has_some_mirror __initdata_memblock = false;
60 static int memblock_can_resize __initdata_memblock;
61 static int memblock_memory_in_slab __initdata_memblock = 0;
62 static int memblock_reserved_in_slab __initdata_memblock = 0;
64 ulong __init_memblock choose_memblock_flags(void)
66 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
69 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
70 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
72 return *size = min(*size, PHYS_ADDR_MAX - base);
76 * Address comparison utilities
78 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
79 phys_addr_t base2, phys_addr_t size2)
81 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
84 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
85 phys_addr_t base, phys_addr_t size)
87 unsigned long i;
89 for (i = 0; i < type->cnt; i++)
90 if (memblock_addrs_overlap(base, size, type->regions[i].base,
91 type->regions[i].size))
92 break;
93 return i < type->cnt;
97 * __memblock_find_range_bottom_up - find free area utility in bottom-up
98 * @start: start of candidate range
99 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
100 * @size: size of free area to find
101 * @align: alignment of free area to find
102 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
103 * @flags: pick from blocks based on memory attributes
105 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
107 * RETURNS:
108 * Found address on success, 0 on failure.
110 static phys_addr_t __init_memblock
111 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
112 phys_addr_t size, phys_addr_t align, int nid,
113 ulong flags)
115 phys_addr_t this_start, this_end, cand;
116 u64 i;
118 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
119 this_start = clamp(this_start, start, end);
120 this_end = clamp(this_end, start, end);
122 cand = round_up(this_start, align);
123 if (cand < this_end && this_end - cand >= size)
124 return cand;
127 return 0;
131 * __memblock_find_range_top_down - find free area utility, in top-down
132 * @start: start of candidate range
133 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
134 * @size: size of free area to find
135 * @align: alignment of free area to find
136 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
137 * @flags: pick from blocks based on memory attributes
139 * Utility called from memblock_find_in_range_node(), find free area top-down.
141 * RETURNS:
142 * Found address on success, 0 on failure.
144 static phys_addr_t __init_memblock
145 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
146 phys_addr_t size, phys_addr_t align, int nid,
147 ulong flags)
149 phys_addr_t this_start, this_end, cand;
150 u64 i;
152 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
153 NULL) {
154 this_start = clamp(this_start, start, end);
155 this_end = clamp(this_end, start, end);
157 if (this_end < size)
158 continue;
160 cand = round_down(this_end - size, align);
161 if (cand >= this_start)
162 return cand;
165 return 0;
169 * memblock_find_in_range_node - find free area in given range and node
170 * @size: size of free area to find
171 * @align: alignment of free area to find
172 * @start: start of candidate range
173 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
174 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
175 * @flags: pick from blocks based on memory attributes
177 * Find @size free area aligned to @align in the specified range and node.
179 * When allocation direction is bottom-up, the @start should be greater
180 * than the end of the kernel image. Otherwise, it will be trimmed. The
181 * reason is that we want the bottom-up allocation just near the kernel
182 * image so it is highly likely that the allocated memory and the kernel
183 * will reside in the same node.
185 * If bottom-up allocation failed, will try to allocate memory top-down.
187 * RETURNS:
188 * Found address on success, 0 on failure.
190 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
191 phys_addr_t align, phys_addr_t start,
192 phys_addr_t end, int nid, ulong flags)
194 phys_addr_t kernel_end, ret;
196 /* pump up @end */
197 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
198 end = memblock.current_limit;
200 /* avoid allocating the first page */
201 start = max_t(phys_addr_t, start, PAGE_SIZE);
202 end = max(start, end);
203 kernel_end = __pa_symbol(_end);
206 * try bottom-up allocation only when bottom-up mode
207 * is set and @end is above the kernel image.
209 if (memblock_bottom_up() && end > kernel_end) {
210 phys_addr_t bottom_up_start;
212 /* make sure we will allocate above the kernel */
213 bottom_up_start = max(start, kernel_end);
215 /* ok, try bottom-up allocation first */
216 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
217 size, align, nid, flags);
218 if (ret)
219 return ret;
222 * we always limit bottom-up allocation above the kernel,
223 * but top-down allocation doesn't have the limit, so
224 * retrying top-down allocation may succeed when bottom-up
225 * allocation failed.
227 * bottom-up allocation is expected to be fail very rarely,
228 * so we use WARN_ONCE() here to see the stack trace if
229 * fail happens.
231 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
232 "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
235 return __memblock_find_range_top_down(start, end, size, align, nid,
236 flags);
240 * memblock_find_in_range - find free area in given range
241 * @start: start of candidate range
242 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
243 * @size: size of free area to find
244 * @align: alignment of free area to find
246 * Find @size free area aligned to @align in the specified range.
248 * RETURNS:
249 * Found address on success, 0 on failure.
251 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
252 phys_addr_t end, phys_addr_t size,
253 phys_addr_t align)
255 phys_addr_t ret;
256 ulong flags = choose_memblock_flags();
258 again:
259 ret = memblock_find_in_range_node(size, align, start, end,
260 NUMA_NO_NODE, flags);
262 if (!ret && (flags & MEMBLOCK_MIRROR)) {
263 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
264 &size);
265 flags &= ~MEMBLOCK_MIRROR;
266 goto again;
269 return ret;
272 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
274 type->total_size -= type->regions[r].size;
275 memmove(&type->regions[r], &type->regions[r + 1],
276 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
277 type->cnt--;
279 /* Special case for empty arrays */
280 if (type->cnt == 0) {
281 WARN_ON(type->total_size != 0);
282 type->cnt = 1;
283 type->regions[0].base = 0;
284 type->regions[0].size = 0;
285 type->regions[0].flags = 0;
286 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
290 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
292 * Discard memory and reserved arrays if they were allocated
294 void __init memblock_discard(void)
296 phys_addr_t addr, size;
298 if (memblock.reserved.regions != memblock_reserved_init_regions) {
299 addr = __pa(memblock.reserved.regions);
300 size = PAGE_ALIGN(sizeof(struct memblock_region) *
301 memblock.reserved.max);
302 __memblock_free_late(addr, size);
305 if (memblock.memory.regions != memblock_memory_init_regions) {
306 addr = __pa(memblock.memory.regions);
307 size = PAGE_ALIGN(sizeof(struct memblock_region) *
308 memblock.memory.max);
309 __memblock_free_late(addr, size);
312 #endif
315 * memblock_double_array - double the size of the memblock regions array
316 * @type: memblock type of the regions array being doubled
317 * @new_area_start: starting address of memory range to avoid overlap with
318 * @new_area_size: size of memory range to avoid overlap with
320 * Double the size of the @type regions array. If memblock is being used to
321 * allocate memory for a new reserved regions array and there is a previously
322 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
323 * waiting to be reserved, ensure the memory used by the new array does
324 * not overlap.
326 * RETURNS:
327 * 0 on success, -1 on failure.
329 static int __init_memblock memblock_double_array(struct memblock_type *type,
330 phys_addr_t new_area_start,
331 phys_addr_t new_area_size)
333 struct memblock_region *new_array, *old_array;
334 phys_addr_t old_alloc_size, new_alloc_size;
335 phys_addr_t old_size, new_size, addr;
336 int use_slab = slab_is_available();
337 int *in_slab;
339 /* We don't allow resizing until we know about the reserved regions
340 * of memory that aren't suitable for allocation
342 if (!memblock_can_resize)
343 return -1;
345 /* Calculate new doubled size */
346 old_size = type->max * sizeof(struct memblock_region);
347 new_size = old_size << 1;
349 * We need to allocated new one align to PAGE_SIZE,
350 * so we can free them completely later.
352 old_alloc_size = PAGE_ALIGN(old_size);
353 new_alloc_size = PAGE_ALIGN(new_size);
355 /* Retrieve the slab flag */
356 if (type == &memblock.memory)
357 in_slab = &memblock_memory_in_slab;
358 else
359 in_slab = &memblock_reserved_in_slab;
361 /* Try to find some space for it.
363 * WARNING: We assume that either slab_is_available() and we use it or
364 * we use MEMBLOCK for allocations. That means that this is unsafe to
365 * use when bootmem is currently active (unless bootmem itself is
366 * implemented on top of MEMBLOCK which isn't the case yet)
368 * This should however not be an issue for now, as we currently only
369 * call into MEMBLOCK while it's still active, or much later when slab
370 * is active for memory hotplug operations
372 if (use_slab) {
373 new_array = kmalloc(new_size, GFP_KERNEL);
374 addr = new_array ? __pa(new_array) : 0;
375 } else {
376 /* only exclude range when trying to double reserved.regions */
377 if (type != &memblock.reserved)
378 new_area_start = new_area_size = 0;
380 addr = memblock_find_in_range(new_area_start + new_area_size,
381 memblock.current_limit,
382 new_alloc_size, PAGE_SIZE);
383 if (!addr && new_area_size)
384 addr = memblock_find_in_range(0,
385 min(new_area_start, memblock.current_limit),
386 new_alloc_size, PAGE_SIZE);
388 new_array = addr ? __va(addr) : NULL;
390 if (!addr) {
391 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
392 type->name, type->max, type->max * 2);
393 return -1;
396 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
397 type->name, type->max * 2, (u64)addr,
398 (u64)addr + new_size - 1);
401 * Found space, we now need to move the array over before we add the
402 * reserved region since it may be our reserved array itself that is
403 * full.
405 memcpy(new_array, type->regions, old_size);
406 memset(new_array + type->max, 0, old_size);
407 old_array = type->regions;
408 type->regions = new_array;
409 type->max <<= 1;
411 /* Free old array. We needn't free it if the array is the static one */
412 if (*in_slab)
413 kfree(old_array);
414 else if (old_array != memblock_memory_init_regions &&
415 old_array != memblock_reserved_init_regions)
416 memblock_free(__pa(old_array), old_alloc_size);
419 * Reserve the new array if that comes from the memblock. Otherwise, we
420 * needn't do it
422 if (!use_slab)
423 BUG_ON(memblock_reserve(addr, new_alloc_size));
425 /* Update slab flag */
426 *in_slab = use_slab;
428 return 0;
432 * memblock_merge_regions - merge neighboring compatible regions
433 * @type: memblock type to scan
435 * Scan @type and merge neighboring compatible regions.
437 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
439 int i = 0;
441 /* cnt never goes below 1 */
442 while (i < type->cnt - 1) {
443 struct memblock_region *this = &type->regions[i];
444 struct memblock_region *next = &type->regions[i + 1];
446 if (this->base + this->size != next->base ||
447 memblock_get_region_node(this) !=
448 memblock_get_region_node(next) ||
449 this->flags != next->flags) {
450 BUG_ON(this->base + this->size > next->base);
451 i++;
452 continue;
455 this->size += next->size;
456 /* move forward from next + 1, index of which is i + 2 */
457 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
458 type->cnt--;
463 * memblock_insert_region - insert new memblock region
464 * @type: memblock type to insert into
465 * @idx: index for the insertion point
466 * @base: base address of the new region
467 * @size: size of the new region
468 * @nid: node id of the new region
469 * @flags: flags of the new region
471 * Insert new memblock region [@base,@base+@size) into @type at @idx.
472 * @type must already have extra room to accommodate the new region.
474 static void __init_memblock memblock_insert_region(struct memblock_type *type,
475 int idx, phys_addr_t base,
476 phys_addr_t size,
477 int nid, unsigned long flags)
479 struct memblock_region *rgn = &type->regions[idx];
481 BUG_ON(type->cnt >= type->max);
482 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
483 rgn->base = base;
484 rgn->size = size;
485 rgn->flags = flags;
486 memblock_set_region_node(rgn, nid);
487 type->cnt++;
488 type->total_size += size;
492 * memblock_add_range - add new memblock region
493 * @type: memblock type to add new region into
494 * @base: base address of the new region
495 * @size: size of the new region
496 * @nid: nid of the new region
497 * @flags: flags of the new region
499 * Add new memblock region [@base,@base+@size) into @type. The new region
500 * is allowed to overlap with existing ones - overlaps don't affect already
501 * existing regions. @type is guaranteed to be minimal (all neighbouring
502 * compatible regions are merged) after the addition.
504 * RETURNS:
505 * 0 on success, -errno on failure.
507 int __init_memblock memblock_add_range(struct memblock_type *type,
508 phys_addr_t base, phys_addr_t size,
509 int nid, unsigned long flags)
511 bool insert = false;
512 phys_addr_t obase = base;
513 phys_addr_t end = base + memblock_cap_size(base, &size);
514 int idx, nr_new;
515 struct memblock_region *rgn;
517 if (!size)
518 return 0;
520 /* special case for empty array */
521 if (type->regions[0].size == 0) {
522 WARN_ON(type->cnt != 1 || type->total_size);
523 type->regions[0].base = base;
524 type->regions[0].size = size;
525 type->regions[0].flags = flags;
526 memblock_set_region_node(&type->regions[0], nid);
527 type->total_size = size;
528 return 0;
530 repeat:
532 * The following is executed twice. Once with %false @insert and
533 * then with %true. The first counts the number of regions needed
534 * to accommodate the new area. The second actually inserts them.
536 base = obase;
537 nr_new = 0;
539 for_each_memblock_type(idx, type, rgn) {
540 phys_addr_t rbase = rgn->base;
541 phys_addr_t rend = rbase + rgn->size;
543 if (rbase >= end)
544 break;
545 if (rend <= base)
546 continue;
548 * @rgn overlaps. If it separates the lower part of new
549 * area, insert that portion.
551 if (rbase > base) {
552 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
553 WARN_ON(nid != memblock_get_region_node(rgn));
554 #endif
555 WARN_ON(flags != rgn->flags);
556 nr_new++;
557 if (insert)
558 memblock_insert_region(type, idx++, base,
559 rbase - base, nid,
560 flags);
562 /* area below @rend is dealt with, forget about it */
563 base = min(rend, end);
566 /* insert the remaining portion */
567 if (base < end) {
568 nr_new++;
569 if (insert)
570 memblock_insert_region(type, idx, base, end - base,
571 nid, flags);
574 if (!nr_new)
575 return 0;
578 * If this was the first round, resize array and repeat for actual
579 * insertions; otherwise, merge and return.
581 if (!insert) {
582 while (type->cnt + nr_new > type->max)
583 if (memblock_double_array(type, obase, size) < 0)
584 return -ENOMEM;
585 insert = true;
586 goto repeat;
587 } else {
588 memblock_merge_regions(type);
589 return 0;
593 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
594 int nid)
596 return memblock_add_range(&memblock.memory, base, size, nid, 0);
599 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
601 phys_addr_t end = base + size - 1;
603 memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
604 &base, &end, (void *)_RET_IP_);
606 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
610 * memblock_isolate_range - isolate given range into disjoint memblocks
611 * @type: memblock type to isolate range for
612 * @base: base of range to isolate
613 * @size: size of range to isolate
614 * @start_rgn: out parameter for the start of isolated region
615 * @end_rgn: out parameter for the end of isolated region
617 * Walk @type and ensure that regions don't cross the boundaries defined by
618 * [@base,@base+@size). Crossing regions are split at the boundaries,
619 * which may create at most two more regions. The index of the first
620 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
622 * RETURNS:
623 * 0 on success, -errno on failure.
625 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
626 phys_addr_t base, phys_addr_t size,
627 int *start_rgn, int *end_rgn)
629 phys_addr_t end = base + memblock_cap_size(base, &size);
630 int idx;
631 struct memblock_region *rgn;
633 *start_rgn = *end_rgn = 0;
635 if (!size)
636 return 0;
638 /* we'll create at most two more regions */
639 while (type->cnt + 2 > type->max)
640 if (memblock_double_array(type, base, size) < 0)
641 return -ENOMEM;
643 for_each_memblock_type(idx, type, rgn) {
644 phys_addr_t rbase = rgn->base;
645 phys_addr_t rend = rbase + rgn->size;
647 if (rbase >= end)
648 break;
649 if (rend <= base)
650 continue;
652 if (rbase < base) {
654 * @rgn intersects from below. Split and continue
655 * to process the next region - the new top half.
657 rgn->base = base;
658 rgn->size -= base - rbase;
659 type->total_size -= base - rbase;
660 memblock_insert_region(type, idx, rbase, base - rbase,
661 memblock_get_region_node(rgn),
662 rgn->flags);
663 } else if (rend > end) {
665 * @rgn intersects from above. Split and redo the
666 * current region - the new bottom half.
668 rgn->base = end;
669 rgn->size -= end - rbase;
670 type->total_size -= end - rbase;
671 memblock_insert_region(type, idx--, rbase, end - rbase,
672 memblock_get_region_node(rgn),
673 rgn->flags);
674 } else {
675 /* @rgn is fully contained, record it */
676 if (!*end_rgn)
677 *start_rgn = idx;
678 *end_rgn = idx + 1;
682 return 0;
685 static int __init_memblock memblock_remove_range(struct memblock_type *type,
686 phys_addr_t base, phys_addr_t size)
688 int start_rgn, end_rgn;
689 int i, ret;
691 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
692 if (ret)
693 return ret;
695 for (i = end_rgn - 1; i >= start_rgn; i--)
696 memblock_remove_region(type, i);
697 return 0;
700 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
702 phys_addr_t end = base + size - 1;
704 memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
705 &base, &end, (void *)_RET_IP_);
707 return memblock_remove_range(&memblock.memory, base, size);
711 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
713 phys_addr_t end = base + size - 1;
715 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
716 &base, &end, (void *)_RET_IP_);
718 kmemleak_free_part_phys(base, size);
719 return memblock_remove_range(&memblock.reserved, base, size);
722 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
724 phys_addr_t end = base + size - 1;
726 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
727 &base, &end, (void *)_RET_IP_);
729 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
734 * This function isolates region [@base, @base + @size), and sets/clears flag
736 * Return 0 on success, -errno on failure.
738 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
739 phys_addr_t size, int set, int flag)
741 struct memblock_type *type = &memblock.memory;
742 int i, ret, start_rgn, end_rgn;
744 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
745 if (ret)
746 return ret;
748 for (i = start_rgn; i < end_rgn; i++)
749 if (set)
750 memblock_set_region_flags(&type->regions[i], flag);
751 else
752 memblock_clear_region_flags(&type->regions[i], flag);
754 memblock_merge_regions(type);
755 return 0;
759 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
760 * @base: the base phys addr of the region
761 * @size: the size of the region
763 * Return 0 on success, -errno on failure.
765 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
767 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
771 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
772 * @base: the base phys addr of the region
773 * @size: the size of the region
775 * Return 0 on success, -errno on failure.
777 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
779 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
783 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
784 * @base: the base phys addr of the region
785 * @size: the size of the region
787 * Return 0 on success, -errno on failure.
789 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
791 system_has_some_mirror = true;
793 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
797 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
798 * @base: the base phys addr of the region
799 * @size: the size of the region
801 * Return 0 on success, -errno on failure.
803 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
805 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
809 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
810 * @base: the base phys addr of the region
811 * @size: the size of the region
813 * Return 0 on success, -errno on failure.
815 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
817 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
821 * __next_reserved_mem_region - next function for for_each_reserved_region()
822 * @idx: pointer to u64 loop variable
823 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
824 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
826 * Iterate over all reserved memory regions.
828 void __init_memblock __next_reserved_mem_region(u64 *idx,
829 phys_addr_t *out_start,
830 phys_addr_t *out_end)
832 struct memblock_type *type = &memblock.reserved;
834 if (*idx < type->cnt) {
835 struct memblock_region *r = &type->regions[*idx];
836 phys_addr_t base = r->base;
837 phys_addr_t size = r->size;
839 if (out_start)
840 *out_start = base;
841 if (out_end)
842 *out_end = base + size - 1;
844 *idx += 1;
845 return;
848 /* signal end of iteration */
849 *idx = ULLONG_MAX;
853 * __next__mem_range - next function for for_each_free_mem_range() etc.
854 * @idx: pointer to u64 loop variable
855 * @nid: node selector, %NUMA_NO_NODE for all nodes
856 * @flags: pick from blocks based on memory attributes
857 * @type_a: pointer to memblock_type from where the range is taken
858 * @type_b: pointer to memblock_type which excludes memory from being taken
859 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
860 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
861 * @out_nid: ptr to int for nid of the range, can be %NULL
863 * Find the first area from *@idx which matches @nid, fill the out
864 * parameters, and update *@idx for the next iteration. The lower 32bit of
865 * *@idx contains index into type_a and the upper 32bit indexes the
866 * areas before each region in type_b. For example, if type_b regions
867 * look like the following,
869 * 0:[0-16), 1:[32-48), 2:[128-130)
871 * The upper 32bit indexes the following regions.
873 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
875 * As both region arrays are sorted, the function advances the two indices
876 * in lockstep and returns each intersection.
878 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
879 struct memblock_type *type_a,
880 struct memblock_type *type_b,
881 phys_addr_t *out_start,
882 phys_addr_t *out_end, int *out_nid)
884 int idx_a = *idx & 0xffffffff;
885 int idx_b = *idx >> 32;
887 if (WARN_ONCE(nid == MAX_NUMNODES,
888 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
889 nid = NUMA_NO_NODE;
891 for (; idx_a < type_a->cnt; idx_a++) {
892 struct memblock_region *m = &type_a->regions[idx_a];
894 phys_addr_t m_start = m->base;
895 phys_addr_t m_end = m->base + m->size;
896 int m_nid = memblock_get_region_node(m);
898 /* only memory regions are associated with nodes, check it */
899 if (nid != NUMA_NO_NODE && nid != m_nid)
900 continue;
902 /* skip hotpluggable memory regions if needed */
903 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
904 continue;
906 /* if we want mirror memory skip non-mirror memory regions */
907 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
908 continue;
910 /* skip nomap memory unless we were asked for it explicitly */
911 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
912 continue;
914 if (!type_b) {
915 if (out_start)
916 *out_start = m_start;
917 if (out_end)
918 *out_end = m_end;
919 if (out_nid)
920 *out_nid = m_nid;
921 idx_a++;
922 *idx = (u32)idx_a | (u64)idx_b << 32;
923 return;
926 /* scan areas before each reservation */
927 for (; idx_b < type_b->cnt + 1; idx_b++) {
928 struct memblock_region *r;
929 phys_addr_t r_start;
930 phys_addr_t r_end;
932 r = &type_b->regions[idx_b];
933 r_start = idx_b ? r[-1].base + r[-1].size : 0;
934 r_end = idx_b < type_b->cnt ?
935 r->base : PHYS_ADDR_MAX;
938 * if idx_b advanced past idx_a,
939 * break out to advance idx_a
941 if (r_start >= m_end)
942 break;
943 /* if the two regions intersect, we're done */
944 if (m_start < r_end) {
945 if (out_start)
946 *out_start =
947 max(m_start, r_start);
948 if (out_end)
949 *out_end = min(m_end, r_end);
950 if (out_nid)
951 *out_nid = m_nid;
953 * The region which ends first is
954 * advanced for the next iteration.
956 if (m_end <= r_end)
957 idx_a++;
958 else
959 idx_b++;
960 *idx = (u32)idx_a | (u64)idx_b << 32;
961 return;
966 /* signal end of iteration */
967 *idx = ULLONG_MAX;
971 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
973 * Finds the next range from type_a which is not marked as unsuitable
974 * in type_b.
976 * @idx: pointer to u64 loop variable
977 * @nid: node selector, %NUMA_NO_NODE for all nodes
978 * @flags: pick from blocks based on memory attributes
979 * @type_a: pointer to memblock_type from where the range is taken
980 * @type_b: pointer to memblock_type which excludes memory from being taken
981 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
982 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
983 * @out_nid: ptr to int for nid of the range, can be %NULL
985 * Reverse of __next_mem_range().
987 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
988 struct memblock_type *type_a,
989 struct memblock_type *type_b,
990 phys_addr_t *out_start,
991 phys_addr_t *out_end, int *out_nid)
993 int idx_a = *idx & 0xffffffff;
994 int idx_b = *idx >> 32;
996 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
997 nid = NUMA_NO_NODE;
999 if (*idx == (u64)ULLONG_MAX) {
1000 idx_a = type_a->cnt - 1;
1001 if (type_b != NULL)
1002 idx_b = type_b->cnt;
1003 else
1004 idx_b = 0;
1007 for (; idx_a >= 0; idx_a--) {
1008 struct memblock_region *m = &type_a->regions[idx_a];
1010 phys_addr_t m_start = m->base;
1011 phys_addr_t m_end = m->base + m->size;
1012 int m_nid = memblock_get_region_node(m);
1014 /* only memory regions are associated with nodes, check it */
1015 if (nid != NUMA_NO_NODE && nid != m_nid)
1016 continue;
1018 /* skip hotpluggable memory regions if needed */
1019 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1020 continue;
1022 /* if we want mirror memory skip non-mirror memory regions */
1023 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1024 continue;
1026 /* skip nomap memory unless we were asked for it explicitly */
1027 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1028 continue;
1030 if (!type_b) {
1031 if (out_start)
1032 *out_start = m_start;
1033 if (out_end)
1034 *out_end = m_end;
1035 if (out_nid)
1036 *out_nid = m_nid;
1037 idx_a--;
1038 *idx = (u32)idx_a | (u64)idx_b << 32;
1039 return;
1042 /* scan areas before each reservation */
1043 for (; idx_b >= 0; idx_b--) {
1044 struct memblock_region *r;
1045 phys_addr_t r_start;
1046 phys_addr_t r_end;
1048 r = &type_b->regions[idx_b];
1049 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1050 r_end = idx_b < type_b->cnt ?
1051 r->base : PHYS_ADDR_MAX;
1053 * if idx_b advanced past idx_a,
1054 * break out to advance idx_a
1057 if (r_end <= m_start)
1058 break;
1059 /* if the two regions intersect, we're done */
1060 if (m_end > r_start) {
1061 if (out_start)
1062 *out_start = max(m_start, r_start);
1063 if (out_end)
1064 *out_end = min(m_end, r_end);
1065 if (out_nid)
1066 *out_nid = m_nid;
1067 if (m_start >= r_start)
1068 idx_a--;
1069 else
1070 idx_b--;
1071 *idx = (u32)idx_a | (u64)idx_b << 32;
1072 return;
1076 /* signal end of iteration */
1077 *idx = ULLONG_MAX;
1080 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1082 * Common iterator interface used to define for_each_mem_range().
1084 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1085 unsigned long *out_start_pfn,
1086 unsigned long *out_end_pfn, int *out_nid)
1088 struct memblock_type *type = &memblock.memory;
1089 struct memblock_region *r;
1091 while (++*idx < type->cnt) {
1092 r = &type->regions[*idx];
1094 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1095 continue;
1096 if (nid == MAX_NUMNODES || nid == r->nid)
1097 break;
1099 if (*idx >= type->cnt) {
1100 *idx = -1;
1101 return;
1104 if (out_start_pfn)
1105 *out_start_pfn = PFN_UP(r->base);
1106 if (out_end_pfn)
1107 *out_end_pfn = PFN_DOWN(r->base + r->size);
1108 if (out_nid)
1109 *out_nid = r->nid;
1113 * memblock_set_node - set node ID on memblock regions
1114 * @base: base of area to set node ID for
1115 * @size: size of area to set node ID for
1116 * @type: memblock type to set node ID for
1117 * @nid: node ID to set
1119 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1120 * Regions which cross the area boundaries are split as necessary.
1122 * RETURNS:
1123 * 0 on success, -errno on failure.
1125 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1126 struct memblock_type *type, int nid)
1128 int start_rgn, end_rgn;
1129 int i, ret;
1131 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1132 if (ret)
1133 return ret;
1135 for (i = start_rgn; i < end_rgn; i++)
1136 memblock_set_region_node(&type->regions[i], nid);
1138 memblock_merge_regions(type);
1139 return 0;
1141 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1143 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1144 phys_addr_t align, phys_addr_t start,
1145 phys_addr_t end, int nid, ulong flags)
1147 phys_addr_t found;
1149 if (!align)
1150 align = SMP_CACHE_BYTES;
1152 found = memblock_find_in_range_node(size, align, start, end, nid,
1153 flags);
1154 if (found && !memblock_reserve(found, size)) {
1156 * The min_count is set to 0 so that memblock allocations are
1157 * never reported as leaks.
1159 kmemleak_alloc_phys(found, size, 0, 0);
1160 return found;
1162 return 0;
1165 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1166 phys_addr_t start, phys_addr_t end,
1167 ulong flags)
1169 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1170 flags);
1173 phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1174 phys_addr_t align, phys_addr_t max_addr,
1175 int nid, ulong flags)
1177 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1180 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1182 ulong flags = choose_memblock_flags();
1183 phys_addr_t ret;
1185 again:
1186 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1187 nid, flags);
1189 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1190 flags &= ~MEMBLOCK_MIRROR;
1191 goto again;
1193 return ret;
1196 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1198 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1199 MEMBLOCK_NONE);
1202 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1204 phys_addr_t alloc;
1206 alloc = __memblock_alloc_base(size, align, max_addr);
1208 if (alloc == 0)
1209 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1210 &size, &max_addr);
1212 return alloc;
1215 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1217 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1220 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1222 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1224 if (res)
1225 return res;
1226 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1229 #if defined(CONFIG_NO_BOOTMEM)
1231 * memblock_virt_alloc_internal - allocate boot memory block
1232 * @size: size of memory block to be allocated in bytes
1233 * @align: alignment of the region and block's size
1234 * @min_addr: the lower bound of the memory region to allocate (phys address)
1235 * @max_addr: the upper bound of the memory region to allocate (phys address)
1236 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1238 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1239 * will fall back to memory below @min_addr. Also, allocation may fall back
1240 * to any node in the system if the specified node can not
1241 * hold the requested memory.
1243 * The allocation is performed from memory region limited by
1244 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1246 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1248 * The phys address of allocated boot memory block is converted to virtual and
1249 * allocated memory is reset to 0.
1251 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1252 * allocated boot memory block, so that it is never reported as leaks.
1254 * RETURNS:
1255 * Virtual address of allocated memory block on success, NULL on failure.
1257 static void * __init memblock_virt_alloc_internal(
1258 phys_addr_t size, phys_addr_t align,
1259 phys_addr_t min_addr, phys_addr_t max_addr,
1260 int nid)
1262 phys_addr_t alloc;
1263 void *ptr;
1264 ulong flags = choose_memblock_flags();
1266 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1267 nid = NUMA_NO_NODE;
1270 * Detect any accidental use of these APIs after slab is ready, as at
1271 * this moment memblock may be deinitialized already and its
1272 * internal data may be destroyed (after execution of free_all_bootmem)
1274 if (WARN_ON_ONCE(slab_is_available()))
1275 return kzalloc_node(size, GFP_NOWAIT, nid);
1277 if (!align)
1278 align = SMP_CACHE_BYTES;
1280 if (max_addr > memblock.current_limit)
1281 max_addr = memblock.current_limit;
1282 again:
1283 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1284 nid, flags);
1285 if (alloc && !memblock_reserve(alloc, size))
1286 goto done;
1288 if (nid != NUMA_NO_NODE) {
1289 alloc = memblock_find_in_range_node(size, align, min_addr,
1290 max_addr, NUMA_NO_NODE,
1291 flags);
1292 if (alloc && !memblock_reserve(alloc, size))
1293 goto done;
1296 if (min_addr) {
1297 min_addr = 0;
1298 goto again;
1301 if (flags & MEMBLOCK_MIRROR) {
1302 flags &= ~MEMBLOCK_MIRROR;
1303 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1304 &size);
1305 goto again;
1308 return NULL;
1309 done:
1310 ptr = phys_to_virt(alloc);
1313 * The min_count is set to 0 so that bootmem allocated blocks
1314 * are never reported as leaks. This is because many of these blocks
1315 * are only referred via the physical address which is not
1316 * looked up by kmemleak.
1318 kmemleak_alloc(ptr, size, 0, 0);
1320 return ptr;
1324 * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
1325 * memory and without panicking
1326 * @size: size of memory block to be allocated in bytes
1327 * @align: alignment of the region and block's size
1328 * @min_addr: the lower bound of the memory region from where the allocation
1329 * is preferred (phys address)
1330 * @max_addr: the upper bound of the memory region from where the allocation
1331 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1332 * allocate only from memory limited by memblock.current_limit value
1333 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1335 * Public function, provides additional debug information (including caller
1336 * info), if enabled. Does not zero allocated memory, does not panic if request
1337 * cannot be satisfied.
1339 * RETURNS:
1340 * Virtual address of allocated memory block on success, NULL on failure.
1342 void * __init memblock_virt_alloc_try_nid_raw(
1343 phys_addr_t size, phys_addr_t align,
1344 phys_addr_t min_addr, phys_addr_t max_addr,
1345 int nid)
1347 void *ptr;
1349 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1350 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1351 (u64)max_addr, (void *)_RET_IP_);
1353 ptr = memblock_virt_alloc_internal(size, align,
1354 min_addr, max_addr, nid);
1355 #ifdef CONFIG_DEBUG_VM
1356 if (ptr && size > 0)
1357 memset(ptr, PAGE_POISON_PATTERN, size);
1358 #endif
1359 return ptr;
1363 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1364 * @size: size of memory block to be allocated in bytes
1365 * @align: alignment of the region and block's size
1366 * @min_addr: the lower bound of the memory region from where the allocation
1367 * is preferred (phys address)
1368 * @max_addr: the upper bound of the memory region from where the allocation
1369 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1370 * allocate only from memory limited by memblock.current_limit value
1371 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1373 * Public function, provides additional debug information (including caller
1374 * info), if enabled. This function zeroes the allocated memory.
1376 * RETURNS:
1377 * Virtual address of allocated memory block on success, NULL on failure.
1379 void * __init memblock_virt_alloc_try_nid_nopanic(
1380 phys_addr_t size, phys_addr_t align,
1381 phys_addr_t min_addr, phys_addr_t max_addr,
1382 int nid)
1384 void *ptr;
1386 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1387 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1388 (u64)max_addr, (void *)_RET_IP_);
1390 ptr = memblock_virt_alloc_internal(size, align,
1391 min_addr, max_addr, nid);
1392 if (ptr)
1393 memset(ptr, 0, size);
1394 return ptr;
1398 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1399 * @size: size of memory block to be allocated in bytes
1400 * @align: alignment of the region and block's size
1401 * @min_addr: the lower bound of the memory region from where the allocation
1402 * is preferred (phys address)
1403 * @max_addr: the upper bound of the memory region from where the allocation
1404 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1405 * allocate only from memory limited by memblock.current_limit value
1406 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1408 * Public panicking version of memblock_virt_alloc_try_nid_nopanic()
1409 * which provides debug information (including caller info), if enabled,
1410 * and panics if the request can not be satisfied.
1412 * RETURNS:
1413 * Virtual address of allocated memory block on success, NULL on failure.
1415 void * __init memblock_virt_alloc_try_nid(
1416 phys_addr_t size, phys_addr_t align,
1417 phys_addr_t min_addr, phys_addr_t max_addr,
1418 int nid)
1420 void *ptr;
1422 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1423 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1424 (u64)max_addr, (void *)_RET_IP_);
1425 ptr = memblock_virt_alloc_internal(size, align,
1426 min_addr, max_addr, nid);
1427 if (ptr) {
1428 memset(ptr, 0, size);
1429 return ptr;
1432 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1433 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1434 (u64)max_addr);
1435 return NULL;
1437 #endif
1440 * __memblock_free_early - free boot memory block
1441 * @base: phys starting address of the boot memory block
1442 * @size: size of the boot memory block in bytes
1444 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1445 * The freeing memory will not be released to the buddy allocator.
1447 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1449 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1450 __func__, (u64)base, (u64)base + size - 1,
1451 (void *)_RET_IP_);
1452 kmemleak_free_part_phys(base, size);
1453 memblock_remove_range(&memblock.reserved, base, size);
1457 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1458 * @addr: phys starting address of the boot memory block
1459 * @size: size of the boot memory block in bytes
1461 * This is only useful when the bootmem allocator has already been torn
1462 * down, but we are still initializing the system. Pages are released directly
1463 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1465 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1467 u64 cursor, end;
1469 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1470 __func__, (u64)base, (u64)base + size - 1,
1471 (void *)_RET_IP_);
1472 kmemleak_free_part_phys(base, size);
1473 cursor = PFN_UP(base);
1474 end = PFN_DOWN(base + size);
1476 for (; cursor < end; cursor++) {
1477 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1478 totalram_pages++;
1483 * Remaining API functions
1486 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1488 return memblock.memory.total_size;
1491 phys_addr_t __init_memblock memblock_reserved_size(void)
1493 return memblock.reserved.total_size;
1496 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1498 unsigned long pages = 0;
1499 struct memblock_region *r;
1500 unsigned long start_pfn, end_pfn;
1502 for_each_memblock(memory, r) {
1503 start_pfn = memblock_region_memory_base_pfn(r);
1504 end_pfn = memblock_region_memory_end_pfn(r);
1505 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1506 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1507 pages += end_pfn - start_pfn;
1510 return PFN_PHYS(pages);
1513 /* lowest address */
1514 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1516 return memblock.memory.regions[0].base;
1519 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1521 int idx = memblock.memory.cnt - 1;
1523 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1526 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1528 phys_addr_t max_addr = PHYS_ADDR_MAX;
1529 struct memblock_region *r;
1532 * translate the memory @limit size into the max address within one of
1533 * the memory memblock regions, if the @limit exceeds the total size
1534 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1536 for_each_memblock(memory, r) {
1537 if (limit <= r->size) {
1538 max_addr = r->base + limit;
1539 break;
1541 limit -= r->size;
1544 return max_addr;
1547 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1549 phys_addr_t max_addr = PHYS_ADDR_MAX;
1551 if (!limit)
1552 return;
1554 max_addr = __find_max_addr(limit);
1556 /* @limit exceeds the total size of the memory, do nothing */
1557 if (max_addr == PHYS_ADDR_MAX)
1558 return;
1560 /* truncate both memory and reserved regions */
1561 memblock_remove_range(&memblock.memory, max_addr,
1562 PHYS_ADDR_MAX);
1563 memblock_remove_range(&memblock.reserved, max_addr,
1564 PHYS_ADDR_MAX);
1567 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1569 int start_rgn, end_rgn;
1570 int i, ret;
1572 if (!size)
1573 return;
1575 ret = memblock_isolate_range(&memblock.memory, base, size,
1576 &start_rgn, &end_rgn);
1577 if (ret)
1578 return;
1580 /* remove all the MAP regions */
1581 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1582 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1583 memblock_remove_region(&memblock.memory, i);
1585 for (i = start_rgn - 1; i >= 0; i--)
1586 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1587 memblock_remove_region(&memblock.memory, i);
1589 /* truncate the reserved regions */
1590 memblock_remove_range(&memblock.reserved, 0, base);
1591 memblock_remove_range(&memblock.reserved,
1592 base + size, PHYS_ADDR_MAX);
1595 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1597 phys_addr_t max_addr;
1599 if (!limit)
1600 return;
1602 max_addr = __find_max_addr(limit);
1604 /* @limit exceeds the total size of the memory, do nothing */
1605 if (max_addr == PHYS_ADDR_MAX)
1606 return;
1608 memblock_cap_memory_range(0, max_addr);
1611 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1613 unsigned int left = 0, right = type->cnt;
1615 do {
1616 unsigned int mid = (right + left) / 2;
1618 if (addr < type->regions[mid].base)
1619 right = mid;
1620 else if (addr >= (type->regions[mid].base +
1621 type->regions[mid].size))
1622 left = mid + 1;
1623 else
1624 return mid;
1625 } while (left < right);
1626 return -1;
1629 bool __init memblock_is_reserved(phys_addr_t addr)
1631 return memblock_search(&memblock.reserved, addr) != -1;
1634 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1636 return memblock_search(&memblock.memory, addr) != -1;
1639 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1641 int i = memblock_search(&memblock.memory, addr);
1643 if (i == -1)
1644 return false;
1645 return !memblock_is_nomap(&memblock.memory.regions[i]);
1648 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1649 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1650 unsigned long *start_pfn, unsigned long *end_pfn)
1652 struct memblock_type *type = &memblock.memory;
1653 int mid = memblock_search(type, PFN_PHYS(pfn));
1655 if (mid == -1)
1656 return -1;
1658 *start_pfn = PFN_DOWN(type->regions[mid].base);
1659 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1661 return type->regions[mid].nid;
1663 #endif
1666 * memblock_is_region_memory - check if a region is a subset of memory
1667 * @base: base of region to check
1668 * @size: size of region to check
1670 * Check if the region [@base, @base+@size) is a subset of a memory block.
1672 * RETURNS:
1673 * 0 if false, non-zero if true
1675 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1677 int idx = memblock_search(&memblock.memory, base);
1678 phys_addr_t end = base + memblock_cap_size(base, &size);
1680 if (idx == -1)
1681 return false;
1682 return (memblock.memory.regions[idx].base +
1683 memblock.memory.regions[idx].size) >= end;
1687 * memblock_is_region_reserved - check if a region intersects reserved memory
1688 * @base: base of region to check
1689 * @size: size of region to check
1691 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1693 * RETURNS:
1694 * True if they intersect, false if not.
1696 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1698 memblock_cap_size(base, &size);
1699 return memblock_overlaps_region(&memblock.reserved, base, size);
1702 void __init_memblock memblock_trim_memory(phys_addr_t align)
1704 phys_addr_t start, end, orig_start, orig_end;
1705 struct memblock_region *r;
1707 for_each_memblock(memory, r) {
1708 orig_start = r->base;
1709 orig_end = r->base + r->size;
1710 start = round_up(orig_start, align);
1711 end = round_down(orig_end, align);
1713 if (start == orig_start && end == orig_end)
1714 continue;
1716 if (start < end) {
1717 r->base = start;
1718 r->size = end - start;
1719 } else {
1720 memblock_remove_region(&memblock.memory,
1721 r - memblock.memory.regions);
1722 r--;
1727 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1729 memblock.current_limit = limit;
1732 phys_addr_t __init_memblock memblock_get_current_limit(void)
1734 return memblock.current_limit;
1737 static void __init_memblock memblock_dump(struct memblock_type *type)
1739 phys_addr_t base, end, size;
1740 unsigned long flags;
1741 int idx;
1742 struct memblock_region *rgn;
1744 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1746 for_each_memblock_type(idx, type, rgn) {
1747 char nid_buf[32] = "";
1749 base = rgn->base;
1750 size = rgn->size;
1751 end = base + size - 1;
1752 flags = rgn->flags;
1753 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1754 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1755 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1756 memblock_get_region_node(rgn));
1757 #endif
1758 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1759 type->name, idx, &base, &end, &size, nid_buf, flags);
1763 void __init_memblock __memblock_dump_all(void)
1765 pr_info("MEMBLOCK configuration:\n");
1766 pr_info(" memory size = %pa reserved size = %pa\n",
1767 &memblock.memory.total_size,
1768 &memblock.reserved.total_size);
1770 memblock_dump(&memblock.memory);
1771 memblock_dump(&memblock.reserved);
1772 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1773 memblock_dump(&memblock.physmem);
1774 #endif
1777 void __init memblock_allow_resize(void)
1779 memblock_can_resize = 1;
1782 static int __init early_memblock(char *p)
1784 if (p && strstr(p, "debug"))
1785 memblock_debug = 1;
1786 return 0;
1788 early_param("memblock", early_memblock);
1790 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1792 static int memblock_debug_show(struct seq_file *m, void *private)
1794 struct memblock_type *type = m->private;
1795 struct memblock_region *reg;
1796 int i;
1797 phys_addr_t end;
1799 for (i = 0; i < type->cnt; i++) {
1800 reg = &type->regions[i];
1801 end = reg->base + reg->size - 1;
1803 seq_printf(m, "%4d: ", i);
1804 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
1806 return 0;
1808 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
1810 static int __init memblock_init_debugfs(void)
1812 struct dentry *root = debugfs_create_dir("memblock", NULL);
1813 if (!root)
1814 return -ENXIO;
1815 debugfs_create_file("memory", 0444, root,
1816 &memblock.memory, &memblock_debug_fops);
1817 debugfs_create_file("reserved", 0444, root,
1818 &memblock.reserved, &memblock_debug_fops);
1819 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1820 debugfs_create_file("physmem", 0444, root,
1821 &memblock.physmem, &memblock_debug_fops);
1822 #endif
1824 return 0;
1826 __initcall(memblock_init_debugfs);
1828 #endif /* CONFIG_DEBUG_FS */