2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/kmemleak.h>
21 #include <linux/seq_file.h>
22 #include <linux/memblock.h>
23 #include <linux/bootmem.h>
25 #include <asm/sections.h>
30 static struct memblock_region memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
31 static struct memblock_region memblock_reserved_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
32 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
33 static struct memblock_region memblock_physmem_init_regions
[INIT_PHYSMEM_REGIONS
] __initdata_memblock
;
36 struct memblock memblock __initdata_memblock
= {
37 .memory
.regions
= memblock_memory_init_regions
,
38 .memory
.cnt
= 1, /* empty dummy entry */
39 .memory
.max
= INIT_MEMBLOCK_REGIONS
,
40 .memory
.name
= "memory",
42 .reserved
.regions
= memblock_reserved_init_regions
,
43 .reserved
.cnt
= 1, /* empty dummy entry */
44 .reserved
.max
= INIT_MEMBLOCK_REGIONS
,
45 .reserved
.name
= "reserved",
47 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
48 .physmem
.regions
= memblock_physmem_init_regions
,
49 .physmem
.cnt
= 1, /* empty dummy entry */
50 .physmem
.max
= INIT_PHYSMEM_REGIONS
,
51 .physmem
.name
= "physmem",
55 .current_limit
= MEMBLOCK_ALLOC_ANYWHERE
,
58 int memblock_debug __initdata_memblock
;
59 static bool system_has_some_mirror __initdata_memblock
= false;
60 static int memblock_can_resize __initdata_memblock
;
61 static int memblock_memory_in_slab __initdata_memblock
= 0;
62 static int memblock_reserved_in_slab __initdata_memblock
= 0;
64 ulong __init_memblock
choose_memblock_flags(void)
66 return system_has_some_mirror
? MEMBLOCK_MIRROR
: MEMBLOCK_NONE
;
69 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
70 static inline phys_addr_t
memblock_cap_size(phys_addr_t base
, phys_addr_t
*size
)
72 return *size
= min(*size
, PHYS_ADDR_MAX
- base
);
76 * Address comparison utilities
78 static unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1
, phys_addr_t size1
,
79 phys_addr_t base2
, phys_addr_t size2
)
81 return ((base1
< (base2
+ size2
)) && (base2
< (base1
+ size1
)));
84 bool __init_memblock
memblock_overlaps_region(struct memblock_type
*type
,
85 phys_addr_t base
, phys_addr_t size
)
89 for (i
= 0; i
< type
->cnt
; i
++)
90 if (memblock_addrs_overlap(base
, size
, type
->regions
[i
].base
,
91 type
->regions
[i
].size
))
97 * __memblock_find_range_bottom_up - find free area utility in bottom-up
98 * @start: start of candidate range
99 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
100 * @size: size of free area to find
101 * @align: alignment of free area to find
102 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
103 * @flags: pick from blocks based on memory attributes
105 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
108 * Found address on success, 0 on failure.
110 static phys_addr_t __init_memblock
111 __memblock_find_range_bottom_up(phys_addr_t start
, phys_addr_t end
,
112 phys_addr_t size
, phys_addr_t align
, int nid
,
115 phys_addr_t this_start
, this_end
, cand
;
118 for_each_free_mem_range(i
, nid
, flags
, &this_start
, &this_end
, NULL
) {
119 this_start
= clamp(this_start
, start
, end
);
120 this_end
= clamp(this_end
, start
, end
);
122 cand
= round_up(this_start
, align
);
123 if (cand
< this_end
&& this_end
- cand
>= size
)
131 * __memblock_find_range_top_down - find free area utility, in top-down
132 * @start: start of candidate range
133 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
134 * @size: size of free area to find
135 * @align: alignment of free area to find
136 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
137 * @flags: pick from blocks based on memory attributes
139 * Utility called from memblock_find_in_range_node(), find free area top-down.
142 * Found address on success, 0 on failure.
144 static phys_addr_t __init_memblock
145 __memblock_find_range_top_down(phys_addr_t start
, phys_addr_t end
,
146 phys_addr_t size
, phys_addr_t align
, int nid
,
149 phys_addr_t this_start
, this_end
, cand
;
152 for_each_free_mem_range_reverse(i
, nid
, flags
, &this_start
, &this_end
,
154 this_start
= clamp(this_start
, start
, end
);
155 this_end
= clamp(this_end
, start
, end
);
160 cand
= round_down(this_end
- size
, align
);
161 if (cand
>= this_start
)
169 * memblock_find_in_range_node - find free area in given range and node
170 * @size: size of free area to find
171 * @align: alignment of free area to find
172 * @start: start of candidate range
173 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
174 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
175 * @flags: pick from blocks based on memory attributes
177 * Find @size free area aligned to @align in the specified range and node.
179 * When allocation direction is bottom-up, the @start should be greater
180 * than the end of the kernel image. Otherwise, it will be trimmed. The
181 * reason is that we want the bottom-up allocation just near the kernel
182 * image so it is highly likely that the allocated memory and the kernel
183 * will reside in the same node.
185 * If bottom-up allocation failed, will try to allocate memory top-down.
188 * Found address on success, 0 on failure.
190 phys_addr_t __init_memblock
memblock_find_in_range_node(phys_addr_t size
,
191 phys_addr_t align
, phys_addr_t start
,
192 phys_addr_t end
, int nid
, ulong flags
)
194 phys_addr_t kernel_end
, ret
;
197 if (end
== MEMBLOCK_ALLOC_ACCESSIBLE
)
198 end
= memblock
.current_limit
;
200 /* avoid allocating the first page */
201 start
= max_t(phys_addr_t
, start
, PAGE_SIZE
);
202 end
= max(start
, end
);
203 kernel_end
= __pa_symbol(_end
);
206 * try bottom-up allocation only when bottom-up mode
207 * is set and @end is above the kernel image.
209 if (memblock_bottom_up() && end
> kernel_end
) {
210 phys_addr_t bottom_up_start
;
212 /* make sure we will allocate above the kernel */
213 bottom_up_start
= max(start
, kernel_end
);
215 /* ok, try bottom-up allocation first */
216 ret
= __memblock_find_range_bottom_up(bottom_up_start
, end
,
217 size
, align
, nid
, flags
);
222 * we always limit bottom-up allocation above the kernel,
223 * but top-down allocation doesn't have the limit, so
224 * retrying top-down allocation may succeed when bottom-up
227 * bottom-up allocation is expected to be fail very rarely,
228 * so we use WARN_ONCE() here to see the stack trace if
231 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE
),
232 "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
235 return __memblock_find_range_top_down(start
, end
, size
, align
, nid
,
240 * memblock_find_in_range - find free area in given range
241 * @start: start of candidate range
242 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
243 * @size: size of free area to find
244 * @align: alignment of free area to find
246 * Find @size free area aligned to @align in the specified range.
249 * Found address on success, 0 on failure.
251 phys_addr_t __init_memblock
memblock_find_in_range(phys_addr_t start
,
252 phys_addr_t end
, phys_addr_t size
,
256 ulong flags
= choose_memblock_flags();
259 ret
= memblock_find_in_range_node(size
, align
, start
, end
,
260 NUMA_NO_NODE
, flags
);
262 if (!ret
&& (flags
& MEMBLOCK_MIRROR
)) {
263 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
265 flags
&= ~MEMBLOCK_MIRROR
;
272 static void __init_memblock
memblock_remove_region(struct memblock_type
*type
, unsigned long r
)
274 type
->total_size
-= type
->regions
[r
].size
;
275 memmove(&type
->regions
[r
], &type
->regions
[r
+ 1],
276 (type
->cnt
- (r
+ 1)) * sizeof(type
->regions
[r
]));
279 /* Special case for empty arrays */
280 if (type
->cnt
== 0) {
281 WARN_ON(type
->total_size
!= 0);
283 type
->regions
[0].base
= 0;
284 type
->regions
[0].size
= 0;
285 type
->regions
[0].flags
= 0;
286 memblock_set_region_node(&type
->regions
[0], MAX_NUMNODES
);
290 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
292 * Discard memory and reserved arrays if they were allocated
294 void __init
memblock_discard(void)
296 phys_addr_t addr
, size
;
298 if (memblock
.reserved
.regions
!= memblock_reserved_init_regions
) {
299 addr
= __pa(memblock
.reserved
.regions
);
300 size
= PAGE_ALIGN(sizeof(struct memblock_region
) *
301 memblock
.reserved
.max
);
302 __memblock_free_late(addr
, size
);
305 if (memblock
.memory
.regions
!= memblock_memory_init_regions
) {
306 addr
= __pa(memblock
.memory
.regions
);
307 size
= PAGE_ALIGN(sizeof(struct memblock_region
) *
308 memblock
.memory
.max
);
309 __memblock_free_late(addr
, size
);
315 * memblock_double_array - double the size of the memblock regions array
316 * @type: memblock type of the regions array being doubled
317 * @new_area_start: starting address of memory range to avoid overlap with
318 * @new_area_size: size of memory range to avoid overlap with
320 * Double the size of the @type regions array. If memblock is being used to
321 * allocate memory for a new reserved regions array and there is a previously
322 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
323 * waiting to be reserved, ensure the memory used by the new array does
327 * 0 on success, -1 on failure.
329 static int __init_memblock
memblock_double_array(struct memblock_type
*type
,
330 phys_addr_t new_area_start
,
331 phys_addr_t new_area_size
)
333 struct memblock_region
*new_array
, *old_array
;
334 phys_addr_t old_alloc_size
, new_alloc_size
;
335 phys_addr_t old_size
, new_size
, addr
;
336 int use_slab
= slab_is_available();
339 /* We don't allow resizing until we know about the reserved regions
340 * of memory that aren't suitable for allocation
342 if (!memblock_can_resize
)
345 /* Calculate new doubled size */
346 old_size
= type
->max
* sizeof(struct memblock_region
);
347 new_size
= old_size
<< 1;
349 * We need to allocated new one align to PAGE_SIZE,
350 * so we can free them completely later.
352 old_alloc_size
= PAGE_ALIGN(old_size
);
353 new_alloc_size
= PAGE_ALIGN(new_size
);
355 /* Retrieve the slab flag */
356 if (type
== &memblock
.memory
)
357 in_slab
= &memblock_memory_in_slab
;
359 in_slab
= &memblock_reserved_in_slab
;
361 /* Try to find some space for it.
363 * WARNING: We assume that either slab_is_available() and we use it or
364 * we use MEMBLOCK for allocations. That means that this is unsafe to
365 * use when bootmem is currently active (unless bootmem itself is
366 * implemented on top of MEMBLOCK which isn't the case yet)
368 * This should however not be an issue for now, as we currently only
369 * call into MEMBLOCK while it's still active, or much later when slab
370 * is active for memory hotplug operations
373 new_array
= kmalloc(new_size
, GFP_KERNEL
);
374 addr
= new_array
? __pa(new_array
) : 0;
376 /* only exclude range when trying to double reserved.regions */
377 if (type
!= &memblock
.reserved
)
378 new_area_start
= new_area_size
= 0;
380 addr
= memblock_find_in_range(new_area_start
+ new_area_size
,
381 memblock
.current_limit
,
382 new_alloc_size
, PAGE_SIZE
);
383 if (!addr
&& new_area_size
)
384 addr
= memblock_find_in_range(0,
385 min(new_area_start
, memblock
.current_limit
),
386 new_alloc_size
, PAGE_SIZE
);
388 new_array
= addr
? __va(addr
) : NULL
;
391 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
392 type
->name
, type
->max
, type
->max
* 2);
396 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
397 type
->name
, type
->max
* 2, (u64
)addr
,
398 (u64
)addr
+ new_size
- 1);
401 * Found space, we now need to move the array over before we add the
402 * reserved region since it may be our reserved array itself that is
405 memcpy(new_array
, type
->regions
, old_size
);
406 memset(new_array
+ type
->max
, 0, old_size
);
407 old_array
= type
->regions
;
408 type
->regions
= new_array
;
411 /* Free old array. We needn't free it if the array is the static one */
414 else if (old_array
!= memblock_memory_init_regions
&&
415 old_array
!= memblock_reserved_init_regions
)
416 memblock_free(__pa(old_array
), old_alloc_size
);
419 * Reserve the new array if that comes from the memblock. Otherwise, we
423 BUG_ON(memblock_reserve(addr
, new_alloc_size
));
425 /* Update slab flag */
432 * memblock_merge_regions - merge neighboring compatible regions
433 * @type: memblock type to scan
435 * Scan @type and merge neighboring compatible regions.
437 static void __init_memblock
memblock_merge_regions(struct memblock_type
*type
)
441 /* cnt never goes below 1 */
442 while (i
< type
->cnt
- 1) {
443 struct memblock_region
*this = &type
->regions
[i
];
444 struct memblock_region
*next
= &type
->regions
[i
+ 1];
446 if (this->base
+ this->size
!= next
->base
||
447 memblock_get_region_node(this) !=
448 memblock_get_region_node(next
) ||
449 this->flags
!= next
->flags
) {
450 BUG_ON(this->base
+ this->size
> next
->base
);
455 this->size
+= next
->size
;
456 /* move forward from next + 1, index of which is i + 2 */
457 memmove(next
, next
+ 1, (type
->cnt
- (i
+ 2)) * sizeof(*next
));
463 * memblock_insert_region - insert new memblock region
464 * @type: memblock type to insert into
465 * @idx: index for the insertion point
466 * @base: base address of the new region
467 * @size: size of the new region
468 * @nid: node id of the new region
469 * @flags: flags of the new region
471 * Insert new memblock region [@base,@base+@size) into @type at @idx.
472 * @type must already have extra room to accommodate the new region.
474 static void __init_memblock
memblock_insert_region(struct memblock_type
*type
,
475 int idx
, phys_addr_t base
,
477 int nid
, unsigned long flags
)
479 struct memblock_region
*rgn
= &type
->regions
[idx
];
481 BUG_ON(type
->cnt
>= type
->max
);
482 memmove(rgn
+ 1, rgn
, (type
->cnt
- idx
) * sizeof(*rgn
));
486 memblock_set_region_node(rgn
, nid
);
488 type
->total_size
+= size
;
492 * memblock_add_range - add new memblock region
493 * @type: memblock type to add new region into
494 * @base: base address of the new region
495 * @size: size of the new region
496 * @nid: nid of the new region
497 * @flags: flags of the new region
499 * Add new memblock region [@base,@base+@size) into @type. The new region
500 * is allowed to overlap with existing ones - overlaps don't affect already
501 * existing regions. @type is guaranteed to be minimal (all neighbouring
502 * compatible regions are merged) after the addition.
505 * 0 on success, -errno on failure.
507 int __init_memblock
memblock_add_range(struct memblock_type
*type
,
508 phys_addr_t base
, phys_addr_t size
,
509 int nid
, unsigned long flags
)
512 phys_addr_t obase
= base
;
513 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
515 struct memblock_region
*rgn
;
520 /* special case for empty array */
521 if (type
->regions
[0].size
== 0) {
522 WARN_ON(type
->cnt
!= 1 || type
->total_size
);
523 type
->regions
[0].base
= base
;
524 type
->regions
[0].size
= size
;
525 type
->regions
[0].flags
= flags
;
526 memblock_set_region_node(&type
->regions
[0], nid
);
527 type
->total_size
= size
;
532 * The following is executed twice. Once with %false @insert and
533 * then with %true. The first counts the number of regions needed
534 * to accommodate the new area. The second actually inserts them.
539 for_each_memblock_type(idx
, type
, rgn
) {
540 phys_addr_t rbase
= rgn
->base
;
541 phys_addr_t rend
= rbase
+ rgn
->size
;
548 * @rgn overlaps. If it separates the lower part of new
549 * area, insert that portion.
552 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
553 WARN_ON(nid
!= memblock_get_region_node(rgn
));
555 WARN_ON(flags
!= rgn
->flags
);
558 memblock_insert_region(type
, idx
++, base
,
562 /* area below @rend is dealt with, forget about it */
563 base
= min(rend
, end
);
566 /* insert the remaining portion */
570 memblock_insert_region(type
, idx
, base
, end
- base
,
578 * If this was the first round, resize array and repeat for actual
579 * insertions; otherwise, merge and return.
582 while (type
->cnt
+ nr_new
> type
->max
)
583 if (memblock_double_array(type
, obase
, size
) < 0)
588 memblock_merge_regions(type
);
593 int __init_memblock
memblock_add_node(phys_addr_t base
, phys_addr_t size
,
596 return memblock_add_range(&memblock
.memory
, base
, size
, nid
, 0);
599 int __init_memblock
memblock_add(phys_addr_t base
, phys_addr_t size
)
601 phys_addr_t end
= base
+ size
- 1;
603 memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
604 &base
, &end
, (void *)_RET_IP_
);
606 return memblock_add_range(&memblock
.memory
, base
, size
, MAX_NUMNODES
, 0);
610 * memblock_isolate_range - isolate given range into disjoint memblocks
611 * @type: memblock type to isolate range for
612 * @base: base of range to isolate
613 * @size: size of range to isolate
614 * @start_rgn: out parameter for the start of isolated region
615 * @end_rgn: out parameter for the end of isolated region
617 * Walk @type and ensure that regions don't cross the boundaries defined by
618 * [@base,@base+@size). Crossing regions are split at the boundaries,
619 * which may create at most two more regions. The index of the first
620 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
623 * 0 on success, -errno on failure.
625 static int __init_memblock
memblock_isolate_range(struct memblock_type
*type
,
626 phys_addr_t base
, phys_addr_t size
,
627 int *start_rgn
, int *end_rgn
)
629 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
631 struct memblock_region
*rgn
;
633 *start_rgn
= *end_rgn
= 0;
638 /* we'll create at most two more regions */
639 while (type
->cnt
+ 2 > type
->max
)
640 if (memblock_double_array(type
, base
, size
) < 0)
643 for_each_memblock_type(idx
, type
, rgn
) {
644 phys_addr_t rbase
= rgn
->base
;
645 phys_addr_t rend
= rbase
+ rgn
->size
;
654 * @rgn intersects from below. Split and continue
655 * to process the next region - the new top half.
658 rgn
->size
-= base
- rbase
;
659 type
->total_size
-= base
- rbase
;
660 memblock_insert_region(type
, idx
, rbase
, base
- rbase
,
661 memblock_get_region_node(rgn
),
663 } else if (rend
> end
) {
665 * @rgn intersects from above. Split and redo the
666 * current region - the new bottom half.
669 rgn
->size
-= end
- rbase
;
670 type
->total_size
-= end
- rbase
;
671 memblock_insert_region(type
, idx
--, rbase
, end
- rbase
,
672 memblock_get_region_node(rgn
),
675 /* @rgn is fully contained, record it */
685 static int __init_memblock
memblock_remove_range(struct memblock_type
*type
,
686 phys_addr_t base
, phys_addr_t size
)
688 int start_rgn
, end_rgn
;
691 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
695 for (i
= end_rgn
- 1; i
>= start_rgn
; i
--)
696 memblock_remove_region(type
, i
);
700 int __init_memblock
memblock_remove(phys_addr_t base
, phys_addr_t size
)
702 phys_addr_t end
= base
+ size
- 1;
704 memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
705 &base
, &end
, (void *)_RET_IP_
);
707 return memblock_remove_range(&memblock
.memory
, base
, size
);
711 int __init_memblock
memblock_free(phys_addr_t base
, phys_addr_t size
)
713 phys_addr_t end
= base
+ size
- 1;
715 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
716 &base
, &end
, (void *)_RET_IP_
);
718 kmemleak_free_part_phys(base
, size
);
719 return memblock_remove_range(&memblock
.reserved
, base
, size
);
722 int __init_memblock
memblock_reserve(phys_addr_t base
, phys_addr_t size
)
724 phys_addr_t end
= base
+ size
- 1;
726 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
727 &base
, &end
, (void *)_RET_IP_
);
729 return memblock_add_range(&memblock
.reserved
, base
, size
, MAX_NUMNODES
, 0);
734 * This function isolates region [@base, @base + @size), and sets/clears flag
736 * Return 0 on success, -errno on failure.
738 static int __init_memblock
memblock_setclr_flag(phys_addr_t base
,
739 phys_addr_t size
, int set
, int flag
)
741 struct memblock_type
*type
= &memblock
.memory
;
742 int i
, ret
, start_rgn
, end_rgn
;
744 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
748 for (i
= start_rgn
; i
< end_rgn
; i
++)
750 memblock_set_region_flags(&type
->regions
[i
], flag
);
752 memblock_clear_region_flags(&type
->regions
[i
], flag
);
754 memblock_merge_regions(type
);
759 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
760 * @base: the base phys addr of the region
761 * @size: the size of the region
763 * Return 0 on success, -errno on failure.
765 int __init_memblock
memblock_mark_hotplug(phys_addr_t base
, phys_addr_t size
)
767 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_HOTPLUG
);
771 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
772 * @base: the base phys addr of the region
773 * @size: the size of the region
775 * Return 0 on success, -errno on failure.
777 int __init_memblock
memblock_clear_hotplug(phys_addr_t base
, phys_addr_t size
)
779 return memblock_setclr_flag(base
, size
, 0, MEMBLOCK_HOTPLUG
);
783 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
784 * @base: the base phys addr of the region
785 * @size: the size of the region
787 * Return 0 on success, -errno on failure.
789 int __init_memblock
memblock_mark_mirror(phys_addr_t base
, phys_addr_t size
)
791 system_has_some_mirror
= true;
793 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_MIRROR
);
797 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
798 * @base: the base phys addr of the region
799 * @size: the size of the region
801 * Return 0 on success, -errno on failure.
803 int __init_memblock
memblock_mark_nomap(phys_addr_t base
, phys_addr_t size
)
805 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_NOMAP
);
809 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
810 * @base: the base phys addr of the region
811 * @size: the size of the region
813 * Return 0 on success, -errno on failure.
815 int __init_memblock
memblock_clear_nomap(phys_addr_t base
, phys_addr_t size
)
817 return memblock_setclr_flag(base
, size
, 0, MEMBLOCK_NOMAP
);
821 * __next_reserved_mem_region - next function for for_each_reserved_region()
822 * @idx: pointer to u64 loop variable
823 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
824 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
826 * Iterate over all reserved memory regions.
828 void __init_memblock
__next_reserved_mem_region(u64
*idx
,
829 phys_addr_t
*out_start
,
830 phys_addr_t
*out_end
)
832 struct memblock_type
*type
= &memblock
.reserved
;
834 if (*idx
< type
->cnt
) {
835 struct memblock_region
*r
= &type
->regions
[*idx
];
836 phys_addr_t base
= r
->base
;
837 phys_addr_t size
= r
->size
;
842 *out_end
= base
+ size
- 1;
848 /* signal end of iteration */
853 * __next__mem_range - next function for for_each_free_mem_range() etc.
854 * @idx: pointer to u64 loop variable
855 * @nid: node selector, %NUMA_NO_NODE for all nodes
856 * @flags: pick from blocks based on memory attributes
857 * @type_a: pointer to memblock_type from where the range is taken
858 * @type_b: pointer to memblock_type which excludes memory from being taken
859 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
860 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
861 * @out_nid: ptr to int for nid of the range, can be %NULL
863 * Find the first area from *@idx which matches @nid, fill the out
864 * parameters, and update *@idx for the next iteration. The lower 32bit of
865 * *@idx contains index into type_a and the upper 32bit indexes the
866 * areas before each region in type_b. For example, if type_b regions
867 * look like the following,
869 * 0:[0-16), 1:[32-48), 2:[128-130)
871 * The upper 32bit indexes the following regions.
873 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
875 * As both region arrays are sorted, the function advances the two indices
876 * in lockstep and returns each intersection.
878 void __init_memblock
__next_mem_range(u64
*idx
, int nid
, ulong flags
,
879 struct memblock_type
*type_a
,
880 struct memblock_type
*type_b
,
881 phys_addr_t
*out_start
,
882 phys_addr_t
*out_end
, int *out_nid
)
884 int idx_a
= *idx
& 0xffffffff;
885 int idx_b
= *idx
>> 32;
887 if (WARN_ONCE(nid
== MAX_NUMNODES
,
888 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
891 for (; idx_a
< type_a
->cnt
; idx_a
++) {
892 struct memblock_region
*m
= &type_a
->regions
[idx_a
];
894 phys_addr_t m_start
= m
->base
;
895 phys_addr_t m_end
= m
->base
+ m
->size
;
896 int m_nid
= memblock_get_region_node(m
);
898 /* only memory regions are associated with nodes, check it */
899 if (nid
!= NUMA_NO_NODE
&& nid
!= m_nid
)
902 /* skip hotpluggable memory regions if needed */
903 if (movable_node_is_enabled() && memblock_is_hotpluggable(m
))
906 /* if we want mirror memory skip non-mirror memory regions */
907 if ((flags
& MEMBLOCK_MIRROR
) && !memblock_is_mirror(m
))
910 /* skip nomap memory unless we were asked for it explicitly */
911 if (!(flags
& MEMBLOCK_NOMAP
) && memblock_is_nomap(m
))
916 *out_start
= m_start
;
922 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
926 /* scan areas before each reservation */
927 for (; idx_b
< type_b
->cnt
+ 1; idx_b
++) {
928 struct memblock_region
*r
;
932 r
= &type_b
->regions
[idx_b
];
933 r_start
= idx_b
? r
[-1].base
+ r
[-1].size
: 0;
934 r_end
= idx_b
< type_b
->cnt
?
935 r
->base
: PHYS_ADDR_MAX
;
938 * if idx_b advanced past idx_a,
939 * break out to advance idx_a
941 if (r_start
>= m_end
)
943 /* if the two regions intersect, we're done */
944 if (m_start
< r_end
) {
947 max(m_start
, r_start
);
949 *out_end
= min(m_end
, r_end
);
953 * The region which ends first is
954 * advanced for the next iteration.
960 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
966 /* signal end of iteration */
971 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
973 * Finds the next range from type_a which is not marked as unsuitable
976 * @idx: pointer to u64 loop variable
977 * @nid: node selector, %NUMA_NO_NODE for all nodes
978 * @flags: pick from blocks based on memory attributes
979 * @type_a: pointer to memblock_type from where the range is taken
980 * @type_b: pointer to memblock_type which excludes memory from being taken
981 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
982 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
983 * @out_nid: ptr to int for nid of the range, can be %NULL
985 * Reverse of __next_mem_range().
987 void __init_memblock
__next_mem_range_rev(u64
*idx
, int nid
, ulong flags
,
988 struct memblock_type
*type_a
,
989 struct memblock_type
*type_b
,
990 phys_addr_t
*out_start
,
991 phys_addr_t
*out_end
, int *out_nid
)
993 int idx_a
= *idx
& 0xffffffff;
994 int idx_b
= *idx
>> 32;
996 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
999 if (*idx
== (u64
)ULLONG_MAX
) {
1000 idx_a
= type_a
->cnt
- 1;
1002 idx_b
= type_b
->cnt
;
1007 for (; idx_a
>= 0; idx_a
--) {
1008 struct memblock_region
*m
= &type_a
->regions
[idx_a
];
1010 phys_addr_t m_start
= m
->base
;
1011 phys_addr_t m_end
= m
->base
+ m
->size
;
1012 int m_nid
= memblock_get_region_node(m
);
1014 /* only memory regions are associated with nodes, check it */
1015 if (nid
!= NUMA_NO_NODE
&& nid
!= m_nid
)
1018 /* skip hotpluggable memory regions if needed */
1019 if (movable_node_is_enabled() && memblock_is_hotpluggable(m
))
1022 /* if we want mirror memory skip non-mirror memory regions */
1023 if ((flags
& MEMBLOCK_MIRROR
) && !memblock_is_mirror(m
))
1026 /* skip nomap memory unless we were asked for it explicitly */
1027 if (!(flags
& MEMBLOCK_NOMAP
) && memblock_is_nomap(m
))
1032 *out_start
= m_start
;
1038 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1042 /* scan areas before each reservation */
1043 for (; idx_b
>= 0; idx_b
--) {
1044 struct memblock_region
*r
;
1045 phys_addr_t r_start
;
1048 r
= &type_b
->regions
[idx_b
];
1049 r_start
= idx_b
? r
[-1].base
+ r
[-1].size
: 0;
1050 r_end
= idx_b
< type_b
->cnt
?
1051 r
->base
: PHYS_ADDR_MAX
;
1053 * if idx_b advanced past idx_a,
1054 * break out to advance idx_a
1057 if (r_end
<= m_start
)
1059 /* if the two regions intersect, we're done */
1060 if (m_end
> r_start
) {
1062 *out_start
= max(m_start
, r_start
);
1064 *out_end
= min(m_end
, r_end
);
1067 if (m_start
>= r_start
)
1071 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1076 /* signal end of iteration */
1080 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1082 * Common iterator interface used to define for_each_mem_range().
1084 void __init_memblock
__next_mem_pfn_range(int *idx
, int nid
,
1085 unsigned long *out_start_pfn
,
1086 unsigned long *out_end_pfn
, int *out_nid
)
1088 struct memblock_type
*type
= &memblock
.memory
;
1089 struct memblock_region
*r
;
1091 while (++*idx
< type
->cnt
) {
1092 r
= &type
->regions
[*idx
];
1094 if (PFN_UP(r
->base
) >= PFN_DOWN(r
->base
+ r
->size
))
1096 if (nid
== MAX_NUMNODES
|| nid
== r
->nid
)
1099 if (*idx
>= type
->cnt
) {
1105 *out_start_pfn
= PFN_UP(r
->base
);
1107 *out_end_pfn
= PFN_DOWN(r
->base
+ r
->size
);
1113 * memblock_set_node - set node ID on memblock regions
1114 * @base: base of area to set node ID for
1115 * @size: size of area to set node ID for
1116 * @type: memblock type to set node ID for
1117 * @nid: node ID to set
1119 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1120 * Regions which cross the area boundaries are split as necessary.
1123 * 0 on success, -errno on failure.
1125 int __init_memblock
memblock_set_node(phys_addr_t base
, phys_addr_t size
,
1126 struct memblock_type
*type
, int nid
)
1128 int start_rgn
, end_rgn
;
1131 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
1135 for (i
= start_rgn
; i
< end_rgn
; i
++)
1136 memblock_set_region_node(&type
->regions
[i
], nid
);
1138 memblock_merge_regions(type
);
1141 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1143 static phys_addr_t __init
memblock_alloc_range_nid(phys_addr_t size
,
1144 phys_addr_t align
, phys_addr_t start
,
1145 phys_addr_t end
, int nid
, ulong flags
)
1150 align
= SMP_CACHE_BYTES
;
1152 found
= memblock_find_in_range_node(size
, align
, start
, end
, nid
,
1154 if (found
&& !memblock_reserve(found
, size
)) {
1156 * The min_count is set to 0 so that memblock allocations are
1157 * never reported as leaks.
1159 kmemleak_alloc_phys(found
, size
, 0, 0);
1165 phys_addr_t __init
memblock_alloc_range(phys_addr_t size
, phys_addr_t align
,
1166 phys_addr_t start
, phys_addr_t end
,
1169 return memblock_alloc_range_nid(size
, align
, start
, end
, NUMA_NO_NODE
,
1173 phys_addr_t __init
memblock_alloc_base_nid(phys_addr_t size
,
1174 phys_addr_t align
, phys_addr_t max_addr
,
1175 int nid
, ulong flags
)
1177 return memblock_alloc_range_nid(size
, align
, 0, max_addr
, nid
, flags
);
1180 phys_addr_t __init
memblock_alloc_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
1182 ulong flags
= choose_memblock_flags();
1186 ret
= memblock_alloc_base_nid(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
,
1189 if (!ret
&& (flags
& MEMBLOCK_MIRROR
)) {
1190 flags
&= ~MEMBLOCK_MIRROR
;
1196 phys_addr_t __init
__memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
1198 return memblock_alloc_base_nid(size
, align
, max_addr
, NUMA_NO_NODE
,
1202 phys_addr_t __init
memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
1206 alloc
= __memblock_alloc_base(size
, align
, max_addr
);
1209 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1215 phys_addr_t __init
memblock_alloc(phys_addr_t size
, phys_addr_t align
)
1217 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
1220 phys_addr_t __init
memblock_alloc_try_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
1222 phys_addr_t res
= memblock_alloc_nid(size
, align
, nid
);
1226 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
1229 #if defined(CONFIG_NO_BOOTMEM)
1231 * memblock_virt_alloc_internal - allocate boot memory block
1232 * @size: size of memory block to be allocated in bytes
1233 * @align: alignment of the region and block's size
1234 * @min_addr: the lower bound of the memory region to allocate (phys address)
1235 * @max_addr: the upper bound of the memory region to allocate (phys address)
1236 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1238 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1239 * will fall back to memory below @min_addr. Also, allocation may fall back
1240 * to any node in the system if the specified node can not
1241 * hold the requested memory.
1243 * The allocation is performed from memory region limited by
1244 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1246 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1248 * The phys address of allocated boot memory block is converted to virtual and
1249 * allocated memory is reset to 0.
1251 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1252 * allocated boot memory block, so that it is never reported as leaks.
1255 * Virtual address of allocated memory block on success, NULL on failure.
1257 static void * __init
memblock_virt_alloc_internal(
1258 phys_addr_t size
, phys_addr_t align
,
1259 phys_addr_t min_addr
, phys_addr_t max_addr
,
1264 ulong flags
= choose_memblock_flags();
1266 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1270 * Detect any accidental use of these APIs after slab is ready, as at
1271 * this moment memblock may be deinitialized already and its
1272 * internal data may be destroyed (after execution of free_all_bootmem)
1274 if (WARN_ON_ONCE(slab_is_available()))
1275 return kzalloc_node(size
, GFP_NOWAIT
, nid
);
1278 align
= SMP_CACHE_BYTES
;
1280 if (max_addr
> memblock
.current_limit
)
1281 max_addr
= memblock
.current_limit
;
1283 alloc
= memblock_find_in_range_node(size
, align
, min_addr
, max_addr
,
1285 if (alloc
&& !memblock_reserve(alloc
, size
))
1288 if (nid
!= NUMA_NO_NODE
) {
1289 alloc
= memblock_find_in_range_node(size
, align
, min_addr
,
1290 max_addr
, NUMA_NO_NODE
,
1292 if (alloc
&& !memblock_reserve(alloc
, size
))
1301 if (flags
& MEMBLOCK_MIRROR
) {
1302 flags
&= ~MEMBLOCK_MIRROR
;
1303 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1310 ptr
= phys_to_virt(alloc
);
1313 * The min_count is set to 0 so that bootmem allocated blocks
1314 * are never reported as leaks. This is because many of these blocks
1315 * are only referred via the physical address which is not
1316 * looked up by kmemleak.
1318 kmemleak_alloc(ptr
, size
, 0, 0);
1324 * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
1325 * memory and without panicking
1326 * @size: size of memory block to be allocated in bytes
1327 * @align: alignment of the region and block's size
1328 * @min_addr: the lower bound of the memory region from where the allocation
1329 * is preferred (phys address)
1330 * @max_addr: the upper bound of the memory region from where the allocation
1331 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1332 * allocate only from memory limited by memblock.current_limit value
1333 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1335 * Public function, provides additional debug information (including caller
1336 * info), if enabled. Does not zero allocated memory, does not panic if request
1337 * cannot be satisfied.
1340 * Virtual address of allocated memory block on success, NULL on failure.
1342 void * __init
memblock_virt_alloc_try_nid_raw(
1343 phys_addr_t size
, phys_addr_t align
,
1344 phys_addr_t min_addr
, phys_addr_t max_addr
,
1349 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1350 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1351 (u64
)max_addr
, (void *)_RET_IP_
);
1353 ptr
= memblock_virt_alloc_internal(size
, align
,
1354 min_addr
, max_addr
, nid
);
1355 #ifdef CONFIG_DEBUG_VM
1356 if (ptr
&& size
> 0)
1357 memset(ptr
, PAGE_POISON_PATTERN
, size
);
1363 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1364 * @size: size of memory block to be allocated in bytes
1365 * @align: alignment of the region and block's size
1366 * @min_addr: the lower bound of the memory region from where the allocation
1367 * is preferred (phys address)
1368 * @max_addr: the upper bound of the memory region from where the allocation
1369 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1370 * allocate only from memory limited by memblock.current_limit value
1371 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1373 * Public function, provides additional debug information (including caller
1374 * info), if enabled. This function zeroes the allocated memory.
1377 * Virtual address of allocated memory block on success, NULL on failure.
1379 void * __init
memblock_virt_alloc_try_nid_nopanic(
1380 phys_addr_t size
, phys_addr_t align
,
1381 phys_addr_t min_addr
, phys_addr_t max_addr
,
1386 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1387 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1388 (u64
)max_addr
, (void *)_RET_IP_
);
1390 ptr
= memblock_virt_alloc_internal(size
, align
,
1391 min_addr
, max_addr
, nid
);
1393 memset(ptr
, 0, size
);
1398 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1399 * @size: size of memory block to be allocated in bytes
1400 * @align: alignment of the region and block's size
1401 * @min_addr: the lower bound of the memory region from where the allocation
1402 * is preferred (phys address)
1403 * @max_addr: the upper bound of the memory region from where the allocation
1404 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1405 * allocate only from memory limited by memblock.current_limit value
1406 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1408 * Public panicking version of memblock_virt_alloc_try_nid_nopanic()
1409 * which provides debug information (including caller info), if enabled,
1410 * and panics if the request can not be satisfied.
1413 * Virtual address of allocated memory block on success, NULL on failure.
1415 void * __init
memblock_virt_alloc_try_nid(
1416 phys_addr_t size
, phys_addr_t align
,
1417 phys_addr_t min_addr
, phys_addr_t max_addr
,
1422 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1423 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1424 (u64
)max_addr
, (void *)_RET_IP_
);
1425 ptr
= memblock_virt_alloc_internal(size
, align
,
1426 min_addr
, max_addr
, nid
);
1428 memset(ptr
, 0, size
);
1432 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1433 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1440 * __memblock_free_early - free boot memory block
1441 * @base: phys starting address of the boot memory block
1442 * @size: size of the boot memory block in bytes
1444 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1445 * The freeing memory will not be released to the buddy allocator.
1447 void __init
__memblock_free_early(phys_addr_t base
, phys_addr_t size
)
1449 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1450 __func__
, (u64
)base
, (u64
)base
+ size
- 1,
1452 kmemleak_free_part_phys(base
, size
);
1453 memblock_remove_range(&memblock
.reserved
, base
, size
);
1457 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1458 * @addr: phys starting address of the boot memory block
1459 * @size: size of the boot memory block in bytes
1461 * This is only useful when the bootmem allocator has already been torn
1462 * down, but we are still initializing the system. Pages are released directly
1463 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1465 void __init
__memblock_free_late(phys_addr_t base
, phys_addr_t size
)
1469 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1470 __func__
, (u64
)base
, (u64
)base
+ size
- 1,
1472 kmemleak_free_part_phys(base
, size
);
1473 cursor
= PFN_UP(base
);
1474 end
= PFN_DOWN(base
+ size
);
1476 for (; cursor
< end
; cursor
++) {
1477 __free_pages_bootmem(pfn_to_page(cursor
), cursor
, 0);
1483 * Remaining API functions
1486 phys_addr_t __init_memblock
memblock_phys_mem_size(void)
1488 return memblock
.memory
.total_size
;
1491 phys_addr_t __init_memblock
memblock_reserved_size(void)
1493 return memblock
.reserved
.total_size
;
1496 phys_addr_t __init
memblock_mem_size(unsigned long limit_pfn
)
1498 unsigned long pages
= 0;
1499 struct memblock_region
*r
;
1500 unsigned long start_pfn
, end_pfn
;
1502 for_each_memblock(memory
, r
) {
1503 start_pfn
= memblock_region_memory_base_pfn(r
);
1504 end_pfn
= memblock_region_memory_end_pfn(r
);
1505 start_pfn
= min_t(unsigned long, start_pfn
, limit_pfn
);
1506 end_pfn
= min_t(unsigned long, end_pfn
, limit_pfn
);
1507 pages
+= end_pfn
- start_pfn
;
1510 return PFN_PHYS(pages
);
1513 /* lowest address */
1514 phys_addr_t __init_memblock
memblock_start_of_DRAM(void)
1516 return memblock
.memory
.regions
[0].base
;
1519 phys_addr_t __init_memblock
memblock_end_of_DRAM(void)
1521 int idx
= memblock
.memory
.cnt
- 1;
1523 return (memblock
.memory
.regions
[idx
].base
+ memblock
.memory
.regions
[idx
].size
);
1526 static phys_addr_t __init_memblock
__find_max_addr(phys_addr_t limit
)
1528 phys_addr_t max_addr
= PHYS_ADDR_MAX
;
1529 struct memblock_region
*r
;
1532 * translate the memory @limit size into the max address within one of
1533 * the memory memblock regions, if the @limit exceeds the total size
1534 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1536 for_each_memblock(memory
, r
) {
1537 if (limit
<= r
->size
) {
1538 max_addr
= r
->base
+ limit
;
1547 void __init
memblock_enforce_memory_limit(phys_addr_t limit
)
1549 phys_addr_t max_addr
= PHYS_ADDR_MAX
;
1554 max_addr
= __find_max_addr(limit
);
1556 /* @limit exceeds the total size of the memory, do nothing */
1557 if (max_addr
== PHYS_ADDR_MAX
)
1560 /* truncate both memory and reserved regions */
1561 memblock_remove_range(&memblock
.memory
, max_addr
,
1563 memblock_remove_range(&memblock
.reserved
, max_addr
,
1567 void __init
memblock_cap_memory_range(phys_addr_t base
, phys_addr_t size
)
1569 int start_rgn
, end_rgn
;
1575 ret
= memblock_isolate_range(&memblock
.memory
, base
, size
,
1576 &start_rgn
, &end_rgn
);
1580 /* remove all the MAP regions */
1581 for (i
= memblock
.memory
.cnt
- 1; i
>= end_rgn
; i
--)
1582 if (!memblock_is_nomap(&memblock
.memory
.regions
[i
]))
1583 memblock_remove_region(&memblock
.memory
, i
);
1585 for (i
= start_rgn
- 1; i
>= 0; i
--)
1586 if (!memblock_is_nomap(&memblock
.memory
.regions
[i
]))
1587 memblock_remove_region(&memblock
.memory
, i
);
1589 /* truncate the reserved regions */
1590 memblock_remove_range(&memblock
.reserved
, 0, base
);
1591 memblock_remove_range(&memblock
.reserved
,
1592 base
+ size
, PHYS_ADDR_MAX
);
1595 void __init
memblock_mem_limit_remove_map(phys_addr_t limit
)
1597 phys_addr_t max_addr
;
1602 max_addr
= __find_max_addr(limit
);
1604 /* @limit exceeds the total size of the memory, do nothing */
1605 if (max_addr
== PHYS_ADDR_MAX
)
1608 memblock_cap_memory_range(0, max_addr
);
1611 static int __init_memblock
memblock_search(struct memblock_type
*type
, phys_addr_t addr
)
1613 unsigned int left
= 0, right
= type
->cnt
;
1616 unsigned int mid
= (right
+ left
) / 2;
1618 if (addr
< type
->regions
[mid
].base
)
1620 else if (addr
>= (type
->regions
[mid
].base
+
1621 type
->regions
[mid
].size
))
1625 } while (left
< right
);
1629 bool __init
memblock_is_reserved(phys_addr_t addr
)
1631 return memblock_search(&memblock
.reserved
, addr
) != -1;
1634 bool __init_memblock
memblock_is_memory(phys_addr_t addr
)
1636 return memblock_search(&memblock
.memory
, addr
) != -1;
1639 bool __init_memblock
memblock_is_map_memory(phys_addr_t addr
)
1641 int i
= memblock_search(&memblock
.memory
, addr
);
1645 return !memblock_is_nomap(&memblock
.memory
.regions
[i
]);
1648 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1649 int __init_memblock
memblock_search_pfn_nid(unsigned long pfn
,
1650 unsigned long *start_pfn
, unsigned long *end_pfn
)
1652 struct memblock_type
*type
= &memblock
.memory
;
1653 int mid
= memblock_search(type
, PFN_PHYS(pfn
));
1658 *start_pfn
= PFN_DOWN(type
->regions
[mid
].base
);
1659 *end_pfn
= PFN_DOWN(type
->regions
[mid
].base
+ type
->regions
[mid
].size
);
1661 return type
->regions
[mid
].nid
;
1666 * memblock_is_region_memory - check if a region is a subset of memory
1667 * @base: base of region to check
1668 * @size: size of region to check
1670 * Check if the region [@base, @base+@size) is a subset of a memory block.
1673 * 0 if false, non-zero if true
1675 bool __init_memblock
memblock_is_region_memory(phys_addr_t base
, phys_addr_t size
)
1677 int idx
= memblock_search(&memblock
.memory
, base
);
1678 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
1682 return (memblock
.memory
.regions
[idx
].base
+
1683 memblock
.memory
.regions
[idx
].size
) >= end
;
1687 * memblock_is_region_reserved - check if a region intersects reserved memory
1688 * @base: base of region to check
1689 * @size: size of region to check
1691 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1694 * True if they intersect, false if not.
1696 bool __init_memblock
memblock_is_region_reserved(phys_addr_t base
, phys_addr_t size
)
1698 memblock_cap_size(base
, &size
);
1699 return memblock_overlaps_region(&memblock
.reserved
, base
, size
);
1702 void __init_memblock
memblock_trim_memory(phys_addr_t align
)
1704 phys_addr_t start
, end
, orig_start
, orig_end
;
1705 struct memblock_region
*r
;
1707 for_each_memblock(memory
, r
) {
1708 orig_start
= r
->base
;
1709 orig_end
= r
->base
+ r
->size
;
1710 start
= round_up(orig_start
, align
);
1711 end
= round_down(orig_end
, align
);
1713 if (start
== orig_start
&& end
== orig_end
)
1718 r
->size
= end
- start
;
1720 memblock_remove_region(&memblock
.memory
,
1721 r
- memblock
.memory
.regions
);
1727 void __init_memblock
memblock_set_current_limit(phys_addr_t limit
)
1729 memblock
.current_limit
= limit
;
1732 phys_addr_t __init_memblock
memblock_get_current_limit(void)
1734 return memblock
.current_limit
;
1737 static void __init_memblock
memblock_dump(struct memblock_type
*type
)
1739 phys_addr_t base
, end
, size
;
1740 unsigned long flags
;
1742 struct memblock_region
*rgn
;
1744 pr_info(" %s.cnt = 0x%lx\n", type
->name
, type
->cnt
);
1746 for_each_memblock_type(idx
, type
, rgn
) {
1747 char nid_buf
[32] = "";
1751 end
= base
+ size
- 1;
1753 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1754 if (memblock_get_region_node(rgn
) != MAX_NUMNODES
)
1755 snprintf(nid_buf
, sizeof(nid_buf
), " on node %d",
1756 memblock_get_region_node(rgn
));
1758 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1759 type
->name
, idx
, &base
, &end
, &size
, nid_buf
, flags
);
1763 void __init_memblock
__memblock_dump_all(void)
1765 pr_info("MEMBLOCK configuration:\n");
1766 pr_info(" memory size = %pa reserved size = %pa\n",
1767 &memblock
.memory
.total_size
,
1768 &memblock
.reserved
.total_size
);
1770 memblock_dump(&memblock
.memory
);
1771 memblock_dump(&memblock
.reserved
);
1772 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1773 memblock_dump(&memblock
.physmem
);
1777 void __init
memblock_allow_resize(void)
1779 memblock_can_resize
= 1;
1782 static int __init
early_memblock(char *p
)
1784 if (p
&& strstr(p
, "debug"))
1788 early_param("memblock", early_memblock
);
1790 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1792 static int memblock_debug_show(struct seq_file
*m
, void *private)
1794 struct memblock_type
*type
= m
->private;
1795 struct memblock_region
*reg
;
1799 for (i
= 0; i
< type
->cnt
; i
++) {
1800 reg
= &type
->regions
[i
];
1801 end
= reg
->base
+ reg
->size
- 1;
1803 seq_printf(m
, "%4d: ", i
);
1804 seq_printf(m
, "%pa..%pa\n", ®
->base
, &end
);
1808 DEFINE_SHOW_ATTRIBUTE(memblock_debug
);
1810 static int __init
memblock_init_debugfs(void)
1812 struct dentry
*root
= debugfs_create_dir("memblock", NULL
);
1815 debugfs_create_file("memory", 0444, root
,
1816 &memblock
.memory
, &memblock_debug_fops
);
1817 debugfs_create_file("reserved", 0444, root
,
1818 &memblock
.reserved
, &memblock_debug_fops
);
1819 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1820 debugfs_create_file("physmem", 0444, root
,
1821 &memblock
.physmem
, &memblock_debug_fops
);
1826 __initcall(memblock_init_debugfs
);
1828 #endif /* CONFIG_DEBUG_FS */