Linux 4.18.10
[linux/fpc-iii.git] / mm / memory-failure.c
blob9d142b9b86dcd970d46a2b8124f065bd5eb29391
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include "internal.h"
61 #include "ras/ras_event.h"
63 int sysctl_memory_failure_early_kill __read_mostly = 0;
65 int sysctl_memory_failure_recovery __read_mostly = 1;
67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
71 u32 hwpoison_filter_enable = 0;
72 u32 hwpoison_filter_dev_major = ~0U;
73 u32 hwpoison_filter_dev_minor = ~0U;
74 u64 hwpoison_filter_flags_mask;
75 u64 hwpoison_filter_flags_value;
76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
82 static int hwpoison_filter_dev(struct page *p)
84 struct address_space *mapping;
85 dev_t dev;
87 if (hwpoison_filter_dev_major == ~0U &&
88 hwpoison_filter_dev_minor == ~0U)
89 return 0;
92 * page_mapping() does not accept slab pages.
94 if (PageSlab(p))
95 return -EINVAL;
97 mapping = page_mapping(p);
98 if (mapping == NULL || mapping->host == NULL)
99 return -EINVAL;
101 dev = mapping->host->i_sb->s_dev;
102 if (hwpoison_filter_dev_major != ~0U &&
103 hwpoison_filter_dev_major != MAJOR(dev))
104 return -EINVAL;
105 if (hwpoison_filter_dev_minor != ~0U &&
106 hwpoison_filter_dev_minor != MINOR(dev))
107 return -EINVAL;
109 return 0;
112 static int hwpoison_filter_flags(struct page *p)
114 if (!hwpoison_filter_flags_mask)
115 return 0;
117 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 hwpoison_filter_flags_value)
119 return 0;
120 else
121 return -EINVAL;
125 * This allows stress tests to limit test scope to a collection of tasks
126 * by putting them under some memcg. This prevents killing unrelated/important
127 * processes such as /sbin/init. Note that the target task may share clean
128 * pages with init (eg. libc text), which is harmless. If the target task
129 * share _dirty_ pages with another task B, the test scheme must make sure B
130 * is also included in the memcg. At last, due to race conditions this filter
131 * can only guarantee that the page either belongs to the memcg tasks, or is
132 * a freed page.
134 #ifdef CONFIG_MEMCG
135 u64 hwpoison_filter_memcg;
136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
137 static int hwpoison_filter_task(struct page *p)
139 if (!hwpoison_filter_memcg)
140 return 0;
142 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
143 return -EINVAL;
145 return 0;
147 #else
148 static int hwpoison_filter_task(struct page *p) { return 0; }
149 #endif
151 int hwpoison_filter(struct page *p)
153 if (!hwpoison_filter_enable)
154 return 0;
156 if (hwpoison_filter_dev(p))
157 return -EINVAL;
159 if (hwpoison_filter_flags(p))
160 return -EINVAL;
162 if (hwpoison_filter_task(p))
163 return -EINVAL;
165 return 0;
167 #else
168 int hwpoison_filter(struct page *p)
170 return 0;
172 #endif
174 EXPORT_SYMBOL_GPL(hwpoison_filter);
177 * Send all the processes who have the page mapped a signal.
178 * ``action optional'' if they are not immediately affected by the error
179 * ``action required'' if error happened in current execution context
181 static int kill_proc(struct task_struct *t, unsigned long addr,
182 unsigned long pfn, struct page *page, int flags)
184 short addr_lsb;
185 int ret;
187 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
188 pfn, t->comm, t->pid);
189 addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
191 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
192 ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr,
193 addr_lsb, current);
194 } else {
196 * Don't use force here, it's convenient if the signal
197 * can be temporarily blocked.
198 * This could cause a loop when the user sets SIGBUS
199 * to SIG_IGN, but hopefully no one will do that?
201 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)addr,
202 addr_lsb, t); /* synchronous? */
204 if (ret < 0)
205 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
206 t->comm, t->pid, ret);
207 return ret;
211 * When a unknown page type is encountered drain as many buffers as possible
212 * in the hope to turn the page into a LRU or free page, which we can handle.
214 void shake_page(struct page *p, int access)
216 if (PageHuge(p))
217 return;
219 if (!PageSlab(p)) {
220 lru_add_drain_all();
221 if (PageLRU(p))
222 return;
223 drain_all_pages(page_zone(p));
224 if (PageLRU(p) || is_free_buddy_page(p))
225 return;
229 * Only call shrink_node_slabs here (which would also shrink
230 * other caches) if access is not potentially fatal.
232 if (access)
233 drop_slab_node(page_to_nid(p));
235 EXPORT_SYMBOL_GPL(shake_page);
238 * Kill all processes that have a poisoned page mapped and then isolate
239 * the page.
241 * General strategy:
242 * Find all processes having the page mapped and kill them.
243 * But we keep a page reference around so that the page is not
244 * actually freed yet.
245 * Then stash the page away
247 * There's no convenient way to get back to mapped processes
248 * from the VMAs. So do a brute-force search over all
249 * running processes.
251 * Remember that machine checks are not common (or rather
252 * if they are common you have other problems), so this shouldn't
253 * be a performance issue.
255 * Also there are some races possible while we get from the
256 * error detection to actually handle it.
259 struct to_kill {
260 struct list_head nd;
261 struct task_struct *tsk;
262 unsigned long addr;
263 char addr_valid;
267 * Failure handling: if we can't find or can't kill a process there's
268 * not much we can do. We just print a message and ignore otherwise.
272 * Schedule a process for later kill.
273 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
274 * TBD would GFP_NOIO be enough?
276 static void add_to_kill(struct task_struct *tsk, struct page *p,
277 struct vm_area_struct *vma,
278 struct list_head *to_kill,
279 struct to_kill **tkc)
281 struct to_kill *tk;
283 if (*tkc) {
284 tk = *tkc;
285 *tkc = NULL;
286 } else {
287 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
288 if (!tk) {
289 pr_err("Memory failure: Out of memory while machine check handling\n");
290 return;
293 tk->addr = page_address_in_vma(p, vma);
294 tk->addr_valid = 1;
297 * In theory we don't have to kill when the page was
298 * munmaped. But it could be also a mremap. Since that's
299 * likely very rare kill anyways just out of paranoia, but use
300 * a SIGKILL because the error is not contained anymore.
302 if (tk->addr == -EFAULT) {
303 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
304 page_to_pfn(p), tsk->comm);
305 tk->addr_valid = 0;
307 get_task_struct(tsk);
308 tk->tsk = tsk;
309 list_add_tail(&tk->nd, to_kill);
313 * Kill the processes that have been collected earlier.
315 * Only do anything when DOIT is set, otherwise just free the list
316 * (this is used for clean pages which do not need killing)
317 * Also when FAIL is set do a force kill because something went
318 * wrong earlier.
320 static void kill_procs(struct list_head *to_kill, int forcekill,
321 bool fail, struct page *page, unsigned long pfn,
322 int flags)
324 struct to_kill *tk, *next;
326 list_for_each_entry_safe (tk, next, to_kill, nd) {
327 if (forcekill) {
329 * In case something went wrong with munmapping
330 * make sure the process doesn't catch the
331 * signal and then access the memory. Just kill it.
333 if (fail || tk->addr_valid == 0) {
334 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
335 pfn, tk->tsk->comm, tk->tsk->pid);
336 force_sig(SIGKILL, tk->tsk);
340 * In theory the process could have mapped
341 * something else on the address in-between. We could
342 * check for that, but we need to tell the
343 * process anyways.
345 else if (kill_proc(tk->tsk, tk->addr,
346 pfn, page, flags) < 0)
347 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
348 pfn, tk->tsk->comm, tk->tsk->pid);
350 put_task_struct(tk->tsk);
351 kfree(tk);
356 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
357 * on behalf of the thread group. Return task_struct of the (first found)
358 * dedicated thread if found, and return NULL otherwise.
360 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
361 * have to call rcu_read_lock/unlock() in this function.
363 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
365 struct task_struct *t;
367 for_each_thread(tsk, t)
368 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
369 return t;
370 return NULL;
374 * Determine whether a given process is "early kill" process which expects
375 * to be signaled when some page under the process is hwpoisoned.
376 * Return task_struct of the dedicated thread (main thread unless explicitly
377 * specified) if the process is "early kill," and otherwise returns NULL.
379 static struct task_struct *task_early_kill(struct task_struct *tsk,
380 int force_early)
382 struct task_struct *t;
383 if (!tsk->mm)
384 return NULL;
385 if (force_early)
386 return tsk;
387 t = find_early_kill_thread(tsk);
388 if (t)
389 return t;
390 if (sysctl_memory_failure_early_kill)
391 return tsk;
392 return NULL;
396 * Collect processes when the error hit an anonymous page.
398 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
399 struct to_kill **tkc, int force_early)
401 struct vm_area_struct *vma;
402 struct task_struct *tsk;
403 struct anon_vma *av;
404 pgoff_t pgoff;
406 av = page_lock_anon_vma_read(page);
407 if (av == NULL) /* Not actually mapped anymore */
408 return;
410 pgoff = page_to_pgoff(page);
411 read_lock(&tasklist_lock);
412 for_each_process (tsk) {
413 struct anon_vma_chain *vmac;
414 struct task_struct *t = task_early_kill(tsk, force_early);
416 if (!t)
417 continue;
418 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
419 pgoff, pgoff) {
420 vma = vmac->vma;
421 if (!page_mapped_in_vma(page, vma))
422 continue;
423 if (vma->vm_mm == t->mm)
424 add_to_kill(t, page, vma, to_kill, tkc);
427 read_unlock(&tasklist_lock);
428 page_unlock_anon_vma_read(av);
432 * Collect processes when the error hit a file mapped page.
434 static void collect_procs_file(struct page *page, struct list_head *to_kill,
435 struct to_kill **tkc, int force_early)
437 struct vm_area_struct *vma;
438 struct task_struct *tsk;
439 struct address_space *mapping = page->mapping;
441 i_mmap_lock_read(mapping);
442 read_lock(&tasklist_lock);
443 for_each_process(tsk) {
444 pgoff_t pgoff = page_to_pgoff(page);
445 struct task_struct *t = task_early_kill(tsk, force_early);
447 if (!t)
448 continue;
449 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
450 pgoff) {
452 * Send early kill signal to tasks where a vma covers
453 * the page but the corrupted page is not necessarily
454 * mapped it in its pte.
455 * Assume applications who requested early kill want
456 * to be informed of all such data corruptions.
458 if (vma->vm_mm == t->mm)
459 add_to_kill(t, page, vma, to_kill, tkc);
462 read_unlock(&tasklist_lock);
463 i_mmap_unlock_read(mapping);
467 * Collect the processes who have the corrupted page mapped to kill.
468 * This is done in two steps for locking reasons.
469 * First preallocate one tokill structure outside the spin locks,
470 * so that we can kill at least one process reasonably reliable.
472 static void collect_procs(struct page *page, struct list_head *tokill,
473 int force_early)
475 struct to_kill *tk;
477 if (!page->mapping)
478 return;
480 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
481 if (!tk)
482 return;
483 if (PageAnon(page))
484 collect_procs_anon(page, tokill, &tk, force_early);
485 else
486 collect_procs_file(page, tokill, &tk, force_early);
487 kfree(tk);
490 static const char *action_name[] = {
491 [MF_IGNORED] = "Ignored",
492 [MF_FAILED] = "Failed",
493 [MF_DELAYED] = "Delayed",
494 [MF_RECOVERED] = "Recovered",
497 static const char * const action_page_types[] = {
498 [MF_MSG_KERNEL] = "reserved kernel page",
499 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
500 [MF_MSG_SLAB] = "kernel slab page",
501 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
502 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
503 [MF_MSG_HUGE] = "huge page",
504 [MF_MSG_FREE_HUGE] = "free huge page",
505 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
506 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
507 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
508 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
509 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
510 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
511 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
512 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
513 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
514 [MF_MSG_CLEAN_LRU] = "clean LRU page",
515 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
516 [MF_MSG_BUDDY] = "free buddy page",
517 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
518 [MF_MSG_UNKNOWN] = "unknown page",
522 * XXX: It is possible that a page is isolated from LRU cache,
523 * and then kept in swap cache or failed to remove from page cache.
524 * The page count will stop it from being freed by unpoison.
525 * Stress tests should be aware of this memory leak problem.
527 static int delete_from_lru_cache(struct page *p)
529 if (!isolate_lru_page(p)) {
531 * Clear sensible page flags, so that the buddy system won't
532 * complain when the page is unpoison-and-freed.
534 ClearPageActive(p);
535 ClearPageUnevictable(p);
538 * Poisoned page might never drop its ref count to 0 so we have
539 * to uncharge it manually from its memcg.
541 mem_cgroup_uncharge(p);
544 * drop the page count elevated by isolate_lru_page()
546 put_page(p);
547 return 0;
549 return -EIO;
552 static int truncate_error_page(struct page *p, unsigned long pfn,
553 struct address_space *mapping)
555 int ret = MF_FAILED;
557 if (mapping->a_ops->error_remove_page) {
558 int err = mapping->a_ops->error_remove_page(mapping, p);
560 if (err != 0) {
561 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
562 pfn, err);
563 } else if (page_has_private(p) &&
564 !try_to_release_page(p, GFP_NOIO)) {
565 pr_info("Memory failure: %#lx: failed to release buffers\n",
566 pfn);
567 } else {
568 ret = MF_RECOVERED;
570 } else {
572 * If the file system doesn't support it just invalidate
573 * This fails on dirty or anything with private pages
575 if (invalidate_inode_page(p))
576 ret = MF_RECOVERED;
577 else
578 pr_info("Memory failure: %#lx: Failed to invalidate\n",
579 pfn);
582 return ret;
586 * Error hit kernel page.
587 * Do nothing, try to be lucky and not touch this instead. For a few cases we
588 * could be more sophisticated.
590 static int me_kernel(struct page *p, unsigned long pfn)
592 return MF_IGNORED;
596 * Page in unknown state. Do nothing.
598 static int me_unknown(struct page *p, unsigned long pfn)
600 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
601 return MF_FAILED;
605 * Clean (or cleaned) page cache page.
607 static int me_pagecache_clean(struct page *p, unsigned long pfn)
609 struct address_space *mapping;
611 delete_from_lru_cache(p);
614 * For anonymous pages we're done the only reference left
615 * should be the one m_f() holds.
617 if (PageAnon(p))
618 return MF_RECOVERED;
621 * Now truncate the page in the page cache. This is really
622 * more like a "temporary hole punch"
623 * Don't do this for block devices when someone else
624 * has a reference, because it could be file system metadata
625 * and that's not safe to truncate.
627 mapping = page_mapping(p);
628 if (!mapping) {
630 * Page has been teared down in the meanwhile
632 return MF_FAILED;
636 * Truncation is a bit tricky. Enable it per file system for now.
638 * Open: to take i_mutex or not for this? Right now we don't.
640 return truncate_error_page(p, pfn, mapping);
644 * Dirty pagecache page
645 * Issues: when the error hit a hole page the error is not properly
646 * propagated.
648 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
650 struct address_space *mapping = page_mapping(p);
652 SetPageError(p);
653 /* TBD: print more information about the file. */
654 if (mapping) {
656 * IO error will be reported by write(), fsync(), etc.
657 * who check the mapping.
658 * This way the application knows that something went
659 * wrong with its dirty file data.
661 * There's one open issue:
663 * The EIO will be only reported on the next IO
664 * operation and then cleared through the IO map.
665 * Normally Linux has two mechanisms to pass IO error
666 * first through the AS_EIO flag in the address space
667 * and then through the PageError flag in the page.
668 * Since we drop pages on memory failure handling the
669 * only mechanism open to use is through AS_AIO.
671 * This has the disadvantage that it gets cleared on
672 * the first operation that returns an error, while
673 * the PageError bit is more sticky and only cleared
674 * when the page is reread or dropped. If an
675 * application assumes it will always get error on
676 * fsync, but does other operations on the fd before
677 * and the page is dropped between then the error
678 * will not be properly reported.
680 * This can already happen even without hwpoisoned
681 * pages: first on metadata IO errors (which only
682 * report through AS_EIO) or when the page is dropped
683 * at the wrong time.
685 * So right now we assume that the application DTRT on
686 * the first EIO, but we're not worse than other parts
687 * of the kernel.
689 mapping_set_error(mapping, -EIO);
692 return me_pagecache_clean(p, pfn);
696 * Clean and dirty swap cache.
698 * Dirty swap cache page is tricky to handle. The page could live both in page
699 * cache and swap cache(ie. page is freshly swapped in). So it could be
700 * referenced concurrently by 2 types of PTEs:
701 * normal PTEs and swap PTEs. We try to handle them consistently by calling
702 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
703 * and then
704 * - clear dirty bit to prevent IO
705 * - remove from LRU
706 * - but keep in the swap cache, so that when we return to it on
707 * a later page fault, we know the application is accessing
708 * corrupted data and shall be killed (we installed simple
709 * interception code in do_swap_page to catch it).
711 * Clean swap cache pages can be directly isolated. A later page fault will
712 * bring in the known good data from disk.
714 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
716 ClearPageDirty(p);
717 /* Trigger EIO in shmem: */
718 ClearPageUptodate(p);
720 if (!delete_from_lru_cache(p))
721 return MF_DELAYED;
722 else
723 return MF_FAILED;
726 static int me_swapcache_clean(struct page *p, unsigned long pfn)
728 delete_from_swap_cache(p);
730 if (!delete_from_lru_cache(p))
731 return MF_RECOVERED;
732 else
733 return MF_FAILED;
737 * Huge pages. Needs work.
738 * Issues:
739 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
740 * To narrow down kill region to one page, we need to break up pmd.
742 static int me_huge_page(struct page *p, unsigned long pfn)
744 int res = 0;
745 struct page *hpage = compound_head(p);
746 struct address_space *mapping;
748 if (!PageHuge(hpage))
749 return MF_DELAYED;
751 mapping = page_mapping(hpage);
752 if (mapping) {
753 res = truncate_error_page(hpage, pfn, mapping);
754 } else {
755 unlock_page(hpage);
757 * migration entry prevents later access on error anonymous
758 * hugepage, so we can free and dissolve it into buddy to
759 * save healthy subpages.
761 if (PageAnon(hpage))
762 put_page(hpage);
763 dissolve_free_huge_page(p);
764 res = MF_RECOVERED;
765 lock_page(hpage);
768 return res;
772 * Various page states we can handle.
774 * A page state is defined by its current page->flags bits.
775 * The table matches them in order and calls the right handler.
777 * This is quite tricky because we can access page at any time
778 * in its live cycle, so all accesses have to be extremely careful.
780 * This is not complete. More states could be added.
781 * For any missing state don't attempt recovery.
784 #define dirty (1UL << PG_dirty)
785 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
786 #define unevict (1UL << PG_unevictable)
787 #define mlock (1UL << PG_mlocked)
788 #define writeback (1UL << PG_writeback)
789 #define lru (1UL << PG_lru)
790 #define head (1UL << PG_head)
791 #define slab (1UL << PG_slab)
792 #define reserved (1UL << PG_reserved)
794 static struct page_state {
795 unsigned long mask;
796 unsigned long res;
797 enum mf_action_page_type type;
798 int (*action)(struct page *p, unsigned long pfn);
799 } error_states[] = {
800 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
802 * free pages are specially detected outside this table:
803 * PG_buddy pages only make a small fraction of all free pages.
807 * Could in theory check if slab page is free or if we can drop
808 * currently unused objects without touching them. But just
809 * treat it as standard kernel for now.
811 { slab, slab, MF_MSG_SLAB, me_kernel },
813 { head, head, MF_MSG_HUGE, me_huge_page },
815 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
816 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
818 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
819 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
821 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
822 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
824 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
825 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
828 * Catchall entry: must be at end.
830 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
833 #undef dirty
834 #undef sc
835 #undef unevict
836 #undef mlock
837 #undef writeback
838 #undef lru
839 #undef head
840 #undef slab
841 #undef reserved
844 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
845 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
847 static void action_result(unsigned long pfn, enum mf_action_page_type type,
848 enum mf_result result)
850 trace_memory_failure_event(pfn, type, result);
852 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
853 pfn, action_page_types[type], action_name[result]);
856 static int page_action(struct page_state *ps, struct page *p,
857 unsigned long pfn)
859 int result;
860 int count;
862 result = ps->action(p, pfn);
864 count = page_count(p) - 1;
865 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
866 count--;
867 if (count > 0) {
868 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
869 pfn, action_page_types[ps->type], count);
870 result = MF_FAILED;
872 action_result(pfn, ps->type, result);
874 /* Could do more checks here if page looks ok */
876 * Could adjust zone counters here to correct for the missing page.
879 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
883 * get_hwpoison_page() - Get refcount for memory error handling:
884 * @page: raw error page (hit by memory error)
886 * Return: return 0 if failed to grab the refcount, otherwise true (some
887 * non-zero value.)
889 int get_hwpoison_page(struct page *page)
891 struct page *head = compound_head(page);
893 if (!PageHuge(head) && PageTransHuge(head)) {
895 * Non anonymous thp exists only in allocation/free time. We
896 * can't handle such a case correctly, so let's give it up.
897 * This should be better than triggering BUG_ON when kernel
898 * tries to touch the "partially handled" page.
900 if (!PageAnon(head)) {
901 pr_err("Memory failure: %#lx: non anonymous thp\n",
902 page_to_pfn(page));
903 return 0;
907 if (get_page_unless_zero(head)) {
908 if (head == compound_head(page))
909 return 1;
911 pr_info("Memory failure: %#lx cannot catch tail\n",
912 page_to_pfn(page));
913 put_page(head);
916 return 0;
918 EXPORT_SYMBOL_GPL(get_hwpoison_page);
921 * Do all that is necessary to remove user space mappings. Unmap
922 * the pages and send SIGBUS to the processes if the data was dirty.
924 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
925 int flags, struct page **hpagep)
927 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
928 struct address_space *mapping;
929 LIST_HEAD(tokill);
930 bool unmap_success;
931 int kill = 1, forcekill;
932 struct page *hpage = *hpagep;
933 bool mlocked = PageMlocked(hpage);
936 * Here we are interested only in user-mapped pages, so skip any
937 * other types of pages.
939 if (PageReserved(p) || PageSlab(p))
940 return true;
941 if (!(PageLRU(hpage) || PageHuge(p)))
942 return true;
945 * This check implies we don't kill processes if their pages
946 * are in the swap cache early. Those are always late kills.
948 if (!page_mapped(hpage))
949 return true;
951 if (PageKsm(p)) {
952 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
953 return false;
956 if (PageSwapCache(p)) {
957 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
958 pfn);
959 ttu |= TTU_IGNORE_HWPOISON;
963 * Propagate the dirty bit from PTEs to struct page first, because we
964 * need this to decide if we should kill or just drop the page.
965 * XXX: the dirty test could be racy: set_page_dirty() may not always
966 * be called inside page lock (it's recommended but not enforced).
968 mapping = page_mapping(hpage);
969 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
970 mapping_cap_writeback_dirty(mapping)) {
971 if (page_mkclean(hpage)) {
972 SetPageDirty(hpage);
973 } else {
974 kill = 0;
975 ttu |= TTU_IGNORE_HWPOISON;
976 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
977 pfn);
982 * First collect all the processes that have the page
983 * mapped in dirty form. This has to be done before try_to_unmap,
984 * because ttu takes the rmap data structures down.
986 * Error handling: We ignore errors here because
987 * there's nothing that can be done.
989 if (kill)
990 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
992 unmap_success = try_to_unmap(hpage, ttu);
993 if (!unmap_success)
994 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
995 pfn, page_mapcount(hpage));
998 * try_to_unmap() might put mlocked page in lru cache, so call
999 * shake_page() again to ensure that it's flushed.
1001 if (mlocked)
1002 shake_page(hpage, 0);
1005 * Now that the dirty bit has been propagated to the
1006 * struct page and all unmaps done we can decide if
1007 * killing is needed or not. Only kill when the page
1008 * was dirty or the process is not restartable,
1009 * otherwise the tokill list is merely
1010 * freed. When there was a problem unmapping earlier
1011 * use a more force-full uncatchable kill to prevent
1012 * any accesses to the poisoned memory.
1014 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1015 kill_procs(&tokill, forcekill, !unmap_success, p, pfn, flags);
1017 return unmap_success;
1020 static int identify_page_state(unsigned long pfn, struct page *p,
1021 unsigned long page_flags)
1023 struct page_state *ps;
1026 * The first check uses the current page flags which may not have any
1027 * relevant information. The second check with the saved page flags is
1028 * carried out only if the first check can't determine the page status.
1030 for (ps = error_states;; ps++)
1031 if ((p->flags & ps->mask) == ps->res)
1032 break;
1034 page_flags |= (p->flags & (1UL << PG_dirty));
1036 if (!ps->mask)
1037 for (ps = error_states;; ps++)
1038 if ((page_flags & ps->mask) == ps->res)
1039 break;
1040 return page_action(ps, p, pfn);
1043 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1045 struct page *p = pfn_to_page(pfn);
1046 struct page *head = compound_head(p);
1047 int res;
1048 unsigned long page_flags;
1050 if (TestSetPageHWPoison(head)) {
1051 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1052 pfn);
1053 return 0;
1056 num_poisoned_pages_inc();
1058 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1060 * Check "filter hit" and "race with other subpage."
1062 lock_page(head);
1063 if (PageHWPoison(head)) {
1064 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1065 || (p != head && TestSetPageHWPoison(head))) {
1066 num_poisoned_pages_dec();
1067 unlock_page(head);
1068 return 0;
1071 unlock_page(head);
1072 dissolve_free_huge_page(p);
1073 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1074 return 0;
1077 lock_page(head);
1078 page_flags = head->flags;
1080 if (!PageHWPoison(head)) {
1081 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1082 num_poisoned_pages_dec();
1083 unlock_page(head);
1084 put_hwpoison_page(head);
1085 return 0;
1089 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1090 * simply disable it. In order to make it work properly, we need
1091 * make sure that:
1092 * - conversion of a pud that maps an error hugetlb into hwpoison
1093 * entry properly works, and
1094 * - other mm code walking over page table is aware of pud-aligned
1095 * hwpoison entries.
1097 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1098 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1099 res = -EBUSY;
1100 goto out;
1103 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1104 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1105 res = -EBUSY;
1106 goto out;
1109 res = identify_page_state(pfn, p, page_flags);
1110 out:
1111 unlock_page(head);
1112 return res;
1116 * memory_failure - Handle memory failure of a page.
1117 * @pfn: Page Number of the corrupted page
1118 * @flags: fine tune action taken
1120 * This function is called by the low level machine check code
1121 * of an architecture when it detects hardware memory corruption
1122 * of a page. It tries its best to recover, which includes
1123 * dropping pages, killing processes etc.
1125 * The function is primarily of use for corruptions that
1126 * happen outside the current execution context (e.g. when
1127 * detected by a background scrubber)
1129 * Must run in process context (e.g. a work queue) with interrupts
1130 * enabled and no spinlocks hold.
1132 int memory_failure(unsigned long pfn, int flags)
1134 struct page *p;
1135 struct page *hpage;
1136 struct page *orig_head;
1137 int res;
1138 unsigned long page_flags;
1140 if (!sysctl_memory_failure_recovery)
1141 panic("Memory failure on page %lx", pfn);
1143 if (!pfn_valid(pfn)) {
1144 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1145 pfn);
1146 return -ENXIO;
1149 p = pfn_to_page(pfn);
1150 if (PageHuge(p))
1151 return memory_failure_hugetlb(pfn, flags);
1152 if (TestSetPageHWPoison(p)) {
1153 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1154 pfn);
1155 return 0;
1158 orig_head = hpage = compound_head(p);
1159 num_poisoned_pages_inc();
1162 * We need/can do nothing about count=0 pages.
1163 * 1) it's a free page, and therefore in safe hand:
1164 * prep_new_page() will be the gate keeper.
1165 * 2) it's part of a non-compound high order page.
1166 * Implies some kernel user: cannot stop them from
1167 * R/W the page; let's pray that the page has been
1168 * used and will be freed some time later.
1169 * In fact it's dangerous to directly bump up page count from 0,
1170 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1172 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1173 if (is_free_buddy_page(p)) {
1174 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1175 return 0;
1176 } else {
1177 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1178 return -EBUSY;
1182 if (PageTransHuge(hpage)) {
1183 lock_page(p);
1184 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1185 unlock_page(p);
1186 if (!PageAnon(p))
1187 pr_err("Memory failure: %#lx: non anonymous thp\n",
1188 pfn);
1189 else
1190 pr_err("Memory failure: %#lx: thp split failed\n",
1191 pfn);
1192 if (TestClearPageHWPoison(p))
1193 num_poisoned_pages_dec();
1194 put_hwpoison_page(p);
1195 return -EBUSY;
1197 unlock_page(p);
1198 VM_BUG_ON_PAGE(!page_count(p), p);
1199 hpage = compound_head(p);
1203 * We ignore non-LRU pages for good reasons.
1204 * - PG_locked is only well defined for LRU pages and a few others
1205 * - to avoid races with __SetPageLocked()
1206 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1207 * The check (unnecessarily) ignores LRU pages being isolated and
1208 * walked by the page reclaim code, however that's not a big loss.
1210 shake_page(p, 0);
1211 /* shake_page could have turned it free. */
1212 if (!PageLRU(p) && is_free_buddy_page(p)) {
1213 if (flags & MF_COUNT_INCREASED)
1214 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1215 else
1216 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1217 return 0;
1220 lock_page(p);
1223 * The page could have changed compound pages during the locking.
1224 * If this happens just bail out.
1226 if (PageCompound(p) && compound_head(p) != orig_head) {
1227 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1228 res = -EBUSY;
1229 goto out;
1233 * We use page flags to determine what action should be taken, but
1234 * the flags can be modified by the error containment action. One
1235 * example is an mlocked page, where PG_mlocked is cleared by
1236 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1237 * correctly, we save a copy of the page flags at this time.
1239 if (PageHuge(p))
1240 page_flags = hpage->flags;
1241 else
1242 page_flags = p->flags;
1245 * unpoison always clear PG_hwpoison inside page lock
1247 if (!PageHWPoison(p)) {
1248 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1249 num_poisoned_pages_dec();
1250 unlock_page(p);
1251 put_hwpoison_page(p);
1252 return 0;
1254 if (hwpoison_filter(p)) {
1255 if (TestClearPageHWPoison(p))
1256 num_poisoned_pages_dec();
1257 unlock_page(p);
1258 put_hwpoison_page(p);
1259 return 0;
1262 if (!PageTransTail(p) && !PageLRU(p))
1263 goto identify_page_state;
1266 * It's very difficult to mess with pages currently under IO
1267 * and in many cases impossible, so we just avoid it here.
1269 wait_on_page_writeback(p);
1272 * Now take care of user space mappings.
1273 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1275 * When the raw error page is thp tail page, hpage points to the raw
1276 * page after thp split.
1278 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1279 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1280 res = -EBUSY;
1281 goto out;
1285 * Torn down by someone else?
1287 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1288 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1289 res = -EBUSY;
1290 goto out;
1293 identify_page_state:
1294 res = identify_page_state(pfn, p, page_flags);
1295 out:
1296 unlock_page(p);
1297 return res;
1299 EXPORT_SYMBOL_GPL(memory_failure);
1301 #define MEMORY_FAILURE_FIFO_ORDER 4
1302 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1304 struct memory_failure_entry {
1305 unsigned long pfn;
1306 int flags;
1309 struct memory_failure_cpu {
1310 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1311 MEMORY_FAILURE_FIFO_SIZE);
1312 spinlock_t lock;
1313 struct work_struct work;
1316 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1319 * memory_failure_queue - Schedule handling memory failure of a page.
1320 * @pfn: Page Number of the corrupted page
1321 * @flags: Flags for memory failure handling
1323 * This function is called by the low level hardware error handler
1324 * when it detects hardware memory corruption of a page. It schedules
1325 * the recovering of error page, including dropping pages, killing
1326 * processes etc.
1328 * The function is primarily of use for corruptions that
1329 * happen outside the current execution context (e.g. when
1330 * detected by a background scrubber)
1332 * Can run in IRQ context.
1334 void memory_failure_queue(unsigned long pfn, int flags)
1336 struct memory_failure_cpu *mf_cpu;
1337 unsigned long proc_flags;
1338 struct memory_failure_entry entry = {
1339 .pfn = pfn,
1340 .flags = flags,
1343 mf_cpu = &get_cpu_var(memory_failure_cpu);
1344 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1345 if (kfifo_put(&mf_cpu->fifo, entry))
1346 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1347 else
1348 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1349 pfn);
1350 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1351 put_cpu_var(memory_failure_cpu);
1353 EXPORT_SYMBOL_GPL(memory_failure_queue);
1355 static void memory_failure_work_func(struct work_struct *work)
1357 struct memory_failure_cpu *mf_cpu;
1358 struct memory_failure_entry entry = { 0, };
1359 unsigned long proc_flags;
1360 int gotten;
1362 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1363 for (;;) {
1364 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1365 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1366 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1367 if (!gotten)
1368 break;
1369 if (entry.flags & MF_SOFT_OFFLINE)
1370 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1371 else
1372 memory_failure(entry.pfn, entry.flags);
1376 static int __init memory_failure_init(void)
1378 struct memory_failure_cpu *mf_cpu;
1379 int cpu;
1381 for_each_possible_cpu(cpu) {
1382 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1383 spin_lock_init(&mf_cpu->lock);
1384 INIT_KFIFO(mf_cpu->fifo);
1385 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1388 return 0;
1390 core_initcall(memory_failure_init);
1392 #define unpoison_pr_info(fmt, pfn, rs) \
1393 ({ \
1394 if (__ratelimit(rs)) \
1395 pr_info(fmt, pfn); \
1399 * unpoison_memory - Unpoison a previously poisoned page
1400 * @pfn: Page number of the to be unpoisoned page
1402 * Software-unpoison a page that has been poisoned by
1403 * memory_failure() earlier.
1405 * This is only done on the software-level, so it only works
1406 * for linux injected failures, not real hardware failures
1408 * Returns 0 for success, otherwise -errno.
1410 int unpoison_memory(unsigned long pfn)
1412 struct page *page;
1413 struct page *p;
1414 int freeit = 0;
1415 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1416 DEFAULT_RATELIMIT_BURST);
1418 if (!pfn_valid(pfn))
1419 return -ENXIO;
1421 p = pfn_to_page(pfn);
1422 page = compound_head(p);
1424 if (!PageHWPoison(p)) {
1425 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1426 pfn, &unpoison_rs);
1427 return 0;
1430 if (page_count(page) > 1) {
1431 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1432 pfn, &unpoison_rs);
1433 return 0;
1436 if (page_mapped(page)) {
1437 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1438 pfn, &unpoison_rs);
1439 return 0;
1442 if (page_mapping(page)) {
1443 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1444 pfn, &unpoison_rs);
1445 return 0;
1449 * unpoison_memory() can encounter thp only when the thp is being
1450 * worked by memory_failure() and the page lock is not held yet.
1451 * In such case, we yield to memory_failure() and make unpoison fail.
1453 if (!PageHuge(page) && PageTransHuge(page)) {
1454 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1455 pfn, &unpoison_rs);
1456 return 0;
1459 if (!get_hwpoison_page(p)) {
1460 if (TestClearPageHWPoison(p))
1461 num_poisoned_pages_dec();
1462 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1463 pfn, &unpoison_rs);
1464 return 0;
1467 lock_page(page);
1469 * This test is racy because PG_hwpoison is set outside of page lock.
1470 * That's acceptable because that won't trigger kernel panic. Instead,
1471 * the PG_hwpoison page will be caught and isolated on the entrance to
1472 * the free buddy page pool.
1474 if (TestClearPageHWPoison(page)) {
1475 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1476 pfn, &unpoison_rs);
1477 num_poisoned_pages_dec();
1478 freeit = 1;
1480 unlock_page(page);
1482 put_hwpoison_page(page);
1483 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1484 put_hwpoison_page(page);
1486 return 0;
1488 EXPORT_SYMBOL(unpoison_memory);
1490 static struct page *new_page(struct page *p, unsigned long private)
1492 int nid = page_to_nid(p);
1494 return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1498 * Safely get reference count of an arbitrary page.
1499 * Returns 0 for a free page, -EIO for a zero refcount page
1500 * that is not free, and 1 for any other page type.
1501 * For 1 the page is returned with increased page count, otherwise not.
1503 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1505 int ret;
1507 if (flags & MF_COUNT_INCREASED)
1508 return 1;
1511 * When the target page is a free hugepage, just remove it
1512 * from free hugepage list.
1514 if (!get_hwpoison_page(p)) {
1515 if (PageHuge(p)) {
1516 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1517 ret = 0;
1518 } else if (is_free_buddy_page(p)) {
1519 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1520 ret = 0;
1521 } else {
1522 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1523 __func__, pfn, p->flags);
1524 ret = -EIO;
1526 } else {
1527 /* Not a free page */
1528 ret = 1;
1530 return ret;
1533 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1535 int ret = __get_any_page(page, pfn, flags);
1537 if (ret == 1 && !PageHuge(page) &&
1538 !PageLRU(page) && !__PageMovable(page)) {
1540 * Try to free it.
1542 put_hwpoison_page(page);
1543 shake_page(page, 1);
1546 * Did it turn free?
1548 ret = __get_any_page(page, pfn, 0);
1549 if (ret == 1 && !PageLRU(page)) {
1550 /* Drop page reference which is from __get_any_page() */
1551 put_hwpoison_page(page);
1552 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1553 pfn, page->flags, &page->flags);
1554 return -EIO;
1557 return ret;
1560 static int soft_offline_huge_page(struct page *page, int flags)
1562 int ret;
1563 unsigned long pfn = page_to_pfn(page);
1564 struct page *hpage = compound_head(page);
1565 LIST_HEAD(pagelist);
1568 * This double-check of PageHWPoison is to avoid the race with
1569 * memory_failure(). See also comment in __soft_offline_page().
1571 lock_page(hpage);
1572 if (PageHWPoison(hpage)) {
1573 unlock_page(hpage);
1574 put_hwpoison_page(hpage);
1575 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1576 return -EBUSY;
1578 unlock_page(hpage);
1580 ret = isolate_huge_page(hpage, &pagelist);
1582 * get_any_page() and isolate_huge_page() takes a refcount each,
1583 * so need to drop one here.
1585 put_hwpoison_page(hpage);
1586 if (!ret) {
1587 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1588 return -EBUSY;
1591 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1592 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1593 if (ret) {
1594 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1595 pfn, ret, page->flags, &page->flags);
1596 if (!list_empty(&pagelist))
1597 putback_movable_pages(&pagelist);
1598 if (ret > 0)
1599 ret = -EIO;
1600 } else {
1601 if (PageHuge(page))
1602 dissolve_free_huge_page(page);
1604 return ret;
1607 static int __soft_offline_page(struct page *page, int flags)
1609 int ret;
1610 unsigned long pfn = page_to_pfn(page);
1613 * Check PageHWPoison again inside page lock because PageHWPoison
1614 * is set by memory_failure() outside page lock. Note that
1615 * memory_failure() also double-checks PageHWPoison inside page lock,
1616 * so there's no race between soft_offline_page() and memory_failure().
1618 lock_page(page);
1619 wait_on_page_writeback(page);
1620 if (PageHWPoison(page)) {
1621 unlock_page(page);
1622 put_hwpoison_page(page);
1623 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1624 return -EBUSY;
1627 * Try to invalidate first. This should work for
1628 * non dirty unmapped page cache pages.
1630 ret = invalidate_inode_page(page);
1631 unlock_page(page);
1633 * RED-PEN would be better to keep it isolated here, but we
1634 * would need to fix isolation locking first.
1636 if (ret == 1) {
1637 put_hwpoison_page(page);
1638 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1639 SetPageHWPoison(page);
1640 num_poisoned_pages_inc();
1641 return 0;
1645 * Simple invalidation didn't work.
1646 * Try to migrate to a new page instead. migrate.c
1647 * handles a large number of cases for us.
1649 if (PageLRU(page))
1650 ret = isolate_lru_page(page);
1651 else
1652 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1654 * Drop page reference which is came from get_any_page()
1655 * successful isolate_lru_page() already took another one.
1657 put_hwpoison_page(page);
1658 if (!ret) {
1659 LIST_HEAD(pagelist);
1661 * After isolated lru page, the PageLRU will be cleared,
1662 * so use !__PageMovable instead for LRU page's mapping
1663 * cannot have PAGE_MAPPING_MOVABLE.
1665 if (!__PageMovable(page))
1666 inc_node_page_state(page, NR_ISOLATED_ANON +
1667 page_is_file_cache(page));
1668 list_add(&page->lru, &pagelist);
1669 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1670 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1671 if (ret) {
1672 if (!list_empty(&pagelist))
1673 putback_movable_pages(&pagelist);
1675 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1676 pfn, ret, page->flags, &page->flags);
1677 if (ret > 0)
1678 ret = -EIO;
1680 } else {
1681 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1682 pfn, ret, page_count(page), page->flags, &page->flags);
1684 return ret;
1687 static int soft_offline_in_use_page(struct page *page, int flags)
1689 int ret;
1690 struct page *hpage = compound_head(page);
1692 if (!PageHuge(page) && PageTransHuge(hpage)) {
1693 lock_page(hpage);
1694 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1695 unlock_page(hpage);
1696 if (!PageAnon(hpage))
1697 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1698 else
1699 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1700 put_hwpoison_page(hpage);
1701 return -EBUSY;
1703 unlock_page(hpage);
1704 get_hwpoison_page(page);
1705 put_hwpoison_page(hpage);
1708 if (PageHuge(page))
1709 ret = soft_offline_huge_page(page, flags);
1710 else
1711 ret = __soft_offline_page(page, flags);
1713 return ret;
1716 static void soft_offline_free_page(struct page *page)
1718 struct page *head = compound_head(page);
1720 if (!TestSetPageHWPoison(head)) {
1721 num_poisoned_pages_inc();
1722 if (PageHuge(head))
1723 dissolve_free_huge_page(page);
1728 * soft_offline_page - Soft offline a page.
1729 * @page: page to offline
1730 * @flags: flags. Same as memory_failure().
1732 * Returns 0 on success, otherwise negated errno.
1734 * Soft offline a page, by migration or invalidation,
1735 * without killing anything. This is for the case when
1736 * a page is not corrupted yet (so it's still valid to access),
1737 * but has had a number of corrected errors and is better taken
1738 * out.
1740 * The actual policy on when to do that is maintained by
1741 * user space.
1743 * This should never impact any application or cause data loss,
1744 * however it might take some time.
1746 * This is not a 100% solution for all memory, but tries to be
1747 * ``good enough'' for the majority of memory.
1749 int soft_offline_page(struct page *page, int flags)
1751 int ret;
1752 unsigned long pfn = page_to_pfn(page);
1754 if (PageHWPoison(page)) {
1755 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1756 if (flags & MF_COUNT_INCREASED)
1757 put_hwpoison_page(page);
1758 return -EBUSY;
1761 get_online_mems();
1762 ret = get_any_page(page, pfn, flags);
1763 put_online_mems();
1765 if (ret > 0)
1766 ret = soft_offline_in_use_page(page, flags);
1767 else if (ret == 0)
1768 soft_offline_free_page(page);
1770 return ret;