4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
35 #include <linux/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/shmparam.h>
41 struct vfree_deferred
{
42 struct llist_head list
;
43 struct work_struct wq
;
45 static DEFINE_PER_CPU(struct vfree_deferred
, vfree_deferred
);
47 static void __vunmap(const void *, int);
49 static void free_work(struct work_struct
*w
)
51 struct vfree_deferred
*p
= container_of(w
, struct vfree_deferred
, wq
);
52 struct llist_node
*t
, *llnode
;
54 llist_for_each_safe(llnode
, t
, llist_del_all(&p
->list
))
55 __vunmap((void *)llnode
, 1);
58 /*** Page table manipulation functions ***/
60 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
64 pte
= pte_offset_kernel(pmd
, addr
);
66 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
67 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
68 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
71 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
76 pmd
= pmd_offset(pud
, addr
);
78 next
= pmd_addr_end(addr
, end
);
79 if (pmd_clear_huge(pmd
))
81 if (pmd_none_or_clear_bad(pmd
))
83 vunmap_pte_range(pmd
, addr
, next
);
84 } while (pmd
++, addr
= next
, addr
!= end
);
87 static void vunmap_pud_range(p4d_t
*p4d
, unsigned long addr
, unsigned long end
)
92 pud
= pud_offset(p4d
, addr
);
94 next
= pud_addr_end(addr
, end
);
95 if (pud_clear_huge(pud
))
97 if (pud_none_or_clear_bad(pud
))
99 vunmap_pmd_range(pud
, addr
, next
);
100 } while (pud
++, addr
= next
, addr
!= end
);
103 static void vunmap_p4d_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
108 p4d
= p4d_offset(pgd
, addr
);
110 next
= p4d_addr_end(addr
, end
);
111 if (p4d_clear_huge(p4d
))
113 if (p4d_none_or_clear_bad(p4d
))
115 vunmap_pud_range(p4d
, addr
, next
);
116 } while (p4d
++, addr
= next
, addr
!= end
);
119 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
125 pgd
= pgd_offset_k(addr
);
127 next
= pgd_addr_end(addr
, end
);
128 if (pgd_none_or_clear_bad(pgd
))
130 vunmap_p4d_range(pgd
, addr
, next
);
131 } while (pgd
++, addr
= next
, addr
!= end
);
134 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
135 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
140 * nr is a running index into the array which helps higher level
141 * callers keep track of where we're up to.
144 pte
= pte_alloc_kernel(pmd
, addr
);
148 struct page
*page
= pages
[*nr
];
150 if (WARN_ON(!pte_none(*pte
)))
154 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
156 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
160 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
161 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
166 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
170 next
= pmd_addr_end(addr
, end
);
171 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
173 } while (pmd
++, addr
= next
, addr
!= end
);
177 static int vmap_pud_range(p4d_t
*p4d
, unsigned long addr
,
178 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
183 pud
= pud_alloc(&init_mm
, p4d
, addr
);
187 next
= pud_addr_end(addr
, end
);
188 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
190 } while (pud
++, addr
= next
, addr
!= end
);
194 static int vmap_p4d_range(pgd_t
*pgd
, unsigned long addr
,
195 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
200 p4d
= p4d_alloc(&init_mm
, pgd
, addr
);
204 next
= p4d_addr_end(addr
, end
);
205 if (vmap_pud_range(p4d
, addr
, next
, prot
, pages
, nr
))
207 } while (p4d
++, addr
= next
, addr
!= end
);
212 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
213 * will have pfns corresponding to the "pages" array.
215 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
217 static int vmap_page_range_noflush(unsigned long start
, unsigned long end
,
218 pgprot_t prot
, struct page
**pages
)
222 unsigned long addr
= start
;
227 pgd
= pgd_offset_k(addr
);
229 next
= pgd_addr_end(addr
, end
);
230 err
= vmap_p4d_range(pgd
, addr
, next
, prot
, pages
, &nr
);
233 } while (pgd
++, addr
= next
, addr
!= end
);
238 static int vmap_page_range(unsigned long start
, unsigned long end
,
239 pgprot_t prot
, struct page
**pages
)
243 ret
= vmap_page_range_noflush(start
, end
, prot
, pages
);
244 flush_cache_vmap(start
, end
);
248 int is_vmalloc_or_module_addr(const void *x
)
251 * ARM, x86-64 and sparc64 put modules in a special place,
252 * and fall back on vmalloc() if that fails. Others
253 * just put it in the vmalloc space.
255 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
256 unsigned long addr
= (unsigned long)x
;
257 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
260 return is_vmalloc_addr(x
);
264 * Walk a vmap address to the struct page it maps.
266 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
268 unsigned long addr
= (unsigned long) vmalloc_addr
;
269 struct page
*page
= NULL
;
270 pgd_t
*pgd
= pgd_offset_k(addr
);
277 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
278 * architectures that do not vmalloc module space
280 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
284 p4d
= p4d_offset(pgd
, addr
);
287 pud
= pud_offset(p4d
, addr
);
290 * Don't dereference bad PUD or PMD (below) entries. This will also
291 * identify huge mappings, which we may encounter on architectures
292 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
293 * identified as vmalloc addresses by is_vmalloc_addr(), but are
294 * not [unambiguously] associated with a struct page, so there is
295 * no correct value to return for them.
297 WARN_ON_ONCE(pud_bad(*pud
));
298 if (pud_none(*pud
) || pud_bad(*pud
))
300 pmd
= pmd_offset(pud
, addr
);
301 WARN_ON_ONCE(pmd_bad(*pmd
));
302 if (pmd_none(*pmd
) || pmd_bad(*pmd
))
305 ptep
= pte_offset_map(pmd
, addr
);
307 if (pte_present(pte
))
308 page
= pte_page(pte
);
312 EXPORT_SYMBOL(vmalloc_to_page
);
315 * Map a vmalloc()-space virtual address to the physical page frame number.
317 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
319 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
321 EXPORT_SYMBOL(vmalloc_to_pfn
);
324 /*** Global kva allocator ***/
326 #define VM_LAZY_FREE 0x02
327 #define VM_VM_AREA 0x04
329 static DEFINE_SPINLOCK(vmap_area_lock
);
330 /* Export for kexec only */
331 LIST_HEAD(vmap_area_list
);
332 static LLIST_HEAD(vmap_purge_list
);
333 static struct rb_root vmap_area_root
= RB_ROOT
;
335 /* The vmap cache globals are protected by vmap_area_lock */
336 static struct rb_node
*free_vmap_cache
;
337 static unsigned long cached_hole_size
;
338 static unsigned long cached_vstart
;
339 static unsigned long cached_align
;
341 static unsigned long vmap_area_pcpu_hole
;
343 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
345 struct rb_node
*n
= vmap_area_root
.rb_node
;
348 struct vmap_area
*va
;
350 va
= rb_entry(n
, struct vmap_area
, rb_node
);
351 if (addr
< va
->va_start
)
353 else if (addr
>= va
->va_end
)
362 static void __insert_vmap_area(struct vmap_area
*va
)
364 struct rb_node
**p
= &vmap_area_root
.rb_node
;
365 struct rb_node
*parent
= NULL
;
369 struct vmap_area
*tmp_va
;
372 tmp_va
= rb_entry(parent
, struct vmap_area
, rb_node
);
373 if (va
->va_start
< tmp_va
->va_end
)
375 else if (va
->va_end
> tmp_va
->va_start
)
381 rb_link_node(&va
->rb_node
, parent
, p
);
382 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
384 /* address-sort this list */
385 tmp
= rb_prev(&va
->rb_node
);
387 struct vmap_area
*prev
;
388 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
389 list_add_rcu(&va
->list
, &prev
->list
);
391 list_add_rcu(&va
->list
, &vmap_area_list
);
394 static void purge_vmap_area_lazy(void);
396 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list
);
399 * Allocate a region of KVA of the specified size and alignment, within the
402 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
404 unsigned long vstart
, unsigned long vend
,
405 int node
, gfp_t gfp_mask
)
407 struct vmap_area
*va
;
411 struct vmap_area
*first
;
414 BUG_ON(offset_in_page(size
));
415 BUG_ON(!is_power_of_2(align
));
419 va
= kmalloc_node(sizeof(struct vmap_area
),
420 gfp_mask
& GFP_RECLAIM_MASK
, node
);
422 return ERR_PTR(-ENOMEM
);
425 * Only scan the relevant parts containing pointers to other objects
426 * to avoid false negatives.
428 kmemleak_scan_area(&va
->rb_node
, SIZE_MAX
, gfp_mask
& GFP_RECLAIM_MASK
);
431 spin_lock(&vmap_area_lock
);
433 * Invalidate cache if we have more permissive parameters.
434 * cached_hole_size notes the largest hole noticed _below_
435 * the vmap_area cached in free_vmap_cache: if size fits
436 * into that hole, we want to scan from vstart to reuse
437 * the hole instead of allocating above free_vmap_cache.
438 * Note that __free_vmap_area may update free_vmap_cache
439 * without updating cached_hole_size or cached_align.
441 if (!free_vmap_cache
||
442 size
< cached_hole_size
||
443 vstart
< cached_vstart
||
444 align
< cached_align
) {
446 cached_hole_size
= 0;
447 free_vmap_cache
= NULL
;
449 /* record if we encounter less permissive parameters */
450 cached_vstart
= vstart
;
451 cached_align
= align
;
453 /* find starting point for our search */
454 if (free_vmap_cache
) {
455 first
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
456 addr
= ALIGN(first
->va_end
, align
);
459 if (addr
+ size
< addr
)
463 addr
= ALIGN(vstart
, align
);
464 if (addr
+ size
< addr
)
467 n
= vmap_area_root
.rb_node
;
471 struct vmap_area
*tmp
;
472 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
473 if (tmp
->va_end
>= addr
) {
475 if (tmp
->va_start
<= addr
)
486 /* from the starting point, walk areas until a suitable hole is found */
487 while (addr
+ size
> first
->va_start
&& addr
+ size
<= vend
) {
488 if (addr
+ cached_hole_size
< first
->va_start
)
489 cached_hole_size
= first
->va_start
- addr
;
490 addr
= ALIGN(first
->va_end
, align
);
491 if (addr
+ size
< addr
)
494 if (list_is_last(&first
->list
, &vmap_area_list
))
497 first
= list_next_entry(first
, list
);
501 if (addr
+ size
> vend
)
505 va
->va_end
= addr
+ size
;
507 __insert_vmap_area(va
);
508 free_vmap_cache
= &va
->rb_node
;
509 spin_unlock(&vmap_area_lock
);
511 BUG_ON(!IS_ALIGNED(va
->va_start
, align
));
512 BUG_ON(va
->va_start
< vstart
);
513 BUG_ON(va
->va_end
> vend
);
518 spin_unlock(&vmap_area_lock
);
520 purge_vmap_area_lazy();
525 if (gfpflags_allow_blocking(gfp_mask
)) {
526 unsigned long freed
= 0;
527 blocking_notifier_call_chain(&vmap_notify_list
, 0, &freed
);
534 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit())
535 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
538 return ERR_PTR(-EBUSY
);
541 int register_vmap_purge_notifier(struct notifier_block
*nb
)
543 return blocking_notifier_chain_register(&vmap_notify_list
, nb
);
545 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier
);
547 int unregister_vmap_purge_notifier(struct notifier_block
*nb
)
549 return blocking_notifier_chain_unregister(&vmap_notify_list
, nb
);
551 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier
);
553 static void __free_vmap_area(struct vmap_area
*va
)
555 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
557 if (free_vmap_cache
) {
558 if (va
->va_end
< cached_vstart
) {
559 free_vmap_cache
= NULL
;
561 struct vmap_area
*cache
;
562 cache
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
563 if (va
->va_start
<= cache
->va_start
) {
564 free_vmap_cache
= rb_prev(&va
->rb_node
);
566 * We don't try to update cached_hole_size or
567 * cached_align, but it won't go very wrong.
572 rb_erase(&va
->rb_node
, &vmap_area_root
);
573 RB_CLEAR_NODE(&va
->rb_node
);
574 list_del_rcu(&va
->list
);
577 * Track the highest possible candidate for pcpu area
578 * allocation. Areas outside of vmalloc area can be returned
579 * here too, consider only end addresses which fall inside
580 * vmalloc area proper.
582 if (va
->va_end
> VMALLOC_START
&& va
->va_end
<= VMALLOC_END
)
583 vmap_area_pcpu_hole
= max(vmap_area_pcpu_hole
, va
->va_end
);
585 kfree_rcu(va
, rcu_head
);
589 * Free a region of KVA allocated by alloc_vmap_area
591 static void free_vmap_area(struct vmap_area
*va
)
593 spin_lock(&vmap_area_lock
);
594 __free_vmap_area(va
);
595 spin_unlock(&vmap_area_lock
);
599 * Clear the pagetable entries of a given vmap_area
601 static void unmap_vmap_area(struct vmap_area
*va
)
603 vunmap_page_range(va
->va_start
, va
->va_end
);
607 * lazy_max_pages is the maximum amount of virtual address space we gather up
608 * before attempting to purge with a TLB flush.
610 * There is a tradeoff here: a larger number will cover more kernel page tables
611 * and take slightly longer to purge, but it will linearly reduce the number of
612 * global TLB flushes that must be performed. It would seem natural to scale
613 * this number up linearly with the number of CPUs (because vmapping activity
614 * could also scale linearly with the number of CPUs), however it is likely
615 * that in practice, workloads might be constrained in other ways that mean
616 * vmap activity will not scale linearly with CPUs. Also, I want to be
617 * conservative and not introduce a big latency on huge systems, so go with
618 * a less aggressive log scale. It will still be an improvement over the old
619 * code, and it will be simple to change the scale factor if we find that it
620 * becomes a problem on bigger systems.
622 static unsigned long lazy_max_pages(void)
626 log
= fls(num_online_cpus());
628 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
631 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
634 * Serialize vmap purging. There is no actual criticial section protected
635 * by this look, but we want to avoid concurrent calls for performance
636 * reasons and to make the pcpu_get_vm_areas more deterministic.
638 static DEFINE_MUTEX(vmap_purge_lock
);
640 /* for per-CPU blocks */
641 static void purge_fragmented_blocks_allcpus(void);
644 * called before a call to iounmap() if the caller wants vm_area_struct's
647 void set_iounmap_nonlazy(void)
649 atomic_set(&vmap_lazy_nr
, lazy_max_pages()+1);
653 * Purges all lazily-freed vmap areas.
655 static bool __purge_vmap_area_lazy(unsigned long start
, unsigned long end
)
657 struct llist_node
*valist
;
658 struct vmap_area
*va
;
659 struct vmap_area
*n_va
;
660 bool do_free
= false;
662 lockdep_assert_held(&vmap_purge_lock
);
664 valist
= llist_del_all(&vmap_purge_list
);
665 llist_for_each_entry(va
, valist
, purge_list
) {
666 if (va
->va_start
< start
)
667 start
= va
->va_start
;
668 if (va
->va_end
> end
)
676 flush_tlb_kernel_range(start
, end
);
678 spin_lock(&vmap_area_lock
);
679 llist_for_each_entry_safe(va
, n_va
, valist
, purge_list
) {
680 int nr
= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
682 __free_vmap_area(va
);
683 atomic_sub(nr
, &vmap_lazy_nr
);
684 cond_resched_lock(&vmap_area_lock
);
686 spin_unlock(&vmap_area_lock
);
691 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
692 * is already purging.
694 static void try_purge_vmap_area_lazy(void)
696 if (mutex_trylock(&vmap_purge_lock
)) {
697 __purge_vmap_area_lazy(ULONG_MAX
, 0);
698 mutex_unlock(&vmap_purge_lock
);
703 * Kick off a purge of the outstanding lazy areas.
705 static void purge_vmap_area_lazy(void)
707 mutex_lock(&vmap_purge_lock
);
708 purge_fragmented_blocks_allcpus();
709 __purge_vmap_area_lazy(ULONG_MAX
, 0);
710 mutex_unlock(&vmap_purge_lock
);
714 * Free a vmap area, caller ensuring that the area has been unmapped
715 * and flush_cache_vunmap had been called for the correct range
718 static void free_vmap_area_noflush(struct vmap_area
*va
)
722 nr_lazy
= atomic_add_return((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
,
725 /* After this point, we may free va at any time */
726 llist_add(&va
->purge_list
, &vmap_purge_list
);
728 if (unlikely(nr_lazy
> lazy_max_pages()))
729 try_purge_vmap_area_lazy();
733 * Free and unmap a vmap area
735 static void free_unmap_vmap_area(struct vmap_area
*va
)
737 flush_cache_vunmap(va
->va_start
, va
->va_end
);
739 if (debug_pagealloc_enabled())
740 flush_tlb_kernel_range(va
->va_start
, va
->va_end
);
742 free_vmap_area_noflush(va
);
745 static struct vmap_area
*find_vmap_area(unsigned long addr
)
747 struct vmap_area
*va
;
749 spin_lock(&vmap_area_lock
);
750 va
= __find_vmap_area(addr
);
751 spin_unlock(&vmap_area_lock
);
756 /*** Per cpu kva allocator ***/
759 * vmap space is limited especially on 32 bit architectures. Ensure there is
760 * room for at least 16 percpu vmap blocks per CPU.
763 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
764 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
765 * instead (we just need a rough idea)
767 #if BITS_PER_LONG == 32
768 #define VMALLOC_SPACE (128UL*1024*1024)
770 #define VMALLOC_SPACE (128UL*1024*1024*1024)
773 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
774 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
775 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
776 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
777 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
778 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
779 #define VMAP_BBMAP_BITS \
780 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
781 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
782 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
784 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
786 static bool vmap_initialized __read_mostly
= false;
788 struct vmap_block_queue
{
790 struct list_head free
;
795 struct vmap_area
*va
;
796 unsigned long free
, dirty
;
797 unsigned long dirty_min
, dirty_max
; /*< dirty range */
798 struct list_head free_list
;
799 struct rcu_head rcu_head
;
800 struct list_head purge
;
803 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
804 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
807 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
808 * in the free path. Could get rid of this if we change the API to return a
809 * "cookie" from alloc, to be passed to free. But no big deal yet.
811 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
812 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
815 * We should probably have a fallback mechanism to allocate virtual memory
816 * out of partially filled vmap blocks. However vmap block sizing should be
817 * fairly reasonable according to the vmalloc size, so it shouldn't be a
821 static unsigned long addr_to_vb_idx(unsigned long addr
)
823 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
824 addr
/= VMAP_BLOCK_SIZE
;
828 static void *vmap_block_vaddr(unsigned long va_start
, unsigned long pages_off
)
832 addr
= va_start
+ (pages_off
<< PAGE_SHIFT
);
833 BUG_ON(addr_to_vb_idx(addr
) != addr_to_vb_idx(va_start
));
838 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
839 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
840 * @order: how many 2^order pages should be occupied in newly allocated block
841 * @gfp_mask: flags for the page level allocator
843 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
845 static void *new_vmap_block(unsigned int order
, gfp_t gfp_mask
)
847 struct vmap_block_queue
*vbq
;
848 struct vmap_block
*vb
;
849 struct vmap_area
*va
;
850 unsigned long vb_idx
;
854 node
= numa_node_id();
856 vb
= kmalloc_node(sizeof(struct vmap_block
),
857 gfp_mask
& GFP_RECLAIM_MASK
, node
);
859 return ERR_PTR(-ENOMEM
);
861 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
862 VMALLOC_START
, VMALLOC_END
,
869 err
= radix_tree_preload(gfp_mask
);
876 vaddr
= vmap_block_vaddr(va
->va_start
, 0);
877 spin_lock_init(&vb
->lock
);
879 /* At least something should be left free */
880 BUG_ON(VMAP_BBMAP_BITS
<= (1UL << order
));
881 vb
->free
= VMAP_BBMAP_BITS
- (1UL << order
);
883 vb
->dirty_min
= VMAP_BBMAP_BITS
;
885 INIT_LIST_HEAD(&vb
->free_list
);
887 vb_idx
= addr_to_vb_idx(va
->va_start
);
888 spin_lock(&vmap_block_tree_lock
);
889 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
890 spin_unlock(&vmap_block_tree_lock
);
892 radix_tree_preload_end();
894 vbq
= &get_cpu_var(vmap_block_queue
);
895 spin_lock(&vbq
->lock
);
896 list_add_tail_rcu(&vb
->free_list
, &vbq
->free
);
897 spin_unlock(&vbq
->lock
);
898 put_cpu_var(vmap_block_queue
);
903 static void free_vmap_block(struct vmap_block
*vb
)
905 struct vmap_block
*tmp
;
906 unsigned long vb_idx
;
908 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
909 spin_lock(&vmap_block_tree_lock
);
910 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
911 spin_unlock(&vmap_block_tree_lock
);
914 free_vmap_area_noflush(vb
->va
);
915 kfree_rcu(vb
, rcu_head
);
918 static void purge_fragmented_blocks(int cpu
)
921 struct vmap_block
*vb
;
922 struct vmap_block
*n_vb
;
923 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
926 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
928 if (!(vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
))
931 spin_lock(&vb
->lock
);
932 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
) {
933 vb
->free
= 0; /* prevent further allocs after releasing lock */
934 vb
->dirty
= VMAP_BBMAP_BITS
; /* prevent purging it again */
936 vb
->dirty_max
= VMAP_BBMAP_BITS
;
937 spin_lock(&vbq
->lock
);
938 list_del_rcu(&vb
->free_list
);
939 spin_unlock(&vbq
->lock
);
940 spin_unlock(&vb
->lock
);
941 list_add_tail(&vb
->purge
, &purge
);
943 spin_unlock(&vb
->lock
);
947 list_for_each_entry_safe(vb
, n_vb
, &purge
, purge
) {
948 list_del(&vb
->purge
);
953 static void purge_fragmented_blocks_allcpus(void)
957 for_each_possible_cpu(cpu
)
958 purge_fragmented_blocks(cpu
);
961 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
963 struct vmap_block_queue
*vbq
;
964 struct vmap_block
*vb
;
968 BUG_ON(offset_in_page(size
));
969 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
970 if (WARN_ON(size
== 0)) {
972 * Allocating 0 bytes isn't what caller wants since
973 * get_order(0) returns funny result. Just warn and terminate
978 order
= get_order(size
);
981 vbq
= &get_cpu_var(vmap_block_queue
);
982 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
983 unsigned long pages_off
;
985 spin_lock(&vb
->lock
);
986 if (vb
->free
< (1UL << order
)) {
987 spin_unlock(&vb
->lock
);
991 pages_off
= VMAP_BBMAP_BITS
- vb
->free
;
992 vaddr
= vmap_block_vaddr(vb
->va
->va_start
, pages_off
);
993 vb
->free
-= 1UL << order
;
995 spin_lock(&vbq
->lock
);
996 list_del_rcu(&vb
->free_list
);
997 spin_unlock(&vbq
->lock
);
1000 spin_unlock(&vb
->lock
);
1004 put_cpu_var(vmap_block_queue
);
1007 /* Allocate new block if nothing was found */
1009 vaddr
= new_vmap_block(order
, gfp_mask
);
1014 static void vb_free(const void *addr
, unsigned long size
)
1016 unsigned long offset
;
1017 unsigned long vb_idx
;
1019 struct vmap_block
*vb
;
1021 BUG_ON(offset_in_page(size
));
1022 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
1024 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
1026 order
= get_order(size
);
1028 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
1029 offset
>>= PAGE_SHIFT
;
1031 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
1033 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
1037 vunmap_page_range((unsigned long)addr
, (unsigned long)addr
+ size
);
1039 if (debug_pagealloc_enabled())
1040 flush_tlb_kernel_range((unsigned long)addr
,
1041 (unsigned long)addr
+ size
);
1043 spin_lock(&vb
->lock
);
1045 /* Expand dirty range */
1046 vb
->dirty_min
= min(vb
->dirty_min
, offset
);
1047 vb
->dirty_max
= max(vb
->dirty_max
, offset
+ (1UL << order
));
1049 vb
->dirty
+= 1UL << order
;
1050 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
1052 spin_unlock(&vb
->lock
);
1053 free_vmap_block(vb
);
1055 spin_unlock(&vb
->lock
);
1059 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1061 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1062 * to amortize TLB flushing overheads. What this means is that any page you
1063 * have now, may, in a former life, have been mapped into kernel virtual
1064 * address by the vmap layer and so there might be some CPUs with TLB entries
1065 * still referencing that page (additional to the regular 1:1 kernel mapping).
1067 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1068 * be sure that none of the pages we have control over will have any aliases
1069 * from the vmap layer.
1071 void vm_unmap_aliases(void)
1073 unsigned long start
= ULONG_MAX
, end
= 0;
1077 if (unlikely(!vmap_initialized
))
1082 for_each_possible_cpu(cpu
) {
1083 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
1084 struct vmap_block
*vb
;
1087 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
1088 spin_lock(&vb
->lock
);
1090 unsigned long va_start
= vb
->va
->va_start
;
1093 s
= va_start
+ (vb
->dirty_min
<< PAGE_SHIFT
);
1094 e
= va_start
+ (vb
->dirty_max
<< PAGE_SHIFT
);
1096 start
= min(s
, start
);
1101 spin_unlock(&vb
->lock
);
1106 mutex_lock(&vmap_purge_lock
);
1107 purge_fragmented_blocks_allcpus();
1108 if (!__purge_vmap_area_lazy(start
, end
) && flush
)
1109 flush_tlb_kernel_range(start
, end
);
1110 mutex_unlock(&vmap_purge_lock
);
1112 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
1115 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1116 * @mem: the pointer returned by vm_map_ram
1117 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1119 void vm_unmap_ram(const void *mem
, unsigned int count
)
1121 unsigned long size
= (unsigned long)count
<< PAGE_SHIFT
;
1122 unsigned long addr
= (unsigned long)mem
;
1123 struct vmap_area
*va
;
1127 BUG_ON(addr
< VMALLOC_START
);
1128 BUG_ON(addr
> VMALLOC_END
);
1129 BUG_ON(!PAGE_ALIGNED(addr
));
1131 if (likely(count
<= VMAP_MAX_ALLOC
)) {
1132 debug_check_no_locks_freed(mem
, size
);
1137 va
= find_vmap_area(addr
);
1139 debug_check_no_locks_freed((void *)va
->va_start
,
1140 (va
->va_end
- va
->va_start
));
1141 free_unmap_vmap_area(va
);
1143 EXPORT_SYMBOL(vm_unmap_ram
);
1146 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1147 * @pages: an array of pointers to the pages to be mapped
1148 * @count: number of pages
1149 * @node: prefer to allocate data structures on this node
1150 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1152 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1153 * faster than vmap so it's good. But if you mix long-life and short-life
1154 * objects with vm_map_ram(), it could consume lots of address space through
1155 * fragmentation (especially on a 32bit machine). You could see failures in
1156 * the end. Please use this function for short-lived objects.
1158 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1160 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
1162 unsigned long size
= (unsigned long)count
<< PAGE_SHIFT
;
1166 if (likely(count
<= VMAP_MAX_ALLOC
)) {
1167 mem
= vb_alloc(size
, GFP_KERNEL
);
1170 addr
= (unsigned long)mem
;
1172 struct vmap_area
*va
;
1173 va
= alloc_vmap_area(size
, PAGE_SIZE
,
1174 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
1178 addr
= va
->va_start
;
1181 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
1182 vm_unmap_ram(mem
, count
);
1187 EXPORT_SYMBOL(vm_map_ram
);
1189 static struct vm_struct
*vmlist __initdata
;
1191 * vm_area_add_early - add vmap area early during boot
1192 * @vm: vm_struct to add
1194 * This function is used to add fixed kernel vm area to vmlist before
1195 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1196 * should contain proper values and the other fields should be zero.
1198 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1200 void __init
vm_area_add_early(struct vm_struct
*vm
)
1202 struct vm_struct
*tmp
, **p
;
1204 BUG_ON(vmap_initialized
);
1205 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1206 if (tmp
->addr
>= vm
->addr
) {
1207 BUG_ON(tmp
->addr
< vm
->addr
+ vm
->size
);
1210 BUG_ON(tmp
->addr
+ tmp
->size
> vm
->addr
);
1217 * vm_area_register_early - register vmap area early during boot
1218 * @vm: vm_struct to register
1219 * @align: requested alignment
1221 * This function is used to register kernel vm area before
1222 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1223 * proper values on entry and other fields should be zero. On return,
1224 * vm->addr contains the allocated address.
1226 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1228 void __init
vm_area_register_early(struct vm_struct
*vm
, size_t align
)
1230 static size_t vm_init_off __initdata
;
1233 addr
= ALIGN(VMALLOC_START
+ vm_init_off
, align
);
1234 vm_init_off
= PFN_ALIGN(addr
+ vm
->size
) - VMALLOC_START
;
1236 vm
->addr
= (void *)addr
;
1238 vm_area_add_early(vm
);
1241 void __init
vmalloc_init(void)
1243 struct vmap_area
*va
;
1244 struct vm_struct
*tmp
;
1247 for_each_possible_cpu(i
) {
1248 struct vmap_block_queue
*vbq
;
1249 struct vfree_deferred
*p
;
1251 vbq
= &per_cpu(vmap_block_queue
, i
);
1252 spin_lock_init(&vbq
->lock
);
1253 INIT_LIST_HEAD(&vbq
->free
);
1254 p
= &per_cpu(vfree_deferred
, i
);
1255 init_llist_head(&p
->list
);
1256 INIT_WORK(&p
->wq
, free_work
);
1259 /* Import existing vmlist entries. */
1260 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1261 va
= kzalloc(sizeof(struct vmap_area
), GFP_NOWAIT
);
1262 va
->flags
= VM_VM_AREA
;
1263 va
->va_start
= (unsigned long)tmp
->addr
;
1264 va
->va_end
= va
->va_start
+ tmp
->size
;
1266 __insert_vmap_area(va
);
1269 vmap_area_pcpu_hole
= VMALLOC_END
;
1271 vmap_initialized
= true;
1275 * map_kernel_range_noflush - map kernel VM area with the specified pages
1276 * @addr: start of the VM area to map
1277 * @size: size of the VM area to map
1278 * @prot: page protection flags to use
1279 * @pages: pages to map
1281 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1282 * specify should have been allocated using get_vm_area() and its
1286 * This function does NOT do any cache flushing. The caller is
1287 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1288 * before calling this function.
1291 * The number of pages mapped on success, -errno on failure.
1293 int map_kernel_range_noflush(unsigned long addr
, unsigned long size
,
1294 pgprot_t prot
, struct page
**pages
)
1296 return vmap_page_range_noflush(addr
, addr
+ size
, prot
, pages
);
1300 * unmap_kernel_range_noflush - unmap kernel VM area
1301 * @addr: start of the VM area to unmap
1302 * @size: size of the VM area to unmap
1304 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1305 * specify should have been allocated using get_vm_area() and its
1309 * This function does NOT do any cache flushing. The caller is
1310 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1311 * before calling this function and flush_tlb_kernel_range() after.
1313 void unmap_kernel_range_noflush(unsigned long addr
, unsigned long size
)
1315 vunmap_page_range(addr
, addr
+ size
);
1317 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush
);
1320 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1321 * @addr: start of the VM area to unmap
1322 * @size: size of the VM area to unmap
1324 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1325 * the unmapping and tlb after.
1327 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
1329 unsigned long end
= addr
+ size
;
1331 flush_cache_vunmap(addr
, end
);
1332 vunmap_page_range(addr
, end
);
1333 flush_tlb_kernel_range(addr
, end
);
1335 EXPORT_SYMBOL_GPL(unmap_kernel_range
);
1337 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
**pages
)
1339 unsigned long addr
= (unsigned long)area
->addr
;
1340 unsigned long end
= addr
+ get_vm_area_size(area
);
1343 err
= vmap_page_range(addr
, end
, prot
, pages
);
1345 return err
> 0 ? 0 : err
;
1347 EXPORT_SYMBOL_GPL(map_vm_area
);
1349 static void setup_vmalloc_vm(struct vm_struct
*vm
, struct vmap_area
*va
,
1350 unsigned long flags
, const void *caller
)
1352 spin_lock(&vmap_area_lock
);
1354 vm
->addr
= (void *)va
->va_start
;
1355 vm
->size
= va
->va_end
- va
->va_start
;
1356 vm
->caller
= caller
;
1358 va
->flags
|= VM_VM_AREA
;
1359 spin_unlock(&vmap_area_lock
);
1362 static void clear_vm_uninitialized_flag(struct vm_struct
*vm
)
1365 * Before removing VM_UNINITIALIZED,
1366 * we should make sure that vm has proper values.
1367 * Pair with smp_rmb() in show_numa_info().
1370 vm
->flags
&= ~VM_UNINITIALIZED
;
1373 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1374 unsigned long align
, unsigned long flags
, unsigned long start
,
1375 unsigned long end
, int node
, gfp_t gfp_mask
, const void *caller
)
1377 struct vmap_area
*va
;
1378 struct vm_struct
*area
;
1380 BUG_ON(in_interrupt());
1381 size
= PAGE_ALIGN(size
);
1382 if (unlikely(!size
))
1385 if (flags
& VM_IOREMAP
)
1386 align
= 1ul << clamp_t(int, get_count_order_long(size
),
1387 PAGE_SHIFT
, IOREMAP_MAX_ORDER
);
1389 area
= kzalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1390 if (unlikely(!area
))
1393 if (!(flags
& VM_NO_GUARD
))
1396 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1402 setup_vmalloc_vm(area
, va
, flags
, caller
);
1407 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1408 unsigned long start
, unsigned long end
)
1410 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
1411 GFP_KERNEL
, __builtin_return_address(0));
1413 EXPORT_SYMBOL_GPL(__get_vm_area
);
1415 struct vm_struct
*__get_vm_area_caller(unsigned long size
, unsigned long flags
,
1416 unsigned long start
, unsigned long end
,
1419 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
1420 GFP_KERNEL
, caller
);
1424 * get_vm_area - reserve a contiguous kernel virtual area
1425 * @size: size of the area
1426 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1428 * Search an area of @size in the kernel virtual mapping area,
1429 * and reserved it for out purposes. Returns the area descriptor
1430 * on success or %NULL on failure.
1432 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1434 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1435 NUMA_NO_NODE
, GFP_KERNEL
,
1436 __builtin_return_address(0));
1439 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1442 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1443 NUMA_NO_NODE
, GFP_KERNEL
, caller
);
1447 * find_vm_area - find a continuous kernel virtual area
1448 * @addr: base address
1450 * Search for the kernel VM area starting at @addr, and return it.
1451 * It is up to the caller to do all required locking to keep the returned
1454 struct vm_struct
*find_vm_area(const void *addr
)
1456 struct vmap_area
*va
;
1458 va
= find_vmap_area((unsigned long)addr
);
1459 if (va
&& va
->flags
& VM_VM_AREA
)
1466 * remove_vm_area - find and remove a continuous kernel virtual area
1467 * @addr: base address
1469 * Search for the kernel VM area starting at @addr, and remove it.
1470 * This function returns the found VM area, but using it is NOT safe
1471 * on SMP machines, except for its size or flags.
1473 struct vm_struct
*remove_vm_area(const void *addr
)
1475 struct vmap_area
*va
;
1479 va
= find_vmap_area((unsigned long)addr
);
1480 if (va
&& va
->flags
& VM_VM_AREA
) {
1481 struct vm_struct
*vm
= va
->vm
;
1483 spin_lock(&vmap_area_lock
);
1485 va
->flags
&= ~VM_VM_AREA
;
1486 va
->flags
|= VM_LAZY_FREE
;
1487 spin_unlock(&vmap_area_lock
);
1489 kasan_free_shadow(vm
);
1490 free_unmap_vmap_area(va
);
1497 static void __vunmap(const void *addr
, int deallocate_pages
)
1499 struct vm_struct
*area
;
1504 if (WARN(!PAGE_ALIGNED(addr
), "Trying to vfree() bad address (%p)\n",
1508 area
= find_vmap_area((unsigned long)addr
)->vm
;
1509 if (unlikely(!area
)) {
1510 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1515 debug_check_no_locks_freed(area
->addr
, get_vm_area_size(area
));
1516 debug_check_no_obj_freed(area
->addr
, get_vm_area_size(area
));
1518 remove_vm_area(addr
);
1519 if (deallocate_pages
) {
1522 for (i
= 0; i
< area
->nr_pages
; i
++) {
1523 struct page
*page
= area
->pages
[i
];
1526 __free_pages(page
, 0);
1529 kvfree(area
->pages
);
1536 static inline void __vfree_deferred(const void *addr
)
1539 * Use raw_cpu_ptr() because this can be called from preemptible
1540 * context. Preemption is absolutely fine here, because the llist_add()
1541 * implementation is lockless, so it works even if we are adding to
1542 * nother cpu's list. schedule_work() should be fine with this too.
1544 struct vfree_deferred
*p
= raw_cpu_ptr(&vfree_deferred
);
1546 if (llist_add((struct llist_node
*)addr
, &p
->list
))
1547 schedule_work(&p
->wq
);
1551 * vfree_atomic - release memory allocated by vmalloc()
1552 * @addr: memory base address
1554 * This one is just like vfree() but can be called in any atomic context
1557 void vfree_atomic(const void *addr
)
1561 kmemleak_free(addr
);
1565 __vfree_deferred(addr
);
1569 * vfree - release memory allocated by vmalloc()
1570 * @addr: memory base address
1572 * Free the virtually continuous memory area starting at @addr, as
1573 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1574 * NULL, no operation is performed.
1576 * Must not be called in NMI context (strictly speaking, only if we don't
1577 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1578 * conventions for vfree() arch-depenedent would be a really bad idea)
1580 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1582 void vfree(const void *addr
)
1586 kmemleak_free(addr
);
1590 if (unlikely(in_interrupt()))
1591 __vfree_deferred(addr
);
1595 EXPORT_SYMBOL(vfree
);
1598 * vunmap - release virtual mapping obtained by vmap()
1599 * @addr: memory base address
1601 * Free the virtually contiguous memory area starting at @addr,
1602 * which was created from the page array passed to vmap().
1604 * Must not be called in interrupt context.
1606 void vunmap(const void *addr
)
1608 BUG_ON(in_interrupt());
1613 EXPORT_SYMBOL(vunmap
);
1616 * vmap - map an array of pages into virtually contiguous space
1617 * @pages: array of page pointers
1618 * @count: number of pages to map
1619 * @flags: vm_area->flags
1620 * @prot: page protection for the mapping
1622 * Maps @count pages from @pages into contiguous kernel virtual
1625 void *vmap(struct page
**pages
, unsigned int count
,
1626 unsigned long flags
, pgprot_t prot
)
1628 struct vm_struct
*area
;
1629 unsigned long size
; /* In bytes */
1633 if (count
> totalram_pages
)
1636 size
= (unsigned long)count
<< PAGE_SHIFT
;
1637 area
= get_vm_area_caller(size
, flags
, __builtin_return_address(0));
1641 if (map_vm_area(area
, prot
, pages
)) {
1648 EXPORT_SYMBOL(vmap
);
1650 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1651 gfp_t gfp_mask
, pgprot_t prot
,
1652 int node
, const void *caller
);
1653 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1654 pgprot_t prot
, int node
)
1656 struct page
**pages
;
1657 unsigned int nr_pages
, array_size
, i
;
1658 const gfp_t nested_gfp
= (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
;
1659 const gfp_t alloc_mask
= gfp_mask
| __GFP_NOWARN
;
1660 const gfp_t highmem_mask
= (gfp_mask
& (GFP_DMA
| GFP_DMA32
)) ?
1664 nr_pages
= get_vm_area_size(area
) >> PAGE_SHIFT
;
1665 array_size
= (nr_pages
* sizeof(struct page
*));
1667 area
->nr_pages
= nr_pages
;
1668 /* Please note that the recursion is strictly bounded. */
1669 if (array_size
> PAGE_SIZE
) {
1670 pages
= __vmalloc_node(array_size
, 1, nested_gfp
|highmem_mask
,
1671 PAGE_KERNEL
, node
, area
->caller
);
1673 pages
= kmalloc_node(array_size
, nested_gfp
, node
);
1675 area
->pages
= pages
;
1677 remove_vm_area(area
->addr
);
1682 for (i
= 0; i
< area
->nr_pages
; i
++) {
1685 if (node
== NUMA_NO_NODE
)
1686 page
= alloc_page(alloc_mask
|highmem_mask
);
1688 page
= alloc_pages_node(node
, alloc_mask
|highmem_mask
, 0);
1690 if (unlikely(!page
)) {
1691 /* Successfully allocated i pages, free them in __vunmap() */
1695 area
->pages
[i
] = page
;
1696 if (gfpflags_allow_blocking(gfp_mask
|highmem_mask
))
1700 if (map_vm_area(area
, prot
, pages
))
1705 warn_alloc(gfp_mask
, NULL
,
1706 "vmalloc: allocation failure, allocated %ld of %ld bytes",
1707 (area
->nr_pages
*PAGE_SIZE
), area
->size
);
1713 * __vmalloc_node_range - allocate virtually contiguous memory
1714 * @size: allocation size
1715 * @align: desired alignment
1716 * @start: vm area range start
1717 * @end: vm area range end
1718 * @gfp_mask: flags for the page level allocator
1719 * @prot: protection mask for the allocated pages
1720 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1721 * @node: node to use for allocation or NUMA_NO_NODE
1722 * @caller: caller's return address
1724 * Allocate enough pages to cover @size from the page level
1725 * allocator with @gfp_mask flags. Map them into contiguous
1726 * kernel virtual space, using a pagetable protection of @prot.
1728 void *__vmalloc_node_range(unsigned long size
, unsigned long align
,
1729 unsigned long start
, unsigned long end
, gfp_t gfp_mask
,
1730 pgprot_t prot
, unsigned long vm_flags
, int node
,
1733 struct vm_struct
*area
;
1735 unsigned long real_size
= size
;
1737 size
= PAGE_ALIGN(size
);
1738 if (!size
|| (size
>> PAGE_SHIFT
) > totalram_pages
)
1741 area
= __get_vm_area_node(size
, align
, VM_ALLOC
| VM_UNINITIALIZED
|
1742 vm_flags
, start
, end
, node
, gfp_mask
, caller
);
1746 addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, node
);
1751 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1752 * flag. It means that vm_struct is not fully initialized.
1753 * Now, it is fully initialized, so remove this flag here.
1755 clear_vm_uninitialized_flag(area
);
1757 kmemleak_vmalloc(area
, size
, gfp_mask
);
1762 warn_alloc(gfp_mask
, NULL
,
1763 "vmalloc: allocation failure: %lu bytes", real_size
);
1768 * __vmalloc_node - allocate virtually contiguous memory
1769 * @size: allocation size
1770 * @align: desired alignment
1771 * @gfp_mask: flags for the page level allocator
1772 * @prot: protection mask for the allocated pages
1773 * @node: node to use for allocation or NUMA_NO_NODE
1774 * @caller: caller's return address
1776 * Allocate enough pages to cover @size from the page level
1777 * allocator with @gfp_mask flags. Map them into contiguous
1778 * kernel virtual space, using a pagetable protection of @prot.
1780 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
1781 * and __GFP_NOFAIL are not supported
1783 * Any use of gfp flags outside of GFP_KERNEL should be consulted
1787 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1788 gfp_t gfp_mask
, pgprot_t prot
,
1789 int node
, const void *caller
)
1791 return __vmalloc_node_range(size
, align
, VMALLOC_START
, VMALLOC_END
,
1792 gfp_mask
, prot
, 0, node
, caller
);
1795 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1797 return __vmalloc_node(size
, 1, gfp_mask
, prot
, NUMA_NO_NODE
,
1798 __builtin_return_address(0));
1800 EXPORT_SYMBOL(__vmalloc
);
1802 static inline void *__vmalloc_node_flags(unsigned long size
,
1803 int node
, gfp_t flags
)
1805 return __vmalloc_node(size
, 1, flags
, PAGE_KERNEL
,
1806 node
, __builtin_return_address(0));
1810 void *__vmalloc_node_flags_caller(unsigned long size
, int node
, gfp_t flags
,
1813 return __vmalloc_node(size
, 1, flags
, PAGE_KERNEL
, node
, caller
);
1817 * vmalloc - allocate virtually contiguous memory
1818 * @size: allocation size
1819 * Allocate enough pages to cover @size from the page level
1820 * allocator and map them into contiguous kernel virtual space.
1822 * For tight control over page level allocator and protection flags
1823 * use __vmalloc() instead.
1825 void *vmalloc(unsigned long size
)
1827 return __vmalloc_node_flags(size
, NUMA_NO_NODE
,
1830 EXPORT_SYMBOL(vmalloc
);
1833 * vzalloc - allocate virtually contiguous memory with zero fill
1834 * @size: allocation size
1835 * Allocate enough pages to cover @size from the page level
1836 * allocator and map them into contiguous kernel virtual space.
1837 * The memory allocated is set to zero.
1839 * For tight control over page level allocator and protection flags
1840 * use __vmalloc() instead.
1842 void *vzalloc(unsigned long size
)
1844 return __vmalloc_node_flags(size
, NUMA_NO_NODE
,
1845 GFP_KERNEL
| __GFP_ZERO
);
1847 EXPORT_SYMBOL(vzalloc
);
1850 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1851 * @size: allocation size
1853 * The resulting memory area is zeroed so it can be mapped to userspace
1854 * without leaking data.
1856 void *vmalloc_user(unsigned long size
)
1858 struct vm_struct
*area
;
1861 ret
= __vmalloc_node(size
, SHMLBA
,
1862 GFP_KERNEL
| __GFP_ZERO
,
1863 PAGE_KERNEL
, NUMA_NO_NODE
,
1864 __builtin_return_address(0));
1866 area
= find_vm_area(ret
);
1867 area
->flags
|= VM_USERMAP
;
1871 EXPORT_SYMBOL(vmalloc_user
);
1874 * vmalloc_node - allocate memory on a specific node
1875 * @size: allocation size
1878 * Allocate enough pages to cover @size from the page level
1879 * allocator and map them into contiguous kernel virtual space.
1881 * For tight control over page level allocator and protection flags
1882 * use __vmalloc() instead.
1884 void *vmalloc_node(unsigned long size
, int node
)
1886 return __vmalloc_node(size
, 1, GFP_KERNEL
, PAGE_KERNEL
,
1887 node
, __builtin_return_address(0));
1889 EXPORT_SYMBOL(vmalloc_node
);
1892 * vzalloc_node - allocate memory on a specific node with zero fill
1893 * @size: allocation size
1896 * Allocate enough pages to cover @size from the page level
1897 * allocator and map them into contiguous kernel virtual space.
1898 * The memory allocated is set to zero.
1900 * For tight control over page level allocator and protection flags
1901 * use __vmalloc_node() instead.
1903 void *vzalloc_node(unsigned long size
, int node
)
1905 return __vmalloc_node_flags(size
, node
,
1906 GFP_KERNEL
| __GFP_ZERO
);
1908 EXPORT_SYMBOL(vzalloc_node
);
1910 #ifndef PAGE_KERNEL_EXEC
1911 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1915 * vmalloc_exec - allocate virtually contiguous, executable memory
1916 * @size: allocation size
1918 * Kernel-internal function to allocate enough pages to cover @size
1919 * the page level allocator and map them into contiguous and
1920 * executable kernel virtual space.
1922 * For tight control over page level allocator and protection flags
1923 * use __vmalloc() instead.
1926 void *vmalloc_exec(unsigned long size
)
1928 return __vmalloc_node(size
, 1, GFP_KERNEL
, PAGE_KERNEL_EXEC
,
1929 NUMA_NO_NODE
, __builtin_return_address(0));
1932 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1933 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
1934 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1935 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
1938 * 64b systems should always have either DMA or DMA32 zones. For others
1939 * GFP_DMA32 should do the right thing and use the normal zone.
1941 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1945 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1946 * @size: allocation size
1948 * Allocate enough 32bit PA addressable pages to cover @size from the
1949 * page level allocator and map them into contiguous kernel virtual space.
1951 void *vmalloc_32(unsigned long size
)
1953 return __vmalloc_node(size
, 1, GFP_VMALLOC32
, PAGE_KERNEL
,
1954 NUMA_NO_NODE
, __builtin_return_address(0));
1956 EXPORT_SYMBOL(vmalloc_32
);
1959 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1960 * @size: allocation size
1962 * The resulting memory area is 32bit addressable and zeroed so it can be
1963 * mapped to userspace without leaking data.
1965 void *vmalloc_32_user(unsigned long size
)
1967 struct vm_struct
*area
;
1970 ret
= __vmalloc_node(size
, 1, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
1971 NUMA_NO_NODE
, __builtin_return_address(0));
1973 area
= find_vm_area(ret
);
1974 area
->flags
|= VM_USERMAP
;
1978 EXPORT_SYMBOL(vmalloc_32_user
);
1981 * small helper routine , copy contents to buf from addr.
1982 * If the page is not present, fill zero.
1985 static int aligned_vread(char *buf
, char *addr
, unsigned long count
)
1991 unsigned long offset
, length
;
1993 offset
= offset_in_page(addr
);
1994 length
= PAGE_SIZE
- offset
;
1997 p
= vmalloc_to_page(addr
);
1999 * To do safe access to this _mapped_ area, we need
2000 * lock. But adding lock here means that we need to add
2001 * overhead of vmalloc()/vfree() calles for this _debug_
2002 * interface, rarely used. Instead of that, we'll use
2003 * kmap() and get small overhead in this access function.
2007 * we can expect USER0 is not used (see vread/vwrite's
2008 * function description)
2010 void *map
= kmap_atomic(p
);
2011 memcpy(buf
, map
+ offset
, length
);
2014 memset(buf
, 0, length
);
2024 static int aligned_vwrite(char *buf
, char *addr
, unsigned long count
)
2030 unsigned long offset
, length
;
2032 offset
= offset_in_page(addr
);
2033 length
= PAGE_SIZE
- offset
;
2036 p
= vmalloc_to_page(addr
);
2038 * To do safe access to this _mapped_ area, we need
2039 * lock. But adding lock here means that we need to add
2040 * overhead of vmalloc()/vfree() calles for this _debug_
2041 * interface, rarely used. Instead of that, we'll use
2042 * kmap() and get small overhead in this access function.
2046 * we can expect USER0 is not used (see vread/vwrite's
2047 * function description)
2049 void *map
= kmap_atomic(p
);
2050 memcpy(map
+ offset
, buf
, length
);
2062 * vread() - read vmalloc area in a safe way.
2063 * @buf: buffer for reading data
2064 * @addr: vm address.
2065 * @count: number of bytes to be read.
2067 * Returns # of bytes which addr and buf should be increased.
2068 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2069 * includes any intersect with alive vmalloc area.
2071 * This function checks that addr is a valid vmalloc'ed area, and
2072 * copy data from that area to a given buffer. If the given memory range
2073 * of [addr...addr+count) includes some valid address, data is copied to
2074 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2075 * IOREMAP area is treated as memory hole and no copy is done.
2077 * If [addr...addr+count) doesn't includes any intersects with alive
2078 * vm_struct area, returns 0. @buf should be kernel's buffer.
2080 * Note: In usual ops, vread() is never necessary because the caller
2081 * should know vmalloc() area is valid and can use memcpy().
2082 * This is for routines which have to access vmalloc area without
2083 * any informaion, as /dev/kmem.
2087 long vread(char *buf
, char *addr
, unsigned long count
)
2089 struct vmap_area
*va
;
2090 struct vm_struct
*vm
;
2091 char *vaddr
, *buf_start
= buf
;
2092 unsigned long buflen
= count
;
2095 /* Don't allow overflow */
2096 if ((unsigned long) addr
+ count
< count
)
2097 count
= -(unsigned long) addr
;
2099 spin_lock(&vmap_area_lock
);
2100 list_for_each_entry(va
, &vmap_area_list
, list
) {
2104 if (!(va
->flags
& VM_VM_AREA
))
2108 vaddr
= (char *) vm
->addr
;
2109 if (addr
>= vaddr
+ get_vm_area_size(vm
))
2111 while (addr
< vaddr
) {
2119 n
= vaddr
+ get_vm_area_size(vm
) - addr
;
2122 if (!(vm
->flags
& VM_IOREMAP
))
2123 aligned_vread(buf
, addr
, n
);
2124 else /* IOREMAP area is treated as memory hole */
2131 spin_unlock(&vmap_area_lock
);
2133 if (buf
== buf_start
)
2135 /* zero-fill memory holes */
2136 if (buf
!= buf_start
+ buflen
)
2137 memset(buf
, 0, buflen
- (buf
- buf_start
));
2143 * vwrite() - write vmalloc area in a safe way.
2144 * @buf: buffer for source data
2145 * @addr: vm address.
2146 * @count: number of bytes to be read.
2148 * Returns # of bytes which addr and buf should be incresed.
2149 * (same number to @count).
2150 * If [addr...addr+count) doesn't includes any intersect with valid
2151 * vmalloc area, returns 0.
2153 * This function checks that addr is a valid vmalloc'ed area, and
2154 * copy data from a buffer to the given addr. If specified range of
2155 * [addr...addr+count) includes some valid address, data is copied from
2156 * proper area of @buf. If there are memory holes, no copy to hole.
2157 * IOREMAP area is treated as memory hole and no copy is done.
2159 * If [addr...addr+count) doesn't includes any intersects with alive
2160 * vm_struct area, returns 0. @buf should be kernel's buffer.
2162 * Note: In usual ops, vwrite() is never necessary because the caller
2163 * should know vmalloc() area is valid and can use memcpy().
2164 * This is for routines which have to access vmalloc area without
2165 * any informaion, as /dev/kmem.
2168 long vwrite(char *buf
, char *addr
, unsigned long count
)
2170 struct vmap_area
*va
;
2171 struct vm_struct
*vm
;
2173 unsigned long n
, buflen
;
2176 /* Don't allow overflow */
2177 if ((unsigned long) addr
+ count
< count
)
2178 count
= -(unsigned long) addr
;
2181 spin_lock(&vmap_area_lock
);
2182 list_for_each_entry(va
, &vmap_area_list
, list
) {
2186 if (!(va
->flags
& VM_VM_AREA
))
2190 vaddr
= (char *) vm
->addr
;
2191 if (addr
>= vaddr
+ get_vm_area_size(vm
))
2193 while (addr
< vaddr
) {
2200 n
= vaddr
+ get_vm_area_size(vm
) - addr
;
2203 if (!(vm
->flags
& VM_IOREMAP
)) {
2204 aligned_vwrite(buf
, addr
, n
);
2212 spin_unlock(&vmap_area_lock
);
2219 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2220 * @vma: vma to cover
2221 * @uaddr: target user address to start at
2222 * @kaddr: virtual address of vmalloc kernel memory
2223 * @size: size of map area
2225 * Returns: 0 for success, -Exxx on failure
2227 * This function checks that @kaddr is a valid vmalloc'ed area,
2228 * and that it is big enough to cover the range starting at
2229 * @uaddr in @vma. Will return failure if that criteria isn't
2232 * Similar to remap_pfn_range() (see mm/memory.c)
2234 int remap_vmalloc_range_partial(struct vm_area_struct
*vma
, unsigned long uaddr
,
2235 void *kaddr
, unsigned long size
)
2237 struct vm_struct
*area
;
2239 size
= PAGE_ALIGN(size
);
2241 if (!PAGE_ALIGNED(uaddr
) || !PAGE_ALIGNED(kaddr
))
2244 area
= find_vm_area(kaddr
);
2248 if (!(area
->flags
& VM_USERMAP
))
2251 if (kaddr
+ size
> area
->addr
+ area
->size
)
2255 struct page
*page
= vmalloc_to_page(kaddr
);
2258 ret
= vm_insert_page(vma
, uaddr
, page
);
2267 vma
->vm_flags
|= VM_DONTEXPAND
| VM_DONTDUMP
;
2271 EXPORT_SYMBOL(remap_vmalloc_range_partial
);
2274 * remap_vmalloc_range - map vmalloc pages to userspace
2275 * @vma: vma to cover (map full range of vma)
2276 * @addr: vmalloc memory
2277 * @pgoff: number of pages into addr before first page to map
2279 * Returns: 0 for success, -Exxx on failure
2281 * This function checks that addr is a valid vmalloc'ed area, and
2282 * that it is big enough to cover the vma. Will return failure if
2283 * that criteria isn't met.
2285 * Similar to remap_pfn_range() (see mm/memory.c)
2287 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
2288 unsigned long pgoff
)
2290 return remap_vmalloc_range_partial(vma
, vma
->vm_start
,
2291 addr
+ (pgoff
<< PAGE_SHIFT
),
2292 vma
->vm_end
- vma
->vm_start
);
2294 EXPORT_SYMBOL(remap_vmalloc_range
);
2297 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2300 void __weak
vmalloc_sync_all(void)
2305 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
2317 * alloc_vm_area - allocate a range of kernel address space
2318 * @size: size of the area
2319 * @ptes: returns the PTEs for the address space
2321 * Returns: NULL on failure, vm_struct on success
2323 * This function reserves a range of kernel address space, and
2324 * allocates pagetables to map that range. No actual mappings
2327 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2328 * allocated for the VM area are returned.
2330 struct vm_struct
*alloc_vm_area(size_t size
, pte_t
**ptes
)
2332 struct vm_struct
*area
;
2334 area
= get_vm_area_caller(size
, VM_IOREMAP
,
2335 __builtin_return_address(0));
2340 * This ensures that page tables are constructed for this region
2341 * of kernel virtual address space and mapped into init_mm.
2343 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
2344 size
, f
, ptes
? &ptes
: NULL
)) {
2351 EXPORT_SYMBOL_GPL(alloc_vm_area
);
2353 void free_vm_area(struct vm_struct
*area
)
2355 struct vm_struct
*ret
;
2356 ret
= remove_vm_area(area
->addr
);
2357 BUG_ON(ret
!= area
);
2360 EXPORT_SYMBOL_GPL(free_vm_area
);
2363 static struct vmap_area
*node_to_va(struct rb_node
*n
)
2365 return rb_entry_safe(n
, struct vmap_area
, rb_node
);
2369 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2370 * @end: target address
2371 * @pnext: out arg for the next vmap_area
2372 * @pprev: out arg for the previous vmap_area
2374 * Returns: %true if either or both of next and prev are found,
2375 * %false if no vmap_area exists
2377 * Find vmap_areas end addresses of which enclose @end. ie. if not
2378 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2380 static bool pvm_find_next_prev(unsigned long end
,
2381 struct vmap_area
**pnext
,
2382 struct vmap_area
**pprev
)
2384 struct rb_node
*n
= vmap_area_root
.rb_node
;
2385 struct vmap_area
*va
= NULL
;
2388 va
= rb_entry(n
, struct vmap_area
, rb_node
);
2389 if (end
< va
->va_end
)
2391 else if (end
> va
->va_end
)
2400 if (va
->va_end
> end
) {
2402 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2405 *pnext
= node_to_va(rb_next(&(*pprev
)->rb_node
));
2411 * pvm_determine_end - find the highest aligned address between two vmap_areas
2412 * @pnext: in/out arg for the next vmap_area
2413 * @pprev: in/out arg for the previous vmap_area
2416 * Returns: determined end address
2418 * Find the highest aligned address between *@pnext and *@pprev below
2419 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2420 * down address is between the end addresses of the two vmap_areas.
2422 * Please note that the address returned by this function may fall
2423 * inside *@pnext vmap_area. The caller is responsible for checking
2426 static unsigned long pvm_determine_end(struct vmap_area
**pnext
,
2427 struct vmap_area
**pprev
,
2428 unsigned long align
)
2430 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2434 addr
= min((*pnext
)->va_start
& ~(align
- 1), vmalloc_end
);
2438 while (*pprev
&& (*pprev
)->va_end
> addr
) {
2440 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2447 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2448 * @offsets: array containing offset of each area
2449 * @sizes: array containing size of each area
2450 * @nr_vms: the number of areas to allocate
2451 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2453 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2454 * vm_structs on success, %NULL on failure
2456 * Percpu allocator wants to use congruent vm areas so that it can
2457 * maintain the offsets among percpu areas. This function allocates
2458 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2459 * be scattered pretty far, distance between two areas easily going up
2460 * to gigabytes. To avoid interacting with regular vmallocs, these
2461 * areas are allocated from top.
2463 * Despite its complicated look, this allocator is rather simple. It
2464 * does everything top-down and scans areas from the end looking for
2465 * matching slot. While scanning, if any of the areas overlaps with
2466 * existing vmap_area, the base address is pulled down to fit the
2467 * area. Scanning is repeated till all the areas fit and then all
2468 * necessary data structures are inserted and the result is returned.
2470 struct vm_struct
**pcpu_get_vm_areas(const unsigned long *offsets
,
2471 const size_t *sizes
, int nr_vms
,
2474 const unsigned long vmalloc_start
= ALIGN(VMALLOC_START
, align
);
2475 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2476 struct vmap_area
**vas
, *prev
, *next
;
2477 struct vm_struct
**vms
;
2478 int area
, area2
, last_area
, term_area
;
2479 unsigned long base
, start
, end
, last_end
;
2480 bool purged
= false;
2482 /* verify parameters and allocate data structures */
2483 BUG_ON(offset_in_page(align
) || !is_power_of_2(align
));
2484 for (last_area
= 0, area
= 0; area
< nr_vms
; area
++) {
2485 start
= offsets
[area
];
2486 end
= start
+ sizes
[area
];
2488 /* is everything aligned properly? */
2489 BUG_ON(!IS_ALIGNED(offsets
[area
], align
));
2490 BUG_ON(!IS_ALIGNED(sizes
[area
], align
));
2492 /* detect the area with the highest address */
2493 if (start
> offsets
[last_area
])
2496 for (area2
= area
+ 1; area2
< nr_vms
; area2
++) {
2497 unsigned long start2
= offsets
[area2
];
2498 unsigned long end2
= start2
+ sizes
[area2
];
2500 BUG_ON(start2
< end
&& start
< end2
);
2503 last_end
= offsets
[last_area
] + sizes
[last_area
];
2505 if (vmalloc_end
- vmalloc_start
< last_end
) {
2510 vms
= kcalloc(nr_vms
, sizeof(vms
[0]), GFP_KERNEL
);
2511 vas
= kcalloc(nr_vms
, sizeof(vas
[0]), GFP_KERNEL
);
2515 for (area
= 0; area
< nr_vms
; area
++) {
2516 vas
[area
] = kzalloc(sizeof(struct vmap_area
), GFP_KERNEL
);
2517 vms
[area
] = kzalloc(sizeof(struct vm_struct
), GFP_KERNEL
);
2518 if (!vas
[area
] || !vms
[area
])
2522 spin_lock(&vmap_area_lock
);
2524 /* start scanning - we scan from the top, begin with the last area */
2525 area
= term_area
= last_area
;
2526 start
= offsets
[area
];
2527 end
= start
+ sizes
[area
];
2529 if (!pvm_find_next_prev(vmap_area_pcpu_hole
, &next
, &prev
)) {
2530 base
= vmalloc_end
- last_end
;
2533 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2536 BUG_ON(next
&& next
->va_end
<= base
+ end
);
2537 BUG_ON(prev
&& prev
->va_end
> base
+ end
);
2540 * base might have underflowed, add last_end before
2543 if (base
+ last_end
< vmalloc_start
+ last_end
) {
2544 spin_unlock(&vmap_area_lock
);
2546 purge_vmap_area_lazy();
2554 * If next overlaps, move base downwards so that it's
2555 * right below next and then recheck.
2557 if (next
&& next
->va_start
< base
+ end
) {
2558 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2564 * If prev overlaps, shift down next and prev and move
2565 * base so that it's right below new next and then
2568 if (prev
&& prev
->va_end
> base
+ start
) {
2570 prev
= node_to_va(rb_prev(&next
->rb_node
));
2571 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2577 * This area fits, move on to the previous one. If
2578 * the previous one is the terminal one, we're done.
2580 area
= (area
+ nr_vms
- 1) % nr_vms
;
2581 if (area
== term_area
)
2583 start
= offsets
[area
];
2584 end
= start
+ sizes
[area
];
2585 pvm_find_next_prev(base
+ end
, &next
, &prev
);
2588 /* we've found a fitting base, insert all va's */
2589 for (area
= 0; area
< nr_vms
; area
++) {
2590 struct vmap_area
*va
= vas
[area
];
2592 va
->va_start
= base
+ offsets
[area
];
2593 va
->va_end
= va
->va_start
+ sizes
[area
];
2594 __insert_vmap_area(va
);
2597 vmap_area_pcpu_hole
= base
+ offsets
[last_area
];
2599 spin_unlock(&vmap_area_lock
);
2601 /* insert all vm's */
2602 for (area
= 0; area
< nr_vms
; area
++)
2603 setup_vmalloc_vm(vms
[area
], vas
[area
], VM_ALLOC
,
2610 for (area
= 0; area
< nr_vms
; area
++) {
2621 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2622 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2623 * @nr_vms: the number of allocated areas
2625 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2627 void pcpu_free_vm_areas(struct vm_struct
**vms
, int nr_vms
)
2631 for (i
= 0; i
< nr_vms
; i
++)
2632 free_vm_area(vms
[i
]);
2635 #endif /* CONFIG_SMP */
2637 #ifdef CONFIG_PROC_FS
2638 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
2639 __acquires(&vmap_area_lock
)
2641 spin_lock(&vmap_area_lock
);
2642 return seq_list_start(&vmap_area_list
, *pos
);
2645 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
2647 return seq_list_next(p
, &vmap_area_list
, pos
);
2650 static void s_stop(struct seq_file
*m
, void *p
)
2651 __releases(&vmap_area_lock
)
2653 spin_unlock(&vmap_area_lock
);
2656 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
2658 if (IS_ENABLED(CONFIG_NUMA
)) {
2659 unsigned int nr
, *counters
= m
->private;
2664 if (v
->flags
& VM_UNINITIALIZED
)
2666 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2669 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
2671 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
2672 counters
[page_to_nid(v
->pages
[nr
])]++;
2674 for_each_node_state(nr
, N_HIGH_MEMORY
)
2676 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
2680 static int s_show(struct seq_file
*m
, void *p
)
2682 struct vmap_area
*va
;
2683 struct vm_struct
*v
;
2685 va
= list_entry(p
, struct vmap_area
, list
);
2688 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2689 * behalf of vmap area is being tear down or vm_map_ram allocation.
2691 if (!(va
->flags
& VM_VM_AREA
)) {
2692 seq_printf(m
, "0x%pK-0x%pK %7ld %s\n",
2693 (void *)va
->va_start
, (void *)va
->va_end
,
2694 va
->va_end
- va
->va_start
,
2695 va
->flags
& VM_LAZY_FREE
? "unpurged vm_area" : "vm_map_ram");
2702 seq_printf(m
, "0x%pK-0x%pK %7ld",
2703 v
->addr
, v
->addr
+ v
->size
, v
->size
);
2706 seq_printf(m
, " %pS", v
->caller
);
2709 seq_printf(m
, " pages=%d", v
->nr_pages
);
2712 seq_printf(m
, " phys=%pa", &v
->phys_addr
);
2714 if (v
->flags
& VM_IOREMAP
)
2715 seq_puts(m
, " ioremap");
2717 if (v
->flags
& VM_ALLOC
)
2718 seq_puts(m
, " vmalloc");
2720 if (v
->flags
& VM_MAP
)
2721 seq_puts(m
, " vmap");
2723 if (v
->flags
& VM_USERMAP
)
2724 seq_puts(m
, " user");
2726 if (is_vmalloc_addr(v
->pages
))
2727 seq_puts(m
, " vpages");
2729 show_numa_info(m
, v
);
2734 static const struct seq_operations vmalloc_op
= {
2741 static int __init
proc_vmalloc_init(void)
2743 if (IS_ENABLED(CONFIG_NUMA
))
2744 proc_create_seq_private("vmallocinfo", 0400, NULL
,
2746 nr_node_ids
* sizeof(unsigned int), NULL
);
2748 proc_create_seq("vmallocinfo", 0400, NULL
, &vmalloc_op
);
2751 module_init(proc_vmalloc_init
);