2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Support for INET connection oriented protocols.
8 * Authors: See the TCP sources
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or(at your option) any later version.
16 #include <linux/module.h>
17 #include <linux/jhash.h>
19 #include <net/inet_connection_sock.h>
20 #include <net/inet_hashtables.h>
21 #include <net/inet_timewait_sock.h>
23 #include <net/route.h>
24 #include <net/tcp_states.h>
27 #include <net/sock_reuseport.h>
28 #include <net/addrconf.h>
30 #if IS_ENABLED(CONFIG_IPV6)
31 /* match_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6
32 * only, and any IPv4 addresses if not IPv6 only
33 * match_wildcard == false: addresses must be exactly the same, i.e.
34 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
35 * and 0.0.0.0 equals to 0.0.0.0 only
37 static bool ipv6_rcv_saddr_equal(const struct in6_addr
*sk1_rcv_saddr6
,
38 const struct in6_addr
*sk2_rcv_saddr6
,
39 __be32 sk1_rcv_saddr
, __be32 sk2_rcv_saddr
,
40 bool sk1_ipv6only
, bool sk2_ipv6only
,
43 int addr_type
= ipv6_addr_type(sk1_rcv_saddr6
);
44 int addr_type2
= sk2_rcv_saddr6
? ipv6_addr_type(sk2_rcv_saddr6
) : IPV6_ADDR_MAPPED
;
46 /* if both are mapped, treat as IPv4 */
47 if (addr_type
== IPV6_ADDR_MAPPED
&& addr_type2
== IPV6_ADDR_MAPPED
) {
49 if (sk1_rcv_saddr
== sk2_rcv_saddr
)
51 if (!sk1_rcv_saddr
|| !sk2_rcv_saddr
)
52 return match_wildcard
;
57 if (addr_type
== IPV6_ADDR_ANY
&& addr_type2
== IPV6_ADDR_ANY
)
60 if (addr_type2
== IPV6_ADDR_ANY
&& match_wildcard
&&
61 !(sk2_ipv6only
&& addr_type
== IPV6_ADDR_MAPPED
))
64 if (addr_type
== IPV6_ADDR_ANY
&& match_wildcard
&&
65 !(sk1_ipv6only
&& addr_type2
== IPV6_ADDR_MAPPED
))
69 ipv6_addr_equal(sk1_rcv_saddr6
, sk2_rcv_saddr6
))
76 /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
77 * match_wildcard == false: addresses must be exactly the same, i.e.
78 * 0.0.0.0 only equals to 0.0.0.0
80 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr
, __be32 sk2_rcv_saddr
,
81 bool sk2_ipv6only
, bool match_wildcard
)
84 if (sk1_rcv_saddr
== sk2_rcv_saddr
)
86 if (!sk1_rcv_saddr
|| !sk2_rcv_saddr
)
87 return match_wildcard
;
92 bool inet_rcv_saddr_equal(const struct sock
*sk
, const struct sock
*sk2
,
95 #if IS_ENABLED(CONFIG_IPV6)
96 if (sk
->sk_family
== AF_INET6
)
97 return ipv6_rcv_saddr_equal(&sk
->sk_v6_rcv_saddr
,
105 return ipv4_rcv_saddr_equal(sk
->sk_rcv_saddr
, sk2
->sk_rcv_saddr
,
106 ipv6_only_sock(sk2
), match_wildcard
);
108 EXPORT_SYMBOL(inet_rcv_saddr_equal
);
110 void inet_get_local_port_range(struct net
*net
, int *low
, int *high
)
115 seq
= read_seqbegin(&net
->ipv4
.ip_local_ports
.lock
);
117 *low
= net
->ipv4
.ip_local_ports
.range
[0];
118 *high
= net
->ipv4
.ip_local_ports
.range
[1];
119 } while (read_seqretry(&net
->ipv4
.ip_local_ports
.lock
, seq
));
121 EXPORT_SYMBOL(inet_get_local_port_range
);
123 static int inet_csk_bind_conflict(const struct sock
*sk
,
124 const struct inet_bind_bucket
*tb
,
125 bool relax
, bool reuseport_ok
)
128 bool reuse
= sk
->sk_reuse
;
129 bool reuseport
= !!sk
->sk_reuseport
&& reuseport_ok
;
130 kuid_t uid
= sock_i_uid((struct sock
*)sk
);
133 * Unlike other sk lookup places we do not check
134 * for sk_net here, since _all_ the socks listed
135 * in tb->owners list belong to the same net - the
136 * one this bucket belongs to.
139 sk_for_each_bound(sk2
, &tb
->owners
) {
141 (!sk
->sk_bound_dev_if
||
142 !sk2
->sk_bound_dev_if
||
143 sk
->sk_bound_dev_if
== sk2
->sk_bound_dev_if
)) {
144 if ((!reuse
|| !sk2
->sk_reuse
||
145 sk2
->sk_state
== TCP_LISTEN
) &&
146 (!reuseport
|| !sk2
->sk_reuseport
||
147 rcu_access_pointer(sk
->sk_reuseport_cb
) ||
148 (sk2
->sk_state
!= TCP_TIME_WAIT
&&
149 !uid_eq(uid
, sock_i_uid(sk2
))))) {
150 if (inet_rcv_saddr_equal(sk
, sk2
, true))
153 if (!relax
&& reuse
&& sk2
->sk_reuse
&&
154 sk2
->sk_state
!= TCP_LISTEN
) {
155 if (inet_rcv_saddr_equal(sk
, sk2
, true))
164 * Find an open port number for the socket. Returns with the
165 * inet_bind_hashbucket lock held.
167 static struct inet_bind_hashbucket
*
168 inet_csk_find_open_port(struct sock
*sk
, struct inet_bind_bucket
**tb_ret
, int *port_ret
)
170 struct inet_hashinfo
*hinfo
= sk
->sk_prot
->h
.hashinfo
;
172 struct inet_bind_hashbucket
*head
;
173 struct net
*net
= sock_net(sk
);
174 int i
, low
, high
, attempt_half
;
175 struct inet_bind_bucket
*tb
;
176 u32 remaining
, offset
;
178 attempt_half
= (sk
->sk_reuse
== SK_CAN_REUSE
) ? 1 : 0;
180 inet_get_local_port_range(net
, &low
, &high
);
181 high
++; /* [32768, 60999] -> [32768, 61000[ */
185 int half
= low
+ (((high
- low
) >> 2) << 1);
187 if (attempt_half
== 1)
192 remaining
= high
- low
;
193 if (likely(remaining
> 1))
196 offset
= prandom_u32() % remaining
;
197 /* __inet_hash_connect() favors ports having @low parity
198 * We do the opposite to not pollute connect() users.
204 for (i
= 0; i
< remaining
; i
+= 2, port
+= 2) {
205 if (unlikely(port
>= high
))
207 if (inet_is_local_reserved_port(net
, port
))
209 head
= &hinfo
->bhash
[inet_bhashfn(net
, port
,
211 spin_lock_bh(&head
->lock
);
212 inet_bind_bucket_for_each(tb
, &head
->chain
)
213 if (net_eq(ib_net(tb
), net
) && tb
->port
== port
) {
214 if (!inet_csk_bind_conflict(sk
, tb
, false, false))
221 spin_unlock_bh(&head
->lock
);
227 goto other_parity_scan
;
229 if (attempt_half
== 1) {
230 /* OK we now try the upper half of the range */
232 goto other_half_scan
;
241 static inline int sk_reuseport_match(struct inet_bind_bucket
*tb
,
244 kuid_t uid
= sock_i_uid(sk
);
246 if (tb
->fastreuseport
<= 0)
248 if (!sk
->sk_reuseport
)
250 if (rcu_access_pointer(sk
->sk_reuseport_cb
))
252 if (!uid_eq(tb
->fastuid
, uid
))
254 /* We only need to check the rcv_saddr if this tb was once marked
255 * without fastreuseport and then was reset, as we can only know that
256 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
259 if (tb
->fastreuseport
== FASTREUSEPORT_ANY
)
261 #if IS_ENABLED(CONFIG_IPV6)
262 if (tb
->fast_sk_family
== AF_INET6
)
263 return ipv6_rcv_saddr_equal(&tb
->fast_v6_rcv_saddr
,
268 ipv6_only_sock(sk
), true);
270 return ipv4_rcv_saddr_equal(tb
->fast_rcv_saddr
, sk
->sk_rcv_saddr
,
271 ipv6_only_sock(sk
), true);
274 /* Obtain a reference to a local port for the given sock,
275 * if snum is zero it means select any available local port.
276 * We try to allocate an odd port (and leave even ports for connect())
278 int inet_csk_get_port(struct sock
*sk
, unsigned short snum
)
280 bool reuse
= sk
->sk_reuse
&& sk
->sk_state
!= TCP_LISTEN
;
281 struct inet_hashinfo
*hinfo
= sk
->sk_prot
->h
.hashinfo
;
282 int ret
= 1, port
= snum
;
283 struct inet_bind_hashbucket
*head
;
284 struct net
*net
= sock_net(sk
);
285 struct inet_bind_bucket
*tb
= NULL
;
286 kuid_t uid
= sock_i_uid(sk
);
289 head
= inet_csk_find_open_port(sk
, &tb
, &port
);
296 head
= &hinfo
->bhash
[inet_bhashfn(net
, port
,
298 spin_lock_bh(&head
->lock
);
299 inet_bind_bucket_for_each(tb
, &head
->chain
)
300 if (net_eq(ib_net(tb
), net
) && tb
->port
== port
)
303 tb
= inet_bind_bucket_create(hinfo
->bind_bucket_cachep
,
308 if (!hlist_empty(&tb
->owners
)) {
309 if (sk
->sk_reuse
== SK_FORCE_REUSE
)
312 if ((tb
->fastreuse
> 0 && reuse
) ||
313 sk_reuseport_match(tb
, sk
))
315 if (inet_csk_bind_conflict(sk
, tb
, true, true))
319 if (hlist_empty(&tb
->owners
)) {
320 tb
->fastreuse
= reuse
;
321 if (sk
->sk_reuseport
) {
322 tb
->fastreuseport
= FASTREUSEPORT_ANY
;
324 tb
->fast_rcv_saddr
= sk
->sk_rcv_saddr
;
325 tb
->fast_ipv6_only
= ipv6_only_sock(sk
);
326 tb
->fast_sk_family
= sk
->sk_family
;
327 #if IS_ENABLED(CONFIG_IPV6)
328 tb
->fast_v6_rcv_saddr
= sk
->sk_v6_rcv_saddr
;
331 tb
->fastreuseport
= 0;
336 if (sk
->sk_reuseport
) {
337 /* We didn't match or we don't have fastreuseport set on
338 * the tb, but we have sk_reuseport set on this socket
339 * and we know that there are no bind conflicts with
340 * this socket in this tb, so reset our tb's reuseport
341 * settings so that any subsequent sockets that match
342 * our current socket will be put on the fast path.
344 * If we reset we need to set FASTREUSEPORT_STRICT so we
345 * do extra checking for all subsequent sk_reuseport
348 if (!sk_reuseport_match(tb
, sk
)) {
349 tb
->fastreuseport
= FASTREUSEPORT_STRICT
;
351 tb
->fast_rcv_saddr
= sk
->sk_rcv_saddr
;
352 tb
->fast_ipv6_only
= ipv6_only_sock(sk
);
353 tb
->fast_sk_family
= sk
->sk_family
;
354 #if IS_ENABLED(CONFIG_IPV6)
355 tb
->fast_v6_rcv_saddr
= sk
->sk_v6_rcv_saddr
;
359 tb
->fastreuseport
= 0;
362 if (!inet_csk(sk
)->icsk_bind_hash
)
363 inet_bind_hash(sk
, tb
, port
);
364 WARN_ON(inet_csk(sk
)->icsk_bind_hash
!= tb
);
368 spin_unlock_bh(&head
->lock
);
371 EXPORT_SYMBOL_GPL(inet_csk_get_port
);
374 * Wait for an incoming connection, avoid race conditions. This must be called
375 * with the socket locked.
377 static int inet_csk_wait_for_connect(struct sock
*sk
, long timeo
)
379 struct inet_connection_sock
*icsk
= inet_csk(sk
);
384 * True wake-one mechanism for incoming connections: only
385 * one process gets woken up, not the 'whole herd'.
386 * Since we do not 'race & poll' for established sockets
387 * anymore, the common case will execute the loop only once.
389 * Subtle issue: "add_wait_queue_exclusive()" will be added
390 * after any current non-exclusive waiters, and we know that
391 * it will always _stay_ after any new non-exclusive waiters
392 * because all non-exclusive waiters are added at the
393 * beginning of the wait-queue. As such, it's ok to "drop"
394 * our exclusiveness temporarily when we get woken up without
395 * having to remove and re-insert us on the wait queue.
398 prepare_to_wait_exclusive(sk_sleep(sk
), &wait
,
401 if (reqsk_queue_empty(&icsk
->icsk_accept_queue
))
402 timeo
= schedule_timeout(timeo
);
403 sched_annotate_sleep();
406 if (!reqsk_queue_empty(&icsk
->icsk_accept_queue
))
409 if (sk
->sk_state
!= TCP_LISTEN
)
411 err
= sock_intr_errno(timeo
);
412 if (signal_pending(current
))
418 finish_wait(sk_sleep(sk
), &wait
);
423 * This will accept the next outstanding connection.
425 struct sock
*inet_csk_accept(struct sock
*sk
, int flags
, int *err
, bool kern
)
427 struct inet_connection_sock
*icsk
= inet_csk(sk
);
428 struct request_sock_queue
*queue
= &icsk
->icsk_accept_queue
;
429 struct request_sock
*req
;
435 /* We need to make sure that this socket is listening,
436 * and that it has something pending.
439 if (sk
->sk_state
!= TCP_LISTEN
)
442 /* Find already established connection */
443 if (reqsk_queue_empty(queue
)) {
444 long timeo
= sock_rcvtimeo(sk
, flags
& O_NONBLOCK
);
446 /* If this is a non blocking socket don't sleep */
451 error
= inet_csk_wait_for_connect(sk
, timeo
);
455 req
= reqsk_queue_remove(queue
, sk
);
458 if (sk
->sk_protocol
== IPPROTO_TCP
&&
459 tcp_rsk(req
)->tfo_listener
) {
460 spin_lock_bh(&queue
->fastopenq
.lock
);
461 if (tcp_rsk(req
)->tfo_listener
) {
462 /* We are still waiting for the final ACK from 3WHS
463 * so can't free req now. Instead, we set req->sk to
464 * NULL to signify that the child socket is taken
465 * so reqsk_fastopen_remove() will free the req
466 * when 3WHS finishes (or is aborted).
471 spin_unlock_bh(&queue
->fastopenq
.lock
);
484 EXPORT_SYMBOL(inet_csk_accept
);
487 * Using different timers for retransmit, delayed acks and probes
488 * We may wish use just one timer maintaining a list of expire jiffies
491 void inet_csk_init_xmit_timers(struct sock
*sk
,
492 void (*retransmit_handler
)(struct timer_list
*t
),
493 void (*delack_handler
)(struct timer_list
*t
),
494 void (*keepalive_handler
)(struct timer_list
*t
))
496 struct inet_connection_sock
*icsk
= inet_csk(sk
);
498 timer_setup(&icsk
->icsk_retransmit_timer
, retransmit_handler
, 0);
499 timer_setup(&icsk
->icsk_delack_timer
, delack_handler
, 0);
500 timer_setup(&sk
->sk_timer
, keepalive_handler
, 0);
501 icsk
->icsk_pending
= icsk
->icsk_ack
.pending
= 0;
503 EXPORT_SYMBOL(inet_csk_init_xmit_timers
);
505 void inet_csk_clear_xmit_timers(struct sock
*sk
)
507 struct inet_connection_sock
*icsk
= inet_csk(sk
);
509 icsk
->icsk_pending
= icsk
->icsk_ack
.pending
= icsk
->icsk_ack
.blocked
= 0;
511 sk_stop_timer(sk
, &icsk
->icsk_retransmit_timer
);
512 sk_stop_timer(sk
, &icsk
->icsk_delack_timer
);
513 sk_stop_timer(sk
, &sk
->sk_timer
);
515 EXPORT_SYMBOL(inet_csk_clear_xmit_timers
);
517 void inet_csk_delete_keepalive_timer(struct sock
*sk
)
519 sk_stop_timer(sk
, &sk
->sk_timer
);
521 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer
);
523 void inet_csk_reset_keepalive_timer(struct sock
*sk
, unsigned long len
)
525 sk_reset_timer(sk
, &sk
->sk_timer
, jiffies
+ len
);
527 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer
);
529 struct dst_entry
*inet_csk_route_req(const struct sock
*sk
,
531 const struct request_sock
*req
)
533 const struct inet_request_sock
*ireq
= inet_rsk(req
);
534 struct net
*net
= read_pnet(&ireq
->ireq_net
);
535 struct ip_options_rcu
*opt
;
538 opt
= ireq_opt_deref(ireq
);
540 flowi4_init_output(fl4
, ireq
->ir_iif
, ireq
->ir_mark
,
541 RT_CONN_FLAGS(sk
), RT_SCOPE_UNIVERSE
,
542 sk
->sk_protocol
, inet_sk_flowi_flags(sk
),
543 (opt
&& opt
->opt
.srr
) ? opt
->opt
.faddr
: ireq
->ir_rmt_addr
,
544 ireq
->ir_loc_addr
, ireq
->ir_rmt_port
,
545 htons(ireq
->ir_num
), sk
->sk_uid
);
546 security_req_classify_flow(req
, flowi4_to_flowi(fl4
));
547 rt
= ip_route_output_flow(net
, fl4
, sk
);
550 if (opt
&& opt
->opt
.is_strictroute
&& rt
->rt_uses_gateway
)
557 __IP_INC_STATS(net
, IPSTATS_MIB_OUTNOROUTES
);
560 EXPORT_SYMBOL_GPL(inet_csk_route_req
);
562 struct dst_entry
*inet_csk_route_child_sock(const struct sock
*sk
,
564 const struct request_sock
*req
)
566 const struct inet_request_sock
*ireq
= inet_rsk(req
);
567 struct net
*net
= read_pnet(&ireq
->ireq_net
);
568 struct inet_sock
*newinet
= inet_sk(newsk
);
569 struct ip_options_rcu
*opt
;
573 opt
= rcu_dereference(ireq
->ireq_opt
);
574 fl4
= &newinet
->cork
.fl
.u
.ip4
;
576 flowi4_init_output(fl4
, ireq
->ir_iif
, ireq
->ir_mark
,
577 RT_CONN_FLAGS(sk
), RT_SCOPE_UNIVERSE
,
578 sk
->sk_protocol
, inet_sk_flowi_flags(sk
),
579 (opt
&& opt
->opt
.srr
) ? opt
->opt
.faddr
: ireq
->ir_rmt_addr
,
580 ireq
->ir_loc_addr
, ireq
->ir_rmt_port
,
581 htons(ireq
->ir_num
), sk
->sk_uid
);
582 security_req_classify_flow(req
, flowi4_to_flowi(fl4
));
583 rt
= ip_route_output_flow(net
, fl4
, sk
);
586 if (opt
&& opt
->opt
.is_strictroute
&& rt
->rt_uses_gateway
)
593 __IP_INC_STATS(net
, IPSTATS_MIB_OUTNOROUTES
);
596 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock
);
598 #if IS_ENABLED(CONFIG_IPV6)
599 #define AF_INET_FAMILY(fam) ((fam) == AF_INET)
601 #define AF_INET_FAMILY(fam) true
604 /* Decide when to expire the request and when to resend SYN-ACK */
605 static inline void syn_ack_recalc(struct request_sock
*req
, const int thresh
,
606 const int max_retries
,
607 const u8 rskq_defer_accept
,
608 int *expire
, int *resend
)
610 if (!rskq_defer_accept
) {
611 *expire
= req
->num_timeout
>= thresh
;
615 *expire
= req
->num_timeout
>= thresh
&&
616 (!inet_rsk(req
)->acked
|| req
->num_timeout
>= max_retries
);
618 * Do not resend while waiting for data after ACK,
619 * start to resend on end of deferring period to give
620 * last chance for data or ACK to create established socket.
622 *resend
= !inet_rsk(req
)->acked
||
623 req
->num_timeout
>= rskq_defer_accept
- 1;
626 int inet_rtx_syn_ack(const struct sock
*parent
, struct request_sock
*req
)
628 int err
= req
->rsk_ops
->rtx_syn_ack(parent
, req
);
634 EXPORT_SYMBOL(inet_rtx_syn_ack
);
636 /* return true if req was found in the ehash table */
637 static bool reqsk_queue_unlink(struct request_sock_queue
*queue
,
638 struct request_sock
*req
)
640 struct inet_hashinfo
*hashinfo
= req_to_sk(req
)->sk_prot
->h
.hashinfo
;
643 if (sk_hashed(req_to_sk(req
))) {
644 spinlock_t
*lock
= inet_ehash_lockp(hashinfo
, req
->rsk_hash
);
647 found
= __sk_nulls_del_node_init_rcu(req_to_sk(req
));
650 if (timer_pending(&req
->rsk_timer
) && del_timer_sync(&req
->rsk_timer
))
655 void inet_csk_reqsk_queue_drop(struct sock
*sk
, struct request_sock
*req
)
657 if (reqsk_queue_unlink(&inet_csk(sk
)->icsk_accept_queue
, req
)) {
658 reqsk_queue_removed(&inet_csk(sk
)->icsk_accept_queue
, req
);
662 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop
);
664 void inet_csk_reqsk_queue_drop_and_put(struct sock
*sk
, struct request_sock
*req
)
666 inet_csk_reqsk_queue_drop(sk
, req
);
669 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put
);
671 static void reqsk_timer_handler(struct timer_list
*t
)
673 struct request_sock
*req
= from_timer(req
, t
, rsk_timer
);
674 struct sock
*sk_listener
= req
->rsk_listener
;
675 struct net
*net
= sock_net(sk_listener
);
676 struct inet_connection_sock
*icsk
= inet_csk(sk_listener
);
677 struct request_sock_queue
*queue
= &icsk
->icsk_accept_queue
;
678 int qlen
, expire
= 0, resend
= 0;
679 int max_retries
, thresh
;
682 if (inet_sk_state_load(sk_listener
) != TCP_LISTEN
)
685 max_retries
= icsk
->icsk_syn_retries
? : net
->ipv4
.sysctl_tcp_synack_retries
;
686 thresh
= max_retries
;
687 /* Normally all the openreqs are young and become mature
688 * (i.e. converted to established socket) for first timeout.
689 * If synack was not acknowledged for 1 second, it means
690 * one of the following things: synack was lost, ack was lost,
691 * rtt is high or nobody planned to ack (i.e. synflood).
692 * When server is a bit loaded, queue is populated with old
693 * open requests, reducing effective size of queue.
694 * When server is well loaded, queue size reduces to zero
695 * after several minutes of work. It is not synflood,
696 * it is normal operation. The solution is pruning
697 * too old entries overriding normal timeout, when
698 * situation becomes dangerous.
700 * Essentially, we reserve half of room for young
701 * embrions; and abort old ones without pity, if old
702 * ones are about to clog our table.
704 qlen
= reqsk_queue_len(queue
);
705 if ((qlen
<< 1) > max(8U, sk_listener
->sk_max_ack_backlog
)) {
706 int young
= reqsk_queue_len_young(queue
) << 1;
715 defer_accept
= READ_ONCE(queue
->rskq_defer_accept
);
717 max_retries
= defer_accept
;
718 syn_ack_recalc(req
, thresh
, max_retries
, defer_accept
,
720 req
->rsk_ops
->syn_ack_timeout(req
);
723 !inet_rtx_syn_ack(sk_listener
, req
) ||
724 inet_rsk(req
)->acked
)) {
727 if (req
->num_timeout
++ == 0)
728 atomic_dec(&queue
->young
);
729 timeo
= min(TCP_TIMEOUT_INIT
<< req
->num_timeout
, TCP_RTO_MAX
);
730 mod_timer(&req
->rsk_timer
, jiffies
+ timeo
);
734 inet_csk_reqsk_queue_drop_and_put(sk_listener
, req
);
737 static void reqsk_queue_hash_req(struct request_sock
*req
,
738 unsigned long timeout
)
740 req
->num_retrans
= 0;
741 req
->num_timeout
= 0;
744 timer_setup(&req
->rsk_timer
, reqsk_timer_handler
, TIMER_PINNED
);
745 mod_timer(&req
->rsk_timer
, jiffies
+ timeout
);
747 inet_ehash_insert(req_to_sk(req
), NULL
);
748 /* before letting lookups find us, make sure all req fields
749 * are committed to memory and refcnt initialized.
752 refcount_set(&req
->rsk_refcnt
, 2 + 1);
755 void inet_csk_reqsk_queue_hash_add(struct sock
*sk
, struct request_sock
*req
,
756 unsigned long timeout
)
758 reqsk_queue_hash_req(req
, timeout
);
759 inet_csk_reqsk_queue_added(sk
);
761 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add
);
764 * inet_csk_clone_lock - clone an inet socket, and lock its clone
765 * @sk: the socket to clone
767 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
769 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
771 struct sock
*inet_csk_clone_lock(const struct sock
*sk
,
772 const struct request_sock
*req
,
773 const gfp_t priority
)
775 struct sock
*newsk
= sk_clone_lock(sk
, priority
);
778 struct inet_connection_sock
*newicsk
= inet_csk(newsk
);
780 inet_sk_set_state(newsk
, TCP_SYN_RECV
);
781 newicsk
->icsk_bind_hash
= NULL
;
783 inet_sk(newsk
)->inet_dport
= inet_rsk(req
)->ir_rmt_port
;
784 inet_sk(newsk
)->inet_num
= inet_rsk(req
)->ir_num
;
785 inet_sk(newsk
)->inet_sport
= htons(inet_rsk(req
)->ir_num
);
787 /* listeners have SOCK_RCU_FREE, not the children */
788 sock_reset_flag(newsk
, SOCK_RCU_FREE
);
790 inet_sk(newsk
)->mc_list
= NULL
;
792 newsk
->sk_mark
= inet_rsk(req
)->ir_mark
;
793 atomic64_set(&newsk
->sk_cookie
,
794 atomic64_read(&inet_rsk(req
)->ir_cookie
));
796 newicsk
->icsk_retransmits
= 0;
797 newicsk
->icsk_backoff
= 0;
798 newicsk
->icsk_probes_out
= 0;
800 /* Deinitialize accept_queue to trap illegal accesses. */
801 memset(&newicsk
->icsk_accept_queue
, 0, sizeof(newicsk
->icsk_accept_queue
));
803 security_inet_csk_clone(newsk
, req
);
807 EXPORT_SYMBOL_GPL(inet_csk_clone_lock
);
810 * At this point, there should be no process reference to this
811 * socket, and thus no user references at all. Therefore we
812 * can assume the socket waitqueue is inactive and nobody will
813 * try to jump onto it.
815 void inet_csk_destroy_sock(struct sock
*sk
)
817 WARN_ON(sk
->sk_state
!= TCP_CLOSE
);
818 WARN_ON(!sock_flag(sk
, SOCK_DEAD
));
820 /* It cannot be in hash table! */
821 WARN_ON(!sk_unhashed(sk
));
823 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
824 WARN_ON(inet_sk(sk
)->inet_num
&& !inet_csk(sk
)->icsk_bind_hash
);
826 sk
->sk_prot
->destroy(sk
);
828 sk_stream_kill_queues(sk
);
830 xfrm_sk_free_policy(sk
);
832 sk_refcnt_debug_release(sk
);
834 percpu_counter_dec(sk
->sk_prot
->orphan_count
);
838 EXPORT_SYMBOL(inet_csk_destroy_sock
);
840 /* This function allows to force a closure of a socket after the call to
841 * tcp/dccp_create_openreq_child().
843 void inet_csk_prepare_forced_close(struct sock
*sk
)
844 __releases(&sk
->sk_lock
.slock
)
846 /* sk_clone_lock locked the socket and set refcnt to 2 */
850 /* The below has to be done to allow calling inet_csk_destroy_sock */
851 sock_set_flag(sk
, SOCK_DEAD
);
852 percpu_counter_inc(sk
->sk_prot
->orphan_count
);
853 inet_sk(sk
)->inet_num
= 0;
855 EXPORT_SYMBOL(inet_csk_prepare_forced_close
);
857 int inet_csk_listen_start(struct sock
*sk
, int backlog
)
859 struct inet_connection_sock
*icsk
= inet_csk(sk
);
860 struct inet_sock
*inet
= inet_sk(sk
);
861 int err
= -EADDRINUSE
;
863 reqsk_queue_alloc(&icsk
->icsk_accept_queue
);
865 sk
->sk_max_ack_backlog
= backlog
;
866 sk
->sk_ack_backlog
= 0;
867 inet_csk_delack_init(sk
);
869 /* There is race window here: we announce ourselves listening,
870 * but this transition is still not validated by get_port().
871 * It is OK, because this socket enters to hash table only
872 * after validation is complete.
874 inet_sk_state_store(sk
, TCP_LISTEN
);
875 if (!sk
->sk_prot
->get_port(sk
, inet
->inet_num
)) {
876 inet
->inet_sport
= htons(inet
->inet_num
);
879 err
= sk
->sk_prot
->hash(sk
);
885 inet_sk_set_state(sk
, TCP_CLOSE
);
888 EXPORT_SYMBOL_GPL(inet_csk_listen_start
);
890 static void inet_child_forget(struct sock
*sk
, struct request_sock
*req
,
893 sk
->sk_prot
->disconnect(child
, O_NONBLOCK
);
897 percpu_counter_inc(sk
->sk_prot
->orphan_count
);
899 if (sk
->sk_protocol
== IPPROTO_TCP
&& tcp_rsk(req
)->tfo_listener
) {
900 BUG_ON(tcp_sk(child
)->fastopen_rsk
!= req
);
901 BUG_ON(sk
!= req
->rsk_listener
);
903 /* Paranoid, to prevent race condition if
904 * an inbound pkt destined for child is
905 * blocked by sock lock in tcp_v4_rcv().
906 * Also to satisfy an assertion in
907 * tcp_v4_destroy_sock().
909 tcp_sk(child
)->fastopen_rsk
= NULL
;
911 inet_csk_destroy_sock(child
);
914 struct sock
*inet_csk_reqsk_queue_add(struct sock
*sk
,
915 struct request_sock
*req
,
918 struct request_sock_queue
*queue
= &inet_csk(sk
)->icsk_accept_queue
;
920 spin_lock(&queue
->rskq_lock
);
921 if (unlikely(sk
->sk_state
!= TCP_LISTEN
)) {
922 inet_child_forget(sk
, req
, child
);
927 if (queue
->rskq_accept_head
== NULL
)
928 queue
->rskq_accept_head
= req
;
930 queue
->rskq_accept_tail
->dl_next
= req
;
931 queue
->rskq_accept_tail
= req
;
932 sk_acceptq_added(sk
);
934 spin_unlock(&queue
->rskq_lock
);
937 EXPORT_SYMBOL(inet_csk_reqsk_queue_add
);
939 struct sock
*inet_csk_complete_hashdance(struct sock
*sk
, struct sock
*child
,
940 struct request_sock
*req
, bool own_req
)
943 inet_csk_reqsk_queue_drop(sk
, req
);
944 reqsk_queue_removed(&inet_csk(sk
)->icsk_accept_queue
, req
);
945 if (inet_csk_reqsk_queue_add(sk
, req
, child
))
948 /* Too bad, another child took ownership of the request, undo. */
949 bh_unlock_sock(child
);
953 EXPORT_SYMBOL(inet_csk_complete_hashdance
);
956 * This routine closes sockets which have been at least partially
957 * opened, but not yet accepted.
959 void inet_csk_listen_stop(struct sock
*sk
)
961 struct inet_connection_sock
*icsk
= inet_csk(sk
);
962 struct request_sock_queue
*queue
= &icsk
->icsk_accept_queue
;
963 struct request_sock
*next
, *req
;
965 /* Following specs, it would be better either to send FIN
966 * (and enter FIN-WAIT-1, it is normal close)
967 * or to send active reset (abort).
968 * Certainly, it is pretty dangerous while synflood, but it is
969 * bad justification for our negligence 8)
970 * To be honest, we are not able to make either
971 * of the variants now. --ANK
973 while ((req
= reqsk_queue_remove(queue
, sk
)) != NULL
) {
974 struct sock
*child
= req
->sk
;
978 WARN_ON(sock_owned_by_user(child
));
981 inet_child_forget(sk
, req
, child
);
983 bh_unlock_sock(child
);
989 if (queue
->fastopenq
.rskq_rst_head
) {
990 /* Free all the reqs queued in rskq_rst_head. */
991 spin_lock_bh(&queue
->fastopenq
.lock
);
992 req
= queue
->fastopenq
.rskq_rst_head
;
993 queue
->fastopenq
.rskq_rst_head
= NULL
;
994 spin_unlock_bh(&queue
->fastopenq
.lock
);
995 while (req
!= NULL
) {
1001 WARN_ON_ONCE(sk
->sk_ack_backlog
);
1003 EXPORT_SYMBOL_GPL(inet_csk_listen_stop
);
1005 void inet_csk_addr2sockaddr(struct sock
*sk
, struct sockaddr
*uaddr
)
1007 struct sockaddr_in
*sin
= (struct sockaddr_in
*)uaddr
;
1008 const struct inet_sock
*inet
= inet_sk(sk
);
1010 sin
->sin_family
= AF_INET
;
1011 sin
->sin_addr
.s_addr
= inet
->inet_daddr
;
1012 sin
->sin_port
= inet
->inet_dport
;
1014 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr
);
1016 #ifdef CONFIG_COMPAT
1017 int inet_csk_compat_getsockopt(struct sock
*sk
, int level
, int optname
,
1018 char __user
*optval
, int __user
*optlen
)
1020 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1022 if (icsk
->icsk_af_ops
->compat_getsockopt
)
1023 return icsk
->icsk_af_ops
->compat_getsockopt(sk
, level
, optname
,
1025 return icsk
->icsk_af_ops
->getsockopt(sk
, level
, optname
,
1028 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt
);
1030 int inet_csk_compat_setsockopt(struct sock
*sk
, int level
, int optname
,
1031 char __user
*optval
, unsigned int optlen
)
1033 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1035 if (icsk
->icsk_af_ops
->compat_setsockopt
)
1036 return icsk
->icsk_af_ops
->compat_setsockopt(sk
, level
, optname
,
1038 return icsk
->icsk_af_ops
->setsockopt(sk
, level
, optname
,
1041 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt
);
1044 static struct dst_entry
*inet_csk_rebuild_route(struct sock
*sk
, struct flowi
*fl
)
1046 const struct inet_sock
*inet
= inet_sk(sk
);
1047 const struct ip_options_rcu
*inet_opt
;
1048 __be32 daddr
= inet
->inet_daddr
;
1053 inet_opt
= rcu_dereference(inet
->inet_opt
);
1054 if (inet_opt
&& inet_opt
->opt
.srr
)
1055 daddr
= inet_opt
->opt
.faddr
;
1057 rt
= ip_route_output_ports(sock_net(sk
), fl4
, sk
, daddr
,
1058 inet
->inet_saddr
, inet
->inet_dport
,
1059 inet
->inet_sport
, sk
->sk_protocol
,
1060 RT_CONN_FLAGS(sk
), sk
->sk_bound_dev_if
);
1064 sk_setup_caps(sk
, &rt
->dst
);
1070 struct dst_entry
*inet_csk_update_pmtu(struct sock
*sk
, u32 mtu
)
1072 struct dst_entry
*dst
= __sk_dst_check(sk
, 0);
1073 struct inet_sock
*inet
= inet_sk(sk
);
1076 dst
= inet_csk_rebuild_route(sk
, &inet
->cork
.fl
);
1080 dst
->ops
->update_pmtu(dst
, sk
, NULL
, mtu
);
1082 dst
= __sk_dst_check(sk
, 0);
1084 dst
= inet_csk_rebuild_route(sk
, &inet
->cork
.fl
);
1088 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu
);