2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <linux/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
70 #include <linux/skbuff.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <net/lwtunnel.h>
77 #include <linux/bpf-cgroup.h>
78 #include <linux/igmp.h>
79 #include <linux/netfilter_ipv4.h>
80 #include <linux/netfilter_bridge.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
85 ip_fragment(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
,
87 int (*output
)(struct net
*, struct sock
*, struct sk_buff
*));
89 /* Generate a checksum for an outgoing IP datagram. */
90 void ip_send_check(struct iphdr
*iph
)
93 iph
->check
= ip_fast_csum((unsigned char *)iph
, iph
->ihl
);
95 EXPORT_SYMBOL(ip_send_check
);
97 int __ip_local_out(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
99 struct iphdr
*iph
= ip_hdr(skb
);
101 iph
->tot_len
= htons(skb
->len
);
104 /* if egress device is enslaved to an L3 master device pass the
105 * skb to its handler for processing
107 skb
= l3mdev_ip_out(sk
, skb
);
111 skb
->protocol
= htons(ETH_P_IP
);
113 return nf_hook(NFPROTO_IPV4
, NF_INET_LOCAL_OUT
,
114 net
, sk
, skb
, NULL
, skb_dst(skb
)->dev
,
118 int ip_local_out(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
122 err
= __ip_local_out(net
, sk
, skb
);
123 if (likely(err
== 1))
124 err
= dst_output(net
, sk
, skb
);
128 EXPORT_SYMBOL_GPL(ip_local_out
);
130 static inline int ip_select_ttl(struct inet_sock
*inet
, struct dst_entry
*dst
)
132 int ttl
= inet
->uc_ttl
;
135 ttl
= ip4_dst_hoplimit(dst
);
140 * Add an ip header to a skbuff and send it out.
143 int ip_build_and_send_pkt(struct sk_buff
*skb
, const struct sock
*sk
,
144 __be32 saddr
, __be32 daddr
, struct ip_options_rcu
*opt
)
146 struct inet_sock
*inet
= inet_sk(sk
);
147 struct rtable
*rt
= skb_rtable(skb
);
148 struct net
*net
= sock_net(sk
);
151 /* Build the IP header. */
152 skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->opt
.optlen
: 0));
153 skb_reset_network_header(skb
);
157 iph
->tos
= inet
->tos
;
158 iph
->ttl
= ip_select_ttl(inet
, &rt
->dst
);
159 iph
->daddr
= (opt
&& opt
->opt
.srr
? opt
->opt
.faddr
: daddr
);
161 iph
->protocol
= sk
->sk_protocol
;
162 if (ip_dont_fragment(sk
, &rt
->dst
)) {
163 iph
->frag_off
= htons(IP_DF
);
167 __ip_select_ident(net
, iph
, 1);
170 if (opt
&& opt
->opt
.optlen
) {
171 iph
->ihl
+= opt
->opt
.optlen
>>2;
172 ip_options_build(skb
, &opt
->opt
, daddr
, rt
, 0);
175 skb
->priority
= sk
->sk_priority
;
177 skb
->mark
= sk
->sk_mark
;
180 return ip_local_out(net
, skb
->sk
, skb
);
182 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt
);
184 static int ip_finish_output2(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
186 struct dst_entry
*dst
= skb_dst(skb
);
187 struct rtable
*rt
= (struct rtable
*)dst
;
188 struct net_device
*dev
= dst
->dev
;
189 unsigned int hh_len
= LL_RESERVED_SPACE(dev
);
190 struct neighbour
*neigh
;
193 if (rt
->rt_type
== RTN_MULTICAST
) {
194 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUTMCAST
, skb
->len
);
195 } else if (rt
->rt_type
== RTN_BROADCAST
)
196 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUTBCAST
, skb
->len
);
198 /* Be paranoid, rather than too clever. */
199 if (unlikely(skb_headroom(skb
) < hh_len
&& dev
->header_ops
)) {
200 struct sk_buff
*skb2
;
202 skb2
= skb_realloc_headroom(skb
, LL_RESERVED_SPACE(dev
));
208 skb_set_owner_w(skb2
, skb
->sk
);
213 if (lwtunnel_xmit_redirect(dst
->lwtstate
)) {
214 int res
= lwtunnel_xmit(skb
);
216 if (res
< 0 || res
== LWTUNNEL_XMIT_DONE
)
221 nexthop
= (__force u32
) rt_nexthop(rt
, ip_hdr(skb
)->daddr
);
222 neigh
= __ipv4_neigh_lookup_noref(dev
, nexthop
);
223 if (unlikely(!neigh
))
224 neigh
= __neigh_create(&arp_tbl
, &nexthop
, dev
, false);
225 if (!IS_ERR(neigh
)) {
228 sock_confirm_neigh(skb
, neigh
);
229 res
= neigh_output(neigh
, skb
);
231 rcu_read_unlock_bh();
234 rcu_read_unlock_bh();
236 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
242 static int ip_finish_output_gso(struct net
*net
, struct sock
*sk
,
243 struct sk_buff
*skb
, unsigned int mtu
)
245 netdev_features_t features
;
246 struct sk_buff
*segs
;
249 /* common case: seglen is <= mtu
251 if (skb_gso_validate_network_len(skb
, mtu
))
252 return ip_finish_output2(net
, sk
, skb
);
254 /* Slowpath - GSO segment length exceeds the egress MTU.
256 * This can happen in several cases:
257 * - Forwarding of a TCP GRO skb, when DF flag is not set.
258 * - Forwarding of an skb that arrived on a virtualization interface
259 * (virtio-net/vhost/tap) with TSO/GSO size set by other network
261 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
262 * interface with a smaller MTU.
263 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is
264 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an
267 features
= netif_skb_features(skb
);
268 BUILD_BUG_ON(sizeof(*IPCB(skb
)) > SKB_SGO_CB_OFFSET
);
269 segs
= skb_gso_segment(skb
, features
& ~NETIF_F_GSO_MASK
);
270 if (IS_ERR_OR_NULL(segs
)) {
278 struct sk_buff
*nskb
= segs
->next
;
282 err
= ip_fragment(net
, sk
, segs
, mtu
, ip_finish_output2
);
292 static int ip_finish_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
297 ret
= BPF_CGROUP_RUN_PROG_INET_EGRESS(sk
, skb
);
303 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
304 /* Policy lookup after SNAT yielded a new policy */
305 if (skb_dst(skb
)->xfrm
) {
306 IPCB(skb
)->flags
|= IPSKB_REROUTED
;
307 return dst_output(net
, sk
, skb
);
310 mtu
= ip_skb_dst_mtu(sk
, skb
);
312 return ip_finish_output_gso(net
, sk
, skb
, mtu
);
314 if (skb
->len
> mtu
|| (IPCB(skb
)->flags
& IPSKB_FRAG_PMTU
))
315 return ip_fragment(net
, sk
, skb
, mtu
, ip_finish_output2
);
317 return ip_finish_output2(net
, sk
, skb
);
320 static int ip_mc_finish_output(struct net
*net
, struct sock
*sk
,
325 ret
= BPF_CGROUP_RUN_PROG_INET_EGRESS(sk
, skb
);
331 return dev_loopback_xmit(net
, sk
, skb
);
334 int ip_mc_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
336 struct rtable
*rt
= skb_rtable(skb
);
337 struct net_device
*dev
= rt
->dst
.dev
;
340 * If the indicated interface is up and running, send the packet.
342 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUT
, skb
->len
);
345 skb
->protocol
= htons(ETH_P_IP
);
348 * Multicasts are looped back for other local users
351 if (rt
->rt_flags
&RTCF_MULTICAST
) {
353 #ifdef CONFIG_IP_MROUTE
354 /* Small optimization: do not loopback not local frames,
355 which returned after forwarding; they will be dropped
356 by ip_mr_input in any case.
357 Note, that local frames are looped back to be delivered
360 This check is duplicated in ip_mr_input at the moment.
363 ((rt
->rt_flags
& RTCF_LOCAL
) ||
364 !(IPCB(skb
)->flags
& IPSKB_FORWARDED
))
367 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
369 NF_HOOK(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
370 net
, sk
, newskb
, NULL
, newskb
->dev
,
371 ip_mc_finish_output
);
374 /* Multicasts with ttl 0 must not go beyond the host */
376 if (ip_hdr(skb
)->ttl
== 0) {
382 if (rt
->rt_flags
&RTCF_BROADCAST
) {
383 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
385 NF_HOOK(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
386 net
, sk
, newskb
, NULL
, newskb
->dev
,
387 ip_mc_finish_output
);
390 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
391 net
, sk
, skb
, NULL
, skb
->dev
,
393 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
396 int ip_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
398 struct net_device
*dev
= skb_dst(skb
)->dev
;
400 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUT
, skb
->len
);
403 skb
->protocol
= htons(ETH_P_IP
);
405 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
406 net
, sk
, skb
, NULL
, dev
,
408 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
412 * copy saddr and daddr, possibly using 64bit load/stores
414 * iph->saddr = fl4->saddr;
415 * iph->daddr = fl4->daddr;
417 static void ip_copy_addrs(struct iphdr
*iph
, const struct flowi4
*fl4
)
419 BUILD_BUG_ON(offsetof(typeof(*fl4
), daddr
) !=
420 offsetof(typeof(*fl4
), saddr
) + sizeof(fl4
->saddr
));
421 memcpy(&iph
->saddr
, &fl4
->saddr
,
422 sizeof(fl4
->saddr
) + sizeof(fl4
->daddr
));
425 /* Note: skb->sk can be different from sk, in case of tunnels */
426 int ip_queue_xmit(struct sock
*sk
, struct sk_buff
*skb
, struct flowi
*fl
)
428 struct inet_sock
*inet
= inet_sk(sk
);
429 struct net
*net
= sock_net(sk
);
430 struct ip_options_rcu
*inet_opt
;
436 /* Skip all of this if the packet is already routed,
437 * f.e. by something like SCTP.
440 inet_opt
= rcu_dereference(inet
->inet_opt
);
442 rt
= skb_rtable(skb
);
446 /* Make sure we can route this packet. */
447 rt
= (struct rtable
*)__sk_dst_check(sk
, 0);
451 /* Use correct destination address if we have options. */
452 daddr
= inet
->inet_daddr
;
453 if (inet_opt
&& inet_opt
->opt
.srr
)
454 daddr
= inet_opt
->opt
.faddr
;
456 /* If this fails, retransmit mechanism of transport layer will
457 * keep trying until route appears or the connection times
460 rt
= ip_route_output_ports(net
, fl4
, sk
,
461 daddr
, inet
->inet_saddr
,
466 sk
->sk_bound_dev_if
);
469 sk_setup_caps(sk
, &rt
->dst
);
471 skb_dst_set_noref(skb
, &rt
->dst
);
474 if (inet_opt
&& inet_opt
->opt
.is_strictroute
&& rt
->rt_uses_gateway
)
477 /* OK, we know where to send it, allocate and build IP header. */
478 skb_push(skb
, sizeof(struct iphdr
) + (inet_opt
? inet_opt
->opt
.optlen
: 0));
479 skb_reset_network_header(skb
);
481 *((__be16
*)iph
) = htons((4 << 12) | (5 << 8) | (inet
->tos
& 0xff));
482 if (ip_dont_fragment(sk
, &rt
->dst
) && !skb
->ignore_df
)
483 iph
->frag_off
= htons(IP_DF
);
486 iph
->ttl
= ip_select_ttl(inet
, &rt
->dst
);
487 iph
->protocol
= sk
->sk_protocol
;
488 ip_copy_addrs(iph
, fl4
);
490 /* Transport layer set skb->h.foo itself. */
492 if (inet_opt
&& inet_opt
->opt
.optlen
) {
493 iph
->ihl
+= inet_opt
->opt
.optlen
>> 2;
494 ip_options_build(skb
, &inet_opt
->opt
, inet
->inet_daddr
, rt
, 0);
497 ip_select_ident_segs(net
, skb
, sk
,
498 skb_shinfo(skb
)->gso_segs
?: 1);
500 /* TODO : should we use skb->sk here instead of sk ? */
501 skb
->priority
= sk
->sk_priority
;
502 skb
->mark
= sk
->sk_mark
;
504 res
= ip_local_out(net
, sk
, skb
);
510 IP_INC_STATS(net
, IPSTATS_MIB_OUTNOROUTES
);
512 return -EHOSTUNREACH
;
514 EXPORT_SYMBOL(ip_queue_xmit
);
516 static void ip_copy_metadata(struct sk_buff
*to
, struct sk_buff
*from
)
518 to
->pkt_type
= from
->pkt_type
;
519 to
->priority
= from
->priority
;
520 to
->protocol
= from
->protocol
;
522 skb_dst_copy(to
, from
);
524 to
->mark
= from
->mark
;
526 skb_copy_hash(to
, from
);
528 /* Copy the flags to each fragment. */
529 IPCB(to
)->flags
= IPCB(from
)->flags
;
531 #ifdef CONFIG_NET_SCHED
532 to
->tc_index
= from
->tc_index
;
535 #if IS_ENABLED(CONFIG_IP_VS)
536 to
->ipvs_property
= from
->ipvs_property
;
538 skb_copy_secmark(to
, from
);
541 static int ip_fragment(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
,
543 int (*output
)(struct net
*, struct sock
*, struct sk_buff
*))
545 struct iphdr
*iph
= ip_hdr(skb
);
547 if ((iph
->frag_off
& htons(IP_DF
)) == 0)
548 return ip_do_fragment(net
, sk
, skb
, output
);
550 if (unlikely(!skb
->ignore_df
||
551 (IPCB(skb
)->frag_max_size
&&
552 IPCB(skb
)->frag_max_size
> mtu
))) {
553 IP_INC_STATS(net
, IPSTATS_MIB_FRAGFAILS
);
554 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_FRAG_NEEDED
,
560 return ip_do_fragment(net
, sk
, skb
, output
);
564 * This IP datagram is too large to be sent in one piece. Break it up into
565 * smaller pieces (each of size equal to IP header plus
566 * a block of the data of the original IP data part) that will yet fit in a
567 * single device frame, and queue such a frame for sending.
570 int ip_do_fragment(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
,
571 int (*output
)(struct net
*, struct sock
*, struct sk_buff
*))
575 struct sk_buff
*skb2
;
576 unsigned int mtu
, hlen
, left
, len
, ll_rs
;
578 __be16 not_last_frag
;
579 struct rtable
*rt
= skb_rtable(skb
);
582 /* for offloaded checksums cleanup checksum before fragmentation */
583 if (skb
->ip_summed
== CHECKSUM_PARTIAL
&&
584 (err
= skb_checksum_help(skb
)))
588 * Point into the IP datagram header.
593 mtu
= ip_skb_dst_mtu(sk
, skb
);
594 if (IPCB(skb
)->frag_max_size
&& IPCB(skb
)->frag_max_size
< mtu
)
595 mtu
= IPCB(skb
)->frag_max_size
;
598 * Setup starting values.
602 mtu
= mtu
- hlen
; /* Size of data space */
603 IPCB(skb
)->flags
|= IPSKB_FRAG_COMPLETE
;
604 ll_rs
= LL_RESERVED_SPACE(rt
->dst
.dev
);
606 /* When frag_list is given, use it. First, check its validity:
607 * some transformers could create wrong frag_list or break existing
608 * one, it is not prohibited. In this case fall back to copying.
610 * LATER: this step can be merged to real generation of fragments,
611 * we can switch to copy when see the first bad fragment.
613 if (skb_has_frag_list(skb
)) {
614 struct sk_buff
*frag
, *frag2
;
615 unsigned int first_len
= skb_pagelen(skb
);
617 if (first_len
- hlen
> mtu
||
618 ((first_len
- hlen
) & 7) ||
619 ip_is_fragment(iph
) ||
621 skb_headroom(skb
) < ll_rs
)
624 skb_walk_frags(skb
, frag
) {
625 /* Correct geometry. */
626 if (frag
->len
> mtu
||
627 ((frag
->len
& 7) && frag
->next
) ||
628 skb_headroom(frag
) < hlen
+ ll_rs
)
629 goto slow_path_clean
;
631 /* Partially cloned skb? */
632 if (skb_shared(frag
))
633 goto slow_path_clean
;
638 frag
->destructor
= sock_wfree
;
640 skb
->truesize
-= frag
->truesize
;
643 /* Everything is OK. Generate! */
647 frag
= skb_shinfo(skb
)->frag_list
;
648 skb_frag_list_init(skb
);
649 skb
->data_len
= first_len
- skb_headlen(skb
);
650 skb
->len
= first_len
;
651 iph
->tot_len
= htons(first_len
);
652 iph
->frag_off
= htons(IP_MF
);
656 /* Prepare header of the next frame,
657 * before previous one went down. */
659 frag
->ip_summed
= CHECKSUM_NONE
;
660 skb_reset_transport_header(frag
);
661 __skb_push(frag
, hlen
);
662 skb_reset_network_header(frag
);
663 memcpy(skb_network_header(frag
), iph
, hlen
);
665 iph
->tot_len
= htons(frag
->len
);
666 ip_copy_metadata(frag
, skb
);
668 ip_options_fragment(frag
);
669 offset
+= skb
->len
- hlen
;
670 iph
->frag_off
= htons(offset
>>3);
672 iph
->frag_off
|= htons(IP_MF
);
673 /* Ready, complete checksum */
677 err
= output(net
, sk
, skb
);
680 IP_INC_STATS(net
, IPSTATS_MIB_FRAGCREATES
);
690 IP_INC_STATS(net
, IPSTATS_MIB_FRAGOKS
);
699 IP_INC_STATS(net
, IPSTATS_MIB_FRAGFAILS
);
703 skb_walk_frags(skb
, frag2
) {
707 frag2
->destructor
= NULL
;
708 skb
->truesize
+= frag2
->truesize
;
715 left
= skb
->len
- hlen
; /* Space per frame */
716 ptr
= hlen
; /* Where to start from */
719 * Fragment the datagram.
722 offset
= (ntohs(iph
->frag_off
) & IP_OFFSET
) << 3;
723 not_last_frag
= iph
->frag_off
& htons(IP_MF
);
726 * Keep copying data until we run out.
731 /* IF: it doesn't fit, use 'mtu' - the data space left */
734 /* IF: we are not sending up to and including the packet end
735 then align the next start on an eight byte boundary */
740 /* Allocate buffer */
741 skb2
= alloc_skb(len
+ hlen
+ ll_rs
, GFP_ATOMIC
);
748 * Set up data on packet
751 ip_copy_metadata(skb2
, skb
);
752 skb_reserve(skb2
, ll_rs
);
753 skb_put(skb2
, len
+ hlen
);
754 skb_reset_network_header(skb2
);
755 skb2
->transport_header
= skb2
->network_header
+ hlen
;
758 * Charge the memory for the fragment to any owner
763 skb_set_owner_w(skb2
, skb
->sk
);
766 * Copy the packet header into the new buffer.
769 skb_copy_from_linear_data(skb
, skb_network_header(skb2
), hlen
);
772 * Copy a block of the IP datagram.
774 if (skb_copy_bits(skb
, ptr
, skb_transport_header(skb2
), len
))
779 * Fill in the new header fields.
782 iph
->frag_off
= htons((offset
>> 3));
784 if (IPCB(skb
)->flags
& IPSKB_FRAG_PMTU
)
785 iph
->frag_off
|= htons(IP_DF
);
787 /* ANK: dirty, but effective trick. Upgrade options only if
788 * the segment to be fragmented was THE FIRST (otherwise,
789 * options are already fixed) and make it ONCE
790 * on the initial skb, so that all the following fragments
791 * will inherit fixed options.
794 ip_options_fragment(skb
);
797 * Added AC : If we are fragmenting a fragment that's not the
798 * last fragment then keep MF on each bit
800 if (left
> 0 || not_last_frag
)
801 iph
->frag_off
|= htons(IP_MF
);
806 * Put this fragment into the sending queue.
808 iph
->tot_len
= htons(len
+ hlen
);
812 err
= output(net
, sk
, skb2
);
816 IP_INC_STATS(net
, IPSTATS_MIB_FRAGCREATES
);
819 IP_INC_STATS(net
, IPSTATS_MIB_FRAGOKS
);
824 IP_INC_STATS(net
, IPSTATS_MIB_FRAGFAILS
);
827 EXPORT_SYMBOL(ip_do_fragment
);
830 ip_generic_getfrag(void *from
, char *to
, int offset
, int len
, int odd
, struct sk_buff
*skb
)
832 struct msghdr
*msg
= from
;
834 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
835 if (!copy_from_iter_full(to
, len
, &msg
->msg_iter
))
839 if (!csum_and_copy_from_iter_full(to
, len
, &csum
, &msg
->msg_iter
))
841 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
845 EXPORT_SYMBOL(ip_generic_getfrag
);
848 csum_page(struct page
*page
, int offset
, int copy
)
853 csum
= csum_partial(kaddr
+ offset
, copy
, 0);
858 static int __ip_append_data(struct sock
*sk
,
860 struct sk_buff_head
*queue
,
861 struct inet_cork
*cork
,
862 struct page_frag
*pfrag
,
863 int getfrag(void *from
, char *to
, int offset
,
864 int len
, int odd
, struct sk_buff
*skb
),
865 void *from
, int length
, int transhdrlen
,
868 struct inet_sock
*inet
= inet_sk(sk
);
871 struct ip_options
*opt
= cork
->opt
;
878 unsigned int maxfraglen
, fragheaderlen
, maxnonfragsize
;
879 int csummode
= CHECKSUM_NONE
;
880 struct rtable
*rt
= (struct rtable
*)cork
->dst
;
881 unsigned int wmem_alloc_delta
= 0;
885 skb
= skb_peek_tail(queue
);
887 exthdrlen
= !skb
? rt
->dst
.header_len
: 0;
888 mtu
= cork
->gso_size
? IP_MAX_MTU
: cork
->fragsize
;
889 paged
= !!cork
->gso_size
;
891 if (cork
->tx_flags
& SKBTX_ANY_SW_TSTAMP
&&
892 sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
)
893 tskey
= sk
->sk_tskey
++;
895 hh_len
= LL_RESERVED_SPACE(rt
->dst
.dev
);
897 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
898 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
899 maxnonfragsize
= ip_sk_ignore_df(sk
) ? 0xFFFF : mtu
;
901 if (cork
->length
+ length
> maxnonfragsize
- fragheaderlen
) {
902 ip_local_error(sk
, EMSGSIZE
, fl4
->daddr
, inet
->inet_dport
,
903 mtu
- (opt
? opt
->optlen
: 0));
908 * transhdrlen > 0 means that this is the first fragment and we wish
909 * it won't be fragmented in the future.
912 length
+ fragheaderlen
<= mtu
&&
913 rt
->dst
.dev
->features
& (NETIF_F_HW_CSUM
| NETIF_F_IP_CSUM
) &&
914 (!(flags
& MSG_MORE
) || cork
->gso_size
) &&
915 (!exthdrlen
|| (rt
->dst
.dev
->features
& NETIF_F_HW_ESP_TX_CSUM
)))
916 csummode
= CHECKSUM_PARTIAL
;
918 cork
->length
+= length
;
920 /* So, what's going on in the loop below?
922 * We use calculated fragment length to generate chained skb,
923 * each of segments is IP fragment ready for sending to network after
924 * adding appropriate IP header.
931 /* Check if the remaining data fits into current packet. */
932 copy
= mtu
- skb
->len
;
934 copy
= maxfraglen
- skb
->len
;
937 unsigned int datalen
;
938 unsigned int fraglen
;
939 unsigned int fraggap
;
940 unsigned int alloclen
;
941 unsigned int pagedlen
= 0;
942 struct sk_buff
*skb_prev
;
946 fraggap
= skb_prev
->len
- maxfraglen
;
951 * If remaining data exceeds the mtu,
952 * we know we need more fragment(s).
954 datalen
= length
+ fraggap
;
955 if (datalen
> mtu
- fragheaderlen
)
956 datalen
= maxfraglen
- fragheaderlen
;
957 fraglen
= datalen
+ fragheaderlen
;
959 if ((flags
& MSG_MORE
) &&
960 !(rt
->dst
.dev
->features
&NETIF_F_SG
))
965 alloclen
= min_t(int, fraglen
, MAX_HEADER
);
966 pagedlen
= fraglen
- alloclen
;
969 alloclen
+= exthdrlen
;
971 /* The last fragment gets additional space at tail.
972 * Note, with MSG_MORE we overallocate on fragments,
973 * because we have no idea what fragment will be
976 if (datalen
== length
+ fraggap
)
977 alloclen
+= rt
->dst
.trailer_len
;
980 skb
= sock_alloc_send_skb(sk
,
981 alloclen
+ hh_len
+ 15,
982 (flags
& MSG_DONTWAIT
), &err
);
985 if (refcount_read(&sk
->sk_wmem_alloc
) + wmem_alloc_delta
<=
987 skb
= alloc_skb(alloclen
+ hh_len
+ 15,
996 * Fill in the control structures
998 skb
->ip_summed
= csummode
;
1000 skb_reserve(skb
, hh_len
);
1002 /* only the initial fragment is time stamped */
1003 skb_shinfo(skb
)->tx_flags
= cork
->tx_flags
;
1005 skb_shinfo(skb
)->tskey
= tskey
;
1009 * Find where to start putting bytes.
1011 data
= skb_put(skb
, fraglen
+ exthdrlen
- pagedlen
);
1012 skb_set_network_header(skb
, exthdrlen
);
1013 skb
->transport_header
= (skb
->network_header
+
1015 data
+= fragheaderlen
+ exthdrlen
;
1018 skb
->csum
= skb_copy_and_csum_bits(
1019 skb_prev
, maxfraglen
,
1020 data
+ transhdrlen
, fraggap
, 0);
1021 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1024 pskb_trim_unique(skb_prev
, maxfraglen
);
1027 copy
= datalen
- transhdrlen
- fraggap
- pagedlen
;
1028 if (copy
> 0 && getfrag(from
, data
+ transhdrlen
, offset
, copy
, fraggap
, skb
) < 0) {
1035 length
-= copy
+ transhdrlen
;
1038 csummode
= CHECKSUM_NONE
;
1040 if ((flags
& MSG_CONFIRM
) && !skb_prev
)
1041 skb_set_dst_pending_confirm(skb
, 1);
1044 * Put the packet on the pending queue.
1046 if (!skb
->destructor
) {
1047 skb
->destructor
= sock_wfree
;
1049 wmem_alloc_delta
+= skb
->truesize
;
1051 __skb_queue_tail(queue
, skb
);
1058 if (!(rt
->dst
.dev
->features
&NETIF_F_SG
) &&
1059 skb_tailroom(skb
) >= copy
) {
1063 if (getfrag(from
, skb_put(skb
, copy
),
1064 offset
, copy
, off
, skb
) < 0) {
1065 __skb_trim(skb
, off
);
1070 int i
= skb_shinfo(skb
)->nr_frags
;
1073 if (!sk_page_frag_refill(sk
, pfrag
))
1076 if (!skb_can_coalesce(skb
, i
, pfrag
->page
,
1079 if (i
== MAX_SKB_FRAGS
)
1082 __skb_fill_page_desc(skb
, i
, pfrag
->page
,
1084 skb_shinfo(skb
)->nr_frags
= ++i
;
1085 get_page(pfrag
->page
);
1087 copy
= min_t(int, copy
, pfrag
->size
- pfrag
->offset
);
1089 page_address(pfrag
->page
) + pfrag
->offset
,
1090 offset
, copy
, skb
->len
, skb
) < 0)
1093 pfrag
->offset
+= copy
;
1094 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
1096 skb
->data_len
+= copy
;
1097 skb
->truesize
+= copy
;
1098 wmem_alloc_delta
+= copy
;
1104 if (wmem_alloc_delta
)
1105 refcount_add(wmem_alloc_delta
, &sk
->sk_wmem_alloc
);
1111 cork
->length
-= length
;
1112 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1113 refcount_add(wmem_alloc_delta
, &sk
->sk_wmem_alloc
);
1117 static int ip_setup_cork(struct sock
*sk
, struct inet_cork
*cork
,
1118 struct ipcm_cookie
*ipc
, struct rtable
**rtp
)
1120 struct ip_options_rcu
*opt
;
1128 * setup for corking.
1133 cork
->opt
= kmalloc(sizeof(struct ip_options
) + 40,
1135 if (unlikely(!cork
->opt
))
1138 memcpy(cork
->opt
, &opt
->opt
, sizeof(struct ip_options
) + opt
->opt
.optlen
);
1139 cork
->flags
|= IPCORK_OPT
;
1140 cork
->addr
= ipc
->addr
;
1144 * We steal reference to this route, caller should not release it
1147 cork
->fragsize
= ip_sk_use_pmtu(sk
) ?
1148 dst_mtu(&rt
->dst
) : rt
->dst
.dev
->mtu
;
1150 cork
->gso_size
= sk
->sk_type
== SOCK_DGRAM
&&
1151 sk
->sk_protocol
== IPPROTO_UDP
? ipc
->gso_size
: 0;
1152 cork
->dst
= &rt
->dst
;
1154 cork
->ttl
= ipc
->ttl
;
1155 cork
->tos
= ipc
->tos
;
1156 cork
->priority
= ipc
->priority
;
1157 cork
->tx_flags
= ipc
->tx_flags
;
1163 * ip_append_data() and ip_append_page() can make one large IP datagram
1164 * from many pieces of data. Each pieces will be holded on the socket
1165 * until ip_push_pending_frames() is called. Each piece can be a page
1168 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1169 * this interface potentially.
1171 * LATER: length must be adjusted by pad at tail, when it is required.
1173 int ip_append_data(struct sock
*sk
, struct flowi4
*fl4
,
1174 int getfrag(void *from
, char *to
, int offset
, int len
,
1175 int odd
, struct sk_buff
*skb
),
1176 void *from
, int length
, int transhdrlen
,
1177 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
1180 struct inet_sock
*inet
= inet_sk(sk
);
1183 if (flags
&MSG_PROBE
)
1186 if (skb_queue_empty(&sk
->sk_write_queue
)) {
1187 err
= ip_setup_cork(sk
, &inet
->cork
.base
, ipc
, rtp
);
1194 return __ip_append_data(sk
, fl4
, &sk
->sk_write_queue
, &inet
->cork
.base
,
1195 sk_page_frag(sk
), getfrag
,
1196 from
, length
, transhdrlen
, flags
);
1199 ssize_t
ip_append_page(struct sock
*sk
, struct flowi4
*fl4
, struct page
*page
,
1200 int offset
, size_t size
, int flags
)
1202 struct inet_sock
*inet
= inet_sk(sk
);
1203 struct sk_buff
*skb
;
1205 struct ip_options
*opt
= NULL
;
1206 struct inet_cork
*cork
;
1211 unsigned int maxfraglen
, fragheaderlen
, fraggap
, maxnonfragsize
;
1216 if (flags
&MSG_PROBE
)
1219 if (skb_queue_empty(&sk
->sk_write_queue
))
1222 cork
= &inet
->cork
.base
;
1223 rt
= (struct rtable
*)cork
->dst
;
1224 if (cork
->flags
& IPCORK_OPT
)
1227 if (!(rt
->dst
.dev
->features
&NETIF_F_SG
))
1230 hh_len
= LL_RESERVED_SPACE(rt
->dst
.dev
);
1231 mtu
= cork
->gso_size
? IP_MAX_MTU
: cork
->fragsize
;
1233 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
1234 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
1235 maxnonfragsize
= ip_sk_ignore_df(sk
) ? 0xFFFF : mtu
;
1237 if (cork
->length
+ size
> maxnonfragsize
- fragheaderlen
) {
1238 ip_local_error(sk
, EMSGSIZE
, fl4
->daddr
, inet
->inet_dport
,
1239 mtu
- (opt
? opt
->optlen
: 0));
1243 skb
= skb_peek_tail(&sk
->sk_write_queue
);
1247 cork
->length
+= size
;
1250 /* Check if the remaining data fits into current packet. */
1251 len
= mtu
- skb
->len
;
1253 len
= maxfraglen
- skb
->len
;
1256 struct sk_buff
*skb_prev
;
1260 fraggap
= skb_prev
->len
- maxfraglen
;
1262 alloclen
= fragheaderlen
+ hh_len
+ fraggap
+ 15;
1263 skb
= sock_wmalloc(sk
, alloclen
, 1, sk
->sk_allocation
);
1264 if (unlikely(!skb
)) {
1270 * Fill in the control structures
1272 skb
->ip_summed
= CHECKSUM_NONE
;
1274 skb_reserve(skb
, hh_len
);
1277 * Find where to start putting bytes.
1279 skb_put(skb
, fragheaderlen
+ fraggap
);
1280 skb_reset_network_header(skb
);
1281 skb
->transport_header
= (skb
->network_header
+
1284 skb
->csum
= skb_copy_and_csum_bits(skb_prev
,
1286 skb_transport_header(skb
),
1288 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1290 pskb_trim_unique(skb_prev
, maxfraglen
);
1294 * Put the packet on the pending queue.
1296 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
1303 if (skb_append_pagefrags(skb
, page
, offset
, len
)) {
1308 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1310 csum
= csum_page(page
, offset
, len
);
1311 skb
->csum
= csum_block_add(skb
->csum
, csum
, skb
->len
);
1315 skb
->data_len
+= len
;
1316 skb
->truesize
+= len
;
1317 refcount_add(len
, &sk
->sk_wmem_alloc
);
1324 cork
->length
-= size
;
1325 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1329 static void ip_cork_release(struct inet_cork
*cork
)
1331 cork
->flags
&= ~IPCORK_OPT
;
1334 dst_release(cork
->dst
);
1339 * Combined all pending IP fragments on the socket as one IP datagram
1340 * and push them out.
1342 struct sk_buff
*__ip_make_skb(struct sock
*sk
,
1344 struct sk_buff_head
*queue
,
1345 struct inet_cork
*cork
)
1347 struct sk_buff
*skb
, *tmp_skb
;
1348 struct sk_buff
**tail_skb
;
1349 struct inet_sock
*inet
= inet_sk(sk
);
1350 struct net
*net
= sock_net(sk
);
1351 struct ip_options
*opt
= NULL
;
1352 struct rtable
*rt
= (struct rtable
*)cork
->dst
;
1357 skb
= __skb_dequeue(queue
);
1360 tail_skb
= &(skb_shinfo(skb
)->frag_list
);
1362 /* move skb->data to ip header from ext header */
1363 if (skb
->data
< skb_network_header(skb
))
1364 __skb_pull(skb
, skb_network_offset(skb
));
1365 while ((tmp_skb
= __skb_dequeue(queue
)) != NULL
) {
1366 __skb_pull(tmp_skb
, skb_network_header_len(skb
));
1367 *tail_skb
= tmp_skb
;
1368 tail_skb
= &(tmp_skb
->next
);
1369 skb
->len
+= tmp_skb
->len
;
1370 skb
->data_len
+= tmp_skb
->len
;
1371 skb
->truesize
+= tmp_skb
->truesize
;
1372 tmp_skb
->destructor
= NULL
;
1376 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1377 * to fragment the frame generated here. No matter, what transforms
1378 * how transforms change size of the packet, it will come out.
1380 skb
->ignore_df
= ip_sk_ignore_df(sk
);
1382 /* DF bit is set when we want to see DF on outgoing frames.
1383 * If ignore_df is set too, we still allow to fragment this frame
1385 if (inet
->pmtudisc
== IP_PMTUDISC_DO
||
1386 inet
->pmtudisc
== IP_PMTUDISC_PROBE
||
1387 (skb
->len
<= dst_mtu(&rt
->dst
) &&
1388 ip_dont_fragment(sk
, &rt
->dst
)))
1391 if (cork
->flags
& IPCORK_OPT
)
1396 else if (rt
->rt_type
== RTN_MULTICAST
)
1399 ttl
= ip_select_ttl(inet
, &rt
->dst
);
1404 iph
->tos
= (cork
->tos
!= -1) ? cork
->tos
: inet
->tos
;
1407 iph
->protocol
= sk
->sk_protocol
;
1408 ip_copy_addrs(iph
, fl4
);
1409 ip_select_ident(net
, skb
, sk
);
1412 iph
->ihl
+= opt
->optlen
>>2;
1413 ip_options_build(skb
, opt
, cork
->addr
, rt
, 0);
1416 skb
->priority
= (cork
->tos
!= -1) ? cork
->priority
: sk
->sk_priority
;
1417 skb
->mark
= sk
->sk_mark
;
1419 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1423 skb_dst_set(skb
, &rt
->dst
);
1425 if (iph
->protocol
== IPPROTO_ICMP
)
1426 icmp_out_count(net
, ((struct icmphdr
*)
1427 skb_transport_header(skb
))->type
);
1429 ip_cork_release(cork
);
1434 int ip_send_skb(struct net
*net
, struct sk_buff
*skb
)
1438 err
= ip_local_out(net
, skb
->sk
, skb
);
1441 err
= net_xmit_errno(err
);
1443 IP_INC_STATS(net
, IPSTATS_MIB_OUTDISCARDS
);
1449 int ip_push_pending_frames(struct sock
*sk
, struct flowi4
*fl4
)
1451 struct sk_buff
*skb
;
1453 skb
= ip_finish_skb(sk
, fl4
);
1457 /* Netfilter gets whole the not fragmented skb. */
1458 return ip_send_skb(sock_net(sk
), skb
);
1462 * Throw away all pending data on the socket.
1464 static void __ip_flush_pending_frames(struct sock
*sk
,
1465 struct sk_buff_head
*queue
,
1466 struct inet_cork
*cork
)
1468 struct sk_buff
*skb
;
1470 while ((skb
= __skb_dequeue_tail(queue
)) != NULL
)
1473 ip_cork_release(cork
);
1476 void ip_flush_pending_frames(struct sock
*sk
)
1478 __ip_flush_pending_frames(sk
, &sk
->sk_write_queue
, &inet_sk(sk
)->cork
.base
);
1481 struct sk_buff
*ip_make_skb(struct sock
*sk
,
1483 int getfrag(void *from
, char *to
, int offset
,
1484 int len
, int odd
, struct sk_buff
*skb
),
1485 void *from
, int length
, int transhdrlen
,
1486 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
1487 struct inet_cork
*cork
, unsigned int flags
)
1489 struct sk_buff_head queue
;
1492 if (flags
& MSG_PROBE
)
1495 __skb_queue_head_init(&queue
);
1500 err
= ip_setup_cork(sk
, cork
, ipc
, rtp
);
1502 return ERR_PTR(err
);
1504 err
= __ip_append_data(sk
, fl4
, &queue
, cork
,
1505 ¤t
->task_frag
, getfrag
,
1506 from
, length
, transhdrlen
, flags
);
1508 __ip_flush_pending_frames(sk
, &queue
, cork
);
1509 return ERR_PTR(err
);
1512 return __ip_make_skb(sk
, fl4
, &queue
, cork
);
1516 * Fetch data from kernel space and fill in checksum if needed.
1518 static int ip_reply_glue_bits(void *dptr
, char *to
, int offset
,
1519 int len
, int odd
, struct sk_buff
*skb
)
1523 csum
= csum_partial_copy_nocheck(dptr
+offset
, to
, len
, 0);
1524 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
1529 * Generic function to send a packet as reply to another packet.
1530 * Used to send some TCP resets/acks so far.
1532 void ip_send_unicast_reply(struct sock
*sk
, struct sk_buff
*skb
,
1533 const struct ip_options
*sopt
,
1534 __be32 daddr
, __be32 saddr
,
1535 const struct ip_reply_arg
*arg
,
1538 struct ip_options_data replyopts
;
1539 struct ipcm_cookie ipc
;
1541 struct rtable
*rt
= skb_rtable(skb
);
1542 struct net
*net
= sock_net(sk
);
1543 struct sk_buff
*nskb
;
1547 if (__ip_options_echo(net
, &replyopts
.opt
.opt
, skb
, sopt
))
1556 if (replyopts
.opt
.opt
.optlen
) {
1557 ipc
.opt
= &replyopts
.opt
;
1559 if (replyopts
.opt
.opt
.srr
)
1560 daddr
= replyopts
.opt
.opt
.faddr
;
1563 oif
= arg
->bound_dev_if
;
1564 if (!oif
&& netif_index_is_l3_master(net
, skb
->skb_iif
))
1567 flowi4_init_output(&fl4
, oif
,
1568 IP4_REPLY_MARK(net
, skb
->mark
) ?: sk
->sk_mark
,
1570 RT_SCOPE_UNIVERSE
, ip_hdr(skb
)->protocol
,
1571 ip_reply_arg_flowi_flags(arg
),
1573 tcp_hdr(skb
)->source
, tcp_hdr(skb
)->dest
,
1575 security_skb_classify_flow(skb
, flowi4_to_flowi(&fl4
));
1576 rt
= ip_route_output_key(net
, &fl4
);
1580 inet_sk(sk
)->tos
= arg
->tos
;
1582 sk
->sk_priority
= skb
->priority
;
1583 sk
->sk_protocol
= ip_hdr(skb
)->protocol
;
1584 sk
->sk_bound_dev_if
= arg
->bound_dev_if
;
1585 sk
->sk_sndbuf
= sysctl_wmem_default
;
1586 sk
->sk_mark
= fl4
.flowi4_mark
;
1587 err
= ip_append_data(sk
, &fl4
, ip_reply_glue_bits
, arg
->iov
->iov_base
,
1588 len
, 0, &ipc
, &rt
, MSG_DONTWAIT
);
1589 if (unlikely(err
)) {
1590 ip_flush_pending_frames(sk
);
1594 nskb
= skb_peek(&sk
->sk_write_queue
);
1596 if (arg
->csumoffset
>= 0)
1597 *((__sum16
*)skb_transport_header(nskb
) +
1598 arg
->csumoffset
) = csum_fold(csum_add(nskb
->csum
,
1600 nskb
->ip_summed
= CHECKSUM_NONE
;
1601 ip_push_pending_frames(sk
, &fl4
);
1607 void __init
ip_init(void)
1612 #if defined(CONFIG_IP_MULTICAST)