2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * Alan Cox : Tidied tcp_data to avoid a potential
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #define pr_fmt(fmt) "TCP: " fmt
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 #include <linux/errqueue.h>
273 #include <linux/static_key.h>
275 #include <net/icmp.h>
276 #include <net/inet_common.h>
278 #include <net/xfrm.h>
280 #include <net/sock.h>
282 #include <linux/uaccess.h>
283 #include <asm/ioctls.h>
284 #include <net/busy_poll.h>
286 struct percpu_counter tcp_orphan_count
;
287 EXPORT_SYMBOL_GPL(tcp_orphan_count
);
289 long sysctl_tcp_mem
[3] __read_mostly
;
290 EXPORT_SYMBOL(sysctl_tcp_mem
);
292 atomic_long_t tcp_memory_allocated
; /* Current allocated memory. */
293 EXPORT_SYMBOL(tcp_memory_allocated
);
295 #if IS_ENABLED(CONFIG_SMC)
296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc
);
297 EXPORT_SYMBOL(tcp_have_smc
);
301 * Current number of TCP sockets.
303 struct percpu_counter tcp_sockets_allocated
;
304 EXPORT_SYMBOL(tcp_sockets_allocated
);
309 struct tcp_splice_state
{
310 struct pipe_inode_info
*pipe
;
316 * Pressure flag: try to collapse.
317 * Technical note: it is used by multiple contexts non atomically.
318 * All the __sk_mem_schedule() is of this nature: accounting
319 * is strict, actions are advisory and have some latency.
321 unsigned long tcp_memory_pressure __read_mostly
;
322 EXPORT_SYMBOL_GPL(tcp_memory_pressure
);
324 void tcp_enter_memory_pressure(struct sock
*sk
)
328 if (tcp_memory_pressure
)
334 if (!cmpxchg(&tcp_memory_pressure
, 0, val
))
335 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMEMORYPRESSURES
);
337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure
);
339 void tcp_leave_memory_pressure(struct sock
*sk
)
343 if (!tcp_memory_pressure
)
345 val
= xchg(&tcp_memory_pressure
, 0);
347 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPMEMORYPRESSURESCHRONO
,
348 jiffies_to_msecs(jiffies
- val
));
350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure
);
352 /* Convert seconds to retransmits based on initial and max timeout */
353 static u8
secs_to_retrans(int seconds
, int timeout
, int rto_max
)
358 int period
= timeout
;
361 while (seconds
> period
&& res
< 255) {
364 if (timeout
> rto_max
)
372 /* Convert retransmits to seconds based on initial and max timeout */
373 static int retrans_to_secs(u8 retrans
, int timeout
, int rto_max
)
381 if (timeout
> rto_max
)
389 static u64
tcp_compute_delivery_rate(const struct tcp_sock
*tp
)
391 u32 rate
= READ_ONCE(tp
->rate_delivered
);
392 u32 intv
= READ_ONCE(tp
->rate_interval_us
);
396 rate64
= (u64
)rate
* tp
->mss_cache
* USEC_PER_SEC
;
397 do_div(rate64
, intv
);
402 /* Address-family independent initialization for a tcp_sock.
404 * NOTE: A lot of things set to zero explicitly by call to
405 * sk_alloc() so need not be done here.
407 void tcp_init_sock(struct sock
*sk
)
409 struct inet_connection_sock
*icsk
= inet_csk(sk
);
410 struct tcp_sock
*tp
= tcp_sk(sk
);
412 tp
->out_of_order_queue
= RB_ROOT
;
413 sk
->tcp_rtx_queue
= RB_ROOT
;
414 tcp_init_xmit_timers(sk
);
415 INIT_LIST_HEAD(&tp
->tsq_node
);
416 INIT_LIST_HEAD(&tp
->tsorted_sent_queue
);
418 icsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
419 tp
->mdev_us
= jiffies_to_usecs(TCP_TIMEOUT_INIT
);
420 minmax_reset(&tp
->rtt_min
, tcp_jiffies32
, ~0U);
422 /* So many TCP implementations out there (incorrectly) count the
423 * initial SYN frame in their delayed-ACK and congestion control
424 * algorithms that we must have the following bandaid to talk
425 * efficiently to them. -DaveM
427 tp
->snd_cwnd
= TCP_INIT_CWND
;
429 /* There's a bubble in the pipe until at least the first ACK. */
430 tp
->app_limited
= ~0U;
432 /* See draft-stevens-tcpca-spec-01 for discussion of the
433 * initialization of these values.
435 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
436 tp
->snd_cwnd_clamp
= ~0;
437 tp
->mss_cache
= TCP_MSS_DEFAULT
;
439 tp
->reordering
= sock_net(sk
)->ipv4
.sysctl_tcp_reordering
;
440 tcp_assign_congestion_control(sk
);
443 tp
->rack
.reo_wnd_steps
= 1;
445 sk
->sk_state
= TCP_CLOSE
;
447 sk
->sk_write_space
= sk_stream_write_space
;
448 sock_set_flag(sk
, SOCK_USE_WRITE_QUEUE
);
450 icsk
->icsk_sync_mss
= tcp_sync_mss
;
452 sk
->sk_sndbuf
= sock_net(sk
)->ipv4
.sysctl_tcp_wmem
[1];
453 sk
->sk_rcvbuf
= sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[1];
455 sk_sockets_allocated_inc(sk
);
456 sk
->sk_route_forced_caps
= NETIF_F_GSO
;
458 EXPORT_SYMBOL(tcp_init_sock
);
460 void tcp_init_transfer(struct sock
*sk
, int bpf_op
)
462 struct inet_connection_sock
*icsk
= inet_csk(sk
);
465 icsk
->icsk_af_ops
->rebuild_header(sk
);
466 tcp_init_metrics(sk
);
467 tcp_call_bpf(sk
, bpf_op
, 0, NULL
);
468 tcp_init_congestion_control(sk
);
469 tcp_init_buffer_space(sk
);
472 static void tcp_tx_timestamp(struct sock
*sk
, u16 tsflags
)
474 struct sk_buff
*skb
= tcp_write_queue_tail(sk
);
476 if (tsflags
&& skb
) {
477 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
478 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
480 sock_tx_timestamp(sk
, tsflags
, &shinfo
->tx_flags
);
481 if (tsflags
& SOF_TIMESTAMPING_TX_ACK
)
482 tcb
->txstamp_ack
= 1;
483 if (tsflags
& SOF_TIMESTAMPING_TX_RECORD_MASK
)
484 shinfo
->tskey
= TCP_SKB_CB(skb
)->seq
+ skb
->len
- 1;
488 static inline bool tcp_stream_is_readable(const struct tcp_sock
*tp
,
489 int target
, struct sock
*sk
)
491 return (tp
->rcv_nxt
- tp
->copied_seq
>= target
) ||
492 (sk
->sk_prot
->stream_memory_read
?
493 sk
->sk_prot
->stream_memory_read(sk
) : false);
497 * Wait for a TCP event.
499 * Note that we don't need to lock the socket, as the upper poll layers
500 * take care of normal races (between the test and the event) and we don't
501 * go look at any of the socket buffers directly.
503 __poll_t
tcp_poll(struct file
*file
, struct socket
*sock
, poll_table
*wait
)
506 struct sock
*sk
= sock
->sk
;
507 const struct tcp_sock
*tp
= tcp_sk(sk
);
510 sock_poll_wait(file
, sk_sleep(sk
), wait
);
512 state
= inet_sk_state_load(sk
);
513 if (state
== TCP_LISTEN
)
514 return inet_csk_listen_poll(sk
);
516 /* Socket is not locked. We are protected from async events
517 * by poll logic and correct handling of state changes
518 * made by other threads is impossible in any case.
524 * EPOLLHUP is certainly not done right. But poll() doesn't
525 * have a notion of HUP in just one direction, and for a
526 * socket the read side is more interesting.
528 * Some poll() documentation says that EPOLLHUP is incompatible
529 * with the EPOLLOUT/POLLWR flags, so somebody should check this
530 * all. But careful, it tends to be safer to return too many
531 * bits than too few, and you can easily break real applications
532 * if you don't tell them that something has hung up!
536 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
537 * our fs/select.c). It means that after we received EOF,
538 * poll always returns immediately, making impossible poll() on write()
539 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
540 * if and only if shutdown has been made in both directions.
541 * Actually, it is interesting to look how Solaris and DUX
542 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
543 * then we could set it on SND_SHUTDOWN. BTW examples given
544 * in Stevens' books assume exactly this behaviour, it explains
545 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
547 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
548 * blocking on fresh not-connected or disconnected socket. --ANK
550 if (sk
->sk_shutdown
== SHUTDOWN_MASK
|| state
== TCP_CLOSE
)
552 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
553 mask
|= EPOLLIN
| EPOLLRDNORM
| EPOLLRDHUP
;
555 /* Connected or passive Fast Open socket? */
556 if (state
!= TCP_SYN_SENT
&&
557 (state
!= TCP_SYN_RECV
|| tp
->fastopen_rsk
)) {
558 int target
= sock_rcvlowat(sk
, 0, INT_MAX
);
560 if (tp
->urg_seq
== tp
->copied_seq
&&
561 !sock_flag(sk
, SOCK_URGINLINE
) &&
565 if (tcp_stream_is_readable(tp
, target
, sk
))
566 mask
|= EPOLLIN
| EPOLLRDNORM
;
568 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
)) {
569 if (sk_stream_is_writeable(sk
)) {
570 mask
|= EPOLLOUT
| EPOLLWRNORM
;
571 } else { /* send SIGIO later */
572 sk_set_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
573 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
575 /* Race breaker. If space is freed after
576 * wspace test but before the flags are set,
577 * IO signal will be lost. Memory barrier
578 * pairs with the input side.
580 smp_mb__after_atomic();
581 if (sk_stream_is_writeable(sk
))
582 mask
|= EPOLLOUT
| EPOLLWRNORM
;
585 mask
|= EPOLLOUT
| EPOLLWRNORM
;
587 if (tp
->urg_data
& TCP_URG_VALID
)
589 } else if (state
== TCP_SYN_SENT
&& inet_sk(sk
)->defer_connect
) {
590 /* Active TCP fastopen socket with defer_connect
591 * Return EPOLLOUT so application can call write()
592 * in order for kernel to generate SYN+data
594 mask
|= EPOLLOUT
| EPOLLWRNORM
;
596 /* This barrier is coupled with smp_wmb() in tcp_reset() */
598 if (sk
->sk_err
|| !skb_queue_empty(&sk
->sk_error_queue
))
603 EXPORT_SYMBOL(tcp_poll
);
605 int tcp_ioctl(struct sock
*sk
, int cmd
, unsigned long arg
)
607 struct tcp_sock
*tp
= tcp_sk(sk
);
613 if (sk
->sk_state
== TCP_LISTEN
)
616 slow
= lock_sock_fast(sk
);
618 unlock_sock_fast(sk
, slow
);
621 answ
= tp
->urg_data
&& tp
->urg_seq
== tp
->copied_seq
;
624 if (sk
->sk_state
== TCP_LISTEN
)
627 if ((1 << sk
->sk_state
) & (TCPF_SYN_SENT
| TCPF_SYN_RECV
))
630 answ
= tp
->write_seq
- tp
->snd_una
;
633 if (sk
->sk_state
== TCP_LISTEN
)
636 if ((1 << sk
->sk_state
) & (TCPF_SYN_SENT
| TCPF_SYN_RECV
))
639 answ
= tp
->write_seq
- tp
->snd_nxt
;
645 return put_user(answ
, (int __user
*)arg
);
647 EXPORT_SYMBOL(tcp_ioctl
);
649 static inline void tcp_mark_push(struct tcp_sock
*tp
, struct sk_buff
*skb
)
651 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
652 tp
->pushed_seq
= tp
->write_seq
;
655 static inline bool forced_push(const struct tcp_sock
*tp
)
657 return after(tp
->write_seq
, tp
->pushed_seq
+ (tp
->max_window
>> 1));
660 static void skb_entail(struct sock
*sk
, struct sk_buff
*skb
)
662 struct tcp_sock
*tp
= tcp_sk(sk
);
663 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
666 tcb
->seq
= tcb
->end_seq
= tp
->write_seq
;
667 tcb
->tcp_flags
= TCPHDR_ACK
;
669 __skb_header_release(skb
);
670 tcp_add_write_queue_tail(sk
, skb
);
671 sk
->sk_wmem_queued
+= skb
->truesize
;
672 sk_mem_charge(sk
, skb
->truesize
);
673 if (tp
->nonagle
& TCP_NAGLE_PUSH
)
674 tp
->nonagle
&= ~TCP_NAGLE_PUSH
;
676 tcp_slow_start_after_idle_check(sk
);
679 static inline void tcp_mark_urg(struct tcp_sock
*tp
, int flags
)
682 tp
->snd_up
= tp
->write_seq
;
685 /* If a not yet filled skb is pushed, do not send it if
686 * we have data packets in Qdisc or NIC queues :
687 * Because TX completion will happen shortly, it gives a chance
688 * to coalesce future sendmsg() payload into this skb, without
689 * need for a timer, and with no latency trade off.
690 * As packets containing data payload have a bigger truesize
691 * than pure acks (dataless) packets, the last checks prevent
692 * autocorking if we only have an ACK in Qdisc/NIC queues,
693 * or if TX completion was delayed after we processed ACK packet.
695 static bool tcp_should_autocork(struct sock
*sk
, struct sk_buff
*skb
,
698 return skb
->len
< size_goal
&&
699 sock_net(sk
)->ipv4
.sysctl_tcp_autocorking
&&
700 !tcp_rtx_queue_empty(sk
) &&
701 refcount_read(&sk
->sk_wmem_alloc
) > skb
->truesize
;
704 static void tcp_push(struct sock
*sk
, int flags
, int mss_now
,
705 int nonagle
, int size_goal
)
707 struct tcp_sock
*tp
= tcp_sk(sk
);
710 skb
= tcp_write_queue_tail(sk
);
713 if (!(flags
& MSG_MORE
) || forced_push(tp
))
714 tcp_mark_push(tp
, skb
);
716 tcp_mark_urg(tp
, flags
);
718 if (tcp_should_autocork(sk
, skb
, size_goal
)) {
720 /* avoid atomic op if TSQ_THROTTLED bit is already set */
721 if (!test_bit(TSQ_THROTTLED
, &sk
->sk_tsq_flags
)) {
722 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPAUTOCORKING
);
723 set_bit(TSQ_THROTTLED
, &sk
->sk_tsq_flags
);
725 /* It is possible TX completion already happened
726 * before we set TSQ_THROTTLED.
728 if (refcount_read(&sk
->sk_wmem_alloc
) > skb
->truesize
)
732 if (flags
& MSG_MORE
)
733 nonagle
= TCP_NAGLE_CORK
;
735 __tcp_push_pending_frames(sk
, mss_now
, nonagle
);
738 static int tcp_splice_data_recv(read_descriptor_t
*rd_desc
, struct sk_buff
*skb
,
739 unsigned int offset
, size_t len
)
741 struct tcp_splice_state
*tss
= rd_desc
->arg
.data
;
744 ret
= skb_splice_bits(skb
, skb
->sk
, offset
, tss
->pipe
,
745 min(rd_desc
->count
, len
), tss
->flags
);
747 rd_desc
->count
-= ret
;
751 static int __tcp_splice_read(struct sock
*sk
, struct tcp_splice_state
*tss
)
753 /* Store TCP splice context information in read_descriptor_t. */
754 read_descriptor_t rd_desc
= {
759 return tcp_read_sock(sk
, &rd_desc
, tcp_splice_data_recv
);
763 * tcp_splice_read - splice data from TCP socket to a pipe
764 * @sock: socket to splice from
765 * @ppos: position (not valid)
766 * @pipe: pipe to splice to
767 * @len: number of bytes to splice
768 * @flags: splice modifier flags
771 * Will read pages from given socket and fill them into a pipe.
774 ssize_t
tcp_splice_read(struct socket
*sock
, loff_t
*ppos
,
775 struct pipe_inode_info
*pipe
, size_t len
,
778 struct sock
*sk
= sock
->sk
;
779 struct tcp_splice_state tss
= {
788 sock_rps_record_flow(sk
);
790 * We can't seek on a socket input
799 timeo
= sock_rcvtimeo(sk
, sock
->file
->f_flags
& O_NONBLOCK
);
801 ret
= __tcp_splice_read(sk
, &tss
);
807 if (sock_flag(sk
, SOCK_DONE
))
810 ret
= sock_error(sk
);
813 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
815 if (sk
->sk_state
== TCP_CLOSE
) {
817 * This occurs when user tries to read
818 * from never connected socket.
820 if (!sock_flag(sk
, SOCK_DONE
))
828 /* if __tcp_splice_read() got nothing while we have
829 * an skb in receive queue, we do not want to loop.
830 * This might happen with URG data.
832 if (!skb_queue_empty(&sk
->sk_receive_queue
))
834 sk_wait_data(sk
, &timeo
, NULL
);
835 if (signal_pending(current
)) {
836 ret
= sock_intr_errno(timeo
);
849 if (sk
->sk_err
|| sk
->sk_state
== TCP_CLOSE
||
850 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
851 signal_pending(current
))
862 EXPORT_SYMBOL(tcp_splice_read
);
864 struct sk_buff
*sk_stream_alloc_skb(struct sock
*sk
, int size
, gfp_t gfp
,
869 /* The TCP header must be at least 32-bit aligned. */
870 size
= ALIGN(size
, 4);
872 if (unlikely(tcp_under_memory_pressure(sk
)))
873 sk_mem_reclaim_partial(sk
);
875 skb
= alloc_skb_fclone(size
+ sk
->sk_prot
->max_header
, gfp
);
879 if (force_schedule
) {
880 mem_scheduled
= true;
881 sk_forced_mem_schedule(sk
, skb
->truesize
);
883 mem_scheduled
= sk_wmem_schedule(sk
, skb
->truesize
);
885 if (likely(mem_scheduled
)) {
886 skb_reserve(skb
, sk
->sk_prot
->max_header
);
888 * Make sure that we have exactly size bytes
889 * available to the caller, no more, no less.
891 skb
->reserved_tailroom
= skb
->end
- skb
->tail
- size
;
892 INIT_LIST_HEAD(&skb
->tcp_tsorted_anchor
);
897 sk
->sk_prot
->enter_memory_pressure(sk
);
898 sk_stream_moderate_sndbuf(sk
);
903 static unsigned int tcp_xmit_size_goal(struct sock
*sk
, u32 mss_now
,
906 struct tcp_sock
*tp
= tcp_sk(sk
);
907 u32 new_size_goal
, size_goal
;
912 /* Note : tcp_tso_autosize() will eventually split this later */
913 new_size_goal
= sk
->sk_gso_max_size
- 1 - MAX_TCP_HEADER
;
914 new_size_goal
= tcp_bound_to_half_wnd(tp
, new_size_goal
);
916 /* We try hard to avoid divides here */
917 size_goal
= tp
->gso_segs
* mss_now
;
918 if (unlikely(new_size_goal
< size_goal
||
919 new_size_goal
>= size_goal
+ mss_now
)) {
920 tp
->gso_segs
= min_t(u16
, new_size_goal
/ mss_now
,
921 sk
->sk_gso_max_segs
);
922 size_goal
= tp
->gso_segs
* mss_now
;
925 return max(size_goal
, mss_now
);
928 static int tcp_send_mss(struct sock
*sk
, int *size_goal
, int flags
)
932 mss_now
= tcp_current_mss(sk
);
933 *size_goal
= tcp_xmit_size_goal(sk
, mss_now
, !(flags
& MSG_OOB
));
938 ssize_t
do_tcp_sendpages(struct sock
*sk
, struct page
*page
, int offset
,
939 size_t size
, int flags
)
941 struct tcp_sock
*tp
= tcp_sk(sk
);
942 int mss_now
, size_goal
;
945 long timeo
= sock_sndtimeo(sk
, flags
& MSG_DONTWAIT
);
947 /* Wait for a connection to finish. One exception is TCP Fast Open
948 * (passive side) where data is allowed to be sent before a connection
949 * is fully established.
951 if (((1 << sk
->sk_state
) & ~(TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
)) &&
952 !tcp_passive_fastopen(sk
)) {
953 err
= sk_stream_wait_connect(sk
, &timeo
);
958 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
960 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
964 if (sk
->sk_err
|| (sk
->sk_shutdown
& SEND_SHUTDOWN
))
968 struct sk_buff
*skb
= tcp_write_queue_tail(sk
);
972 if (!skb
|| (copy
= size_goal
- skb
->len
) <= 0 ||
973 !tcp_skb_can_collapse_to(skb
)) {
975 if (!sk_stream_memory_free(sk
))
976 goto wait_for_sndbuf
;
978 skb
= sk_stream_alloc_skb(sk
, 0, sk
->sk_allocation
,
979 tcp_rtx_and_write_queues_empty(sk
));
981 goto wait_for_memory
;
990 i
= skb_shinfo(skb
)->nr_frags
;
991 can_coalesce
= skb_can_coalesce(skb
, i
, page
, offset
);
992 if (!can_coalesce
&& i
>= sysctl_max_skb_frags
) {
993 tcp_mark_push(tp
, skb
);
996 if (!sk_wmem_schedule(sk
, copy
))
997 goto wait_for_memory
;
1000 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
1003 skb_fill_page_desc(skb
, i
, page
, offset
, copy
);
1006 if (!(flags
& MSG_NO_SHARED_FRAGS
))
1007 skb_shinfo(skb
)->tx_flags
|= SKBTX_SHARED_FRAG
;
1010 skb
->data_len
+= copy
;
1011 skb
->truesize
+= copy
;
1012 sk
->sk_wmem_queued
+= copy
;
1013 sk_mem_charge(sk
, copy
);
1014 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1015 tp
->write_seq
+= copy
;
1016 TCP_SKB_CB(skb
)->end_seq
+= copy
;
1017 tcp_skb_pcount_set(skb
, 0);
1020 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_PSH
;
1028 if (skb
->len
< size_goal
|| (flags
& MSG_OOB
))
1031 if (forced_push(tp
)) {
1032 tcp_mark_push(tp
, skb
);
1033 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_PUSH
);
1034 } else if (skb
== tcp_send_head(sk
))
1035 tcp_push_one(sk
, mss_now
);
1039 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1041 tcp_push(sk
, flags
& ~MSG_MORE
, mss_now
,
1042 TCP_NAGLE_PUSH
, size_goal
);
1044 err
= sk_stream_wait_memory(sk
, &timeo
);
1048 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
1053 tcp_tx_timestamp(sk
, sk
->sk_tsflags
);
1054 if (!(flags
& MSG_SENDPAGE_NOTLAST
))
1055 tcp_push(sk
, flags
, mss_now
, tp
->nonagle
, size_goal
);
1063 /* make sure we wake any epoll edge trigger waiter */
1064 if (unlikely(skb_queue_len(&sk
->sk_write_queue
) == 0 &&
1066 sk
->sk_write_space(sk
);
1067 tcp_chrono_stop(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
1069 return sk_stream_error(sk
, flags
, err
);
1071 EXPORT_SYMBOL_GPL(do_tcp_sendpages
);
1073 int tcp_sendpage_locked(struct sock
*sk
, struct page
*page
, int offset
,
1074 size_t size
, int flags
)
1076 if (!(sk
->sk_route_caps
& NETIF_F_SG
))
1077 return sock_no_sendpage_locked(sk
, page
, offset
, size
, flags
);
1079 tcp_rate_check_app_limited(sk
); /* is sending application-limited? */
1081 return do_tcp_sendpages(sk
, page
, offset
, size
, flags
);
1083 EXPORT_SYMBOL_GPL(tcp_sendpage_locked
);
1085 int tcp_sendpage(struct sock
*sk
, struct page
*page
, int offset
,
1086 size_t size
, int flags
)
1091 ret
= tcp_sendpage_locked(sk
, page
, offset
, size
, flags
);
1096 EXPORT_SYMBOL(tcp_sendpage
);
1098 /* Do not bother using a page frag for very small frames.
1099 * But use this heuristic only for the first skb in write queue.
1101 * Having no payload in skb->head allows better SACK shifting
1102 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1103 * write queue has less skbs.
1104 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1105 * This also speeds up tso_fragment(), since it wont fallback
1106 * to tcp_fragment().
1108 static int linear_payload_sz(bool first_skb
)
1111 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER
);
1115 static int select_size(bool first_skb
, bool zc
)
1119 return linear_payload_sz(first_skb
);
1122 void tcp_free_fastopen_req(struct tcp_sock
*tp
)
1124 if (tp
->fastopen_req
) {
1125 kfree(tp
->fastopen_req
);
1126 tp
->fastopen_req
= NULL
;
1130 static int tcp_sendmsg_fastopen(struct sock
*sk
, struct msghdr
*msg
,
1131 int *copied
, size_t size
)
1133 struct tcp_sock
*tp
= tcp_sk(sk
);
1134 struct inet_sock
*inet
= inet_sk(sk
);
1135 struct sockaddr
*uaddr
= msg
->msg_name
;
1138 if (!(sock_net(sk
)->ipv4
.sysctl_tcp_fastopen
& TFO_CLIENT_ENABLE
) ||
1139 (uaddr
&& msg
->msg_namelen
>= sizeof(uaddr
->sa_family
) &&
1140 uaddr
->sa_family
== AF_UNSPEC
))
1142 if (tp
->fastopen_req
)
1143 return -EALREADY
; /* Another Fast Open is in progress */
1145 tp
->fastopen_req
= kzalloc(sizeof(struct tcp_fastopen_request
),
1147 if (unlikely(!tp
->fastopen_req
))
1149 tp
->fastopen_req
->data
= msg
;
1150 tp
->fastopen_req
->size
= size
;
1152 if (inet
->defer_connect
) {
1153 err
= tcp_connect(sk
);
1154 /* Same failure procedure as in tcp_v4/6_connect */
1156 tcp_set_state(sk
, TCP_CLOSE
);
1157 inet
->inet_dport
= 0;
1158 sk
->sk_route_caps
= 0;
1161 flags
= (msg
->msg_flags
& MSG_DONTWAIT
) ? O_NONBLOCK
: 0;
1162 err
= __inet_stream_connect(sk
->sk_socket
, uaddr
,
1163 msg
->msg_namelen
, flags
, 1);
1164 /* fastopen_req could already be freed in __inet_stream_connect
1165 * if the connection times out or gets rst
1167 if (tp
->fastopen_req
) {
1168 *copied
= tp
->fastopen_req
->copied
;
1169 tcp_free_fastopen_req(tp
);
1170 inet
->defer_connect
= 0;
1175 int tcp_sendmsg_locked(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
1177 struct tcp_sock
*tp
= tcp_sk(sk
);
1178 struct ubuf_info
*uarg
= NULL
;
1179 struct sk_buff
*skb
;
1180 struct sockcm_cookie sockc
;
1181 int flags
, err
, copied
= 0;
1182 int mss_now
= 0, size_goal
, copied_syn
= 0;
1183 bool process_backlog
= false;
1187 flags
= msg
->msg_flags
;
1189 if (flags
& MSG_ZEROCOPY
&& size
&& sock_flag(sk
, SOCK_ZEROCOPY
)) {
1190 if (sk
->sk_state
!= TCP_ESTABLISHED
) {
1195 skb
= tcp_write_queue_tail(sk
);
1196 uarg
= sock_zerocopy_realloc(sk
, size
, skb_zcopy(skb
));
1202 zc
= sk
->sk_route_caps
& NETIF_F_SG
;
1207 if (unlikely(flags
& MSG_FASTOPEN
|| inet_sk(sk
)->defer_connect
) &&
1209 err
= tcp_sendmsg_fastopen(sk
, msg
, &copied_syn
, size
);
1210 if (err
== -EINPROGRESS
&& copied_syn
> 0)
1216 timeo
= sock_sndtimeo(sk
, flags
& MSG_DONTWAIT
);
1218 tcp_rate_check_app_limited(sk
); /* is sending application-limited? */
1220 /* Wait for a connection to finish. One exception is TCP Fast Open
1221 * (passive side) where data is allowed to be sent before a connection
1222 * is fully established.
1224 if (((1 << sk
->sk_state
) & ~(TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
)) &&
1225 !tcp_passive_fastopen(sk
)) {
1226 err
= sk_stream_wait_connect(sk
, &timeo
);
1231 if (unlikely(tp
->repair
)) {
1232 if (tp
->repair_queue
== TCP_RECV_QUEUE
) {
1233 copied
= tcp_send_rcvq(sk
, msg
, size
);
1238 if (tp
->repair_queue
== TCP_NO_QUEUE
)
1241 /* 'common' sending to sendq */
1244 sockc
.tsflags
= sk
->sk_tsflags
;
1245 if (msg
->msg_controllen
) {
1246 err
= sock_cmsg_send(sk
, msg
, &sockc
);
1247 if (unlikely(err
)) {
1253 /* This should be in poll */
1254 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
1256 /* Ok commence sending. */
1260 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
1263 if (sk
->sk_err
|| (sk
->sk_shutdown
& SEND_SHUTDOWN
))
1266 while (msg_data_left(msg
)) {
1269 skb
= tcp_write_queue_tail(sk
);
1271 copy
= size_goal
- skb
->len
;
1273 if (copy
<= 0 || !tcp_skb_can_collapse_to(skb
)) {
1278 /* Allocate new segment. If the interface is SG,
1279 * allocate skb fitting to single page.
1281 if (!sk_stream_memory_free(sk
))
1282 goto wait_for_sndbuf
;
1284 if (process_backlog
&& sk_flush_backlog(sk
)) {
1285 process_backlog
= false;
1288 first_skb
= tcp_rtx_and_write_queues_empty(sk
);
1289 linear
= select_size(first_skb
, zc
);
1290 skb
= sk_stream_alloc_skb(sk
, linear
, sk
->sk_allocation
,
1293 goto wait_for_memory
;
1295 process_backlog
= true;
1296 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1298 skb_entail(sk
, skb
);
1301 /* All packets are restored as if they have
1302 * already been sent. skb_mstamp isn't set to
1303 * avoid wrong rtt estimation.
1306 TCP_SKB_CB(skb
)->sacked
|= TCPCB_REPAIRED
;
1309 /* Try to append data to the end of skb. */
1310 if (copy
> msg_data_left(msg
))
1311 copy
= msg_data_left(msg
);
1313 /* Where to copy to? */
1314 if (skb_availroom(skb
) > 0 && !zc
) {
1315 /* We have some space in skb head. Superb! */
1316 copy
= min_t(int, copy
, skb_availroom(skb
));
1317 err
= skb_add_data_nocache(sk
, skb
, &msg
->msg_iter
, copy
);
1322 int i
= skb_shinfo(skb
)->nr_frags
;
1323 struct page_frag
*pfrag
= sk_page_frag(sk
);
1325 if (!sk_page_frag_refill(sk
, pfrag
))
1326 goto wait_for_memory
;
1328 if (!skb_can_coalesce(skb
, i
, pfrag
->page
,
1330 if (i
>= sysctl_max_skb_frags
) {
1331 tcp_mark_push(tp
, skb
);
1337 copy
= min_t(int, copy
, pfrag
->size
- pfrag
->offset
);
1339 if (!sk_wmem_schedule(sk
, copy
))
1340 goto wait_for_memory
;
1342 err
= skb_copy_to_page_nocache(sk
, &msg
->msg_iter
, skb
,
1349 /* Update the skb. */
1351 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
1353 skb_fill_page_desc(skb
, i
, pfrag
->page
,
1354 pfrag
->offset
, copy
);
1355 page_ref_inc(pfrag
->page
);
1357 pfrag
->offset
+= copy
;
1359 err
= skb_zerocopy_iter_stream(sk
, skb
, msg
, copy
, uarg
);
1360 if (err
== -EMSGSIZE
|| err
== -EEXIST
) {
1361 tcp_mark_push(tp
, skb
);
1370 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_PSH
;
1372 tp
->write_seq
+= copy
;
1373 TCP_SKB_CB(skb
)->end_seq
+= copy
;
1374 tcp_skb_pcount_set(skb
, 0);
1377 if (!msg_data_left(msg
)) {
1378 if (unlikely(flags
& MSG_EOR
))
1379 TCP_SKB_CB(skb
)->eor
= 1;
1383 if (skb
->len
< size_goal
|| (flags
& MSG_OOB
) || unlikely(tp
->repair
))
1386 if (forced_push(tp
)) {
1387 tcp_mark_push(tp
, skb
);
1388 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_PUSH
);
1389 } else if (skb
== tcp_send_head(sk
))
1390 tcp_push_one(sk
, mss_now
);
1394 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1397 tcp_push(sk
, flags
& ~MSG_MORE
, mss_now
,
1398 TCP_NAGLE_PUSH
, size_goal
);
1400 err
= sk_stream_wait_memory(sk
, &timeo
);
1404 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
1409 tcp_tx_timestamp(sk
, sockc
.tsflags
);
1410 tcp_push(sk
, flags
, mss_now
, tp
->nonagle
, size_goal
);
1413 sock_zerocopy_put(uarg
);
1414 return copied
+ copied_syn
;
1418 tcp_unlink_write_queue(skb
, sk
);
1419 /* It is the one place in all of TCP, except connection
1420 * reset, where we can be unlinking the send_head.
1422 tcp_check_send_head(sk
, skb
);
1423 sk_wmem_free_skb(sk
, skb
);
1427 if (copied
+ copied_syn
)
1430 sock_zerocopy_put_abort(uarg
);
1431 err
= sk_stream_error(sk
, flags
, err
);
1432 /* make sure we wake any epoll edge trigger waiter */
1433 if (unlikely(skb_queue_len(&sk
->sk_write_queue
) == 0 &&
1435 sk
->sk_write_space(sk
);
1436 tcp_chrono_stop(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
1440 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked
);
1442 int tcp_sendmsg(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
1447 ret
= tcp_sendmsg_locked(sk
, msg
, size
);
1452 EXPORT_SYMBOL(tcp_sendmsg
);
1455 * Handle reading urgent data. BSD has very simple semantics for
1456 * this, no blocking and very strange errors 8)
1459 static int tcp_recv_urg(struct sock
*sk
, struct msghdr
*msg
, int len
, int flags
)
1461 struct tcp_sock
*tp
= tcp_sk(sk
);
1463 /* No URG data to read. */
1464 if (sock_flag(sk
, SOCK_URGINLINE
) || !tp
->urg_data
||
1465 tp
->urg_data
== TCP_URG_READ
)
1466 return -EINVAL
; /* Yes this is right ! */
1468 if (sk
->sk_state
== TCP_CLOSE
&& !sock_flag(sk
, SOCK_DONE
))
1471 if (tp
->urg_data
& TCP_URG_VALID
) {
1473 char c
= tp
->urg_data
;
1475 if (!(flags
& MSG_PEEK
))
1476 tp
->urg_data
= TCP_URG_READ
;
1478 /* Read urgent data. */
1479 msg
->msg_flags
|= MSG_OOB
;
1482 if (!(flags
& MSG_TRUNC
))
1483 err
= memcpy_to_msg(msg
, &c
, 1);
1486 msg
->msg_flags
|= MSG_TRUNC
;
1488 return err
? -EFAULT
: len
;
1491 if (sk
->sk_state
== TCP_CLOSE
|| (sk
->sk_shutdown
& RCV_SHUTDOWN
))
1494 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1495 * the available implementations agree in this case:
1496 * this call should never block, independent of the
1497 * blocking state of the socket.
1498 * Mike <pall@rz.uni-karlsruhe.de>
1503 static int tcp_peek_sndq(struct sock
*sk
, struct msghdr
*msg
, int len
)
1505 struct sk_buff
*skb
;
1506 int copied
= 0, err
= 0;
1508 /* XXX -- need to support SO_PEEK_OFF */
1510 skb_rbtree_walk(skb
, &sk
->tcp_rtx_queue
) {
1511 err
= skb_copy_datagram_msg(skb
, 0, msg
, skb
->len
);
1517 skb_queue_walk(&sk
->sk_write_queue
, skb
) {
1518 err
= skb_copy_datagram_msg(skb
, 0, msg
, skb
->len
);
1525 return err
?: copied
;
1528 /* Clean up the receive buffer for full frames taken by the user,
1529 * then send an ACK if necessary. COPIED is the number of bytes
1530 * tcp_recvmsg has given to the user so far, it speeds up the
1531 * calculation of whether or not we must ACK for the sake of
1534 static void tcp_cleanup_rbuf(struct sock
*sk
, int copied
)
1536 struct tcp_sock
*tp
= tcp_sk(sk
);
1537 bool time_to_ack
= false;
1539 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
1541 WARN(skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
),
1542 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1543 tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
);
1545 if (inet_csk_ack_scheduled(sk
)) {
1546 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1547 /* Delayed ACKs frequently hit locked sockets during bulk
1549 if (icsk
->icsk_ack
.blocked
||
1550 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1551 tp
->rcv_nxt
- tp
->rcv_wup
> icsk
->icsk_ack
.rcv_mss
||
1553 * If this read emptied read buffer, we send ACK, if
1554 * connection is not bidirectional, user drained
1555 * receive buffer and there was a small segment
1559 ((icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED2
) ||
1560 ((icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
) &&
1561 !icsk
->icsk_ack
.pingpong
)) &&
1562 !atomic_read(&sk
->sk_rmem_alloc
)))
1566 /* We send an ACK if we can now advertise a non-zero window
1567 * which has been raised "significantly".
1569 * Even if window raised up to infinity, do not send window open ACK
1570 * in states, where we will not receive more. It is useless.
1572 if (copied
> 0 && !time_to_ack
&& !(sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
1573 __u32 rcv_window_now
= tcp_receive_window(tp
);
1575 /* Optimize, __tcp_select_window() is not cheap. */
1576 if (2*rcv_window_now
<= tp
->window_clamp
) {
1577 __u32 new_window
= __tcp_select_window(sk
);
1579 /* Send ACK now, if this read freed lots of space
1580 * in our buffer. Certainly, new_window is new window.
1581 * We can advertise it now, if it is not less than current one.
1582 * "Lots" means "at least twice" here.
1584 if (new_window
&& new_window
>= 2 * rcv_window_now
)
1592 static struct sk_buff
*tcp_recv_skb(struct sock
*sk
, u32 seq
, u32
*off
)
1594 struct sk_buff
*skb
;
1597 while ((skb
= skb_peek(&sk
->sk_receive_queue
)) != NULL
) {
1598 offset
= seq
- TCP_SKB_CB(skb
)->seq
;
1599 if (unlikely(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)) {
1600 pr_err_once("%s: found a SYN, please report !\n", __func__
);
1603 if (offset
< skb
->len
|| (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)) {
1607 /* This looks weird, but this can happen if TCP collapsing
1608 * splitted a fat GRO packet, while we released socket lock
1609 * in skb_splice_bits()
1611 sk_eat_skb(sk
, skb
);
1617 * This routine provides an alternative to tcp_recvmsg() for routines
1618 * that would like to handle copying from skbuffs directly in 'sendfile'
1621 * - It is assumed that the socket was locked by the caller.
1622 * - The routine does not block.
1623 * - At present, there is no support for reading OOB data
1624 * or for 'peeking' the socket using this routine
1625 * (although both would be easy to implement).
1627 int tcp_read_sock(struct sock
*sk
, read_descriptor_t
*desc
,
1628 sk_read_actor_t recv_actor
)
1630 struct sk_buff
*skb
;
1631 struct tcp_sock
*tp
= tcp_sk(sk
);
1632 u32 seq
= tp
->copied_seq
;
1636 if (sk
->sk_state
== TCP_LISTEN
)
1638 while ((skb
= tcp_recv_skb(sk
, seq
, &offset
)) != NULL
) {
1639 if (offset
< skb
->len
) {
1643 len
= skb
->len
- offset
;
1644 /* Stop reading if we hit a patch of urgent data */
1646 u32 urg_offset
= tp
->urg_seq
- seq
;
1647 if (urg_offset
< len
)
1652 used
= recv_actor(desc
, skb
, offset
, len
);
1657 } else if (used
<= len
) {
1662 /* If recv_actor drops the lock (e.g. TCP splice
1663 * receive) the skb pointer might be invalid when
1664 * getting here: tcp_collapse might have deleted it
1665 * while aggregating skbs from the socket queue.
1667 skb
= tcp_recv_skb(sk
, seq
- 1, &offset
);
1670 /* TCP coalescing might have appended data to the skb.
1671 * Try to splice more frags
1673 if (offset
+ 1 != skb
->len
)
1676 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
) {
1677 sk_eat_skb(sk
, skb
);
1681 sk_eat_skb(sk
, skb
);
1684 tp
->copied_seq
= seq
;
1686 tp
->copied_seq
= seq
;
1688 tcp_rcv_space_adjust(sk
);
1690 /* Clean up data we have read: This will do ACK frames. */
1692 tcp_recv_skb(sk
, seq
, &offset
);
1693 tcp_cleanup_rbuf(sk
, copied
);
1697 EXPORT_SYMBOL(tcp_read_sock
);
1699 int tcp_peek_len(struct socket
*sock
)
1701 return tcp_inq(sock
->sk
);
1703 EXPORT_SYMBOL(tcp_peek_len
);
1705 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1706 int tcp_set_rcvlowat(struct sock
*sk
, int val
)
1710 if (sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)
1711 cap
= sk
->sk_rcvbuf
>> 1;
1713 cap
= sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[2] >> 1;
1714 val
= min(val
, cap
);
1715 sk
->sk_rcvlowat
= val
? : 1;
1717 /* Check if we need to signal EPOLLIN right now */
1720 if (sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)
1724 if (val
> sk
->sk_rcvbuf
) {
1725 sk
->sk_rcvbuf
= val
;
1726 tcp_sk(sk
)->window_clamp
= tcp_win_from_space(sk
, val
);
1730 EXPORT_SYMBOL(tcp_set_rcvlowat
);
1733 static const struct vm_operations_struct tcp_vm_ops
= {
1736 int tcp_mmap(struct file
*file
, struct socket
*sock
,
1737 struct vm_area_struct
*vma
)
1739 if (vma
->vm_flags
& (VM_WRITE
| VM_EXEC
))
1741 vma
->vm_flags
&= ~(VM_MAYWRITE
| VM_MAYEXEC
);
1743 /* Instruct vm_insert_page() to not down_read(mmap_sem) */
1744 vma
->vm_flags
|= VM_MIXEDMAP
;
1746 vma
->vm_ops
= &tcp_vm_ops
;
1749 EXPORT_SYMBOL(tcp_mmap
);
1751 static int tcp_zerocopy_receive(struct sock
*sk
,
1752 struct tcp_zerocopy_receive
*zc
)
1754 unsigned long address
= (unsigned long)zc
->address
;
1755 const skb_frag_t
*frags
= NULL
;
1756 u32 length
= 0, seq
, offset
;
1757 struct vm_area_struct
*vma
;
1758 struct sk_buff
*skb
= NULL
;
1759 struct tcp_sock
*tp
;
1762 if (address
& (PAGE_SIZE
- 1) || address
!= zc
->address
)
1765 if (sk
->sk_state
== TCP_LISTEN
)
1768 sock_rps_record_flow(sk
);
1770 down_read(¤t
->mm
->mmap_sem
);
1773 vma
= find_vma(current
->mm
, address
);
1774 if (!vma
|| vma
->vm_start
> address
|| vma
->vm_ops
!= &tcp_vm_ops
)
1776 zc
->length
= min_t(unsigned long, zc
->length
, vma
->vm_end
- address
);
1779 seq
= tp
->copied_seq
;
1780 zc
->length
= min_t(u32
, zc
->length
, tcp_inq(sk
));
1781 zc
->length
&= ~(PAGE_SIZE
- 1);
1783 zap_page_range(vma
, address
, zc
->length
);
1785 zc
->recv_skip_hint
= 0;
1787 while (length
+ PAGE_SIZE
<= zc
->length
) {
1788 if (zc
->recv_skip_hint
< PAGE_SIZE
) {
1791 offset
= seq
- TCP_SKB_CB(skb
)->seq
;
1793 skb
= tcp_recv_skb(sk
, seq
, &offset
);
1796 zc
->recv_skip_hint
= skb
->len
- offset
;
1797 offset
-= skb_headlen(skb
);
1798 if ((int)offset
< 0 || skb_has_frag_list(skb
))
1800 frags
= skb_shinfo(skb
)->frags
;
1802 if (frags
->size
> offset
)
1804 offset
-= frags
->size
;
1808 if (frags
->size
!= PAGE_SIZE
|| frags
->page_offset
)
1810 ret
= vm_insert_page(vma
, address
+ length
,
1811 skb_frag_page(frags
));
1814 length
+= PAGE_SIZE
;
1816 zc
->recv_skip_hint
-= PAGE_SIZE
;
1820 up_read(¤t
->mm
->mmap_sem
);
1822 tp
->copied_seq
= seq
;
1823 tcp_rcv_space_adjust(sk
);
1825 /* Clean up data we have read: This will do ACK frames. */
1826 tcp_recv_skb(sk
, seq
, &offset
);
1827 tcp_cleanup_rbuf(sk
, length
);
1829 if (length
== zc
->length
)
1830 zc
->recv_skip_hint
= 0;
1832 if (!zc
->recv_skip_hint
&& sock_flag(sk
, SOCK_DONE
))
1835 zc
->length
= length
;
1840 static void tcp_update_recv_tstamps(struct sk_buff
*skb
,
1841 struct scm_timestamping
*tss
)
1844 tss
->ts
[0] = ktime_to_timespec(skb
->tstamp
);
1846 tss
->ts
[0] = (struct timespec
) {0};
1848 if (skb_hwtstamps(skb
)->hwtstamp
)
1849 tss
->ts
[2] = ktime_to_timespec(skb_hwtstamps(skb
)->hwtstamp
);
1851 tss
->ts
[2] = (struct timespec
) {0};
1854 /* Similar to __sock_recv_timestamp, but does not require an skb */
1855 static void tcp_recv_timestamp(struct msghdr
*msg
, const struct sock
*sk
,
1856 struct scm_timestamping
*tss
)
1859 bool has_timestamping
= false;
1861 if (tss
->ts
[0].tv_sec
|| tss
->ts
[0].tv_nsec
) {
1862 if (sock_flag(sk
, SOCK_RCVTSTAMP
)) {
1863 if (sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
1864 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
1865 sizeof(tss
->ts
[0]), &tss
->ts
[0]);
1867 tv
.tv_sec
= tss
->ts
[0].tv_sec
;
1868 tv
.tv_usec
= tss
->ts
[0].tv_nsec
/ 1000;
1870 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
1875 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
)
1876 has_timestamping
= true;
1878 tss
->ts
[0] = (struct timespec
) {0};
1881 if (tss
->ts
[2].tv_sec
|| tss
->ts
[2].tv_nsec
) {
1882 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
)
1883 has_timestamping
= true;
1885 tss
->ts
[2] = (struct timespec
) {0};
1888 if (has_timestamping
) {
1889 tss
->ts
[1] = (struct timespec
) {0};
1890 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING
,
1895 static int tcp_inq_hint(struct sock
*sk
)
1897 const struct tcp_sock
*tp
= tcp_sk(sk
);
1898 u32 copied_seq
= READ_ONCE(tp
->copied_seq
);
1899 u32 rcv_nxt
= READ_ONCE(tp
->rcv_nxt
);
1902 inq
= rcv_nxt
- copied_seq
;
1903 if (unlikely(inq
< 0 || copied_seq
!= READ_ONCE(tp
->copied_seq
))) {
1905 inq
= tp
->rcv_nxt
- tp
->copied_seq
;
1912 * This routine copies from a sock struct into the user buffer.
1914 * Technical note: in 2.3 we work on _locked_ socket, so that
1915 * tricks with *seq access order and skb->users are not required.
1916 * Probably, code can be easily improved even more.
1919 int tcp_recvmsg(struct sock
*sk
, struct msghdr
*msg
, size_t len
, int nonblock
,
1920 int flags
, int *addr_len
)
1922 struct tcp_sock
*tp
= tcp_sk(sk
);
1928 int target
; /* Read at least this many bytes */
1930 struct sk_buff
*skb
, *last
;
1932 struct scm_timestamping tss
;
1933 bool has_tss
= false;
1936 if (unlikely(flags
& MSG_ERRQUEUE
))
1937 return inet_recv_error(sk
, msg
, len
, addr_len
);
1939 if (sk_can_busy_loop(sk
) && skb_queue_empty(&sk
->sk_receive_queue
) &&
1940 (sk
->sk_state
== TCP_ESTABLISHED
))
1941 sk_busy_loop(sk
, nonblock
);
1946 if (sk
->sk_state
== TCP_LISTEN
)
1949 has_cmsg
= tp
->recvmsg_inq
;
1950 timeo
= sock_rcvtimeo(sk
, nonblock
);
1952 /* Urgent data needs to be handled specially. */
1953 if (flags
& MSG_OOB
)
1956 if (unlikely(tp
->repair
)) {
1958 if (!(flags
& MSG_PEEK
))
1961 if (tp
->repair_queue
== TCP_SEND_QUEUE
)
1965 if (tp
->repair_queue
== TCP_NO_QUEUE
)
1968 /* 'common' recv queue MSG_PEEK-ing */
1971 seq
= &tp
->copied_seq
;
1972 if (flags
& MSG_PEEK
) {
1973 peek_seq
= tp
->copied_seq
;
1977 target
= sock_rcvlowat(sk
, flags
& MSG_WAITALL
, len
);
1982 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1983 if (tp
->urg_data
&& tp
->urg_seq
== *seq
) {
1986 if (signal_pending(current
)) {
1987 copied
= timeo
? sock_intr_errno(timeo
) : -EAGAIN
;
1992 /* Next get a buffer. */
1994 last
= skb_peek_tail(&sk
->sk_receive_queue
);
1995 skb_queue_walk(&sk
->sk_receive_queue
, skb
) {
1997 /* Now that we have two receive queues this
2000 if (WARN(before(*seq
, TCP_SKB_CB(skb
)->seq
),
2001 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2002 *seq
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
,
2006 offset
= *seq
- TCP_SKB_CB(skb
)->seq
;
2007 if (unlikely(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)) {
2008 pr_err_once("%s: found a SYN, please report !\n", __func__
);
2011 if (offset
< skb
->len
)
2013 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
2015 WARN(!(flags
& MSG_PEEK
),
2016 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2017 *seq
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
, flags
);
2020 /* Well, if we have backlog, try to process it now yet. */
2022 if (copied
>= target
&& !sk
->sk_backlog
.tail
)
2027 sk
->sk_state
== TCP_CLOSE
||
2028 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
2030 signal_pending(current
))
2033 if (sock_flag(sk
, SOCK_DONE
))
2037 copied
= sock_error(sk
);
2041 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
2044 if (sk
->sk_state
== TCP_CLOSE
) {
2045 if (!sock_flag(sk
, SOCK_DONE
)) {
2046 /* This occurs when user tries to read
2047 * from never connected socket.
2060 if (signal_pending(current
)) {
2061 copied
= sock_intr_errno(timeo
);
2066 tcp_cleanup_rbuf(sk
, copied
);
2068 if (copied
>= target
) {
2069 /* Do not sleep, just process backlog. */
2073 sk_wait_data(sk
, &timeo
, last
);
2076 if ((flags
& MSG_PEEK
) &&
2077 (peek_seq
- copied
- urg_hole
!= tp
->copied_seq
)) {
2078 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2080 task_pid_nr(current
));
2081 peek_seq
= tp
->copied_seq
;
2086 /* Ok so how much can we use? */
2087 used
= skb
->len
- offset
;
2091 /* Do we have urgent data here? */
2093 u32 urg_offset
= tp
->urg_seq
- *seq
;
2094 if (urg_offset
< used
) {
2096 if (!sock_flag(sk
, SOCK_URGINLINE
)) {
2109 if (!(flags
& MSG_TRUNC
)) {
2110 err
= skb_copy_datagram_msg(skb
, offset
, msg
, used
);
2112 /* Exception. Bailout! */
2123 tcp_rcv_space_adjust(sk
);
2126 if (tp
->urg_data
&& after(tp
->copied_seq
, tp
->urg_seq
)) {
2128 tcp_fast_path_check(sk
);
2130 if (used
+ offset
< skb
->len
)
2133 if (TCP_SKB_CB(skb
)->has_rxtstamp
) {
2134 tcp_update_recv_tstamps(skb
, &tss
);
2138 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
2140 if (!(flags
& MSG_PEEK
))
2141 sk_eat_skb(sk
, skb
);
2145 /* Process the FIN. */
2147 if (!(flags
& MSG_PEEK
))
2148 sk_eat_skb(sk
, skb
);
2152 /* According to UNIX98, msg_name/msg_namelen are ignored
2153 * on connected socket. I was just happy when found this 8) --ANK
2156 /* Clean up data we have read: This will do ACK frames. */
2157 tcp_cleanup_rbuf(sk
, copied
);
2163 tcp_recv_timestamp(msg
, sk
, &tss
);
2164 if (tp
->recvmsg_inq
) {
2165 inq
= tcp_inq_hint(sk
);
2166 put_cmsg(msg
, SOL_TCP
, TCP_CM_INQ
, sizeof(inq
), &inq
);
2177 err
= tcp_recv_urg(sk
, msg
, len
, flags
);
2181 err
= tcp_peek_sndq(sk
, msg
, len
);
2184 EXPORT_SYMBOL(tcp_recvmsg
);
2186 void tcp_set_state(struct sock
*sk
, int state
)
2188 int oldstate
= sk
->sk_state
;
2190 /* We defined a new enum for TCP states that are exported in BPF
2191 * so as not force the internal TCP states to be frozen. The
2192 * following checks will detect if an internal state value ever
2193 * differs from the BPF value. If this ever happens, then we will
2194 * need to remap the internal value to the BPF value before calling
2195 * tcp_call_bpf_2arg.
2197 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED
!= (int)TCP_ESTABLISHED
);
2198 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT
!= (int)TCP_SYN_SENT
);
2199 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV
!= (int)TCP_SYN_RECV
);
2200 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1
!= (int)TCP_FIN_WAIT1
);
2201 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2
!= (int)TCP_FIN_WAIT2
);
2202 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT
!= (int)TCP_TIME_WAIT
);
2203 BUILD_BUG_ON((int)BPF_TCP_CLOSE
!= (int)TCP_CLOSE
);
2204 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT
!= (int)TCP_CLOSE_WAIT
);
2205 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK
!= (int)TCP_LAST_ACK
);
2206 BUILD_BUG_ON((int)BPF_TCP_LISTEN
!= (int)TCP_LISTEN
);
2207 BUILD_BUG_ON((int)BPF_TCP_CLOSING
!= (int)TCP_CLOSING
);
2208 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV
!= (int)TCP_NEW_SYN_RECV
);
2209 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES
!= (int)TCP_MAX_STATES
);
2211 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk
), BPF_SOCK_OPS_STATE_CB_FLAG
))
2212 tcp_call_bpf_2arg(sk
, BPF_SOCK_OPS_STATE_CB
, oldstate
, state
);
2215 case TCP_ESTABLISHED
:
2216 if (oldstate
!= TCP_ESTABLISHED
)
2217 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CURRESTAB
);
2221 if (oldstate
== TCP_CLOSE_WAIT
|| oldstate
== TCP_ESTABLISHED
)
2222 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ESTABRESETS
);
2224 sk
->sk_prot
->unhash(sk
);
2225 if (inet_csk(sk
)->icsk_bind_hash
&&
2226 !(sk
->sk_userlocks
& SOCK_BINDPORT_LOCK
))
2230 if (oldstate
== TCP_ESTABLISHED
)
2231 TCP_DEC_STATS(sock_net(sk
), TCP_MIB_CURRESTAB
);
2234 /* Change state AFTER socket is unhashed to avoid closed
2235 * socket sitting in hash tables.
2237 inet_sk_state_store(sk
, state
);
2240 SOCK_DEBUG(sk
, "TCP sk=%p, State %s -> %s\n", sk
, statename
[oldstate
], statename
[state
]);
2243 EXPORT_SYMBOL_GPL(tcp_set_state
);
2246 * State processing on a close. This implements the state shift for
2247 * sending our FIN frame. Note that we only send a FIN for some
2248 * states. A shutdown() may have already sent the FIN, or we may be
2252 static const unsigned char new_state
[16] = {
2253 /* current state: new state: action: */
2254 [0 /* (Invalid) */] = TCP_CLOSE
,
2255 [TCP_ESTABLISHED
] = TCP_FIN_WAIT1
| TCP_ACTION_FIN
,
2256 [TCP_SYN_SENT
] = TCP_CLOSE
,
2257 [TCP_SYN_RECV
] = TCP_FIN_WAIT1
| TCP_ACTION_FIN
,
2258 [TCP_FIN_WAIT1
] = TCP_FIN_WAIT1
,
2259 [TCP_FIN_WAIT2
] = TCP_FIN_WAIT2
,
2260 [TCP_TIME_WAIT
] = TCP_CLOSE
,
2261 [TCP_CLOSE
] = TCP_CLOSE
,
2262 [TCP_CLOSE_WAIT
] = TCP_LAST_ACK
| TCP_ACTION_FIN
,
2263 [TCP_LAST_ACK
] = TCP_LAST_ACK
,
2264 [TCP_LISTEN
] = TCP_CLOSE
,
2265 [TCP_CLOSING
] = TCP_CLOSING
,
2266 [TCP_NEW_SYN_RECV
] = TCP_CLOSE
, /* should not happen ! */
2269 static int tcp_close_state(struct sock
*sk
)
2271 int next
= (int)new_state
[sk
->sk_state
];
2272 int ns
= next
& TCP_STATE_MASK
;
2274 tcp_set_state(sk
, ns
);
2276 return next
& TCP_ACTION_FIN
;
2280 * Shutdown the sending side of a connection. Much like close except
2281 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2284 void tcp_shutdown(struct sock
*sk
, int how
)
2286 /* We need to grab some memory, and put together a FIN,
2287 * and then put it into the queue to be sent.
2288 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2290 if (!(how
& SEND_SHUTDOWN
))
2293 /* If we've already sent a FIN, or it's a closed state, skip this. */
2294 if ((1 << sk
->sk_state
) &
2295 (TCPF_ESTABLISHED
| TCPF_SYN_SENT
|
2296 TCPF_SYN_RECV
| TCPF_CLOSE_WAIT
)) {
2297 /* Clear out any half completed packets. FIN if needed. */
2298 if (tcp_close_state(sk
))
2302 EXPORT_SYMBOL(tcp_shutdown
);
2304 bool tcp_check_oom(struct sock
*sk
, int shift
)
2306 bool too_many_orphans
, out_of_socket_memory
;
2308 too_many_orphans
= tcp_too_many_orphans(sk
, shift
);
2309 out_of_socket_memory
= tcp_out_of_memory(sk
);
2311 if (too_many_orphans
)
2312 net_info_ratelimited("too many orphaned sockets\n");
2313 if (out_of_socket_memory
)
2314 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2315 return too_many_orphans
|| out_of_socket_memory
;
2318 void tcp_close(struct sock
*sk
, long timeout
)
2320 struct sk_buff
*skb
;
2321 int data_was_unread
= 0;
2325 sk
->sk_shutdown
= SHUTDOWN_MASK
;
2327 if (sk
->sk_state
== TCP_LISTEN
) {
2328 tcp_set_state(sk
, TCP_CLOSE
);
2331 inet_csk_listen_stop(sk
);
2333 goto adjudge_to_death
;
2336 /* We need to flush the recv. buffs. We do this only on the
2337 * descriptor close, not protocol-sourced closes, because the
2338 * reader process may not have drained the data yet!
2340 while ((skb
= __skb_dequeue(&sk
->sk_receive_queue
)) != NULL
) {
2341 u32 len
= TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
;
2343 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
2345 data_was_unread
+= len
;
2351 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2352 if (sk
->sk_state
== TCP_CLOSE
)
2353 goto adjudge_to_death
;
2355 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2356 * data was lost. To witness the awful effects of the old behavior of
2357 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2358 * GET in an FTP client, suspend the process, wait for the client to
2359 * advertise a zero window, then kill -9 the FTP client, wheee...
2360 * Note: timeout is always zero in such a case.
2362 if (unlikely(tcp_sk(sk
)->repair
)) {
2363 sk
->sk_prot
->disconnect(sk
, 0);
2364 } else if (data_was_unread
) {
2365 /* Unread data was tossed, zap the connection. */
2366 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONCLOSE
);
2367 tcp_set_state(sk
, TCP_CLOSE
);
2368 tcp_send_active_reset(sk
, sk
->sk_allocation
);
2369 } else if (sock_flag(sk
, SOCK_LINGER
) && !sk
->sk_lingertime
) {
2370 /* Check zero linger _after_ checking for unread data. */
2371 sk
->sk_prot
->disconnect(sk
, 0);
2372 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
2373 } else if (tcp_close_state(sk
)) {
2374 /* We FIN if the application ate all the data before
2375 * zapping the connection.
2378 /* RED-PEN. Formally speaking, we have broken TCP state
2379 * machine. State transitions:
2381 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2382 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2383 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2385 * are legal only when FIN has been sent (i.e. in window),
2386 * rather than queued out of window. Purists blame.
2388 * F.e. "RFC state" is ESTABLISHED,
2389 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2391 * The visible declinations are that sometimes
2392 * we enter time-wait state, when it is not required really
2393 * (harmless), do not send active resets, when they are
2394 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2395 * they look as CLOSING or LAST_ACK for Linux)
2396 * Probably, I missed some more holelets.
2398 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2399 * in a single packet! (May consider it later but will
2400 * probably need API support or TCP_CORK SYN-ACK until
2401 * data is written and socket is closed.)
2406 sk_stream_wait_close(sk
, timeout
);
2409 state
= sk
->sk_state
;
2413 /* It is the last release_sock in its life. It will remove backlog. */
2417 /* Now socket is owned by kernel and we acquire BH lock
2418 * to finish close. No need to check for user refs.
2422 WARN_ON(sock_owned_by_user(sk
));
2424 percpu_counter_inc(sk
->sk_prot
->orphan_count
);
2426 /* Have we already been destroyed by a softirq or backlog? */
2427 if (state
!= TCP_CLOSE
&& sk
->sk_state
== TCP_CLOSE
)
2430 /* This is a (useful) BSD violating of the RFC. There is a
2431 * problem with TCP as specified in that the other end could
2432 * keep a socket open forever with no application left this end.
2433 * We use a 1 minute timeout (about the same as BSD) then kill
2434 * our end. If they send after that then tough - BUT: long enough
2435 * that we won't make the old 4*rto = almost no time - whoops
2438 * Nope, it was not mistake. It is really desired behaviour
2439 * f.e. on http servers, when such sockets are useless, but
2440 * consume significant resources. Let's do it with special
2441 * linger2 option. --ANK
2444 if (sk
->sk_state
== TCP_FIN_WAIT2
) {
2445 struct tcp_sock
*tp
= tcp_sk(sk
);
2446 if (tp
->linger2
< 0) {
2447 tcp_set_state(sk
, TCP_CLOSE
);
2448 tcp_send_active_reset(sk
, GFP_ATOMIC
);
2449 __NET_INC_STATS(sock_net(sk
),
2450 LINUX_MIB_TCPABORTONLINGER
);
2452 const int tmo
= tcp_fin_time(sk
);
2454 if (tmo
> TCP_TIMEWAIT_LEN
) {
2455 inet_csk_reset_keepalive_timer(sk
,
2456 tmo
- TCP_TIMEWAIT_LEN
);
2458 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
2463 if (sk
->sk_state
!= TCP_CLOSE
) {
2465 if (tcp_check_oom(sk
, 0)) {
2466 tcp_set_state(sk
, TCP_CLOSE
);
2467 tcp_send_active_reset(sk
, GFP_ATOMIC
);
2468 __NET_INC_STATS(sock_net(sk
),
2469 LINUX_MIB_TCPABORTONMEMORY
);
2470 } else if (!check_net(sock_net(sk
))) {
2471 /* Not possible to send reset; just close */
2472 tcp_set_state(sk
, TCP_CLOSE
);
2476 if (sk
->sk_state
== TCP_CLOSE
) {
2477 struct request_sock
*req
= tcp_sk(sk
)->fastopen_rsk
;
2478 /* We could get here with a non-NULL req if the socket is
2479 * aborted (e.g., closed with unread data) before 3WHS
2483 reqsk_fastopen_remove(sk
, req
, false);
2484 inet_csk_destroy_sock(sk
);
2486 /* Otherwise, socket is reprieved until protocol close. */
2493 EXPORT_SYMBOL(tcp_close
);
2495 /* These states need RST on ABORT according to RFC793 */
2497 static inline bool tcp_need_reset(int state
)
2499 return (1 << state
) &
2500 (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
| TCPF_FIN_WAIT1
|
2501 TCPF_FIN_WAIT2
| TCPF_SYN_RECV
);
2504 static void tcp_rtx_queue_purge(struct sock
*sk
)
2506 struct rb_node
*p
= rb_first(&sk
->tcp_rtx_queue
);
2509 struct sk_buff
*skb
= rb_to_skb(p
);
2512 /* Since we are deleting whole queue, no need to
2513 * list_del(&skb->tcp_tsorted_anchor)
2515 tcp_rtx_queue_unlink(skb
, sk
);
2516 sk_wmem_free_skb(sk
, skb
);
2520 void tcp_write_queue_purge(struct sock
*sk
)
2522 struct sk_buff
*skb
;
2524 tcp_chrono_stop(sk
, TCP_CHRONO_BUSY
);
2525 while ((skb
= __skb_dequeue(&sk
->sk_write_queue
)) != NULL
) {
2526 tcp_skb_tsorted_anchor_cleanup(skb
);
2527 sk_wmem_free_skb(sk
, skb
);
2529 tcp_rtx_queue_purge(sk
);
2530 INIT_LIST_HEAD(&tcp_sk(sk
)->tsorted_sent_queue
);
2532 tcp_clear_all_retrans_hints(tcp_sk(sk
));
2533 tcp_sk(sk
)->packets_out
= 0;
2536 int tcp_disconnect(struct sock
*sk
, int flags
)
2538 struct inet_sock
*inet
= inet_sk(sk
);
2539 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2540 struct tcp_sock
*tp
= tcp_sk(sk
);
2542 int old_state
= sk
->sk_state
;
2544 if (old_state
!= TCP_CLOSE
)
2545 tcp_set_state(sk
, TCP_CLOSE
);
2547 /* ABORT function of RFC793 */
2548 if (old_state
== TCP_LISTEN
) {
2549 inet_csk_listen_stop(sk
);
2550 } else if (unlikely(tp
->repair
)) {
2551 sk
->sk_err
= ECONNABORTED
;
2552 } else if (tcp_need_reset(old_state
) ||
2553 (tp
->snd_nxt
!= tp
->write_seq
&&
2554 (1 << old_state
) & (TCPF_CLOSING
| TCPF_LAST_ACK
))) {
2555 /* The last check adjusts for discrepancy of Linux wrt. RFC
2558 tcp_send_active_reset(sk
, gfp_any());
2559 sk
->sk_err
= ECONNRESET
;
2560 } else if (old_state
== TCP_SYN_SENT
)
2561 sk
->sk_err
= ECONNRESET
;
2563 tcp_clear_xmit_timers(sk
);
2564 __skb_queue_purge(&sk
->sk_receive_queue
);
2565 tp
->copied_seq
= tp
->rcv_nxt
;
2567 tcp_write_queue_purge(sk
);
2568 tcp_fastopen_active_disable_ofo_check(sk
);
2569 skb_rbtree_purge(&tp
->out_of_order_queue
);
2571 inet
->inet_dport
= 0;
2573 if (!(sk
->sk_userlocks
& SOCK_BINDADDR_LOCK
))
2574 inet_reset_saddr(sk
);
2576 sk
->sk_shutdown
= 0;
2577 sock_reset_flag(sk
, SOCK_DONE
);
2579 tp
->write_seq
+= tp
->max_window
+ 2;
2580 if (tp
->write_seq
== 0)
2582 icsk
->icsk_backoff
= 0;
2584 icsk
->icsk_probes_out
= 0;
2585 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
2586 tp
->snd_cwnd_cnt
= 0;
2587 tp
->window_clamp
= 0;
2588 tp
->delivered_ce
= 0;
2589 tcp_set_ca_state(sk
, TCP_CA_Open
);
2590 tp
->is_sack_reneg
= 0;
2591 tcp_clear_retrans(tp
);
2592 inet_csk_delack_init(sk
);
2593 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2594 * issue in __tcp_select_window()
2596 icsk
->icsk_ack
.rcv_mss
= TCP_MIN_MSS
;
2597 memset(&tp
->rx_opt
, 0, sizeof(tp
->rx_opt
));
2599 dst_release(sk
->sk_rx_dst
);
2600 sk
->sk_rx_dst
= NULL
;
2601 tcp_saved_syn_free(tp
);
2602 tp
->compressed_ack
= 0;
2604 /* Clean up fastopen related fields */
2605 tcp_free_fastopen_req(tp
);
2606 inet
->defer_connect
= 0;
2608 WARN_ON(inet
->inet_num
&& !icsk
->icsk_bind_hash
);
2610 if (sk
->sk_frag
.page
) {
2611 put_page(sk
->sk_frag
.page
);
2612 sk
->sk_frag
.page
= NULL
;
2613 sk
->sk_frag
.offset
= 0;
2616 sk
->sk_error_report(sk
);
2619 EXPORT_SYMBOL(tcp_disconnect
);
2621 static inline bool tcp_can_repair_sock(const struct sock
*sk
)
2623 return ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
) &&
2624 (sk
->sk_state
!= TCP_LISTEN
);
2627 static int tcp_repair_set_window(struct tcp_sock
*tp
, char __user
*optbuf
, int len
)
2629 struct tcp_repair_window opt
;
2634 if (len
!= sizeof(opt
))
2637 if (copy_from_user(&opt
, optbuf
, sizeof(opt
)))
2640 if (opt
.max_window
< opt
.snd_wnd
)
2643 if (after(opt
.snd_wl1
, tp
->rcv_nxt
+ opt
.rcv_wnd
))
2646 if (after(opt
.rcv_wup
, tp
->rcv_nxt
))
2649 tp
->snd_wl1
= opt
.snd_wl1
;
2650 tp
->snd_wnd
= opt
.snd_wnd
;
2651 tp
->max_window
= opt
.max_window
;
2653 tp
->rcv_wnd
= opt
.rcv_wnd
;
2654 tp
->rcv_wup
= opt
.rcv_wup
;
2659 static int tcp_repair_options_est(struct sock
*sk
,
2660 struct tcp_repair_opt __user
*optbuf
, unsigned int len
)
2662 struct tcp_sock
*tp
= tcp_sk(sk
);
2663 struct tcp_repair_opt opt
;
2665 while (len
>= sizeof(opt
)) {
2666 if (copy_from_user(&opt
, optbuf
, sizeof(opt
)))
2672 switch (opt
.opt_code
) {
2674 tp
->rx_opt
.mss_clamp
= opt
.opt_val
;
2679 u16 snd_wscale
= opt
.opt_val
& 0xFFFF;
2680 u16 rcv_wscale
= opt
.opt_val
>> 16;
2682 if (snd_wscale
> TCP_MAX_WSCALE
|| rcv_wscale
> TCP_MAX_WSCALE
)
2685 tp
->rx_opt
.snd_wscale
= snd_wscale
;
2686 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
2687 tp
->rx_opt
.wscale_ok
= 1;
2690 case TCPOPT_SACK_PERM
:
2691 if (opt
.opt_val
!= 0)
2694 tp
->rx_opt
.sack_ok
|= TCP_SACK_SEEN
;
2696 case TCPOPT_TIMESTAMP
:
2697 if (opt
.opt_val
!= 0)
2700 tp
->rx_opt
.tstamp_ok
= 1;
2709 * Socket option code for TCP.
2711 static int do_tcp_setsockopt(struct sock
*sk
, int level
,
2712 int optname
, char __user
*optval
, unsigned int optlen
)
2714 struct tcp_sock
*tp
= tcp_sk(sk
);
2715 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2716 struct net
*net
= sock_net(sk
);
2720 /* These are data/string values, all the others are ints */
2722 case TCP_CONGESTION
: {
2723 char name
[TCP_CA_NAME_MAX
];
2728 val
= strncpy_from_user(name
, optval
,
2729 min_t(long, TCP_CA_NAME_MAX
-1, optlen
));
2735 err
= tcp_set_congestion_control(sk
, name
, true, true);
2740 char name
[TCP_ULP_NAME_MAX
];
2745 val
= strncpy_from_user(name
, optval
,
2746 min_t(long, TCP_ULP_NAME_MAX
- 1,
2753 err
= tcp_set_ulp(sk
, name
);
2757 case TCP_FASTOPEN_KEY
: {
2758 __u8 key
[TCP_FASTOPEN_KEY_LENGTH
];
2760 if (optlen
!= sizeof(key
))
2763 if (copy_from_user(key
, optval
, optlen
))
2766 return tcp_fastopen_reset_cipher(net
, sk
, key
, sizeof(key
));
2773 if (optlen
< sizeof(int))
2776 if (get_user(val
, (int __user
*)optval
))
2783 /* Values greater than interface MTU won't take effect. However
2784 * at the point when this call is done we typically don't yet
2785 * know which interface is going to be used
2787 if (val
&& (val
< TCP_MIN_MSS
|| val
> MAX_TCP_WINDOW
)) {
2791 tp
->rx_opt
.user_mss
= val
;
2796 /* TCP_NODELAY is weaker than TCP_CORK, so that
2797 * this option on corked socket is remembered, but
2798 * it is not activated until cork is cleared.
2800 * However, when TCP_NODELAY is set we make
2801 * an explicit push, which overrides even TCP_CORK
2802 * for currently queued segments.
2804 tp
->nonagle
|= TCP_NAGLE_OFF
|TCP_NAGLE_PUSH
;
2805 tcp_push_pending_frames(sk
);
2807 tp
->nonagle
&= ~TCP_NAGLE_OFF
;
2811 case TCP_THIN_LINEAR_TIMEOUTS
:
2812 if (val
< 0 || val
> 1)
2818 case TCP_THIN_DUPACK
:
2819 if (val
< 0 || val
> 1)
2824 if (!tcp_can_repair_sock(sk
))
2826 else if (val
== TCP_REPAIR_ON
) {
2828 sk
->sk_reuse
= SK_FORCE_REUSE
;
2829 tp
->repair_queue
= TCP_NO_QUEUE
;
2830 } else if (val
== TCP_REPAIR_OFF
) {
2832 sk
->sk_reuse
= SK_NO_REUSE
;
2833 tcp_send_window_probe(sk
);
2834 } else if (val
== TCP_REPAIR_OFF_NO_WP
) {
2836 sk
->sk_reuse
= SK_NO_REUSE
;
2842 case TCP_REPAIR_QUEUE
:
2845 else if ((unsigned int)val
< TCP_QUEUES_NR
)
2846 tp
->repair_queue
= val
;
2852 if (sk
->sk_state
!= TCP_CLOSE
)
2854 else if (tp
->repair_queue
== TCP_SEND_QUEUE
)
2855 tp
->write_seq
= val
;
2856 else if (tp
->repair_queue
== TCP_RECV_QUEUE
)
2862 case TCP_REPAIR_OPTIONS
:
2865 else if (sk
->sk_state
== TCP_ESTABLISHED
)
2866 err
= tcp_repair_options_est(sk
,
2867 (struct tcp_repair_opt __user
*)optval
,
2874 /* When set indicates to always queue non-full frames.
2875 * Later the user clears this option and we transmit
2876 * any pending partial frames in the queue. This is
2877 * meant to be used alongside sendfile() to get properly
2878 * filled frames when the user (for example) must write
2879 * out headers with a write() call first and then use
2880 * sendfile to send out the data parts.
2882 * TCP_CORK can be set together with TCP_NODELAY and it is
2883 * stronger than TCP_NODELAY.
2886 tp
->nonagle
|= TCP_NAGLE_CORK
;
2888 tp
->nonagle
&= ~TCP_NAGLE_CORK
;
2889 if (tp
->nonagle
&TCP_NAGLE_OFF
)
2890 tp
->nonagle
|= TCP_NAGLE_PUSH
;
2891 tcp_push_pending_frames(sk
);
2896 if (val
< 1 || val
> MAX_TCP_KEEPIDLE
)
2899 tp
->keepalive_time
= val
* HZ
;
2900 if (sock_flag(sk
, SOCK_KEEPOPEN
) &&
2901 !((1 << sk
->sk_state
) &
2902 (TCPF_CLOSE
| TCPF_LISTEN
))) {
2903 u32 elapsed
= keepalive_time_elapsed(tp
);
2904 if (tp
->keepalive_time
> elapsed
)
2905 elapsed
= tp
->keepalive_time
- elapsed
;
2908 inet_csk_reset_keepalive_timer(sk
, elapsed
);
2913 if (val
< 1 || val
> MAX_TCP_KEEPINTVL
)
2916 tp
->keepalive_intvl
= val
* HZ
;
2919 if (val
< 1 || val
> MAX_TCP_KEEPCNT
)
2922 tp
->keepalive_probes
= val
;
2925 if (val
< 1 || val
> MAX_TCP_SYNCNT
)
2928 icsk
->icsk_syn_retries
= val
;
2932 if (val
< 0 || val
> 1)
2941 else if (val
> net
->ipv4
.sysctl_tcp_fin_timeout
/ HZ
)
2944 tp
->linger2
= val
* HZ
;
2947 case TCP_DEFER_ACCEPT
:
2948 /* Translate value in seconds to number of retransmits */
2949 icsk
->icsk_accept_queue
.rskq_defer_accept
=
2950 secs_to_retrans(val
, TCP_TIMEOUT_INIT
/ HZ
,
2954 case TCP_WINDOW_CLAMP
:
2956 if (sk
->sk_state
!= TCP_CLOSE
) {
2960 tp
->window_clamp
= 0;
2962 tp
->window_clamp
= val
< SOCK_MIN_RCVBUF
/ 2 ?
2963 SOCK_MIN_RCVBUF
/ 2 : val
;
2968 icsk
->icsk_ack
.pingpong
= 1;
2970 icsk
->icsk_ack
.pingpong
= 0;
2971 if ((1 << sk
->sk_state
) &
2972 (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
) &&
2973 inet_csk_ack_scheduled(sk
)) {
2974 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
2975 tcp_cleanup_rbuf(sk
, 1);
2977 icsk
->icsk_ack
.pingpong
= 1;
2982 #ifdef CONFIG_TCP_MD5SIG
2984 case TCP_MD5SIG_EXT
:
2985 if ((1 << sk
->sk_state
) & (TCPF_CLOSE
| TCPF_LISTEN
))
2986 err
= tp
->af_specific
->md5_parse(sk
, optname
, optval
, optlen
);
2991 case TCP_USER_TIMEOUT
:
2992 /* Cap the max time in ms TCP will retry or probe the window
2993 * before giving up and aborting (ETIMEDOUT) a connection.
2998 icsk
->icsk_user_timeout
= msecs_to_jiffies(val
);
3002 if (val
>= 0 && ((1 << sk
->sk_state
) & (TCPF_CLOSE
|
3004 tcp_fastopen_init_key_once(net
);
3006 fastopen_queue_tune(sk
, val
);
3011 case TCP_FASTOPEN_CONNECT
:
3012 if (val
> 1 || val
< 0) {
3014 } else if (net
->ipv4
.sysctl_tcp_fastopen
& TFO_CLIENT_ENABLE
) {
3015 if (sk
->sk_state
== TCP_CLOSE
)
3016 tp
->fastopen_connect
= val
;
3023 case TCP_FASTOPEN_NO_COOKIE
:
3024 if (val
> 1 || val
< 0)
3026 else if (!((1 << sk
->sk_state
) & (TCPF_CLOSE
| TCPF_LISTEN
)))
3029 tp
->fastopen_no_cookie
= val
;
3035 tp
->tsoffset
= val
- tcp_time_stamp_raw();
3037 case TCP_REPAIR_WINDOW
:
3038 err
= tcp_repair_set_window(tp
, optval
, optlen
);
3040 case TCP_NOTSENT_LOWAT
:
3041 tp
->notsent_lowat
= val
;
3042 sk
->sk_write_space(sk
);
3045 if (val
> 1 || val
< 0)
3048 tp
->recvmsg_inq
= val
;
3059 int tcp_setsockopt(struct sock
*sk
, int level
, int optname
, char __user
*optval
,
3060 unsigned int optlen
)
3062 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3064 if (level
!= SOL_TCP
)
3065 return icsk
->icsk_af_ops
->setsockopt(sk
, level
, optname
,
3067 return do_tcp_setsockopt(sk
, level
, optname
, optval
, optlen
);
3069 EXPORT_SYMBOL(tcp_setsockopt
);
3071 #ifdef CONFIG_COMPAT
3072 int compat_tcp_setsockopt(struct sock
*sk
, int level
, int optname
,
3073 char __user
*optval
, unsigned int optlen
)
3075 if (level
!= SOL_TCP
)
3076 return inet_csk_compat_setsockopt(sk
, level
, optname
,
3078 return do_tcp_setsockopt(sk
, level
, optname
, optval
, optlen
);
3080 EXPORT_SYMBOL(compat_tcp_setsockopt
);
3083 static void tcp_get_info_chrono_stats(const struct tcp_sock
*tp
,
3084 struct tcp_info
*info
)
3086 u64 stats
[__TCP_CHRONO_MAX
], total
= 0;
3089 for (i
= TCP_CHRONO_BUSY
; i
< __TCP_CHRONO_MAX
; ++i
) {
3090 stats
[i
] = tp
->chrono_stat
[i
- 1];
3091 if (i
== tp
->chrono_type
)
3092 stats
[i
] += tcp_jiffies32
- tp
->chrono_start
;
3093 stats
[i
] *= USEC_PER_SEC
/ HZ
;
3097 info
->tcpi_busy_time
= total
;
3098 info
->tcpi_rwnd_limited
= stats
[TCP_CHRONO_RWND_LIMITED
];
3099 info
->tcpi_sndbuf_limited
= stats
[TCP_CHRONO_SNDBUF_LIMITED
];
3102 /* Return information about state of tcp endpoint in API format. */
3103 void tcp_get_info(struct sock
*sk
, struct tcp_info
*info
)
3105 const struct tcp_sock
*tp
= tcp_sk(sk
); /* iff sk_type == SOCK_STREAM */
3106 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3112 memset(info
, 0, sizeof(*info
));
3113 if (sk
->sk_type
!= SOCK_STREAM
)
3116 info
->tcpi_state
= inet_sk_state_load(sk
);
3118 /* Report meaningful fields for all TCP states, including listeners */
3119 rate
= READ_ONCE(sk
->sk_pacing_rate
);
3120 rate64
= rate
!= ~0U ? rate
: ~0ULL;
3121 info
->tcpi_pacing_rate
= rate64
;
3123 rate
= READ_ONCE(sk
->sk_max_pacing_rate
);
3124 rate64
= rate
!= ~0U ? rate
: ~0ULL;
3125 info
->tcpi_max_pacing_rate
= rate64
;
3127 info
->tcpi_reordering
= tp
->reordering
;
3128 info
->tcpi_snd_cwnd
= tp
->snd_cwnd
;
3130 if (info
->tcpi_state
== TCP_LISTEN
) {
3131 /* listeners aliased fields :
3132 * tcpi_unacked -> Number of children ready for accept()
3133 * tcpi_sacked -> max backlog
3135 info
->tcpi_unacked
= sk
->sk_ack_backlog
;
3136 info
->tcpi_sacked
= sk
->sk_max_ack_backlog
;
3140 slow
= lock_sock_fast(sk
);
3142 info
->tcpi_ca_state
= icsk
->icsk_ca_state
;
3143 info
->tcpi_retransmits
= icsk
->icsk_retransmits
;
3144 info
->tcpi_probes
= icsk
->icsk_probes_out
;
3145 info
->tcpi_backoff
= icsk
->icsk_backoff
;
3147 if (tp
->rx_opt
.tstamp_ok
)
3148 info
->tcpi_options
|= TCPI_OPT_TIMESTAMPS
;
3149 if (tcp_is_sack(tp
))
3150 info
->tcpi_options
|= TCPI_OPT_SACK
;
3151 if (tp
->rx_opt
.wscale_ok
) {
3152 info
->tcpi_options
|= TCPI_OPT_WSCALE
;
3153 info
->tcpi_snd_wscale
= tp
->rx_opt
.snd_wscale
;
3154 info
->tcpi_rcv_wscale
= tp
->rx_opt
.rcv_wscale
;
3157 if (tp
->ecn_flags
& TCP_ECN_OK
)
3158 info
->tcpi_options
|= TCPI_OPT_ECN
;
3159 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
3160 info
->tcpi_options
|= TCPI_OPT_ECN_SEEN
;
3161 if (tp
->syn_data_acked
)
3162 info
->tcpi_options
|= TCPI_OPT_SYN_DATA
;
3164 info
->tcpi_rto
= jiffies_to_usecs(icsk
->icsk_rto
);
3165 info
->tcpi_ato
= jiffies_to_usecs(icsk
->icsk_ack
.ato
);
3166 info
->tcpi_snd_mss
= tp
->mss_cache
;
3167 info
->tcpi_rcv_mss
= icsk
->icsk_ack
.rcv_mss
;
3169 info
->tcpi_unacked
= tp
->packets_out
;
3170 info
->tcpi_sacked
= tp
->sacked_out
;
3172 info
->tcpi_lost
= tp
->lost_out
;
3173 info
->tcpi_retrans
= tp
->retrans_out
;
3175 now
= tcp_jiffies32
;
3176 info
->tcpi_last_data_sent
= jiffies_to_msecs(now
- tp
->lsndtime
);
3177 info
->tcpi_last_data_recv
= jiffies_to_msecs(now
- icsk
->icsk_ack
.lrcvtime
);
3178 info
->tcpi_last_ack_recv
= jiffies_to_msecs(now
- tp
->rcv_tstamp
);
3180 info
->tcpi_pmtu
= icsk
->icsk_pmtu_cookie
;
3181 info
->tcpi_rcv_ssthresh
= tp
->rcv_ssthresh
;
3182 info
->tcpi_rtt
= tp
->srtt_us
>> 3;
3183 info
->tcpi_rttvar
= tp
->mdev_us
>> 2;
3184 info
->tcpi_snd_ssthresh
= tp
->snd_ssthresh
;
3185 info
->tcpi_advmss
= tp
->advmss
;
3187 info
->tcpi_rcv_rtt
= tp
->rcv_rtt_est
.rtt_us
>> 3;
3188 info
->tcpi_rcv_space
= tp
->rcvq_space
.space
;
3190 info
->tcpi_total_retrans
= tp
->total_retrans
;
3192 info
->tcpi_bytes_acked
= tp
->bytes_acked
;
3193 info
->tcpi_bytes_received
= tp
->bytes_received
;
3194 info
->tcpi_notsent_bytes
= max_t(int, 0, tp
->write_seq
- tp
->snd_nxt
);
3195 tcp_get_info_chrono_stats(tp
, info
);
3197 info
->tcpi_segs_out
= tp
->segs_out
;
3198 info
->tcpi_segs_in
= tp
->segs_in
;
3200 info
->tcpi_min_rtt
= tcp_min_rtt(tp
);
3201 info
->tcpi_data_segs_in
= tp
->data_segs_in
;
3202 info
->tcpi_data_segs_out
= tp
->data_segs_out
;
3204 info
->tcpi_delivery_rate_app_limited
= tp
->rate_app_limited
? 1 : 0;
3205 rate64
= tcp_compute_delivery_rate(tp
);
3207 info
->tcpi_delivery_rate
= rate64
;
3208 info
->tcpi_delivered
= tp
->delivered
;
3209 info
->tcpi_delivered_ce
= tp
->delivered_ce
;
3210 unlock_sock_fast(sk
, slow
);
3212 EXPORT_SYMBOL_GPL(tcp_get_info
);
3214 struct sk_buff
*tcp_get_timestamping_opt_stats(const struct sock
*sk
)
3216 const struct tcp_sock
*tp
= tcp_sk(sk
);
3217 struct sk_buff
*stats
;
3218 struct tcp_info info
;
3222 stats
= alloc_skb(7 * nla_total_size_64bit(sizeof(u64
)) +
3223 7 * nla_total_size(sizeof(u32
)) +
3224 3 * nla_total_size(sizeof(u8
)), GFP_ATOMIC
);
3228 tcp_get_info_chrono_stats(tp
, &info
);
3229 nla_put_u64_64bit(stats
, TCP_NLA_BUSY
,
3230 info
.tcpi_busy_time
, TCP_NLA_PAD
);
3231 nla_put_u64_64bit(stats
, TCP_NLA_RWND_LIMITED
,
3232 info
.tcpi_rwnd_limited
, TCP_NLA_PAD
);
3233 nla_put_u64_64bit(stats
, TCP_NLA_SNDBUF_LIMITED
,
3234 info
.tcpi_sndbuf_limited
, TCP_NLA_PAD
);
3235 nla_put_u64_64bit(stats
, TCP_NLA_DATA_SEGS_OUT
,
3236 tp
->data_segs_out
, TCP_NLA_PAD
);
3237 nla_put_u64_64bit(stats
, TCP_NLA_TOTAL_RETRANS
,
3238 tp
->total_retrans
, TCP_NLA_PAD
);
3240 rate
= READ_ONCE(sk
->sk_pacing_rate
);
3241 rate64
= rate
!= ~0U ? rate
: ~0ULL;
3242 nla_put_u64_64bit(stats
, TCP_NLA_PACING_RATE
, rate64
, TCP_NLA_PAD
);
3244 rate64
= tcp_compute_delivery_rate(tp
);
3245 nla_put_u64_64bit(stats
, TCP_NLA_DELIVERY_RATE
, rate64
, TCP_NLA_PAD
);
3247 nla_put_u32(stats
, TCP_NLA_SND_CWND
, tp
->snd_cwnd
);
3248 nla_put_u32(stats
, TCP_NLA_REORDERING
, tp
->reordering
);
3249 nla_put_u32(stats
, TCP_NLA_MIN_RTT
, tcp_min_rtt(tp
));
3251 nla_put_u8(stats
, TCP_NLA_RECUR_RETRANS
, inet_csk(sk
)->icsk_retransmits
);
3252 nla_put_u8(stats
, TCP_NLA_DELIVERY_RATE_APP_LMT
, !!tp
->rate_app_limited
);
3253 nla_put_u32(stats
, TCP_NLA_SND_SSTHRESH
, tp
->snd_ssthresh
);
3254 nla_put_u32(stats
, TCP_NLA_DELIVERED
, tp
->delivered
);
3255 nla_put_u32(stats
, TCP_NLA_DELIVERED_CE
, tp
->delivered_ce
);
3257 nla_put_u32(stats
, TCP_NLA_SNDQ_SIZE
, tp
->write_seq
- tp
->snd_una
);
3258 nla_put_u8(stats
, TCP_NLA_CA_STATE
, inet_csk(sk
)->icsk_ca_state
);
3263 static int do_tcp_getsockopt(struct sock
*sk
, int level
,
3264 int optname
, char __user
*optval
, int __user
*optlen
)
3266 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3267 struct tcp_sock
*tp
= tcp_sk(sk
);
3268 struct net
*net
= sock_net(sk
);
3271 if (get_user(len
, optlen
))
3274 len
= min_t(unsigned int, len
, sizeof(int));
3281 val
= tp
->mss_cache
;
3282 if (!val
&& ((1 << sk
->sk_state
) & (TCPF_CLOSE
| TCPF_LISTEN
)))
3283 val
= tp
->rx_opt
.user_mss
;
3285 val
= tp
->rx_opt
.mss_clamp
;
3288 val
= !!(tp
->nonagle
&TCP_NAGLE_OFF
);
3291 val
= !!(tp
->nonagle
&TCP_NAGLE_CORK
);
3294 val
= keepalive_time_when(tp
) / HZ
;
3297 val
= keepalive_intvl_when(tp
) / HZ
;
3300 val
= keepalive_probes(tp
);
3303 val
= icsk
->icsk_syn_retries
? : net
->ipv4
.sysctl_tcp_syn_retries
;
3308 val
= (val
? : net
->ipv4
.sysctl_tcp_fin_timeout
) / HZ
;
3310 case TCP_DEFER_ACCEPT
:
3311 val
= retrans_to_secs(icsk
->icsk_accept_queue
.rskq_defer_accept
,
3312 TCP_TIMEOUT_INIT
/ HZ
, TCP_RTO_MAX
/ HZ
);
3314 case TCP_WINDOW_CLAMP
:
3315 val
= tp
->window_clamp
;
3318 struct tcp_info info
;
3320 if (get_user(len
, optlen
))
3323 tcp_get_info(sk
, &info
);
3325 len
= min_t(unsigned int, len
, sizeof(info
));
3326 if (put_user(len
, optlen
))
3328 if (copy_to_user(optval
, &info
, len
))
3333 const struct tcp_congestion_ops
*ca_ops
;
3334 union tcp_cc_info info
;
3338 if (get_user(len
, optlen
))
3341 ca_ops
= icsk
->icsk_ca_ops
;
3342 if (ca_ops
&& ca_ops
->get_info
)
3343 sz
= ca_ops
->get_info(sk
, ~0U, &attr
, &info
);
3345 len
= min_t(unsigned int, len
, sz
);
3346 if (put_user(len
, optlen
))
3348 if (copy_to_user(optval
, &info
, len
))
3353 val
= !icsk
->icsk_ack
.pingpong
;
3356 case TCP_CONGESTION
:
3357 if (get_user(len
, optlen
))
3359 len
= min_t(unsigned int, len
, TCP_CA_NAME_MAX
);
3360 if (put_user(len
, optlen
))
3362 if (copy_to_user(optval
, icsk
->icsk_ca_ops
->name
, len
))
3367 if (get_user(len
, optlen
))
3369 len
= min_t(unsigned int, len
, TCP_ULP_NAME_MAX
);
3370 if (!icsk
->icsk_ulp_ops
) {
3371 if (put_user(0, optlen
))
3375 if (put_user(len
, optlen
))
3377 if (copy_to_user(optval
, icsk
->icsk_ulp_ops
->name
, len
))
3381 case TCP_FASTOPEN_KEY
: {
3382 __u8 key
[TCP_FASTOPEN_KEY_LENGTH
];
3383 struct tcp_fastopen_context
*ctx
;
3385 if (get_user(len
, optlen
))
3389 ctx
= rcu_dereference(icsk
->icsk_accept_queue
.fastopenq
.ctx
);
3391 memcpy(key
, ctx
->key
, sizeof(key
));
3396 len
= min_t(unsigned int, len
, sizeof(key
));
3397 if (put_user(len
, optlen
))
3399 if (copy_to_user(optval
, key
, len
))
3403 case TCP_THIN_LINEAR_TIMEOUTS
:
3407 case TCP_THIN_DUPACK
:
3415 case TCP_REPAIR_QUEUE
:
3417 val
= tp
->repair_queue
;
3422 case TCP_REPAIR_WINDOW
: {
3423 struct tcp_repair_window opt
;
3425 if (get_user(len
, optlen
))
3428 if (len
!= sizeof(opt
))
3434 opt
.snd_wl1
= tp
->snd_wl1
;
3435 opt
.snd_wnd
= tp
->snd_wnd
;
3436 opt
.max_window
= tp
->max_window
;
3437 opt
.rcv_wnd
= tp
->rcv_wnd
;
3438 opt
.rcv_wup
= tp
->rcv_wup
;
3440 if (copy_to_user(optval
, &opt
, len
))
3445 if (tp
->repair_queue
== TCP_SEND_QUEUE
)
3446 val
= tp
->write_seq
;
3447 else if (tp
->repair_queue
== TCP_RECV_QUEUE
)
3453 case TCP_USER_TIMEOUT
:
3454 val
= jiffies_to_msecs(icsk
->icsk_user_timeout
);
3458 val
= icsk
->icsk_accept_queue
.fastopenq
.max_qlen
;
3461 case TCP_FASTOPEN_CONNECT
:
3462 val
= tp
->fastopen_connect
;
3465 case TCP_FASTOPEN_NO_COOKIE
:
3466 val
= tp
->fastopen_no_cookie
;
3470 val
= tcp_time_stamp_raw() + tp
->tsoffset
;
3472 case TCP_NOTSENT_LOWAT
:
3473 val
= tp
->notsent_lowat
;
3476 val
= tp
->recvmsg_inq
;
3481 case TCP_SAVED_SYN
: {
3482 if (get_user(len
, optlen
))
3486 if (tp
->saved_syn
) {
3487 if (len
< tp
->saved_syn
[0]) {
3488 if (put_user(tp
->saved_syn
[0], optlen
)) {
3495 len
= tp
->saved_syn
[0];
3496 if (put_user(len
, optlen
)) {
3500 if (copy_to_user(optval
, tp
->saved_syn
+ 1, len
)) {
3504 tcp_saved_syn_free(tp
);
3509 if (put_user(len
, optlen
))
3515 case TCP_ZEROCOPY_RECEIVE
: {
3516 struct tcp_zerocopy_receive zc
;
3519 if (get_user(len
, optlen
))
3521 if (len
!= sizeof(zc
))
3523 if (copy_from_user(&zc
, optval
, len
))
3526 err
= tcp_zerocopy_receive(sk
, &zc
);
3528 if (!err
&& copy_to_user(optval
, &zc
, len
))
3534 return -ENOPROTOOPT
;
3537 if (put_user(len
, optlen
))
3539 if (copy_to_user(optval
, &val
, len
))
3544 int tcp_getsockopt(struct sock
*sk
, int level
, int optname
, char __user
*optval
,
3547 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3549 if (level
!= SOL_TCP
)
3550 return icsk
->icsk_af_ops
->getsockopt(sk
, level
, optname
,
3552 return do_tcp_getsockopt(sk
, level
, optname
, optval
, optlen
);
3554 EXPORT_SYMBOL(tcp_getsockopt
);
3556 #ifdef CONFIG_COMPAT
3557 int compat_tcp_getsockopt(struct sock
*sk
, int level
, int optname
,
3558 char __user
*optval
, int __user
*optlen
)
3560 if (level
!= SOL_TCP
)
3561 return inet_csk_compat_getsockopt(sk
, level
, optname
,
3563 return do_tcp_getsockopt(sk
, level
, optname
, optval
, optlen
);
3565 EXPORT_SYMBOL(compat_tcp_getsockopt
);
3568 #ifdef CONFIG_TCP_MD5SIG
3569 static DEFINE_PER_CPU(struct tcp_md5sig_pool
, tcp_md5sig_pool
);
3570 static DEFINE_MUTEX(tcp_md5sig_mutex
);
3571 static bool tcp_md5sig_pool_populated
= false;
3573 static void __tcp_alloc_md5sig_pool(void)
3575 struct crypto_ahash
*hash
;
3578 hash
= crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC
);
3582 for_each_possible_cpu(cpu
) {
3583 void *scratch
= per_cpu(tcp_md5sig_pool
, cpu
).scratch
;
3584 struct ahash_request
*req
;
3587 scratch
= kmalloc_node(sizeof(union tcp_md5sum_block
) +
3588 sizeof(struct tcphdr
),
3593 per_cpu(tcp_md5sig_pool
, cpu
).scratch
= scratch
;
3595 if (per_cpu(tcp_md5sig_pool
, cpu
).md5_req
)
3598 req
= ahash_request_alloc(hash
, GFP_KERNEL
);
3602 ahash_request_set_callback(req
, 0, NULL
, NULL
);
3604 per_cpu(tcp_md5sig_pool
, cpu
).md5_req
= req
;
3606 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3607 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3610 tcp_md5sig_pool_populated
= true;
3613 bool tcp_alloc_md5sig_pool(void)
3615 if (unlikely(!tcp_md5sig_pool_populated
)) {
3616 mutex_lock(&tcp_md5sig_mutex
);
3618 if (!tcp_md5sig_pool_populated
)
3619 __tcp_alloc_md5sig_pool();
3621 mutex_unlock(&tcp_md5sig_mutex
);
3623 return tcp_md5sig_pool_populated
;
3625 EXPORT_SYMBOL(tcp_alloc_md5sig_pool
);
3629 * tcp_get_md5sig_pool - get md5sig_pool for this user
3631 * We use percpu structure, so if we succeed, we exit with preemption
3632 * and BH disabled, to make sure another thread or softirq handling
3633 * wont try to get same context.
3635 struct tcp_md5sig_pool
*tcp_get_md5sig_pool(void)
3639 if (tcp_md5sig_pool_populated
) {
3640 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3642 return this_cpu_ptr(&tcp_md5sig_pool
);
3647 EXPORT_SYMBOL(tcp_get_md5sig_pool
);
3649 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool
*hp
,
3650 const struct sk_buff
*skb
, unsigned int header_len
)
3652 struct scatterlist sg
;
3653 const struct tcphdr
*tp
= tcp_hdr(skb
);
3654 struct ahash_request
*req
= hp
->md5_req
;
3656 const unsigned int head_data_len
= skb_headlen(skb
) > header_len
?
3657 skb_headlen(skb
) - header_len
: 0;
3658 const struct skb_shared_info
*shi
= skb_shinfo(skb
);
3659 struct sk_buff
*frag_iter
;
3661 sg_init_table(&sg
, 1);
3663 sg_set_buf(&sg
, ((u8
*) tp
) + header_len
, head_data_len
);
3664 ahash_request_set_crypt(req
, &sg
, NULL
, head_data_len
);
3665 if (crypto_ahash_update(req
))
3668 for (i
= 0; i
< shi
->nr_frags
; ++i
) {
3669 const struct skb_frag_struct
*f
= &shi
->frags
[i
];
3670 unsigned int offset
= f
->page_offset
;
3671 struct page
*page
= skb_frag_page(f
) + (offset
>> PAGE_SHIFT
);
3673 sg_set_page(&sg
, page
, skb_frag_size(f
),
3674 offset_in_page(offset
));
3675 ahash_request_set_crypt(req
, &sg
, NULL
, skb_frag_size(f
));
3676 if (crypto_ahash_update(req
))
3680 skb_walk_frags(skb
, frag_iter
)
3681 if (tcp_md5_hash_skb_data(hp
, frag_iter
, 0))
3686 EXPORT_SYMBOL(tcp_md5_hash_skb_data
);
3688 int tcp_md5_hash_key(struct tcp_md5sig_pool
*hp
, const struct tcp_md5sig_key
*key
)
3690 struct scatterlist sg
;
3692 sg_init_one(&sg
, key
->key
, key
->keylen
);
3693 ahash_request_set_crypt(hp
->md5_req
, &sg
, NULL
, key
->keylen
);
3694 return crypto_ahash_update(hp
->md5_req
);
3696 EXPORT_SYMBOL(tcp_md5_hash_key
);
3700 void tcp_done(struct sock
*sk
)
3702 struct request_sock
*req
= tcp_sk(sk
)->fastopen_rsk
;
3704 if (sk
->sk_state
== TCP_SYN_SENT
|| sk
->sk_state
== TCP_SYN_RECV
)
3705 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ATTEMPTFAILS
);
3707 tcp_set_state(sk
, TCP_CLOSE
);
3708 tcp_clear_xmit_timers(sk
);
3710 reqsk_fastopen_remove(sk
, req
, false);
3712 sk
->sk_shutdown
= SHUTDOWN_MASK
;
3714 if (!sock_flag(sk
, SOCK_DEAD
))
3715 sk
->sk_state_change(sk
);
3717 inet_csk_destroy_sock(sk
);
3719 EXPORT_SYMBOL_GPL(tcp_done
);
3721 int tcp_abort(struct sock
*sk
, int err
)
3723 if (!sk_fullsock(sk
)) {
3724 if (sk
->sk_state
== TCP_NEW_SYN_RECV
) {
3725 struct request_sock
*req
= inet_reqsk(sk
);
3728 inet_csk_reqsk_queue_drop(req
->rsk_listener
, req
);
3735 /* Don't race with userspace socket closes such as tcp_close. */
3738 if (sk
->sk_state
== TCP_LISTEN
) {
3739 tcp_set_state(sk
, TCP_CLOSE
);
3740 inet_csk_listen_stop(sk
);
3743 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3747 if (!sock_flag(sk
, SOCK_DEAD
)) {
3749 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3751 sk
->sk_error_report(sk
);
3752 if (tcp_need_reset(sk
->sk_state
))
3753 tcp_send_active_reset(sk
, GFP_ATOMIC
);
3759 tcp_write_queue_purge(sk
);
3763 EXPORT_SYMBOL_GPL(tcp_abort
);
3765 extern struct tcp_congestion_ops tcp_reno
;
3767 static __initdata
unsigned long thash_entries
;
3768 static int __init
set_thash_entries(char *str
)
3775 ret
= kstrtoul(str
, 0, &thash_entries
);
3781 __setup("thash_entries=", set_thash_entries
);
3783 static void __init
tcp_init_mem(void)
3785 unsigned long limit
= nr_free_buffer_pages() / 16;
3787 limit
= max(limit
, 128UL);
3788 sysctl_tcp_mem
[0] = limit
/ 4 * 3; /* 4.68 % */
3789 sysctl_tcp_mem
[1] = limit
; /* 6.25 % */
3790 sysctl_tcp_mem
[2] = sysctl_tcp_mem
[0] * 2; /* 9.37 % */
3793 void __init
tcp_init(void)
3795 int max_rshare
, max_wshare
, cnt
;
3796 unsigned long limit
;
3799 BUILD_BUG_ON(sizeof(struct tcp_skb_cb
) >
3800 FIELD_SIZEOF(struct sk_buff
, cb
));
3802 percpu_counter_init(&tcp_sockets_allocated
, 0, GFP_KERNEL
);
3803 percpu_counter_init(&tcp_orphan_count
, 0, GFP_KERNEL
);
3804 inet_hashinfo_init(&tcp_hashinfo
);
3805 inet_hashinfo2_init(&tcp_hashinfo
, "tcp_listen_portaddr_hash",
3806 thash_entries
, 21, /* one slot per 2 MB*/
3808 tcp_hashinfo
.bind_bucket_cachep
=
3809 kmem_cache_create("tcp_bind_bucket",
3810 sizeof(struct inet_bind_bucket
), 0,
3811 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3813 /* Size and allocate the main established and bind bucket
3816 * The methodology is similar to that of the buffer cache.
3818 tcp_hashinfo
.ehash
=
3819 alloc_large_system_hash("TCP established",
3820 sizeof(struct inet_ehash_bucket
),
3822 17, /* one slot per 128 KB of memory */
3825 &tcp_hashinfo
.ehash_mask
,
3827 thash_entries
? 0 : 512 * 1024);
3828 for (i
= 0; i
<= tcp_hashinfo
.ehash_mask
; i
++)
3829 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo
.ehash
[i
].chain
, i
);
3831 if (inet_ehash_locks_alloc(&tcp_hashinfo
))
3832 panic("TCP: failed to alloc ehash_locks");
3833 tcp_hashinfo
.bhash
=
3834 alloc_large_system_hash("TCP bind",
3835 sizeof(struct inet_bind_hashbucket
),
3836 tcp_hashinfo
.ehash_mask
+ 1,
3837 17, /* one slot per 128 KB of memory */
3839 &tcp_hashinfo
.bhash_size
,
3843 tcp_hashinfo
.bhash_size
= 1U << tcp_hashinfo
.bhash_size
;
3844 for (i
= 0; i
< tcp_hashinfo
.bhash_size
; i
++) {
3845 spin_lock_init(&tcp_hashinfo
.bhash
[i
].lock
);
3846 INIT_HLIST_HEAD(&tcp_hashinfo
.bhash
[i
].chain
);
3850 cnt
= tcp_hashinfo
.ehash_mask
+ 1;
3851 sysctl_tcp_max_orphans
= cnt
/ 2;
3854 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3855 limit
= nr_free_buffer_pages() << (PAGE_SHIFT
- 7);
3856 max_wshare
= min(4UL*1024*1024, limit
);
3857 max_rshare
= min(6UL*1024*1024, limit
);
3859 init_net
.ipv4
.sysctl_tcp_wmem
[0] = SK_MEM_QUANTUM
;
3860 init_net
.ipv4
.sysctl_tcp_wmem
[1] = 16*1024;
3861 init_net
.ipv4
.sysctl_tcp_wmem
[2] = max(64*1024, max_wshare
);
3863 init_net
.ipv4
.sysctl_tcp_rmem
[0] = SK_MEM_QUANTUM
;
3864 init_net
.ipv4
.sysctl_tcp_rmem
[1] = 87380;
3865 init_net
.ipv4
.sysctl_tcp_rmem
[2] = max(87380, max_rshare
);
3867 pr_info("Hash tables configured (established %u bind %u)\n",
3868 tcp_hashinfo
.ehash_mask
+ 1, tcp_hashinfo
.bhash_size
);
3872 BUG_ON(tcp_register_congestion_control(&tcp_reno
) != 0);