Linux 4.18.10
[linux/fpc-iii.git] / net / ipv4 / tcp.c
blob086201d96d540ed6f4187aa5e64ce4d480211ada
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #define pr_fmt(fmt) "TCP: " fmt
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 #include <linux/errqueue.h>
273 #include <linux/static_key.h>
275 #include <net/icmp.h>
276 #include <net/inet_common.h>
277 #include <net/tcp.h>
278 #include <net/xfrm.h>
279 #include <net/ip.h>
280 #include <net/sock.h>
282 #include <linux/uaccess.h>
283 #include <asm/ioctls.h>
284 #include <net/busy_poll.h>
286 struct percpu_counter tcp_orphan_count;
287 EXPORT_SYMBOL_GPL(tcp_orphan_count);
289 long sysctl_tcp_mem[3] __read_mostly;
290 EXPORT_SYMBOL(sysctl_tcp_mem);
292 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
293 EXPORT_SYMBOL(tcp_memory_allocated);
295 #if IS_ENABLED(CONFIG_SMC)
296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
297 EXPORT_SYMBOL(tcp_have_smc);
298 #endif
301 * Current number of TCP sockets.
303 struct percpu_counter tcp_sockets_allocated;
304 EXPORT_SYMBOL(tcp_sockets_allocated);
307 * TCP splice context
309 struct tcp_splice_state {
310 struct pipe_inode_info *pipe;
311 size_t len;
312 unsigned int flags;
316 * Pressure flag: try to collapse.
317 * Technical note: it is used by multiple contexts non atomically.
318 * All the __sk_mem_schedule() is of this nature: accounting
319 * is strict, actions are advisory and have some latency.
321 unsigned long tcp_memory_pressure __read_mostly;
322 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
324 void tcp_enter_memory_pressure(struct sock *sk)
326 unsigned long val;
328 if (tcp_memory_pressure)
329 return;
330 val = jiffies;
332 if (!val)
333 val--;
334 if (!cmpxchg(&tcp_memory_pressure, 0, val))
335 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
339 void tcp_leave_memory_pressure(struct sock *sk)
341 unsigned long val;
343 if (!tcp_memory_pressure)
344 return;
345 val = xchg(&tcp_memory_pressure, 0);
346 if (val)
347 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
348 jiffies_to_msecs(jiffies - val));
350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
352 /* Convert seconds to retransmits based on initial and max timeout */
353 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
355 u8 res = 0;
357 if (seconds > 0) {
358 int period = timeout;
360 res = 1;
361 while (seconds > period && res < 255) {
362 res++;
363 timeout <<= 1;
364 if (timeout > rto_max)
365 timeout = rto_max;
366 period += timeout;
369 return res;
372 /* Convert retransmits to seconds based on initial and max timeout */
373 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
375 int period = 0;
377 if (retrans > 0) {
378 period = timeout;
379 while (--retrans) {
380 timeout <<= 1;
381 if (timeout > rto_max)
382 timeout = rto_max;
383 period += timeout;
386 return period;
389 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
391 u32 rate = READ_ONCE(tp->rate_delivered);
392 u32 intv = READ_ONCE(tp->rate_interval_us);
393 u64 rate64 = 0;
395 if (rate && intv) {
396 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
397 do_div(rate64, intv);
399 return rate64;
402 /* Address-family independent initialization for a tcp_sock.
404 * NOTE: A lot of things set to zero explicitly by call to
405 * sk_alloc() so need not be done here.
407 void tcp_init_sock(struct sock *sk)
409 struct inet_connection_sock *icsk = inet_csk(sk);
410 struct tcp_sock *tp = tcp_sk(sk);
412 tp->out_of_order_queue = RB_ROOT;
413 sk->tcp_rtx_queue = RB_ROOT;
414 tcp_init_xmit_timers(sk);
415 INIT_LIST_HEAD(&tp->tsq_node);
416 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
418 icsk->icsk_rto = TCP_TIMEOUT_INIT;
419 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
420 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
422 /* So many TCP implementations out there (incorrectly) count the
423 * initial SYN frame in their delayed-ACK and congestion control
424 * algorithms that we must have the following bandaid to talk
425 * efficiently to them. -DaveM
427 tp->snd_cwnd = TCP_INIT_CWND;
429 /* There's a bubble in the pipe until at least the first ACK. */
430 tp->app_limited = ~0U;
432 /* See draft-stevens-tcpca-spec-01 for discussion of the
433 * initialization of these values.
435 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
436 tp->snd_cwnd_clamp = ~0;
437 tp->mss_cache = TCP_MSS_DEFAULT;
439 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
440 tcp_assign_congestion_control(sk);
442 tp->tsoffset = 0;
443 tp->rack.reo_wnd_steps = 1;
445 sk->sk_state = TCP_CLOSE;
447 sk->sk_write_space = sk_stream_write_space;
448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
450 icsk->icsk_sync_mss = tcp_sync_mss;
452 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
453 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
455 sk_sockets_allocated_inc(sk);
456 sk->sk_route_forced_caps = NETIF_F_GSO;
458 EXPORT_SYMBOL(tcp_init_sock);
460 void tcp_init_transfer(struct sock *sk, int bpf_op)
462 struct inet_connection_sock *icsk = inet_csk(sk);
464 tcp_mtup_init(sk);
465 icsk->icsk_af_ops->rebuild_header(sk);
466 tcp_init_metrics(sk);
467 tcp_call_bpf(sk, bpf_op, 0, NULL);
468 tcp_init_congestion_control(sk);
469 tcp_init_buffer_space(sk);
472 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
474 struct sk_buff *skb = tcp_write_queue_tail(sk);
476 if (tsflags && skb) {
477 struct skb_shared_info *shinfo = skb_shinfo(skb);
478 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
480 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
481 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
482 tcb->txstamp_ack = 1;
483 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
484 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
488 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
489 int target, struct sock *sk)
491 return (tp->rcv_nxt - tp->copied_seq >= target) ||
492 (sk->sk_prot->stream_memory_read ?
493 sk->sk_prot->stream_memory_read(sk) : false);
497 * Wait for a TCP event.
499 * Note that we don't need to lock the socket, as the upper poll layers
500 * take care of normal races (between the test and the event) and we don't
501 * go look at any of the socket buffers directly.
503 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
505 __poll_t mask;
506 struct sock *sk = sock->sk;
507 const struct tcp_sock *tp = tcp_sk(sk);
508 int state;
510 sock_poll_wait(file, sk_sleep(sk), wait);
512 state = inet_sk_state_load(sk);
513 if (state == TCP_LISTEN)
514 return inet_csk_listen_poll(sk);
516 /* Socket is not locked. We are protected from async events
517 * by poll logic and correct handling of state changes
518 * made by other threads is impossible in any case.
521 mask = 0;
524 * EPOLLHUP is certainly not done right. But poll() doesn't
525 * have a notion of HUP in just one direction, and for a
526 * socket the read side is more interesting.
528 * Some poll() documentation says that EPOLLHUP is incompatible
529 * with the EPOLLOUT/POLLWR flags, so somebody should check this
530 * all. But careful, it tends to be safer to return too many
531 * bits than too few, and you can easily break real applications
532 * if you don't tell them that something has hung up!
534 * Check-me.
536 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
537 * our fs/select.c). It means that after we received EOF,
538 * poll always returns immediately, making impossible poll() on write()
539 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
540 * if and only if shutdown has been made in both directions.
541 * Actually, it is interesting to look how Solaris and DUX
542 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
543 * then we could set it on SND_SHUTDOWN. BTW examples given
544 * in Stevens' books assume exactly this behaviour, it explains
545 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
547 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
548 * blocking on fresh not-connected or disconnected socket. --ANK
550 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
551 mask |= EPOLLHUP;
552 if (sk->sk_shutdown & RCV_SHUTDOWN)
553 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
555 /* Connected or passive Fast Open socket? */
556 if (state != TCP_SYN_SENT &&
557 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
558 int target = sock_rcvlowat(sk, 0, INT_MAX);
560 if (tp->urg_seq == tp->copied_seq &&
561 !sock_flag(sk, SOCK_URGINLINE) &&
562 tp->urg_data)
563 target++;
565 if (tcp_stream_is_readable(tp, target, sk))
566 mask |= EPOLLIN | EPOLLRDNORM;
568 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
569 if (sk_stream_is_writeable(sk)) {
570 mask |= EPOLLOUT | EPOLLWRNORM;
571 } else { /* send SIGIO later */
572 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
573 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
575 /* Race breaker. If space is freed after
576 * wspace test but before the flags are set,
577 * IO signal will be lost. Memory barrier
578 * pairs with the input side.
580 smp_mb__after_atomic();
581 if (sk_stream_is_writeable(sk))
582 mask |= EPOLLOUT | EPOLLWRNORM;
584 } else
585 mask |= EPOLLOUT | EPOLLWRNORM;
587 if (tp->urg_data & TCP_URG_VALID)
588 mask |= EPOLLPRI;
589 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
590 /* Active TCP fastopen socket with defer_connect
591 * Return EPOLLOUT so application can call write()
592 * in order for kernel to generate SYN+data
594 mask |= EPOLLOUT | EPOLLWRNORM;
596 /* This barrier is coupled with smp_wmb() in tcp_reset() */
597 smp_rmb();
598 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
599 mask |= EPOLLERR;
601 return mask;
603 EXPORT_SYMBOL(tcp_poll);
605 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
607 struct tcp_sock *tp = tcp_sk(sk);
608 int answ;
609 bool slow;
611 switch (cmd) {
612 case SIOCINQ:
613 if (sk->sk_state == TCP_LISTEN)
614 return -EINVAL;
616 slow = lock_sock_fast(sk);
617 answ = tcp_inq(sk);
618 unlock_sock_fast(sk, slow);
619 break;
620 case SIOCATMARK:
621 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
622 break;
623 case SIOCOUTQ:
624 if (sk->sk_state == TCP_LISTEN)
625 return -EINVAL;
627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 answ = 0;
629 else
630 answ = tp->write_seq - tp->snd_una;
631 break;
632 case SIOCOUTQNSD:
633 if (sk->sk_state == TCP_LISTEN)
634 return -EINVAL;
636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637 answ = 0;
638 else
639 answ = tp->write_seq - tp->snd_nxt;
640 break;
641 default:
642 return -ENOIOCTLCMD;
645 return put_user(answ, (int __user *)arg);
647 EXPORT_SYMBOL(tcp_ioctl);
649 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
651 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
652 tp->pushed_seq = tp->write_seq;
655 static inline bool forced_push(const struct tcp_sock *tp)
657 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
660 static void skb_entail(struct sock *sk, struct sk_buff *skb)
662 struct tcp_sock *tp = tcp_sk(sk);
663 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
665 skb->csum = 0;
666 tcb->seq = tcb->end_seq = tp->write_seq;
667 tcb->tcp_flags = TCPHDR_ACK;
668 tcb->sacked = 0;
669 __skb_header_release(skb);
670 tcp_add_write_queue_tail(sk, skb);
671 sk->sk_wmem_queued += skb->truesize;
672 sk_mem_charge(sk, skb->truesize);
673 if (tp->nonagle & TCP_NAGLE_PUSH)
674 tp->nonagle &= ~TCP_NAGLE_PUSH;
676 tcp_slow_start_after_idle_check(sk);
679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
681 if (flags & MSG_OOB)
682 tp->snd_up = tp->write_seq;
685 /* If a not yet filled skb is pushed, do not send it if
686 * we have data packets in Qdisc or NIC queues :
687 * Because TX completion will happen shortly, it gives a chance
688 * to coalesce future sendmsg() payload into this skb, without
689 * need for a timer, and with no latency trade off.
690 * As packets containing data payload have a bigger truesize
691 * than pure acks (dataless) packets, the last checks prevent
692 * autocorking if we only have an ACK in Qdisc/NIC queues,
693 * or if TX completion was delayed after we processed ACK packet.
695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
696 int size_goal)
698 return skb->len < size_goal &&
699 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
700 !tcp_rtx_queue_empty(sk) &&
701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
704 static void tcp_push(struct sock *sk, int flags, int mss_now,
705 int nonagle, int size_goal)
707 struct tcp_sock *tp = tcp_sk(sk);
708 struct sk_buff *skb;
710 skb = tcp_write_queue_tail(sk);
711 if (!skb)
712 return;
713 if (!(flags & MSG_MORE) || forced_push(tp))
714 tcp_mark_push(tp, skb);
716 tcp_mark_urg(tp, flags);
718 if (tcp_should_autocork(sk, skb, size_goal)) {
720 /* avoid atomic op if TSQ_THROTTLED bit is already set */
721 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
723 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
725 /* It is possible TX completion already happened
726 * before we set TSQ_THROTTLED.
728 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
729 return;
732 if (flags & MSG_MORE)
733 nonagle = TCP_NAGLE_CORK;
735 __tcp_push_pending_frames(sk, mss_now, nonagle);
738 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
739 unsigned int offset, size_t len)
741 struct tcp_splice_state *tss = rd_desc->arg.data;
742 int ret;
744 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
745 min(rd_desc->count, len), tss->flags);
746 if (ret > 0)
747 rd_desc->count -= ret;
748 return ret;
751 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
753 /* Store TCP splice context information in read_descriptor_t. */
754 read_descriptor_t rd_desc = {
755 .arg.data = tss,
756 .count = tss->len,
759 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
763 * tcp_splice_read - splice data from TCP socket to a pipe
764 * @sock: socket to splice from
765 * @ppos: position (not valid)
766 * @pipe: pipe to splice to
767 * @len: number of bytes to splice
768 * @flags: splice modifier flags
770 * Description:
771 * Will read pages from given socket and fill them into a pipe.
774 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
775 struct pipe_inode_info *pipe, size_t len,
776 unsigned int flags)
778 struct sock *sk = sock->sk;
779 struct tcp_splice_state tss = {
780 .pipe = pipe,
781 .len = len,
782 .flags = flags,
784 long timeo;
785 ssize_t spliced;
786 int ret;
788 sock_rps_record_flow(sk);
790 * We can't seek on a socket input
792 if (unlikely(*ppos))
793 return -ESPIPE;
795 ret = spliced = 0;
797 lock_sock(sk);
799 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
800 while (tss.len) {
801 ret = __tcp_splice_read(sk, &tss);
802 if (ret < 0)
803 break;
804 else if (!ret) {
805 if (spliced)
806 break;
807 if (sock_flag(sk, SOCK_DONE))
808 break;
809 if (sk->sk_err) {
810 ret = sock_error(sk);
811 break;
813 if (sk->sk_shutdown & RCV_SHUTDOWN)
814 break;
815 if (sk->sk_state == TCP_CLOSE) {
817 * This occurs when user tries to read
818 * from never connected socket.
820 if (!sock_flag(sk, SOCK_DONE))
821 ret = -ENOTCONN;
822 break;
824 if (!timeo) {
825 ret = -EAGAIN;
826 break;
828 /* if __tcp_splice_read() got nothing while we have
829 * an skb in receive queue, we do not want to loop.
830 * This might happen with URG data.
832 if (!skb_queue_empty(&sk->sk_receive_queue))
833 break;
834 sk_wait_data(sk, &timeo, NULL);
835 if (signal_pending(current)) {
836 ret = sock_intr_errno(timeo);
837 break;
839 continue;
841 tss.len -= ret;
842 spliced += ret;
844 if (!timeo)
845 break;
846 release_sock(sk);
847 lock_sock(sk);
849 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
850 (sk->sk_shutdown & RCV_SHUTDOWN) ||
851 signal_pending(current))
852 break;
855 release_sock(sk);
857 if (spliced)
858 return spliced;
860 return ret;
862 EXPORT_SYMBOL(tcp_splice_read);
864 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
865 bool force_schedule)
867 struct sk_buff *skb;
869 /* The TCP header must be at least 32-bit aligned. */
870 size = ALIGN(size, 4);
872 if (unlikely(tcp_under_memory_pressure(sk)))
873 sk_mem_reclaim_partial(sk);
875 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
876 if (likely(skb)) {
877 bool mem_scheduled;
879 if (force_schedule) {
880 mem_scheduled = true;
881 sk_forced_mem_schedule(sk, skb->truesize);
882 } else {
883 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
885 if (likely(mem_scheduled)) {
886 skb_reserve(skb, sk->sk_prot->max_header);
888 * Make sure that we have exactly size bytes
889 * available to the caller, no more, no less.
891 skb->reserved_tailroom = skb->end - skb->tail - size;
892 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
893 return skb;
895 __kfree_skb(skb);
896 } else {
897 sk->sk_prot->enter_memory_pressure(sk);
898 sk_stream_moderate_sndbuf(sk);
900 return NULL;
903 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
904 int large_allowed)
906 struct tcp_sock *tp = tcp_sk(sk);
907 u32 new_size_goal, size_goal;
909 if (!large_allowed)
910 return mss_now;
912 /* Note : tcp_tso_autosize() will eventually split this later */
913 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
914 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
916 /* We try hard to avoid divides here */
917 size_goal = tp->gso_segs * mss_now;
918 if (unlikely(new_size_goal < size_goal ||
919 new_size_goal >= size_goal + mss_now)) {
920 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
921 sk->sk_gso_max_segs);
922 size_goal = tp->gso_segs * mss_now;
925 return max(size_goal, mss_now);
928 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
930 int mss_now;
932 mss_now = tcp_current_mss(sk);
933 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
935 return mss_now;
938 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
939 size_t size, int flags)
941 struct tcp_sock *tp = tcp_sk(sk);
942 int mss_now, size_goal;
943 int err;
944 ssize_t copied;
945 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
947 /* Wait for a connection to finish. One exception is TCP Fast Open
948 * (passive side) where data is allowed to be sent before a connection
949 * is fully established.
951 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
952 !tcp_passive_fastopen(sk)) {
953 err = sk_stream_wait_connect(sk, &timeo);
954 if (err != 0)
955 goto out_err;
958 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
960 mss_now = tcp_send_mss(sk, &size_goal, flags);
961 copied = 0;
963 err = -EPIPE;
964 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
965 goto out_err;
967 while (size > 0) {
968 struct sk_buff *skb = tcp_write_queue_tail(sk);
969 int copy, i;
970 bool can_coalesce;
972 if (!skb || (copy = size_goal - skb->len) <= 0 ||
973 !tcp_skb_can_collapse_to(skb)) {
974 new_segment:
975 if (!sk_stream_memory_free(sk))
976 goto wait_for_sndbuf;
978 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
979 tcp_rtx_and_write_queues_empty(sk));
980 if (!skb)
981 goto wait_for_memory;
983 skb_entail(sk, skb);
984 copy = size_goal;
987 if (copy > size)
988 copy = size;
990 i = skb_shinfo(skb)->nr_frags;
991 can_coalesce = skb_can_coalesce(skb, i, page, offset);
992 if (!can_coalesce && i >= sysctl_max_skb_frags) {
993 tcp_mark_push(tp, skb);
994 goto new_segment;
996 if (!sk_wmem_schedule(sk, copy))
997 goto wait_for_memory;
999 if (can_coalesce) {
1000 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1001 } else {
1002 get_page(page);
1003 skb_fill_page_desc(skb, i, page, offset, copy);
1006 if (!(flags & MSG_NO_SHARED_FRAGS))
1007 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1009 skb->len += copy;
1010 skb->data_len += copy;
1011 skb->truesize += copy;
1012 sk->sk_wmem_queued += copy;
1013 sk_mem_charge(sk, copy);
1014 skb->ip_summed = CHECKSUM_PARTIAL;
1015 tp->write_seq += copy;
1016 TCP_SKB_CB(skb)->end_seq += copy;
1017 tcp_skb_pcount_set(skb, 0);
1019 if (!copied)
1020 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1022 copied += copy;
1023 offset += copy;
1024 size -= copy;
1025 if (!size)
1026 goto out;
1028 if (skb->len < size_goal || (flags & MSG_OOB))
1029 continue;
1031 if (forced_push(tp)) {
1032 tcp_mark_push(tp, skb);
1033 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1034 } else if (skb == tcp_send_head(sk))
1035 tcp_push_one(sk, mss_now);
1036 continue;
1038 wait_for_sndbuf:
1039 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1040 wait_for_memory:
1041 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1042 TCP_NAGLE_PUSH, size_goal);
1044 err = sk_stream_wait_memory(sk, &timeo);
1045 if (err != 0)
1046 goto do_error;
1048 mss_now = tcp_send_mss(sk, &size_goal, flags);
1051 out:
1052 if (copied) {
1053 tcp_tx_timestamp(sk, sk->sk_tsflags);
1054 if (!(flags & MSG_SENDPAGE_NOTLAST))
1055 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1057 return copied;
1059 do_error:
1060 if (copied)
1061 goto out;
1062 out_err:
1063 /* make sure we wake any epoll edge trigger waiter */
1064 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1065 err == -EAGAIN)) {
1066 sk->sk_write_space(sk);
1067 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1069 return sk_stream_error(sk, flags, err);
1071 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1073 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1074 size_t size, int flags)
1076 if (!(sk->sk_route_caps & NETIF_F_SG))
1077 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1079 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1081 return do_tcp_sendpages(sk, page, offset, size, flags);
1083 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1085 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1086 size_t size, int flags)
1088 int ret;
1090 lock_sock(sk);
1091 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1092 release_sock(sk);
1094 return ret;
1096 EXPORT_SYMBOL(tcp_sendpage);
1098 /* Do not bother using a page frag for very small frames.
1099 * But use this heuristic only for the first skb in write queue.
1101 * Having no payload in skb->head allows better SACK shifting
1102 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1103 * write queue has less skbs.
1104 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1105 * This also speeds up tso_fragment(), since it wont fallback
1106 * to tcp_fragment().
1108 static int linear_payload_sz(bool first_skb)
1110 if (first_skb)
1111 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1112 return 0;
1115 static int select_size(bool first_skb, bool zc)
1117 if (zc)
1118 return 0;
1119 return linear_payload_sz(first_skb);
1122 void tcp_free_fastopen_req(struct tcp_sock *tp)
1124 if (tp->fastopen_req) {
1125 kfree(tp->fastopen_req);
1126 tp->fastopen_req = NULL;
1130 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1131 int *copied, size_t size)
1133 struct tcp_sock *tp = tcp_sk(sk);
1134 struct inet_sock *inet = inet_sk(sk);
1135 struct sockaddr *uaddr = msg->msg_name;
1136 int err, flags;
1138 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1139 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1140 uaddr->sa_family == AF_UNSPEC))
1141 return -EOPNOTSUPP;
1142 if (tp->fastopen_req)
1143 return -EALREADY; /* Another Fast Open is in progress */
1145 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1146 sk->sk_allocation);
1147 if (unlikely(!tp->fastopen_req))
1148 return -ENOBUFS;
1149 tp->fastopen_req->data = msg;
1150 tp->fastopen_req->size = size;
1152 if (inet->defer_connect) {
1153 err = tcp_connect(sk);
1154 /* Same failure procedure as in tcp_v4/6_connect */
1155 if (err) {
1156 tcp_set_state(sk, TCP_CLOSE);
1157 inet->inet_dport = 0;
1158 sk->sk_route_caps = 0;
1161 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1162 err = __inet_stream_connect(sk->sk_socket, uaddr,
1163 msg->msg_namelen, flags, 1);
1164 /* fastopen_req could already be freed in __inet_stream_connect
1165 * if the connection times out or gets rst
1167 if (tp->fastopen_req) {
1168 *copied = tp->fastopen_req->copied;
1169 tcp_free_fastopen_req(tp);
1170 inet->defer_connect = 0;
1172 return err;
1175 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1177 struct tcp_sock *tp = tcp_sk(sk);
1178 struct ubuf_info *uarg = NULL;
1179 struct sk_buff *skb;
1180 struct sockcm_cookie sockc;
1181 int flags, err, copied = 0;
1182 int mss_now = 0, size_goal, copied_syn = 0;
1183 bool process_backlog = false;
1184 bool zc = false;
1185 long timeo;
1187 flags = msg->msg_flags;
1189 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1190 if (sk->sk_state != TCP_ESTABLISHED) {
1191 err = -EINVAL;
1192 goto out_err;
1195 skb = tcp_write_queue_tail(sk);
1196 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1197 if (!uarg) {
1198 err = -ENOBUFS;
1199 goto out_err;
1202 zc = sk->sk_route_caps & NETIF_F_SG;
1203 if (!zc)
1204 uarg->zerocopy = 0;
1207 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1208 !tp->repair) {
1209 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1210 if (err == -EINPROGRESS && copied_syn > 0)
1211 goto out;
1212 else if (err)
1213 goto out_err;
1216 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1218 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1220 /* Wait for a connection to finish. One exception is TCP Fast Open
1221 * (passive side) where data is allowed to be sent before a connection
1222 * is fully established.
1224 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1225 !tcp_passive_fastopen(sk)) {
1226 err = sk_stream_wait_connect(sk, &timeo);
1227 if (err != 0)
1228 goto do_error;
1231 if (unlikely(tp->repair)) {
1232 if (tp->repair_queue == TCP_RECV_QUEUE) {
1233 copied = tcp_send_rcvq(sk, msg, size);
1234 goto out_nopush;
1237 err = -EINVAL;
1238 if (tp->repair_queue == TCP_NO_QUEUE)
1239 goto out_err;
1241 /* 'common' sending to sendq */
1244 sockc.tsflags = sk->sk_tsflags;
1245 if (msg->msg_controllen) {
1246 err = sock_cmsg_send(sk, msg, &sockc);
1247 if (unlikely(err)) {
1248 err = -EINVAL;
1249 goto out_err;
1253 /* This should be in poll */
1254 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1256 /* Ok commence sending. */
1257 copied = 0;
1259 restart:
1260 mss_now = tcp_send_mss(sk, &size_goal, flags);
1262 err = -EPIPE;
1263 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1264 goto do_error;
1266 while (msg_data_left(msg)) {
1267 int copy = 0;
1269 skb = tcp_write_queue_tail(sk);
1270 if (skb)
1271 copy = size_goal - skb->len;
1273 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1274 bool first_skb;
1275 int linear;
1277 new_segment:
1278 /* Allocate new segment. If the interface is SG,
1279 * allocate skb fitting to single page.
1281 if (!sk_stream_memory_free(sk))
1282 goto wait_for_sndbuf;
1284 if (process_backlog && sk_flush_backlog(sk)) {
1285 process_backlog = false;
1286 goto restart;
1288 first_skb = tcp_rtx_and_write_queues_empty(sk);
1289 linear = select_size(first_skb, zc);
1290 skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation,
1291 first_skb);
1292 if (!skb)
1293 goto wait_for_memory;
1295 process_backlog = true;
1296 skb->ip_summed = CHECKSUM_PARTIAL;
1298 skb_entail(sk, skb);
1299 copy = size_goal;
1301 /* All packets are restored as if they have
1302 * already been sent. skb_mstamp isn't set to
1303 * avoid wrong rtt estimation.
1305 if (tp->repair)
1306 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1309 /* Try to append data to the end of skb. */
1310 if (copy > msg_data_left(msg))
1311 copy = msg_data_left(msg);
1313 /* Where to copy to? */
1314 if (skb_availroom(skb) > 0 && !zc) {
1315 /* We have some space in skb head. Superb! */
1316 copy = min_t(int, copy, skb_availroom(skb));
1317 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1318 if (err)
1319 goto do_fault;
1320 } else if (!zc) {
1321 bool merge = true;
1322 int i = skb_shinfo(skb)->nr_frags;
1323 struct page_frag *pfrag = sk_page_frag(sk);
1325 if (!sk_page_frag_refill(sk, pfrag))
1326 goto wait_for_memory;
1328 if (!skb_can_coalesce(skb, i, pfrag->page,
1329 pfrag->offset)) {
1330 if (i >= sysctl_max_skb_frags) {
1331 tcp_mark_push(tp, skb);
1332 goto new_segment;
1334 merge = false;
1337 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1339 if (!sk_wmem_schedule(sk, copy))
1340 goto wait_for_memory;
1342 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1343 pfrag->page,
1344 pfrag->offset,
1345 copy);
1346 if (err)
1347 goto do_error;
1349 /* Update the skb. */
1350 if (merge) {
1351 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1352 } else {
1353 skb_fill_page_desc(skb, i, pfrag->page,
1354 pfrag->offset, copy);
1355 page_ref_inc(pfrag->page);
1357 pfrag->offset += copy;
1358 } else {
1359 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1360 if (err == -EMSGSIZE || err == -EEXIST) {
1361 tcp_mark_push(tp, skb);
1362 goto new_segment;
1364 if (err < 0)
1365 goto do_error;
1366 copy = err;
1369 if (!copied)
1370 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1372 tp->write_seq += copy;
1373 TCP_SKB_CB(skb)->end_seq += copy;
1374 tcp_skb_pcount_set(skb, 0);
1376 copied += copy;
1377 if (!msg_data_left(msg)) {
1378 if (unlikely(flags & MSG_EOR))
1379 TCP_SKB_CB(skb)->eor = 1;
1380 goto out;
1383 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1384 continue;
1386 if (forced_push(tp)) {
1387 tcp_mark_push(tp, skb);
1388 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1389 } else if (skb == tcp_send_head(sk))
1390 tcp_push_one(sk, mss_now);
1391 continue;
1393 wait_for_sndbuf:
1394 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1395 wait_for_memory:
1396 if (copied)
1397 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1398 TCP_NAGLE_PUSH, size_goal);
1400 err = sk_stream_wait_memory(sk, &timeo);
1401 if (err != 0)
1402 goto do_error;
1404 mss_now = tcp_send_mss(sk, &size_goal, flags);
1407 out:
1408 if (copied) {
1409 tcp_tx_timestamp(sk, sockc.tsflags);
1410 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1412 out_nopush:
1413 sock_zerocopy_put(uarg);
1414 return copied + copied_syn;
1416 do_fault:
1417 if (!skb->len) {
1418 tcp_unlink_write_queue(skb, sk);
1419 /* It is the one place in all of TCP, except connection
1420 * reset, where we can be unlinking the send_head.
1422 tcp_check_send_head(sk, skb);
1423 sk_wmem_free_skb(sk, skb);
1426 do_error:
1427 if (copied + copied_syn)
1428 goto out;
1429 out_err:
1430 sock_zerocopy_put_abort(uarg);
1431 err = sk_stream_error(sk, flags, err);
1432 /* make sure we wake any epoll edge trigger waiter */
1433 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1434 err == -EAGAIN)) {
1435 sk->sk_write_space(sk);
1436 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1438 return err;
1440 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1442 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1444 int ret;
1446 lock_sock(sk);
1447 ret = tcp_sendmsg_locked(sk, msg, size);
1448 release_sock(sk);
1450 return ret;
1452 EXPORT_SYMBOL(tcp_sendmsg);
1455 * Handle reading urgent data. BSD has very simple semantics for
1456 * this, no blocking and very strange errors 8)
1459 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1461 struct tcp_sock *tp = tcp_sk(sk);
1463 /* No URG data to read. */
1464 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1465 tp->urg_data == TCP_URG_READ)
1466 return -EINVAL; /* Yes this is right ! */
1468 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1469 return -ENOTCONN;
1471 if (tp->urg_data & TCP_URG_VALID) {
1472 int err = 0;
1473 char c = tp->urg_data;
1475 if (!(flags & MSG_PEEK))
1476 tp->urg_data = TCP_URG_READ;
1478 /* Read urgent data. */
1479 msg->msg_flags |= MSG_OOB;
1481 if (len > 0) {
1482 if (!(flags & MSG_TRUNC))
1483 err = memcpy_to_msg(msg, &c, 1);
1484 len = 1;
1485 } else
1486 msg->msg_flags |= MSG_TRUNC;
1488 return err ? -EFAULT : len;
1491 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1492 return 0;
1494 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1495 * the available implementations agree in this case:
1496 * this call should never block, independent of the
1497 * blocking state of the socket.
1498 * Mike <pall@rz.uni-karlsruhe.de>
1500 return -EAGAIN;
1503 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1505 struct sk_buff *skb;
1506 int copied = 0, err = 0;
1508 /* XXX -- need to support SO_PEEK_OFF */
1510 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1511 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1512 if (err)
1513 return err;
1514 copied += skb->len;
1517 skb_queue_walk(&sk->sk_write_queue, skb) {
1518 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1519 if (err)
1520 break;
1522 copied += skb->len;
1525 return err ?: copied;
1528 /* Clean up the receive buffer for full frames taken by the user,
1529 * then send an ACK if necessary. COPIED is the number of bytes
1530 * tcp_recvmsg has given to the user so far, it speeds up the
1531 * calculation of whether or not we must ACK for the sake of
1532 * a window update.
1534 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1536 struct tcp_sock *tp = tcp_sk(sk);
1537 bool time_to_ack = false;
1539 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1541 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1542 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1543 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1545 if (inet_csk_ack_scheduled(sk)) {
1546 const struct inet_connection_sock *icsk = inet_csk(sk);
1547 /* Delayed ACKs frequently hit locked sockets during bulk
1548 * receive. */
1549 if (icsk->icsk_ack.blocked ||
1550 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1551 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1553 * If this read emptied read buffer, we send ACK, if
1554 * connection is not bidirectional, user drained
1555 * receive buffer and there was a small segment
1556 * in queue.
1558 (copied > 0 &&
1559 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1560 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1561 !icsk->icsk_ack.pingpong)) &&
1562 !atomic_read(&sk->sk_rmem_alloc)))
1563 time_to_ack = true;
1566 /* We send an ACK if we can now advertise a non-zero window
1567 * which has been raised "significantly".
1569 * Even if window raised up to infinity, do not send window open ACK
1570 * in states, where we will not receive more. It is useless.
1572 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1573 __u32 rcv_window_now = tcp_receive_window(tp);
1575 /* Optimize, __tcp_select_window() is not cheap. */
1576 if (2*rcv_window_now <= tp->window_clamp) {
1577 __u32 new_window = __tcp_select_window(sk);
1579 /* Send ACK now, if this read freed lots of space
1580 * in our buffer. Certainly, new_window is new window.
1581 * We can advertise it now, if it is not less than current one.
1582 * "Lots" means "at least twice" here.
1584 if (new_window && new_window >= 2 * rcv_window_now)
1585 time_to_ack = true;
1588 if (time_to_ack)
1589 tcp_send_ack(sk);
1592 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1594 struct sk_buff *skb;
1595 u32 offset;
1597 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1598 offset = seq - TCP_SKB_CB(skb)->seq;
1599 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1600 pr_err_once("%s: found a SYN, please report !\n", __func__);
1601 offset--;
1603 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1604 *off = offset;
1605 return skb;
1607 /* This looks weird, but this can happen if TCP collapsing
1608 * splitted a fat GRO packet, while we released socket lock
1609 * in skb_splice_bits()
1611 sk_eat_skb(sk, skb);
1613 return NULL;
1617 * This routine provides an alternative to tcp_recvmsg() for routines
1618 * that would like to handle copying from skbuffs directly in 'sendfile'
1619 * fashion.
1620 * Note:
1621 * - It is assumed that the socket was locked by the caller.
1622 * - The routine does not block.
1623 * - At present, there is no support for reading OOB data
1624 * or for 'peeking' the socket using this routine
1625 * (although both would be easy to implement).
1627 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1628 sk_read_actor_t recv_actor)
1630 struct sk_buff *skb;
1631 struct tcp_sock *tp = tcp_sk(sk);
1632 u32 seq = tp->copied_seq;
1633 u32 offset;
1634 int copied = 0;
1636 if (sk->sk_state == TCP_LISTEN)
1637 return -ENOTCONN;
1638 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1639 if (offset < skb->len) {
1640 int used;
1641 size_t len;
1643 len = skb->len - offset;
1644 /* Stop reading if we hit a patch of urgent data */
1645 if (tp->urg_data) {
1646 u32 urg_offset = tp->urg_seq - seq;
1647 if (urg_offset < len)
1648 len = urg_offset;
1649 if (!len)
1650 break;
1652 used = recv_actor(desc, skb, offset, len);
1653 if (used <= 0) {
1654 if (!copied)
1655 copied = used;
1656 break;
1657 } else if (used <= len) {
1658 seq += used;
1659 copied += used;
1660 offset += used;
1662 /* If recv_actor drops the lock (e.g. TCP splice
1663 * receive) the skb pointer might be invalid when
1664 * getting here: tcp_collapse might have deleted it
1665 * while aggregating skbs from the socket queue.
1667 skb = tcp_recv_skb(sk, seq - 1, &offset);
1668 if (!skb)
1669 break;
1670 /* TCP coalescing might have appended data to the skb.
1671 * Try to splice more frags
1673 if (offset + 1 != skb->len)
1674 continue;
1676 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1677 sk_eat_skb(sk, skb);
1678 ++seq;
1679 break;
1681 sk_eat_skb(sk, skb);
1682 if (!desc->count)
1683 break;
1684 tp->copied_seq = seq;
1686 tp->copied_seq = seq;
1688 tcp_rcv_space_adjust(sk);
1690 /* Clean up data we have read: This will do ACK frames. */
1691 if (copied > 0) {
1692 tcp_recv_skb(sk, seq, &offset);
1693 tcp_cleanup_rbuf(sk, copied);
1695 return copied;
1697 EXPORT_SYMBOL(tcp_read_sock);
1699 int tcp_peek_len(struct socket *sock)
1701 return tcp_inq(sock->sk);
1703 EXPORT_SYMBOL(tcp_peek_len);
1705 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1706 int tcp_set_rcvlowat(struct sock *sk, int val)
1708 int cap;
1710 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1711 cap = sk->sk_rcvbuf >> 1;
1712 else
1713 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1714 val = min(val, cap);
1715 sk->sk_rcvlowat = val ? : 1;
1717 /* Check if we need to signal EPOLLIN right now */
1718 tcp_data_ready(sk);
1720 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1721 return 0;
1723 val <<= 1;
1724 if (val > sk->sk_rcvbuf) {
1725 sk->sk_rcvbuf = val;
1726 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1728 return 0;
1730 EXPORT_SYMBOL(tcp_set_rcvlowat);
1732 #ifdef CONFIG_MMU
1733 static const struct vm_operations_struct tcp_vm_ops = {
1736 int tcp_mmap(struct file *file, struct socket *sock,
1737 struct vm_area_struct *vma)
1739 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1740 return -EPERM;
1741 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1743 /* Instruct vm_insert_page() to not down_read(mmap_sem) */
1744 vma->vm_flags |= VM_MIXEDMAP;
1746 vma->vm_ops = &tcp_vm_ops;
1747 return 0;
1749 EXPORT_SYMBOL(tcp_mmap);
1751 static int tcp_zerocopy_receive(struct sock *sk,
1752 struct tcp_zerocopy_receive *zc)
1754 unsigned long address = (unsigned long)zc->address;
1755 const skb_frag_t *frags = NULL;
1756 u32 length = 0, seq, offset;
1757 struct vm_area_struct *vma;
1758 struct sk_buff *skb = NULL;
1759 struct tcp_sock *tp;
1760 int ret;
1762 if (address & (PAGE_SIZE - 1) || address != zc->address)
1763 return -EINVAL;
1765 if (sk->sk_state == TCP_LISTEN)
1766 return -ENOTCONN;
1768 sock_rps_record_flow(sk);
1770 down_read(&current->mm->mmap_sem);
1772 ret = -EINVAL;
1773 vma = find_vma(current->mm, address);
1774 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops)
1775 goto out;
1776 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address);
1778 tp = tcp_sk(sk);
1779 seq = tp->copied_seq;
1780 zc->length = min_t(u32, zc->length, tcp_inq(sk));
1781 zc->length &= ~(PAGE_SIZE - 1);
1783 zap_page_range(vma, address, zc->length);
1785 zc->recv_skip_hint = 0;
1786 ret = 0;
1787 while (length + PAGE_SIZE <= zc->length) {
1788 if (zc->recv_skip_hint < PAGE_SIZE) {
1789 if (skb) {
1790 skb = skb->next;
1791 offset = seq - TCP_SKB_CB(skb)->seq;
1792 } else {
1793 skb = tcp_recv_skb(sk, seq, &offset);
1796 zc->recv_skip_hint = skb->len - offset;
1797 offset -= skb_headlen(skb);
1798 if ((int)offset < 0 || skb_has_frag_list(skb))
1799 break;
1800 frags = skb_shinfo(skb)->frags;
1801 while (offset) {
1802 if (frags->size > offset)
1803 goto out;
1804 offset -= frags->size;
1805 frags++;
1808 if (frags->size != PAGE_SIZE || frags->page_offset)
1809 break;
1810 ret = vm_insert_page(vma, address + length,
1811 skb_frag_page(frags));
1812 if (ret)
1813 break;
1814 length += PAGE_SIZE;
1815 seq += PAGE_SIZE;
1816 zc->recv_skip_hint -= PAGE_SIZE;
1817 frags++;
1819 out:
1820 up_read(&current->mm->mmap_sem);
1821 if (length) {
1822 tp->copied_seq = seq;
1823 tcp_rcv_space_adjust(sk);
1825 /* Clean up data we have read: This will do ACK frames. */
1826 tcp_recv_skb(sk, seq, &offset);
1827 tcp_cleanup_rbuf(sk, length);
1828 ret = 0;
1829 if (length == zc->length)
1830 zc->recv_skip_hint = 0;
1831 } else {
1832 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1833 ret = -EIO;
1835 zc->length = length;
1836 return ret;
1838 #endif
1840 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1841 struct scm_timestamping *tss)
1843 if (skb->tstamp)
1844 tss->ts[0] = ktime_to_timespec(skb->tstamp);
1845 else
1846 tss->ts[0] = (struct timespec) {0};
1848 if (skb_hwtstamps(skb)->hwtstamp)
1849 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
1850 else
1851 tss->ts[2] = (struct timespec) {0};
1854 /* Similar to __sock_recv_timestamp, but does not require an skb */
1855 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1856 struct scm_timestamping *tss)
1858 struct timeval tv;
1859 bool has_timestamping = false;
1861 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1862 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1863 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1864 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
1865 sizeof(tss->ts[0]), &tss->ts[0]);
1866 } else {
1867 tv.tv_sec = tss->ts[0].tv_sec;
1868 tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1870 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
1871 sizeof(tv), &tv);
1875 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1876 has_timestamping = true;
1877 else
1878 tss->ts[0] = (struct timespec) {0};
1881 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1882 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1883 has_timestamping = true;
1884 else
1885 tss->ts[2] = (struct timespec) {0};
1888 if (has_timestamping) {
1889 tss->ts[1] = (struct timespec) {0};
1890 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
1891 sizeof(*tss), tss);
1895 static int tcp_inq_hint(struct sock *sk)
1897 const struct tcp_sock *tp = tcp_sk(sk);
1898 u32 copied_seq = READ_ONCE(tp->copied_seq);
1899 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
1900 int inq;
1902 inq = rcv_nxt - copied_seq;
1903 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
1904 lock_sock(sk);
1905 inq = tp->rcv_nxt - tp->copied_seq;
1906 release_sock(sk);
1908 return inq;
1912 * This routine copies from a sock struct into the user buffer.
1914 * Technical note: in 2.3 we work on _locked_ socket, so that
1915 * tricks with *seq access order and skb->users are not required.
1916 * Probably, code can be easily improved even more.
1919 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1920 int flags, int *addr_len)
1922 struct tcp_sock *tp = tcp_sk(sk);
1923 int copied = 0;
1924 u32 peek_seq;
1925 u32 *seq;
1926 unsigned long used;
1927 int err, inq;
1928 int target; /* Read at least this many bytes */
1929 long timeo;
1930 struct sk_buff *skb, *last;
1931 u32 urg_hole = 0;
1932 struct scm_timestamping tss;
1933 bool has_tss = false;
1934 bool has_cmsg;
1936 if (unlikely(flags & MSG_ERRQUEUE))
1937 return inet_recv_error(sk, msg, len, addr_len);
1939 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1940 (sk->sk_state == TCP_ESTABLISHED))
1941 sk_busy_loop(sk, nonblock);
1943 lock_sock(sk);
1945 err = -ENOTCONN;
1946 if (sk->sk_state == TCP_LISTEN)
1947 goto out;
1949 has_cmsg = tp->recvmsg_inq;
1950 timeo = sock_rcvtimeo(sk, nonblock);
1952 /* Urgent data needs to be handled specially. */
1953 if (flags & MSG_OOB)
1954 goto recv_urg;
1956 if (unlikely(tp->repair)) {
1957 err = -EPERM;
1958 if (!(flags & MSG_PEEK))
1959 goto out;
1961 if (tp->repair_queue == TCP_SEND_QUEUE)
1962 goto recv_sndq;
1964 err = -EINVAL;
1965 if (tp->repair_queue == TCP_NO_QUEUE)
1966 goto out;
1968 /* 'common' recv queue MSG_PEEK-ing */
1971 seq = &tp->copied_seq;
1972 if (flags & MSG_PEEK) {
1973 peek_seq = tp->copied_seq;
1974 seq = &peek_seq;
1977 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1979 do {
1980 u32 offset;
1982 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1983 if (tp->urg_data && tp->urg_seq == *seq) {
1984 if (copied)
1985 break;
1986 if (signal_pending(current)) {
1987 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1988 break;
1992 /* Next get a buffer. */
1994 last = skb_peek_tail(&sk->sk_receive_queue);
1995 skb_queue_walk(&sk->sk_receive_queue, skb) {
1996 last = skb;
1997 /* Now that we have two receive queues this
1998 * shouldn't happen.
2000 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2001 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2002 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2003 flags))
2004 break;
2006 offset = *seq - TCP_SKB_CB(skb)->seq;
2007 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2008 pr_err_once("%s: found a SYN, please report !\n", __func__);
2009 offset--;
2011 if (offset < skb->len)
2012 goto found_ok_skb;
2013 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2014 goto found_fin_ok;
2015 WARN(!(flags & MSG_PEEK),
2016 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2017 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2020 /* Well, if we have backlog, try to process it now yet. */
2022 if (copied >= target && !sk->sk_backlog.tail)
2023 break;
2025 if (copied) {
2026 if (sk->sk_err ||
2027 sk->sk_state == TCP_CLOSE ||
2028 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2029 !timeo ||
2030 signal_pending(current))
2031 break;
2032 } else {
2033 if (sock_flag(sk, SOCK_DONE))
2034 break;
2036 if (sk->sk_err) {
2037 copied = sock_error(sk);
2038 break;
2041 if (sk->sk_shutdown & RCV_SHUTDOWN)
2042 break;
2044 if (sk->sk_state == TCP_CLOSE) {
2045 if (!sock_flag(sk, SOCK_DONE)) {
2046 /* This occurs when user tries to read
2047 * from never connected socket.
2049 copied = -ENOTCONN;
2050 break;
2052 break;
2055 if (!timeo) {
2056 copied = -EAGAIN;
2057 break;
2060 if (signal_pending(current)) {
2061 copied = sock_intr_errno(timeo);
2062 break;
2066 tcp_cleanup_rbuf(sk, copied);
2068 if (copied >= target) {
2069 /* Do not sleep, just process backlog. */
2070 release_sock(sk);
2071 lock_sock(sk);
2072 } else {
2073 sk_wait_data(sk, &timeo, last);
2076 if ((flags & MSG_PEEK) &&
2077 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2078 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2079 current->comm,
2080 task_pid_nr(current));
2081 peek_seq = tp->copied_seq;
2083 continue;
2085 found_ok_skb:
2086 /* Ok so how much can we use? */
2087 used = skb->len - offset;
2088 if (len < used)
2089 used = len;
2091 /* Do we have urgent data here? */
2092 if (tp->urg_data) {
2093 u32 urg_offset = tp->urg_seq - *seq;
2094 if (urg_offset < used) {
2095 if (!urg_offset) {
2096 if (!sock_flag(sk, SOCK_URGINLINE)) {
2097 ++*seq;
2098 urg_hole++;
2099 offset++;
2100 used--;
2101 if (!used)
2102 goto skip_copy;
2104 } else
2105 used = urg_offset;
2109 if (!(flags & MSG_TRUNC)) {
2110 err = skb_copy_datagram_msg(skb, offset, msg, used);
2111 if (err) {
2112 /* Exception. Bailout! */
2113 if (!copied)
2114 copied = -EFAULT;
2115 break;
2119 *seq += used;
2120 copied += used;
2121 len -= used;
2123 tcp_rcv_space_adjust(sk);
2125 skip_copy:
2126 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2127 tp->urg_data = 0;
2128 tcp_fast_path_check(sk);
2130 if (used + offset < skb->len)
2131 continue;
2133 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2134 tcp_update_recv_tstamps(skb, &tss);
2135 has_tss = true;
2136 has_cmsg = true;
2138 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2139 goto found_fin_ok;
2140 if (!(flags & MSG_PEEK))
2141 sk_eat_skb(sk, skb);
2142 continue;
2144 found_fin_ok:
2145 /* Process the FIN. */
2146 ++*seq;
2147 if (!(flags & MSG_PEEK))
2148 sk_eat_skb(sk, skb);
2149 break;
2150 } while (len > 0);
2152 /* According to UNIX98, msg_name/msg_namelen are ignored
2153 * on connected socket. I was just happy when found this 8) --ANK
2156 /* Clean up data we have read: This will do ACK frames. */
2157 tcp_cleanup_rbuf(sk, copied);
2159 release_sock(sk);
2161 if (has_cmsg) {
2162 if (has_tss)
2163 tcp_recv_timestamp(msg, sk, &tss);
2164 if (tp->recvmsg_inq) {
2165 inq = tcp_inq_hint(sk);
2166 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2170 return copied;
2172 out:
2173 release_sock(sk);
2174 return err;
2176 recv_urg:
2177 err = tcp_recv_urg(sk, msg, len, flags);
2178 goto out;
2180 recv_sndq:
2181 err = tcp_peek_sndq(sk, msg, len);
2182 goto out;
2184 EXPORT_SYMBOL(tcp_recvmsg);
2186 void tcp_set_state(struct sock *sk, int state)
2188 int oldstate = sk->sk_state;
2190 /* We defined a new enum for TCP states that are exported in BPF
2191 * so as not force the internal TCP states to be frozen. The
2192 * following checks will detect if an internal state value ever
2193 * differs from the BPF value. If this ever happens, then we will
2194 * need to remap the internal value to the BPF value before calling
2195 * tcp_call_bpf_2arg.
2197 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2198 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2199 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2200 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2201 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2202 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2203 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2204 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2205 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2206 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2207 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2208 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2209 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2211 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2212 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2214 switch (state) {
2215 case TCP_ESTABLISHED:
2216 if (oldstate != TCP_ESTABLISHED)
2217 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2218 break;
2220 case TCP_CLOSE:
2221 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2222 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2224 sk->sk_prot->unhash(sk);
2225 if (inet_csk(sk)->icsk_bind_hash &&
2226 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2227 inet_put_port(sk);
2228 /* fall through */
2229 default:
2230 if (oldstate == TCP_ESTABLISHED)
2231 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2234 /* Change state AFTER socket is unhashed to avoid closed
2235 * socket sitting in hash tables.
2237 inet_sk_state_store(sk, state);
2239 #ifdef STATE_TRACE
2240 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2241 #endif
2243 EXPORT_SYMBOL_GPL(tcp_set_state);
2246 * State processing on a close. This implements the state shift for
2247 * sending our FIN frame. Note that we only send a FIN for some
2248 * states. A shutdown() may have already sent the FIN, or we may be
2249 * closed.
2252 static const unsigned char new_state[16] = {
2253 /* current state: new state: action: */
2254 [0 /* (Invalid) */] = TCP_CLOSE,
2255 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2256 [TCP_SYN_SENT] = TCP_CLOSE,
2257 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2258 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2259 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2260 [TCP_TIME_WAIT] = TCP_CLOSE,
2261 [TCP_CLOSE] = TCP_CLOSE,
2262 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2263 [TCP_LAST_ACK] = TCP_LAST_ACK,
2264 [TCP_LISTEN] = TCP_CLOSE,
2265 [TCP_CLOSING] = TCP_CLOSING,
2266 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2269 static int tcp_close_state(struct sock *sk)
2271 int next = (int)new_state[sk->sk_state];
2272 int ns = next & TCP_STATE_MASK;
2274 tcp_set_state(sk, ns);
2276 return next & TCP_ACTION_FIN;
2280 * Shutdown the sending side of a connection. Much like close except
2281 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2284 void tcp_shutdown(struct sock *sk, int how)
2286 /* We need to grab some memory, and put together a FIN,
2287 * and then put it into the queue to be sent.
2288 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2290 if (!(how & SEND_SHUTDOWN))
2291 return;
2293 /* If we've already sent a FIN, or it's a closed state, skip this. */
2294 if ((1 << sk->sk_state) &
2295 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2296 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2297 /* Clear out any half completed packets. FIN if needed. */
2298 if (tcp_close_state(sk))
2299 tcp_send_fin(sk);
2302 EXPORT_SYMBOL(tcp_shutdown);
2304 bool tcp_check_oom(struct sock *sk, int shift)
2306 bool too_many_orphans, out_of_socket_memory;
2308 too_many_orphans = tcp_too_many_orphans(sk, shift);
2309 out_of_socket_memory = tcp_out_of_memory(sk);
2311 if (too_many_orphans)
2312 net_info_ratelimited("too many orphaned sockets\n");
2313 if (out_of_socket_memory)
2314 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2315 return too_many_orphans || out_of_socket_memory;
2318 void tcp_close(struct sock *sk, long timeout)
2320 struct sk_buff *skb;
2321 int data_was_unread = 0;
2322 int state;
2324 lock_sock(sk);
2325 sk->sk_shutdown = SHUTDOWN_MASK;
2327 if (sk->sk_state == TCP_LISTEN) {
2328 tcp_set_state(sk, TCP_CLOSE);
2330 /* Special case. */
2331 inet_csk_listen_stop(sk);
2333 goto adjudge_to_death;
2336 /* We need to flush the recv. buffs. We do this only on the
2337 * descriptor close, not protocol-sourced closes, because the
2338 * reader process may not have drained the data yet!
2340 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2341 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2343 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2344 len--;
2345 data_was_unread += len;
2346 __kfree_skb(skb);
2349 sk_mem_reclaim(sk);
2351 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2352 if (sk->sk_state == TCP_CLOSE)
2353 goto adjudge_to_death;
2355 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2356 * data was lost. To witness the awful effects of the old behavior of
2357 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2358 * GET in an FTP client, suspend the process, wait for the client to
2359 * advertise a zero window, then kill -9 the FTP client, wheee...
2360 * Note: timeout is always zero in such a case.
2362 if (unlikely(tcp_sk(sk)->repair)) {
2363 sk->sk_prot->disconnect(sk, 0);
2364 } else if (data_was_unread) {
2365 /* Unread data was tossed, zap the connection. */
2366 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2367 tcp_set_state(sk, TCP_CLOSE);
2368 tcp_send_active_reset(sk, sk->sk_allocation);
2369 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2370 /* Check zero linger _after_ checking for unread data. */
2371 sk->sk_prot->disconnect(sk, 0);
2372 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2373 } else if (tcp_close_state(sk)) {
2374 /* We FIN if the application ate all the data before
2375 * zapping the connection.
2378 /* RED-PEN. Formally speaking, we have broken TCP state
2379 * machine. State transitions:
2381 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2382 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2383 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2385 * are legal only when FIN has been sent (i.e. in window),
2386 * rather than queued out of window. Purists blame.
2388 * F.e. "RFC state" is ESTABLISHED,
2389 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2391 * The visible declinations are that sometimes
2392 * we enter time-wait state, when it is not required really
2393 * (harmless), do not send active resets, when they are
2394 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2395 * they look as CLOSING or LAST_ACK for Linux)
2396 * Probably, I missed some more holelets.
2397 * --ANK
2398 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2399 * in a single packet! (May consider it later but will
2400 * probably need API support or TCP_CORK SYN-ACK until
2401 * data is written and socket is closed.)
2403 tcp_send_fin(sk);
2406 sk_stream_wait_close(sk, timeout);
2408 adjudge_to_death:
2409 state = sk->sk_state;
2410 sock_hold(sk);
2411 sock_orphan(sk);
2413 /* It is the last release_sock in its life. It will remove backlog. */
2414 release_sock(sk);
2417 /* Now socket is owned by kernel and we acquire BH lock
2418 * to finish close. No need to check for user refs.
2420 local_bh_disable();
2421 bh_lock_sock(sk);
2422 WARN_ON(sock_owned_by_user(sk));
2424 percpu_counter_inc(sk->sk_prot->orphan_count);
2426 /* Have we already been destroyed by a softirq or backlog? */
2427 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2428 goto out;
2430 /* This is a (useful) BSD violating of the RFC. There is a
2431 * problem with TCP as specified in that the other end could
2432 * keep a socket open forever with no application left this end.
2433 * We use a 1 minute timeout (about the same as BSD) then kill
2434 * our end. If they send after that then tough - BUT: long enough
2435 * that we won't make the old 4*rto = almost no time - whoops
2436 * reset mistake.
2438 * Nope, it was not mistake. It is really desired behaviour
2439 * f.e. on http servers, when such sockets are useless, but
2440 * consume significant resources. Let's do it with special
2441 * linger2 option. --ANK
2444 if (sk->sk_state == TCP_FIN_WAIT2) {
2445 struct tcp_sock *tp = tcp_sk(sk);
2446 if (tp->linger2 < 0) {
2447 tcp_set_state(sk, TCP_CLOSE);
2448 tcp_send_active_reset(sk, GFP_ATOMIC);
2449 __NET_INC_STATS(sock_net(sk),
2450 LINUX_MIB_TCPABORTONLINGER);
2451 } else {
2452 const int tmo = tcp_fin_time(sk);
2454 if (tmo > TCP_TIMEWAIT_LEN) {
2455 inet_csk_reset_keepalive_timer(sk,
2456 tmo - TCP_TIMEWAIT_LEN);
2457 } else {
2458 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2459 goto out;
2463 if (sk->sk_state != TCP_CLOSE) {
2464 sk_mem_reclaim(sk);
2465 if (tcp_check_oom(sk, 0)) {
2466 tcp_set_state(sk, TCP_CLOSE);
2467 tcp_send_active_reset(sk, GFP_ATOMIC);
2468 __NET_INC_STATS(sock_net(sk),
2469 LINUX_MIB_TCPABORTONMEMORY);
2470 } else if (!check_net(sock_net(sk))) {
2471 /* Not possible to send reset; just close */
2472 tcp_set_state(sk, TCP_CLOSE);
2476 if (sk->sk_state == TCP_CLOSE) {
2477 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2478 /* We could get here with a non-NULL req if the socket is
2479 * aborted (e.g., closed with unread data) before 3WHS
2480 * finishes.
2482 if (req)
2483 reqsk_fastopen_remove(sk, req, false);
2484 inet_csk_destroy_sock(sk);
2486 /* Otherwise, socket is reprieved until protocol close. */
2488 out:
2489 bh_unlock_sock(sk);
2490 local_bh_enable();
2491 sock_put(sk);
2493 EXPORT_SYMBOL(tcp_close);
2495 /* These states need RST on ABORT according to RFC793 */
2497 static inline bool tcp_need_reset(int state)
2499 return (1 << state) &
2500 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2501 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2504 static void tcp_rtx_queue_purge(struct sock *sk)
2506 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2508 while (p) {
2509 struct sk_buff *skb = rb_to_skb(p);
2511 p = rb_next(p);
2512 /* Since we are deleting whole queue, no need to
2513 * list_del(&skb->tcp_tsorted_anchor)
2515 tcp_rtx_queue_unlink(skb, sk);
2516 sk_wmem_free_skb(sk, skb);
2520 void tcp_write_queue_purge(struct sock *sk)
2522 struct sk_buff *skb;
2524 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2525 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2526 tcp_skb_tsorted_anchor_cleanup(skb);
2527 sk_wmem_free_skb(sk, skb);
2529 tcp_rtx_queue_purge(sk);
2530 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2531 sk_mem_reclaim(sk);
2532 tcp_clear_all_retrans_hints(tcp_sk(sk));
2533 tcp_sk(sk)->packets_out = 0;
2536 int tcp_disconnect(struct sock *sk, int flags)
2538 struct inet_sock *inet = inet_sk(sk);
2539 struct inet_connection_sock *icsk = inet_csk(sk);
2540 struct tcp_sock *tp = tcp_sk(sk);
2541 int err = 0;
2542 int old_state = sk->sk_state;
2544 if (old_state != TCP_CLOSE)
2545 tcp_set_state(sk, TCP_CLOSE);
2547 /* ABORT function of RFC793 */
2548 if (old_state == TCP_LISTEN) {
2549 inet_csk_listen_stop(sk);
2550 } else if (unlikely(tp->repair)) {
2551 sk->sk_err = ECONNABORTED;
2552 } else if (tcp_need_reset(old_state) ||
2553 (tp->snd_nxt != tp->write_seq &&
2554 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2555 /* The last check adjusts for discrepancy of Linux wrt. RFC
2556 * states
2558 tcp_send_active_reset(sk, gfp_any());
2559 sk->sk_err = ECONNRESET;
2560 } else if (old_state == TCP_SYN_SENT)
2561 sk->sk_err = ECONNRESET;
2563 tcp_clear_xmit_timers(sk);
2564 __skb_queue_purge(&sk->sk_receive_queue);
2565 tp->copied_seq = tp->rcv_nxt;
2566 tp->urg_data = 0;
2567 tcp_write_queue_purge(sk);
2568 tcp_fastopen_active_disable_ofo_check(sk);
2569 skb_rbtree_purge(&tp->out_of_order_queue);
2571 inet->inet_dport = 0;
2573 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2574 inet_reset_saddr(sk);
2576 sk->sk_shutdown = 0;
2577 sock_reset_flag(sk, SOCK_DONE);
2578 tp->srtt_us = 0;
2579 tp->write_seq += tp->max_window + 2;
2580 if (tp->write_seq == 0)
2581 tp->write_seq = 1;
2582 icsk->icsk_backoff = 0;
2583 tp->snd_cwnd = 2;
2584 icsk->icsk_probes_out = 0;
2585 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2586 tp->snd_cwnd_cnt = 0;
2587 tp->window_clamp = 0;
2588 tp->delivered_ce = 0;
2589 tcp_set_ca_state(sk, TCP_CA_Open);
2590 tp->is_sack_reneg = 0;
2591 tcp_clear_retrans(tp);
2592 inet_csk_delack_init(sk);
2593 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2594 * issue in __tcp_select_window()
2596 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2597 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2598 __sk_dst_reset(sk);
2599 dst_release(sk->sk_rx_dst);
2600 sk->sk_rx_dst = NULL;
2601 tcp_saved_syn_free(tp);
2602 tp->compressed_ack = 0;
2604 /* Clean up fastopen related fields */
2605 tcp_free_fastopen_req(tp);
2606 inet->defer_connect = 0;
2608 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2610 if (sk->sk_frag.page) {
2611 put_page(sk->sk_frag.page);
2612 sk->sk_frag.page = NULL;
2613 sk->sk_frag.offset = 0;
2616 sk->sk_error_report(sk);
2617 return err;
2619 EXPORT_SYMBOL(tcp_disconnect);
2621 static inline bool tcp_can_repair_sock(const struct sock *sk)
2623 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2624 (sk->sk_state != TCP_LISTEN);
2627 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2629 struct tcp_repair_window opt;
2631 if (!tp->repair)
2632 return -EPERM;
2634 if (len != sizeof(opt))
2635 return -EINVAL;
2637 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2638 return -EFAULT;
2640 if (opt.max_window < opt.snd_wnd)
2641 return -EINVAL;
2643 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2644 return -EINVAL;
2646 if (after(opt.rcv_wup, tp->rcv_nxt))
2647 return -EINVAL;
2649 tp->snd_wl1 = opt.snd_wl1;
2650 tp->snd_wnd = opt.snd_wnd;
2651 tp->max_window = opt.max_window;
2653 tp->rcv_wnd = opt.rcv_wnd;
2654 tp->rcv_wup = opt.rcv_wup;
2656 return 0;
2659 static int tcp_repair_options_est(struct sock *sk,
2660 struct tcp_repair_opt __user *optbuf, unsigned int len)
2662 struct tcp_sock *tp = tcp_sk(sk);
2663 struct tcp_repair_opt opt;
2665 while (len >= sizeof(opt)) {
2666 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2667 return -EFAULT;
2669 optbuf++;
2670 len -= sizeof(opt);
2672 switch (opt.opt_code) {
2673 case TCPOPT_MSS:
2674 tp->rx_opt.mss_clamp = opt.opt_val;
2675 tcp_mtup_init(sk);
2676 break;
2677 case TCPOPT_WINDOW:
2679 u16 snd_wscale = opt.opt_val & 0xFFFF;
2680 u16 rcv_wscale = opt.opt_val >> 16;
2682 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2683 return -EFBIG;
2685 tp->rx_opt.snd_wscale = snd_wscale;
2686 tp->rx_opt.rcv_wscale = rcv_wscale;
2687 tp->rx_opt.wscale_ok = 1;
2689 break;
2690 case TCPOPT_SACK_PERM:
2691 if (opt.opt_val != 0)
2692 return -EINVAL;
2694 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2695 break;
2696 case TCPOPT_TIMESTAMP:
2697 if (opt.opt_val != 0)
2698 return -EINVAL;
2700 tp->rx_opt.tstamp_ok = 1;
2701 break;
2705 return 0;
2709 * Socket option code for TCP.
2711 static int do_tcp_setsockopt(struct sock *sk, int level,
2712 int optname, char __user *optval, unsigned int optlen)
2714 struct tcp_sock *tp = tcp_sk(sk);
2715 struct inet_connection_sock *icsk = inet_csk(sk);
2716 struct net *net = sock_net(sk);
2717 int val;
2718 int err = 0;
2720 /* These are data/string values, all the others are ints */
2721 switch (optname) {
2722 case TCP_CONGESTION: {
2723 char name[TCP_CA_NAME_MAX];
2725 if (optlen < 1)
2726 return -EINVAL;
2728 val = strncpy_from_user(name, optval,
2729 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2730 if (val < 0)
2731 return -EFAULT;
2732 name[val] = 0;
2734 lock_sock(sk);
2735 err = tcp_set_congestion_control(sk, name, true, true);
2736 release_sock(sk);
2737 return err;
2739 case TCP_ULP: {
2740 char name[TCP_ULP_NAME_MAX];
2742 if (optlen < 1)
2743 return -EINVAL;
2745 val = strncpy_from_user(name, optval,
2746 min_t(long, TCP_ULP_NAME_MAX - 1,
2747 optlen));
2748 if (val < 0)
2749 return -EFAULT;
2750 name[val] = 0;
2752 lock_sock(sk);
2753 err = tcp_set_ulp(sk, name);
2754 release_sock(sk);
2755 return err;
2757 case TCP_FASTOPEN_KEY: {
2758 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
2760 if (optlen != sizeof(key))
2761 return -EINVAL;
2763 if (copy_from_user(key, optval, optlen))
2764 return -EFAULT;
2766 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
2768 default:
2769 /* fallthru */
2770 break;
2773 if (optlen < sizeof(int))
2774 return -EINVAL;
2776 if (get_user(val, (int __user *)optval))
2777 return -EFAULT;
2779 lock_sock(sk);
2781 switch (optname) {
2782 case TCP_MAXSEG:
2783 /* Values greater than interface MTU won't take effect. However
2784 * at the point when this call is done we typically don't yet
2785 * know which interface is going to be used
2787 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2788 err = -EINVAL;
2789 break;
2791 tp->rx_opt.user_mss = val;
2792 break;
2794 case TCP_NODELAY:
2795 if (val) {
2796 /* TCP_NODELAY is weaker than TCP_CORK, so that
2797 * this option on corked socket is remembered, but
2798 * it is not activated until cork is cleared.
2800 * However, when TCP_NODELAY is set we make
2801 * an explicit push, which overrides even TCP_CORK
2802 * for currently queued segments.
2804 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2805 tcp_push_pending_frames(sk);
2806 } else {
2807 tp->nonagle &= ~TCP_NAGLE_OFF;
2809 break;
2811 case TCP_THIN_LINEAR_TIMEOUTS:
2812 if (val < 0 || val > 1)
2813 err = -EINVAL;
2814 else
2815 tp->thin_lto = val;
2816 break;
2818 case TCP_THIN_DUPACK:
2819 if (val < 0 || val > 1)
2820 err = -EINVAL;
2821 break;
2823 case TCP_REPAIR:
2824 if (!tcp_can_repair_sock(sk))
2825 err = -EPERM;
2826 else if (val == TCP_REPAIR_ON) {
2827 tp->repair = 1;
2828 sk->sk_reuse = SK_FORCE_REUSE;
2829 tp->repair_queue = TCP_NO_QUEUE;
2830 } else if (val == TCP_REPAIR_OFF) {
2831 tp->repair = 0;
2832 sk->sk_reuse = SK_NO_REUSE;
2833 tcp_send_window_probe(sk);
2834 } else if (val == TCP_REPAIR_OFF_NO_WP) {
2835 tp->repair = 0;
2836 sk->sk_reuse = SK_NO_REUSE;
2837 } else
2838 err = -EINVAL;
2840 break;
2842 case TCP_REPAIR_QUEUE:
2843 if (!tp->repair)
2844 err = -EPERM;
2845 else if ((unsigned int)val < TCP_QUEUES_NR)
2846 tp->repair_queue = val;
2847 else
2848 err = -EINVAL;
2849 break;
2851 case TCP_QUEUE_SEQ:
2852 if (sk->sk_state != TCP_CLOSE)
2853 err = -EPERM;
2854 else if (tp->repair_queue == TCP_SEND_QUEUE)
2855 tp->write_seq = val;
2856 else if (tp->repair_queue == TCP_RECV_QUEUE)
2857 tp->rcv_nxt = val;
2858 else
2859 err = -EINVAL;
2860 break;
2862 case TCP_REPAIR_OPTIONS:
2863 if (!tp->repair)
2864 err = -EINVAL;
2865 else if (sk->sk_state == TCP_ESTABLISHED)
2866 err = tcp_repair_options_est(sk,
2867 (struct tcp_repair_opt __user *)optval,
2868 optlen);
2869 else
2870 err = -EPERM;
2871 break;
2873 case TCP_CORK:
2874 /* When set indicates to always queue non-full frames.
2875 * Later the user clears this option and we transmit
2876 * any pending partial frames in the queue. This is
2877 * meant to be used alongside sendfile() to get properly
2878 * filled frames when the user (for example) must write
2879 * out headers with a write() call first and then use
2880 * sendfile to send out the data parts.
2882 * TCP_CORK can be set together with TCP_NODELAY and it is
2883 * stronger than TCP_NODELAY.
2885 if (val) {
2886 tp->nonagle |= TCP_NAGLE_CORK;
2887 } else {
2888 tp->nonagle &= ~TCP_NAGLE_CORK;
2889 if (tp->nonagle&TCP_NAGLE_OFF)
2890 tp->nonagle |= TCP_NAGLE_PUSH;
2891 tcp_push_pending_frames(sk);
2893 break;
2895 case TCP_KEEPIDLE:
2896 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2897 err = -EINVAL;
2898 else {
2899 tp->keepalive_time = val * HZ;
2900 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2901 !((1 << sk->sk_state) &
2902 (TCPF_CLOSE | TCPF_LISTEN))) {
2903 u32 elapsed = keepalive_time_elapsed(tp);
2904 if (tp->keepalive_time > elapsed)
2905 elapsed = tp->keepalive_time - elapsed;
2906 else
2907 elapsed = 0;
2908 inet_csk_reset_keepalive_timer(sk, elapsed);
2911 break;
2912 case TCP_KEEPINTVL:
2913 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2914 err = -EINVAL;
2915 else
2916 tp->keepalive_intvl = val * HZ;
2917 break;
2918 case TCP_KEEPCNT:
2919 if (val < 1 || val > MAX_TCP_KEEPCNT)
2920 err = -EINVAL;
2921 else
2922 tp->keepalive_probes = val;
2923 break;
2924 case TCP_SYNCNT:
2925 if (val < 1 || val > MAX_TCP_SYNCNT)
2926 err = -EINVAL;
2927 else
2928 icsk->icsk_syn_retries = val;
2929 break;
2931 case TCP_SAVE_SYN:
2932 if (val < 0 || val > 1)
2933 err = -EINVAL;
2934 else
2935 tp->save_syn = val;
2936 break;
2938 case TCP_LINGER2:
2939 if (val < 0)
2940 tp->linger2 = -1;
2941 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2942 tp->linger2 = 0;
2943 else
2944 tp->linger2 = val * HZ;
2945 break;
2947 case TCP_DEFER_ACCEPT:
2948 /* Translate value in seconds to number of retransmits */
2949 icsk->icsk_accept_queue.rskq_defer_accept =
2950 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2951 TCP_RTO_MAX / HZ);
2952 break;
2954 case TCP_WINDOW_CLAMP:
2955 if (!val) {
2956 if (sk->sk_state != TCP_CLOSE) {
2957 err = -EINVAL;
2958 break;
2960 tp->window_clamp = 0;
2961 } else
2962 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2963 SOCK_MIN_RCVBUF / 2 : val;
2964 break;
2966 case TCP_QUICKACK:
2967 if (!val) {
2968 icsk->icsk_ack.pingpong = 1;
2969 } else {
2970 icsk->icsk_ack.pingpong = 0;
2971 if ((1 << sk->sk_state) &
2972 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2973 inet_csk_ack_scheduled(sk)) {
2974 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2975 tcp_cleanup_rbuf(sk, 1);
2976 if (!(val & 1))
2977 icsk->icsk_ack.pingpong = 1;
2980 break;
2982 #ifdef CONFIG_TCP_MD5SIG
2983 case TCP_MD5SIG:
2984 case TCP_MD5SIG_EXT:
2985 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
2986 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2987 else
2988 err = -EINVAL;
2989 break;
2990 #endif
2991 case TCP_USER_TIMEOUT:
2992 /* Cap the max time in ms TCP will retry or probe the window
2993 * before giving up and aborting (ETIMEDOUT) a connection.
2995 if (val < 0)
2996 err = -EINVAL;
2997 else
2998 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2999 break;
3001 case TCP_FASTOPEN:
3002 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3003 TCPF_LISTEN))) {
3004 tcp_fastopen_init_key_once(net);
3006 fastopen_queue_tune(sk, val);
3007 } else {
3008 err = -EINVAL;
3010 break;
3011 case TCP_FASTOPEN_CONNECT:
3012 if (val > 1 || val < 0) {
3013 err = -EINVAL;
3014 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3015 if (sk->sk_state == TCP_CLOSE)
3016 tp->fastopen_connect = val;
3017 else
3018 err = -EINVAL;
3019 } else {
3020 err = -EOPNOTSUPP;
3022 break;
3023 case TCP_FASTOPEN_NO_COOKIE:
3024 if (val > 1 || val < 0)
3025 err = -EINVAL;
3026 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3027 err = -EINVAL;
3028 else
3029 tp->fastopen_no_cookie = val;
3030 break;
3031 case TCP_TIMESTAMP:
3032 if (!tp->repair)
3033 err = -EPERM;
3034 else
3035 tp->tsoffset = val - tcp_time_stamp_raw();
3036 break;
3037 case TCP_REPAIR_WINDOW:
3038 err = tcp_repair_set_window(tp, optval, optlen);
3039 break;
3040 case TCP_NOTSENT_LOWAT:
3041 tp->notsent_lowat = val;
3042 sk->sk_write_space(sk);
3043 break;
3044 case TCP_INQ:
3045 if (val > 1 || val < 0)
3046 err = -EINVAL;
3047 else
3048 tp->recvmsg_inq = val;
3049 break;
3050 default:
3051 err = -ENOPROTOOPT;
3052 break;
3055 release_sock(sk);
3056 return err;
3059 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
3060 unsigned int optlen)
3062 const struct inet_connection_sock *icsk = inet_csk(sk);
3064 if (level != SOL_TCP)
3065 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3066 optval, optlen);
3067 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3069 EXPORT_SYMBOL(tcp_setsockopt);
3071 #ifdef CONFIG_COMPAT
3072 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
3073 char __user *optval, unsigned int optlen)
3075 if (level != SOL_TCP)
3076 return inet_csk_compat_setsockopt(sk, level, optname,
3077 optval, optlen);
3078 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3080 EXPORT_SYMBOL(compat_tcp_setsockopt);
3081 #endif
3083 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3084 struct tcp_info *info)
3086 u64 stats[__TCP_CHRONO_MAX], total = 0;
3087 enum tcp_chrono i;
3089 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3090 stats[i] = tp->chrono_stat[i - 1];
3091 if (i == tp->chrono_type)
3092 stats[i] += tcp_jiffies32 - tp->chrono_start;
3093 stats[i] *= USEC_PER_SEC / HZ;
3094 total += stats[i];
3097 info->tcpi_busy_time = total;
3098 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3099 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3102 /* Return information about state of tcp endpoint in API format. */
3103 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3105 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3106 const struct inet_connection_sock *icsk = inet_csk(sk);
3107 u32 now;
3108 u64 rate64;
3109 bool slow;
3110 u32 rate;
3112 memset(info, 0, sizeof(*info));
3113 if (sk->sk_type != SOCK_STREAM)
3114 return;
3116 info->tcpi_state = inet_sk_state_load(sk);
3118 /* Report meaningful fields for all TCP states, including listeners */
3119 rate = READ_ONCE(sk->sk_pacing_rate);
3120 rate64 = rate != ~0U ? rate : ~0ULL;
3121 info->tcpi_pacing_rate = rate64;
3123 rate = READ_ONCE(sk->sk_max_pacing_rate);
3124 rate64 = rate != ~0U ? rate : ~0ULL;
3125 info->tcpi_max_pacing_rate = rate64;
3127 info->tcpi_reordering = tp->reordering;
3128 info->tcpi_snd_cwnd = tp->snd_cwnd;
3130 if (info->tcpi_state == TCP_LISTEN) {
3131 /* listeners aliased fields :
3132 * tcpi_unacked -> Number of children ready for accept()
3133 * tcpi_sacked -> max backlog
3135 info->tcpi_unacked = sk->sk_ack_backlog;
3136 info->tcpi_sacked = sk->sk_max_ack_backlog;
3137 return;
3140 slow = lock_sock_fast(sk);
3142 info->tcpi_ca_state = icsk->icsk_ca_state;
3143 info->tcpi_retransmits = icsk->icsk_retransmits;
3144 info->tcpi_probes = icsk->icsk_probes_out;
3145 info->tcpi_backoff = icsk->icsk_backoff;
3147 if (tp->rx_opt.tstamp_ok)
3148 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3149 if (tcp_is_sack(tp))
3150 info->tcpi_options |= TCPI_OPT_SACK;
3151 if (tp->rx_opt.wscale_ok) {
3152 info->tcpi_options |= TCPI_OPT_WSCALE;
3153 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3154 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3157 if (tp->ecn_flags & TCP_ECN_OK)
3158 info->tcpi_options |= TCPI_OPT_ECN;
3159 if (tp->ecn_flags & TCP_ECN_SEEN)
3160 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3161 if (tp->syn_data_acked)
3162 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3164 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3165 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3166 info->tcpi_snd_mss = tp->mss_cache;
3167 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3169 info->tcpi_unacked = tp->packets_out;
3170 info->tcpi_sacked = tp->sacked_out;
3172 info->tcpi_lost = tp->lost_out;
3173 info->tcpi_retrans = tp->retrans_out;
3175 now = tcp_jiffies32;
3176 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3177 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3178 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3180 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3181 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3182 info->tcpi_rtt = tp->srtt_us >> 3;
3183 info->tcpi_rttvar = tp->mdev_us >> 2;
3184 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3185 info->tcpi_advmss = tp->advmss;
3187 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3188 info->tcpi_rcv_space = tp->rcvq_space.space;
3190 info->tcpi_total_retrans = tp->total_retrans;
3192 info->tcpi_bytes_acked = tp->bytes_acked;
3193 info->tcpi_bytes_received = tp->bytes_received;
3194 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3195 tcp_get_info_chrono_stats(tp, info);
3197 info->tcpi_segs_out = tp->segs_out;
3198 info->tcpi_segs_in = tp->segs_in;
3200 info->tcpi_min_rtt = tcp_min_rtt(tp);
3201 info->tcpi_data_segs_in = tp->data_segs_in;
3202 info->tcpi_data_segs_out = tp->data_segs_out;
3204 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3205 rate64 = tcp_compute_delivery_rate(tp);
3206 if (rate64)
3207 info->tcpi_delivery_rate = rate64;
3208 info->tcpi_delivered = tp->delivered;
3209 info->tcpi_delivered_ce = tp->delivered_ce;
3210 unlock_sock_fast(sk, slow);
3212 EXPORT_SYMBOL_GPL(tcp_get_info);
3214 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3216 const struct tcp_sock *tp = tcp_sk(sk);
3217 struct sk_buff *stats;
3218 struct tcp_info info;
3219 u64 rate64;
3220 u32 rate;
3222 stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) +
3223 7 * nla_total_size(sizeof(u32)) +
3224 3 * nla_total_size(sizeof(u8)), GFP_ATOMIC);
3225 if (!stats)
3226 return NULL;
3228 tcp_get_info_chrono_stats(tp, &info);
3229 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3230 info.tcpi_busy_time, TCP_NLA_PAD);
3231 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3232 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3233 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3234 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3235 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3236 tp->data_segs_out, TCP_NLA_PAD);
3237 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3238 tp->total_retrans, TCP_NLA_PAD);
3240 rate = READ_ONCE(sk->sk_pacing_rate);
3241 rate64 = rate != ~0U ? rate : ~0ULL;
3242 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3244 rate64 = tcp_compute_delivery_rate(tp);
3245 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3247 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3248 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3249 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3251 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3252 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3253 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3254 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3255 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3257 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3258 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3260 return stats;
3263 static int do_tcp_getsockopt(struct sock *sk, int level,
3264 int optname, char __user *optval, int __user *optlen)
3266 struct inet_connection_sock *icsk = inet_csk(sk);
3267 struct tcp_sock *tp = tcp_sk(sk);
3268 struct net *net = sock_net(sk);
3269 int val, len;
3271 if (get_user(len, optlen))
3272 return -EFAULT;
3274 len = min_t(unsigned int, len, sizeof(int));
3276 if (len < 0)
3277 return -EINVAL;
3279 switch (optname) {
3280 case TCP_MAXSEG:
3281 val = tp->mss_cache;
3282 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3283 val = tp->rx_opt.user_mss;
3284 if (tp->repair)
3285 val = tp->rx_opt.mss_clamp;
3286 break;
3287 case TCP_NODELAY:
3288 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3289 break;
3290 case TCP_CORK:
3291 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3292 break;
3293 case TCP_KEEPIDLE:
3294 val = keepalive_time_when(tp) / HZ;
3295 break;
3296 case TCP_KEEPINTVL:
3297 val = keepalive_intvl_when(tp) / HZ;
3298 break;
3299 case TCP_KEEPCNT:
3300 val = keepalive_probes(tp);
3301 break;
3302 case TCP_SYNCNT:
3303 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3304 break;
3305 case TCP_LINGER2:
3306 val = tp->linger2;
3307 if (val >= 0)
3308 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3309 break;
3310 case TCP_DEFER_ACCEPT:
3311 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3312 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3313 break;
3314 case TCP_WINDOW_CLAMP:
3315 val = tp->window_clamp;
3316 break;
3317 case TCP_INFO: {
3318 struct tcp_info info;
3320 if (get_user(len, optlen))
3321 return -EFAULT;
3323 tcp_get_info(sk, &info);
3325 len = min_t(unsigned int, len, sizeof(info));
3326 if (put_user(len, optlen))
3327 return -EFAULT;
3328 if (copy_to_user(optval, &info, len))
3329 return -EFAULT;
3330 return 0;
3332 case TCP_CC_INFO: {
3333 const struct tcp_congestion_ops *ca_ops;
3334 union tcp_cc_info info;
3335 size_t sz = 0;
3336 int attr;
3338 if (get_user(len, optlen))
3339 return -EFAULT;
3341 ca_ops = icsk->icsk_ca_ops;
3342 if (ca_ops && ca_ops->get_info)
3343 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3345 len = min_t(unsigned int, len, sz);
3346 if (put_user(len, optlen))
3347 return -EFAULT;
3348 if (copy_to_user(optval, &info, len))
3349 return -EFAULT;
3350 return 0;
3352 case TCP_QUICKACK:
3353 val = !icsk->icsk_ack.pingpong;
3354 break;
3356 case TCP_CONGESTION:
3357 if (get_user(len, optlen))
3358 return -EFAULT;
3359 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3360 if (put_user(len, optlen))
3361 return -EFAULT;
3362 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3363 return -EFAULT;
3364 return 0;
3366 case TCP_ULP:
3367 if (get_user(len, optlen))
3368 return -EFAULT;
3369 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3370 if (!icsk->icsk_ulp_ops) {
3371 if (put_user(0, optlen))
3372 return -EFAULT;
3373 return 0;
3375 if (put_user(len, optlen))
3376 return -EFAULT;
3377 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3378 return -EFAULT;
3379 return 0;
3381 case TCP_FASTOPEN_KEY: {
3382 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
3383 struct tcp_fastopen_context *ctx;
3385 if (get_user(len, optlen))
3386 return -EFAULT;
3388 rcu_read_lock();
3389 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3390 if (ctx)
3391 memcpy(key, ctx->key, sizeof(key));
3392 else
3393 len = 0;
3394 rcu_read_unlock();
3396 len = min_t(unsigned int, len, sizeof(key));
3397 if (put_user(len, optlen))
3398 return -EFAULT;
3399 if (copy_to_user(optval, key, len))
3400 return -EFAULT;
3401 return 0;
3403 case TCP_THIN_LINEAR_TIMEOUTS:
3404 val = tp->thin_lto;
3405 break;
3407 case TCP_THIN_DUPACK:
3408 val = 0;
3409 break;
3411 case TCP_REPAIR:
3412 val = tp->repair;
3413 break;
3415 case TCP_REPAIR_QUEUE:
3416 if (tp->repair)
3417 val = tp->repair_queue;
3418 else
3419 return -EINVAL;
3420 break;
3422 case TCP_REPAIR_WINDOW: {
3423 struct tcp_repair_window opt;
3425 if (get_user(len, optlen))
3426 return -EFAULT;
3428 if (len != sizeof(opt))
3429 return -EINVAL;
3431 if (!tp->repair)
3432 return -EPERM;
3434 opt.snd_wl1 = tp->snd_wl1;
3435 opt.snd_wnd = tp->snd_wnd;
3436 opt.max_window = tp->max_window;
3437 opt.rcv_wnd = tp->rcv_wnd;
3438 opt.rcv_wup = tp->rcv_wup;
3440 if (copy_to_user(optval, &opt, len))
3441 return -EFAULT;
3442 return 0;
3444 case TCP_QUEUE_SEQ:
3445 if (tp->repair_queue == TCP_SEND_QUEUE)
3446 val = tp->write_seq;
3447 else if (tp->repair_queue == TCP_RECV_QUEUE)
3448 val = tp->rcv_nxt;
3449 else
3450 return -EINVAL;
3451 break;
3453 case TCP_USER_TIMEOUT:
3454 val = jiffies_to_msecs(icsk->icsk_user_timeout);
3455 break;
3457 case TCP_FASTOPEN:
3458 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3459 break;
3461 case TCP_FASTOPEN_CONNECT:
3462 val = tp->fastopen_connect;
3463 break;
3465 case TCP_FASTOPEN_NO_COOKIE:
3466 val = tp->fastopen_no_cookie;
3467 break;
3469 case TCP_TIMESTAMP:
3470 val = tcp_time_stamp_raw() + tp->tsoffset;
3471 break;
3472 case TCP_NOTSENT_LOWAT:
3473 val = tp->notsent_lowat;
3474 break;
3475 case TCP_INQ:
3476 val = tp->recvmsg_inq;
3477 break;
3478 case TCP_SAVE_SYN:
3479 val = tp->save_syn;
3480 break;
3481 case TCP_SAVED_SYN: {
3482 if (get_user(len, optlen))
3483 return -EFAULT;
3485 lock_sock(sk);
3486 if (tp->saved_syn) {
3487 if (len < tp->saved_syn[0]) {
3488 if (put_user(tp->saved_syn[0], optlen)) {
3489 release_sock(sk);
3490 return -EFAULT;
3492 release_sock(sk);
3493 return -EINVAL;
3495 len = tp->saved_syn[0];
3496 if (put_user(len, optlen)) {
3497 release_sock(sk);
3498 return -EFAULT;
3500 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3501 release_sock(sk);
3502 return -EFAULT;
3504 tcp_saved_syn_free(tp);
3505 release_sock(sk);
3506 } else {
3507 release_sock(sk);
3508 len = 0;
3509 if (put_user(len, optlen))
3510 return -EFAULT;
3512 return 0;
3514 #ifdef CONFIG_MMU
3515 case TCP_ZEROCOPY_RECEIVE: {
3516 struct tcp_zerocopy_receive zc;
3517 int err;
3519 if (get_user(len, optlen))
3520 return -EFAULT;
3521 if (len != sizeof(zc))
3522 return -EINVAL;
3523 if (copy_from_user(&zc, optval, len))
3524 return -EFAULT;
3525 lock_sock(sk);
3526 err = tcp_zerocopy_receive(sk, &zc);
3527 release_sock(sk);
3528 if (!err && copy_to_user(optval, &zc, len))
3529 err = -EFAULT;
3530 return err;
3532 #endif
3533 default:
3534 return -ENOPROTOOPT;
3537 if (put_user(len, optlen))
3538 return -EFAULT;
3539 if (copy_to_user(optval, &val, len))
3540 return -EFAULT;
3541 return 0;
3544 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3545 int __user *optlen)
3547 struct inet_connection_sock *icsk = inet_csk(sk);
3549 if (level != SOL_TCP)
3550 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3551 optval, optlen);
3552 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3554 EXPORT_SYMBOL(tcp_getsockopt);
3556 #ifdef CONFIG_COMPAT
3557 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3558 char __user *optval, int __user *optlen)
3560 if (level != SOL_TCP)
3561 return inet_csk_compat_getsockopt(sk, level, optname,
3562 optval, optlen);
3563 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3565 EXPORT_SYMBOL(compat_tcp_getsockopt);
3566 #endif
3568 #ifdef CONFIG_TCP_MD5SIG
3569 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3570 static DEFINE_MUTEX(tcp_md5sig_mutex);
3571 static bool tcp_md5sig_pool_populated = false;
3573 static void __tcp_alloc_md5sig_pool(void)
3575 struct crypto_ahash *hash;
3576 int cpu;
3578 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3579 if (IS_ERR(hash))
3580 return;
3582 for_each_possible_cpu(cpu) {
3583 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3584 struct ahash_request *req;
3586 if (!scratch) {
3587 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3588 sizeof(struct tcphdr),
3589 GFP_KERNEL,
3590 cpu_to_node(cpu));
3591 if (!scratch)
3592 return;
3593 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3595 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3596 continue;
3598 req = ahash_request_alloc(hash, GFP_KERNEL);
3599 if (!req)
3600 return;
3602 ahash_request_set_callback(req, 0, NULL, NULL);
3604 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3606 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3607 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3609 smp_wmb();
3610 tcp_md5sig_pool_populated = true;
3613 bool tcp_alloc_md5sig_pool(void)
3615 if (unlikely(!tcp_md5sig_pool_populated)) {
3616 mutex_lock(&tcp_md5sig_mutex);
3618 if (!tcp_md5sig_pool_populated)
3619 __tcp_alloc_md5sig_pool();
3621 mutex_unlock(&tcp_md5sig_mutex);
3623 return tcp_md5sig_pool_populated;
3625 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3629 * tcp_get_md5sig_pool - get md5sig_pool for this user
3631 * We use percpu structure, so if we succeed, we exit with preemption
3632 * and BH disabled, to make sure another thread or softirq handling
3633 * wont try to get same context.
3635 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3637 local_bh_disable();
3639 if (tcp_md5sig_pool_populated) {
3640 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3641 smp_rmb();
3642 return this_cpu_ptr(&tcp_md5sig_pool);
3644 local_bh_enable();
3645 return NULL;
3647 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3649 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3650 const struct sk_buff *skb, unsigned int header_len)
3652 struct scatterlist sg;
3653 const struct tcphdr *tp = tcp_hdr(skb);
3654 struct ahash_request *req = hp->md5_req;
3655 unsigned int i;
3656 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3657 skb_headlen(skb) - header_len : 0;
3658 const struct skb_shared_info *shi = skb_shinfo(skb);
3659 struct sk_buff *frag_iter;
3661 sg_init_table(&sg, 1);
3663 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3664 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3665 if (crypto_ahash_update(req))
3666 return 1;
3668 for (i = 0; i < shi->nr_frags; ++i) {
3669 const struct skb_frag_struct *f = &shi->frags[i];
3670 unsigned int offset = f->page_offset;
3671 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3673 sg_set_page(&sg, page, skb_frag_size(f),
3674 offset_in_page(offset));
3675 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3676 if (crypto_ahash_update(req))
3677 return 1;
3680 skb_walk_frags(skb, frag_iter)
3681 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3682 return 1;
3684 return 0;
3686 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3688 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3690 struct scatterlist sg;
3692 sg_init_one(&sg, key->key, key->keylen);
3693 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3694 return crypto_ahash_update(hp->md5_req);
3696 EXPORT_SYMBOL(tcp_md5_hash_key);
3698 #endif
3700 void tcp_done(struct sock *sk)
3702 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3704 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3705 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3707 tcp_set_state(sk, TCP_CLOSE);
3708 tcp_clear_xmit_timers(sk);
3709 if (req)
3710 reqsk_fastopen_remove(sk, req, false);
3712 sk->sk_shutdown = SHUTDOWN_MASK;
3714 if (!sock_flag(sk, SOCK_DEAD))
3715 sk->sk_state_change(sk);
3716 else
3717 inet_csk_destroy_sock(sk);
3719 EXPORT_SYMBOL_GPL(tcp_done);
3721 int tcp_abort(struct sock *sk, int err)
3723 if (!sk_fullsock(sk)) {
3724 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3725 struct request_sock *req = inet_reqsk(sk);
3727 local_bh_disable();
3728 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
3729 local_bh_enable();
3730 return 0;
3732 return -EOPNOTSUPP;
3735 /* Don't race with userspace socket closes such as tcp_close. */
3736 lock_sock(sk);
3738 if (sk->sk_state == TCP_LISTEN) {
3739 tcp_set_state(sk, TCP_CLOSE);
3740 inet_csk_listen_stop(sk);
3743 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3744 local_bh_disable();
3745 bh_lock_sock(sk);
3747 if (!sock_flag(sk, SOCK_DEAD)) {
3748 sk->sk_err = err;
3749 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3750 smp_wmb();
3751 sk->sk_error_report(sk);
3752 if (tcp_need_reset(sk->sk_state))
3753 tcp_send_active_reset(sk, GFP_ATOMIC);
3754 tcp_done(sk);
3757 bh_unlock_sock(sk);
3758 local_bh_enable();
3759 tcp_write_queue_purge(sk);
3760 release_sock(sk);
3761 return 0;
3763 EXPORT_SYMBOL_GPL(tcp_abort);
3765 extern struct tcp_congestion_ops tcp_reno;
3767 static __initdata unsigned long thash_entries;
3768 static int __init set_thash_entries(char *str)
3770 ssize_t ret;
3772 if (!str)
3773 return 0;
3775 ret = kstrtoul(str, 0, &thash_entries);
3776 if (ret)
3777 return 0;
3779 return 1;
3781 __setup("thash_entries=", set_thash_entries);
3783 static void __init tcp_init_mem(void)
3785 unsigned long limit = nr_free_buffer_pages() / 16;
3787 limit = max(limit, 128UL);
3788 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3789 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3790 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3793 void __init tcp_init(void)
3795 int max_rshare, max_wshare, cnt;
3796 unsigned long limit;
3797 unsigned int i;
3799 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3800 FIELD_SIZEOF(struct sk_buff, cb));
3802 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3803 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3804 inet_hashinfo_init(&tcp_hashinfo);
3805 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3806 thash_entries, 21, /* one slot per 2 MB*/
3807 0, 64 * 1024);
3808 tcp_hashinfo.bind_bucket_cachep =
3809 kmem_cache_create("tcp_bind_bucket",
3810 sizeof(struct inet_bind_bucket), 0,
3811 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3813 /* Size and allocate the main established and bind bucket
3814 * hash tables.
3816 * The methodology is similar to that of the buffer cache.
3818 tcp_hashinfo.ehash =
3819 alloc_large_system_hash("TCP established",
3820 sizeof(struct inet_ehash_bucket),
3821 thash_entries,
3822 17, /* one slot per 128 KB of memory */
3824 NULL,
3825 &tcp_hashinfo.ehash_mask,
3827 thash_entries ? 0 : 512 * 1024);
3828 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3829 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3831 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3832 panic("TCP: failed to alloc ehash_locks");
3833 tcp_hashinfo.bhash =
3834 alloc_large_system_hash("TCP bind",
3835 sizeof(struct inet_bind_hashbucket),
3836 tcp_hashinfo.ehash_mask + 1,
3837 17, /* one slot per 128 KB of memory */
3839 &tcp_hashinfo.bhash_size,
3840 NULL,
3842 64 * 1024);
3843 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3844 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3845 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3846 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3850 cnt = tcp_hashinfo.ehash_mask + 1;
3851 sysctl_tcp_max_orphans = cnt / 2;
3853 tcp_init_mem();
3854 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3855 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3856 max_wshare = min(4UL*1024*1024, limit);
3857 max_rshare = min(6UL*1024*1024, limit);
3859 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3860 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3861 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3863 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3864 init_net.ipv4.sysctl_tcp_rmem[1] = 87380;
3865 init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare);
3867 pr_info("Hash tables configured (established %u bind %u)\n",
3868 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3870 tcp_v4_init();
3871 tcp_metrics_init();
3872 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3873 tcp_tasklet_init();