clk: bcm2835: remove use of BCM2835_CLOCK_COUNT in driver
[linux/fpc-iii.git] / drivers / clk / bcm / clk-bcm2835.c
blob71504a81cb0c54543227e681e7aacbbbbc676747
1 /*
2 * Copyright (C) 2010,2015 Broadcom
3 * Copyright (C) 2012 Stephen Warren
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
17 /**
18 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
20 * The clock tree on the 2835 has several levels. There's a root
21 * oscillator running at 19.2Mhz. After the oscillator there are 5
22 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23 * and "HDMI displays". Those 5 PLLs each can divide their output to
24 * produce up to 4 channels. Finally, there is the level of clocks to
25 * be consumed by other hardware components (like "H264" or "HDMI
26 * state machine"), which divide off of some subset of the PLL
27 * channels.
29 * All of the clocks in the tree are exposed in the DT, because the DT
30 * may want to make assignments of the final layer of clocks to the
31 * PLL channels, and some components of the hardware will actually
32 * skip layers of the tree (for example, the pixel clock comes
33 * directly from the PLLH PIX channel without using a CM_*CTL clock
34 * generator).
37 #include <linux/clk-provider.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk/bcm2835.h>
40 #include <linux/debugfs.h>
41 #include <linux/module.h>
42 #include <linux/of.h>
43 #include <linux/platform_device.h>
44 #include <linux/slab.h>
45 #include <dt-bindings/clock/bcm2835.h>
47 #define CM_PASSWORD 0x5a000000
49 #define CM_GNRICCTL 0x000
50 #define CM_GNRICDIV 0x004
51 # define CM_DIV_FRAC_BITS 12
52 # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
54 #define CM_VPUCTL 0x008
55 #define CM_VPUDIV 0x00c
56 #define CM_SYSCTL 0x010
57 #define CM_SYSDIV 0x014
58 #define CM_PERIACTL 0x018
59 #define CM_PERIADIV 0x01c
60 #define CM_PERIICTL 0x020
61 #define CM_PERIIDIV 0x024
62 #define CM_H264CTL 0x028
63 #define CM_H264DIV 0x02c
64 #define CM_ISPCTL 0x030
65 #define CM_ISPDIV 0x034
66 #define CM_V3DCTL 0x038
67 #define CM_V3DDIV 0x03c
68 #define CM_CAM0CTL 0x040
69 #define CM_CAM0DIV 0x044
70 #define CM_CAM1CTL 0x048
71 #define CM_CAM1DIV 0x04c
72 #define CM_CCP2CTL 0x050
73 #define CM_CCP2DIV 0x054
74 #define CM_DSI0ECTL 0x058
75 #define CM_DSI0EDIV 0x05c
76 #define CM_DSI0PCTL 0x060
77 #define CM_DSI0PDIV 0x064
78 #define CM_DPICTL 0x068
79 #define CM_DPIDIV 0x06c
80 #define CM_GP0CTL 0x070
81 #define CM_GP0DIV 0x074
82 #define CM_GP1CTL 0x078
83 #define CM_GP1DIV 0x07c
84 #define CM_GP2CTL 0x080
85 #define CM_GP2DIV 0x084
86 #define CM_HSMCTL 0x088
87 #define CM_HSMDIV 0x08c
88 #define CM_OTPCTL 0x090
89 #define CM_OTPDIV 0x094
90 #define CM_PCMCTL 0x098
91 #define CM_PCMDIV 0x09c
92 #define CM_PWMCTL 0x0a0
93 #define CM_PWMDIV 0x0a4
94 #define CM_SLIMCTL 0x0a8
95 #define CM_SLIMDIV 0x0ac
96 #define CM_SMICTL 0x0b0
97 #define CM_SMIDIV 0x0b4
98 /* no definition for 0x0b8 and 0x0bc */
99 #define CM_TCNTCTL 0x0c0
100 #define CM_TCNTDIV 0x0c4
101 #define CM_TECCTL 0x0c8
102 #define CM_TECDIV 0x0cc
103 #define CM_TD0CTL 0x0d0
104 #define CM_TD0DIV 0x0d4
105 #define CM_TD1CTL 0x0d8
106 #define CM_TD1DIV 0x0dc
107 #define CM_TSENSCTL 0x0e0
108 #define CM_TSENSDIV 0x0e4
109 #define CM_TIMERCTL 0x0e8
110 #define CM_TIMERDIV 0x0ec
111 #define CM_UARTCTL 0x0f0
112 #define CM_UARTDIV 0x0f4
113 #define CM_VECCTL 0x0f8
114 #define CM_VECDIV 0x0fc
115 #define CM_PULSECTL 0x190
116 #define CM_PULSEDIV 0x194
117 #define CM_SDCCTL 0x1a8
118 #define CM_SDCDIV 0x1ac
119 #define CM_ARMCTL 0x1b0
120 #define CM_EMMCCTL 0x1c0
121 #define CM_EMMCDIV 0x1c4
123 /* General bits for the CM_*CTL regs */
124 # define CM_ENABLE BIT(4)
125 # define CM_KILL BIT(5)
126 # define CM_GATE_BIT 6
127 # define CM_GATE BIT(CM_GATE_BIT)
128 # define CM_BUSY BIT(7)
129 # define CM_BUSYD BIT(8)
130 # define CM_FRAC BIT(9)
131 # define CM_SRC_SHIFT 0
132 # define CM_SRC_BITS 4
133 # define CM_SRC_MASK 0xf
134 # define CM_SRC_GND 0
135 # define CM_SRC_OSC 1
136 # define CM_SRC_TESTDEBUG0 2
137 # define CM_SRC_TESTDEBUG1 3
138 # define CM_SRC_PLLA_CORE 4
139 # define CM_SRC_PLLA_PER 4
140 # define CM_SRC_PLLC_CORE0 5
141 # define CM_SRC_PLLC_PER 5
142 # define CM_SRC_PLLC_CORE1 8
143 # define CM_SRC_PLLD_CORE 6
144 # define CM_SRC_PLLD_PER 6
145 # define CM_SRC_PLLH_AUX 7
146 # define CM_SRC_PLLC_CORE1 8
147 # define CM_SRC_PLLC_CORE2 9
149 #define CM_OSCCOUNT 0x100
151 #define CM_PLLA 0x104
152 # define CM_PLL_ANARST BIT(8)
153 # define CM_PLLA_HOLDPER BIT(7)
154 # define CM_PLLA_LOADPER BIT(6)
155 # define CM_PLLA_HOLDCORE BIT(5)
156 # define CM_PLLA_LOADCORE BIT(4)
157 # define CM_PLLA_HOLDCCP2 BIT(3)
158 # define CM_PLLA_LOADCCP2 BIT(2)
159 # define CM_PLLA_HOLDDSI0 BIT(1)
160 # define CM_PLLA_LOADDSI0 BIT(0)
162 #define CM_PLLC 0x108
163 # define CM_PLLC_HOLDPER BIT(7)
164 # define CM_PLLC_LOADPER BIT(6)
165 # define CM_PLLC_HOLDCORE2 BIT(5)
166 # define CM_PLLC_LOADCORE2 BIT(4)
167 # define CM_PLLC_HOLDCORE1 BIT(3)
168 # define CM_PLLC_LOADCORE1 BIT(2)
169 # define CM_PLLC_HOLDCORE0 BIT(1)
170 # define CM_PLLC_LOADCORE0 BIT(0)
172 #define CM_PLLD 0x10c
173 # define CM_PLLD_HOLDPER BIT(7)
174 # define CM_PLLD_LOADPER BIT(6)
175 # define CM_PLLD_HOLDCORE BIT(5)
176 # define CM_PLLD_LOADCORE BIT(4)
177 # define CM_PLLD_HOLDDSI1 BIT(3)
178 # define CM_PLLD_LOADDSI1 BIT(2)
179 # define CM_PLLD_HOLDDSI0 BIT(1)
180 # define CM_PLLD_LOADDSI0 BIT(0)
182 #define CM_PLLH 0x110
183 # define CM_PLLH_LOADRCAL BIT(2)
184 # define CM_PLLH_LOADAUX BIT(1)
185 # define CM_PLLH_LOADPIX BIT(0)
187 #define CM_LOCK 0x114
188 # define CM_LOCK_FLOCKH BIT(12)
189 # define CM_LOCK_FLOCKD BIT(11)
190 # define CM_LOCK_FLOCKC BIT(10)
191 # define CM_LOCK_FLOCKB BIT(9)
192 # define CM_LOCK_FLOCKA BIT(8)
194 #define CM_EVENT 0x118
195 #define CM_DSI1ECTL 0x158
196 #define CM_DSI1EDIV 0x15c
197 #define CM_DSI1PCTL 0x160
198 #define CM_DSI1PDIV 0x164
199 #define CM_DFTCTL 0x168
200 #define CM_DFTDIV 0x16c
202 #define CM_PLLB 0x170
203 # define CM_PLLB_HOLDARM BIT(1)
204 # define CM_PLLB_LOADARM BIT(0)
206 #define A2W_PLLA_CTRL 0x1100
207 #define A2W_PLLC_CTRL 0x1120
208 #define A2W_PLLD_CTRL 0x1140
209 #define A2W_PLLH_CTRL 0x1160
210 #define A2W_PLLB_CTRL 0x11e0
211 # define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
212 # define A2W_PLL_CTRL_PWRDN BIT(16)
213 # define A2W_PLL_CTRL_PDIV_MASK 0x000007000
214 # define A2W_PLL_CTRL_PDIV_SHIFT 12
215 # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
216 # define A2W_PLL_CTRL_NDIV_SHIFT 0
218 #define A2W_PLLA_ANA0 0x1010
219 #define A2W_PLLC_ANA0 0x1030
220 #define A2W_PLLD_ANA0 0x1050
221 #define A2W_PLLH_ANA0 0x1070
222 #define A2W_PLLB_ANA0 0x10f0
224 #define A2W_PLL_KA_SHIFT 7
225 #define A2W_PLL_KA_MASK GENMASK(9, 7)
226 #define A2W_PLL_KI_SHIFT 19
227 #define A2W_PLL_KI_MASK GENMASK(21, 19)
228 #define A2W_PLL_KP_SHIFT 15
229 #define A2W_PLL_KP_MASK GENMASK(18, 15)
231 #define A2W_PLLH_KA_SHIFT 19
232 #define A2W_PLLH_KA_MASK GENMASK(21, 19)
233 #define A2W_PLLH_KI_LOW_SHIFT 22
234 #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
235 #define A2W_PLLH_KI_HIGH_SHIFT 0
236 #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
237 #define A2W_PLLH_KP_SHIFT 1
238 #define A2W_PLLH_KP_MASK GENMASK(4, 1)
240 #define A2W_XOSC_CTRL 0x1190
241 # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
242 # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
243 # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
244 # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
245 # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
246 # define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
247 # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
248 # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
250 #define A2W_PLLA_FRAC 0x1200
251 #define A2W_PLLC_FRAC 0x1220
252 #define A2W_PLLD_FRAC 0x1240
253 #define A2W_PLLH_FRAC 0x1260
254 #define A2W_PLLB_FRAC 0x12e0
255 # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
256 # define A2W_PLL_FRAC_BITS 20
258 #define A2W_PLL_CHANNEL_DISABLE BIT(8)
259 #define A2W_PLL_DIV_BITS 8
260 #define A2W_PLL_DIV_SHIFT 0
262 #define A2W_PLLA_DSI0 0x1300
263 #define A2W_PLLA_CORE 0x1400
264 #define A2W_PLLA_PER 0x1500
265 #define A2W_PLLA_CCP2 0x1600
267 #define A2W_PLLC_CORE2 0x1320
268 #define A2W_PLLC_CORE1 0x1420
269 #define A2W_PLLC_PER 0x1520
270 #define A2W_PLLC_CORE0 0x1620
272 #define A2W_PLLD_DSI0 0x1340
273 #define A2W_PLLD_CORE 0x1440
274 #define A2W_PLLD_PER 0x1540
275 #define A2W_PLLD_DSI1 0x1640
277 #define A2W_PLLH_AUX 0x1360
278 #define A2W_PLLH_RCAL 0x1460
279 #define A2W_PLLH_PIX 0x1560
280 #define A2W_PLLH_STS 0x1660
282 #define A2W_PLLH_CTRLR 0x1960
283 #define A2W_PLLH_FRACR 0x1a60
284 #define A2W_PLLH_AUXR 0x1b60
285 #define A2W_PLLH_RCALR 0x1c60
286 #define A2W_PLLH_PIXR 0x1d60
287 #define A2W_PLLH_STSR 0x1e60
289 #define A2W_PLLB_ARM 0x13e0
290 #define A2W_PLLB_SP0 0x14e0
291 #define A2W_PLLB_SP1 0x15e0
292 #define A2W_PLLB_SP2 0x16e0
294 #define LOCK_TIMEOUT_NS 100000000
295 #define BCM2835_MAX_FB_RATE 1750000000u
297 struct bcm2835_cprman {
298 struct device *dev;
299 void __iomem *regs;
300 spinlock_t regs_lock; /* spinlock for all clocks */
301 const char *osc_name;
303 struct clk_onecell_data onecell;
304 struct clk *clks[];
307 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
309 writel(CM_PASSWORD | val, cprman->regs + reg);
312 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
314 return readl(cprman->regs + reg);
317 static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
318 struct debugfs_reg32 *regs, size_t nregs,
319 struct dentry *dentry)
321 struct dentry *regdump;
322 struct debugfs_regset32 *regset;
324 regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
325 if (!regset)
326 return -ENOMEM;
328 regset->regs = regs;
329 regset->nregs = nregs;
330 regset->base = cprman->regs + base;
332 regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
333 regset);
335 return regdump ? 0 : -ENOMEM;
339 * These are fixed clocks. They're probably not all root clocks and it may
340 * be possible to turn them on and off but until this is mapped out better
341 * it's the only way they can be used.
343 void __init bcm2835_init_clocks(void)
345 struct clk *clk;
346 int ret;
348 clk = clk_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
349 if (IS_ERR(clk))
350 pr_err("apb_pclk not registered\n");
352 clk = clk_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
353 if (IS_ERR(clk))
354 pr_err("uart0_pclk not registered\n");
355 ret = clk_register_clkdev(clk, NULL, "20201000.uart");
356 if (ret)
357 pr_err("uart0_pclk alias not registered\n");
359 clk = clk_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
360 if (IS_ERR(clk))
361 pr_err("uart1_pclk not registered\n");
362 ret = clk_register_clkdev(clk, NULL, "20215000.uart");
363 if (ret)
364 pr_err("uart1_pclk alias not registered\n");
367 struct bcm2835_pll_data {
368 const char *name;
369 u32 cm_ctrl_reg;
370 u32 a2w_ctrl_reg;
371 u32 frac_reg;
372 u32 ana_reg_base;
373 u32 reference_enable_mask;
374 /* Bit in CM_LOCK to indicate when the PLL has locked. */
375 u32 lock_mask;
377 const struct bcm2835_pll_ana_bits *ana;
379 unsigned long min_rate;
380 unsigned long max_rate;
382 * Highest rate for the VCO before we have to use the
383 * pre-divide-by-2.
385 unsigned long max_fb_rate;
388 struct bcm2835_pll_ana_bits {
389 u32 mask0;
390 u32 set0;
391 u32 mask1;
392 u32 set1;
393 u32 mask3;
394 u32 set3;
395 u32 fb_prediv_mask;
398 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
399 .mask0 = 0,
400 .set0 = 0,
401 .mask1 = ~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
402 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
403 .mask3 = ~A2W_PLL_KA_MASK,
404 .set3 = (2 << A2W_PLL_KA_SHIFT),
405 .fb_prediv_mask = BIT(14),
408 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
409 .mask0 = ~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
410 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
411 .mask1 = ~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
412 .set1 = (6 << A2W_PLLH_KP_SHIFT),
413 .mask3 = 0,
414 .set3 = 0,
415 .fb_prediv_mask = BIT(11),
419 * PLLA is the auxiliary PLL, used to drive the CCP2 (Compact Camera
420 * Port 2) transmitter clock.
422 * It is in the PX LDO power domain, which is on when the AUDIO domain
423 * is on.
425 static const struct bcm2835_pll_data bcm2835_plla_data = {
426 .name = "plla",
427 .cm_ctrl_reg = CM_PLLA,
428 .a2w_ctrl_reg = A2W_PLLA_CTRL,
429 .frac_reg = A2W_PLLA_FRAC,
430 .ana_reg_base = A2W_PLLA_ANA0,
431 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
432 .lock_mask = CM_LOCK_FLOCKA,
434 .ana = &bcm2835_ana_default,
436 .min_rate = 600000000u,
437 .max_rate = 2400000000u,
438 .max_fb_rate = BCM2835_MAX_FB_RATE,
441 /* PLLB is used for the ARM's clock. */
442 static const struct bcm2835_pll_data bcm2835_pllb_data = {
443 .name = "pllb",
444 .cm_ctrl_reg = CM_PLLB,
445 .a2w_ctrl_reg = A2W_PLLB_CTRL,
446 .frac_reg = A2W_PLLB_FRAC,
447 .ana_reg_base = A2W_PLLB_ANA0,
448 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
449 .lock_mask = CM_LOCK_FLOCKB,
451 .ana = &bcm2835_ana_default,
453 .min_rate = 600000000u,
454 .max_rate = 3000000000u,
455 .max_fb_rate = BCM2835_MAX_FB_RATE,
459 * PLLC is the core PLL, used to drive the core VPU clock.
461 * It is in the PX LDO power domain, which is on when the AUDIO domain
462 * is on.
464 static const struct bcm2835_pll_data bcm2835_pllc_data = {
465 .name = "pllc",
466 .cm_ctrl_reg = CM_PLLC,
467 .a2w_ctrl_reg = A2W_PLLC_CTRL,
468 .frac_reg = A2W_PLLC_FRAC,
469 .ana_reg_base = A2W_PLLC_ANA0,
470 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
471 .lock_mask = CM_LOCK_FLOCKC,
473 .ana = &bcm2835_ana_default,
475 .min_rate = 600000000u,
476 .max_rate = 3000000000u,
477 .max_fb_rate = BCM2835_MAX_FB_RATE,
481 * PLLD is the display PLL, used to drive DSI display panels.
483 * It is in the PX LDO power domain, which is on when the AUDIO domain
484 * is on.
486 static const struct bcm2835_pll_data bcm2835_plld_data = {
487 .name = "plld",
488 .cm_ctrl_reg = CM_PLLD,
489 .a2w_ctrl_reg = A2W_PLLD_CTRL,
490 .frac_reg = A2W_PLLD_FRAC,
491 .ana_reg_base = A2W_PLLD_ANA0,
492 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
493 .lock_mask = CM_LOCK_FLOCKD,
495 .ana = &bcm2835_ana_default,
497 .min_rate = 600000000u,
498 .max_rate = 2400000000u,
499 .max_fb_rate = BCM2835_MAX_FB_RATE,
503 * PLLH is used to supply the pixel clock or the AUX clock for the TV
504 * encoder.
506 * It is in the HDMI power domain.
508 static const struct bcm2835_pll_data bcm2835_pllh_data = {
509 "pllh",
510 .cm_ctrl_reg = CM_PLLH,
511 .a2w_ctrl_reg = A2W_PLLH_CTRL,
512 .frac_reg = A2W_PLLH_FRAC,
513 .ana_reg_base = A2W_PLLH_ANA0,
514 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
515 .lock_mask = CM_LOCK_FLOCKH,
517 .ana = &bcm2835_ana_pllh,
519 .min_rate = 600000000u,
520 .max_rate = 3000000000u,
521 .max_fb_rate = BCM2835_MAX_FB_RATE,
524 struct bcm2835_pll_divider_data {
525 const char *name;
526 const struct bcm2835_pll_data *source_pll;
527 u32 cm_reg;
528 u32 a2w_reg;
530 u32 load_mask;
531 u32 hold_mask;
532 u32 fixed_divider;
535 static const struct bcm2835_pll_divider_data bcm2835_plla_core_data = {
536 .name = "plla_core",
537 .source_pll = &bcm2835_plla_data,
538 .cm_reg = CM_PLLA,
539 .a2w_reg = A2W_PLLA_CORE,
540 .load_mask = CM_PLLA_LOADCORE,
541 .hold_mask = CM_PLLA_HOLDCORE,
542 .fixed_divider = 1,
545 static const struct bcm2835_pll_divider_data bcm2835_plla_per_data = {
546 .name = "plla_per",
547 .source_pll = &bcm2835_plla_data,
548 .cm_reg = CM_PLLA,
549 .a2w_reg = A2W_PLLA_PER,
550 .load_mask = CM_PLLA_LOADPER,
551 .hold_mask = CM_PLLA_HOLDPER,
552 .fixed_divider = 1,
555 static const struct bcm2835_pll_divider_data bcm2835_pllb_arm_data = {
556 .name = "pllb_arm",
557 .source_pll = &bcm2835_pllb_data,
558 .cm_reg = CM_PLLB,
559 .a2w_reg = A2W_PLLB_ARM,
560 .load_mask = CM_PLLB_LOADARM,
561 .hold_mask = CM_PLLB_HOLDARM,
562 .fixed_divider = 1,
565 static const struct bcm2835_pll_divider_data bcm2835_pllc_core0_data = {
566 .name = "pllc_core0",
567 .source_pll = &bcm2835_pllc_data,
568 .cm_reg = CM_PLLC,
569 .a2w_reg = A2W_PLLC_CORE0,
570 .load_mask = CM_PLLC_LOADCORE0,
571 .hold_mask = CM_PLLC_HOLDCORE0,
572 .fixed_divider = 1,
575 static const struct bcm2835_pll_divider_data bcm2835_pllc_core1_data = {
576 .name = "pllc_core1", .source_pll = &bcm2835_pllc_data,
577 .cm_reg = CM_PLLC, A2W_PLLC_CORE1,
578 .load_mask = CM_PLLC_LOADCORE1,
579 .hold_mask = CM_PLLC_HOLDCORE1,
580 .fixed_divider = 1,
583 static const struct bcm2835_pll_divider_data bcm2835_pllc_core2_data = {
584 .name = "pllc_core2",
585 .source_pll = &bcm2835_pllc_data,
586 .cm_reg = CM_PLLC,
587 .a2w_reg = A2W_PLLC_CORE2,
588 .load_mask = CM_PLLC_LOADCORE2,
589 .hold_mask = CM_PLLC_HOLDCORE2,
590 .fixed_divider = 1,
593 static const struct bcm2835_pll_divider_data bcm2835_pllc_per_data = {
594 .name = "pllc_per",
595 .source_pll = &bcm2835_pllc_data,
596 .cm_reg = CM_PLLC,
597 .a2w_reg = A2W_PLLC_PER,
598 .load_mask = CM_PLLC_LOADPER,
599 .hold_mask = CM_PLLC_HOLDPER,
600 .fixed_divider = 1,
603 static const struct bcm2835_pll_divider_data bcm2835_plld_core_data = {
604 .name = "plld_core",
605 .source_pll = &bcm2835_plld_data,
606 .cm_reg = CM_PLLD,
607 .a2w_reg = A2W_PLLD_CORE,
608 .load_mask = CM_PLLD_LOADCORE,
609 .hold_mask = CM_PLLD_HOLDCORE,
610 .fixed_divider = 1,
613 static const struct bcm2835_pll_divider_data bcm2835_plld_per_data = {
614 .name = "plld_per",
615 .source_pll = &bcm2835_plld_data,
616 .cm_reg = CM_PLLD,
617 .a2w_reg = A2W_PLLD_PER,
618 .load_mask = CM_PLLD_LOADPER,
619 .hold_mask = CM_PLLD_HOLDPER,
620 .fixed_divider = 1,
623 static const struct bcm2835_pll_divider_data bcm2835_pllh_rcal_data = {
624 .name = "pllh_rcal",
625 .source_pll = &bcm2835_pllh_data,
626 .cm_reg = CM_PLLH,
627 .a2w_reg = A2W_PLLH_RCAL,
628 .load_mask = CM_PLLH_LOADRCAL,
629 .hold_mask = 0,
630 .fixed_divider = 10,
633 static const struct bcm2835_pll_divider_data bcm2835_pllh_aux_data = {
634 .name = "pllh_aux",
635 .source_pll = &bcm2835_pllh_data,
636 .cm_reg = CM_PLLH,
637 .a2w_reg = A2W_PLLH_AUX,
638 .load_mask = CM_PLLH_LOADAUX,
639 .hold_mask = 0,
640 .fixed_divider = 10,
643 static const struct bcm2835_pll_divider_data bcm2835_pllh_pix_data = {
644 .name = "pllh_pix",
645 .source_pll = &bcm2835_pllh_data,
646 .cm_reg = CM_PLLH,
647 .a2w_reg = A2W_PLLH_PIX,
648 .load_mask = CM_PLLH_LOADPIX,
649 .hold_mask = 0,
650 .fixed_divider = 10,
653 struct bcm2835_clock_data {
654 const char *name;
656 const char *const *parents;
657 int num_mux_parents;
659 u32 ctl_reg;
660 u32 div_reg;
662 /* Number of integer bits in the divider */
663 u32 int_bits;
664 /* Number of fractional bits in the divider */
665 u32 frac_bits;
667 bool is_vpu_clock;
668 bool is_mash_clock;
671 static const char *const bcm2835_clock_per_parents[] = {
672 "gnd",
673 "xosc",
674 "testdebug0",
675 "testdebug1",
676 "plla_per",
677 "pllc_per",
678 "plld_per",
679 "pllh_aux",
682 static const char *const bcm2835_clock_vpu_parents[] = {
683 "gnd",
684 "xosc",
685 "testdebug0",
686 "testdebug1",
687 "plla_core",
688 "pllc_core0",
689 "plld_core",
690 "pllh_aux",
691 "pllc_core1",
692 "pllc_core2",
695 static const char *const bcm2835_clock_osc_parents[] = {
696 "gnd",
697 "xosc",
698 "testdebug0",
699 "testdebug1"
703 * Used for a 1Mhz clock for the system clocksource, and also used by
704 * the watchdog timer and the camera pulse generator.
706 static const struct bcm2835_clock_data bcm2835_clock_timer_data = {
707 .name = "timer",
708 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
709 .parents = bcm2835_clock_osc_parents,
710 .ctl_reg = CM_TIMERCTL,
711 .div_reg = CM_TIMERDIV,
712 .int_bits = 6,
713 .frac_bits = 12,
716 /* One Time Programmable Memory clock. Maximum 10Mhz. */
717 static const struct bcm2835_clock_data bcm2835_clock_otp_data = {
718 .name = "otp",
719 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
720 .parents = bcm2835_clock_osc_parents,
721 .ctl_reg = CM_OTPCTL,
722 .div_reg = CM_OTPDIV,
723 .int_bits = 4,
724 .frac_bits = 0,
728 * VPU clock. This doesn't have an enable bit, since it drives the
729 * bus for everything else, and is special so it doesn't need to be
730 * gated for rate changes. It is also known as "clk_audio" in various
731 * hardware documentation.
733 static const struct bcm2835_clock_data bcm2835_clock_vpu_data = {
734 .name = "vpu",
735 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
736 .parents = bcm2835_clock_vpu_parents,
737 .ctl_reg = CM_VPUCTL,
738 .div_reg = CM_VPUDIV,
739 .int_bits = 12,
740 .frac_bits = 8,
741 .is_vpu_clock = true,
744 static const struct bcm2835_clock_data bcm2835_clock_v3d_data = {
745 .name = "v3d",
746 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
747 .parents = bcm2835_clock_vpu_parents,
748 .ctl_reg = CM_V3DCTL,
749 .div_reg = CM_V3DDIV,
750 .int_bits = 4,
751 .frac_bits = 8,
754 static const struct bcm2835_clock_data bcm2835_clock_isp_data = {
755 .name = "isp",
756 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
757 .parents = bcm2835_clock_vpu_parents,
758 .ctl_reg = CM_ISPCTL,
759 .div_reg = CM_ISPDIV,
760 .int_bits = 4,
761 .frac_bits = 8,
764 static const struct bcm2835_clock_data bcm2835_clock_h264_data = {
765 .name = "h264",
766 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
767 .parents = bcm2835_clock_vpu_parents,
768 .ctl_reg = CM_H264CTL,
769 .div_reg = CM_H264DIV,
770 .int_bits = 4,
771 .frac_bits = 8,
774 /* TV encoder clock. Only operating frequency is 108Mhz. */
775 static const struct bcm2835_clock_data bcm2835_clock_vec_data = {
776 .name = "vec",
777 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
778 .parents = bcm2835_clock_per_parents,
779 .ctl_reg = CM_VECCTL,
780 .div_reg = CM_VECDIV,
781 .int_bits = 4,
782 .frac_bits = 0,
785 static const struct bcm2835_clock_data bcm2835_clock_uart_data = {
786 .name = "uart",
787 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
788 .parents = bcm2835_clock_per_parents,
789 .ctl_reg = CM_UARTCTL,
790 .div_reg = CM_UARTDIV,
791 .int_bits = 10,
792 .frac_bits = 12,
795 /* HDMI state machine */
796 static const struct bcm2835_clock_data bcm2835_clock_hsm_data = {
797 .name = "hsm",
798 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
799 .parents = bcm2835_clock_per_parents,
800 .ctl_reg = CM_HSMCTL,
801 .div_reg = CM_HSMDIV,
802 .int_bits = 4,
803 .frac_bits = 8,
807 * Secondary SDRAM clock. Used for low-voltage modes when the PLL in
808 * the SDRAM controller can't be used.
810 static const struct bcm2835_clock_data bcm2835_clock_sdram_data = {
811 .name = "sdram",
812 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
813 .parents = bcm2835_clock_vpu_parents,
814 .ctl_reg = CM_SDCCTL,
815 .div_reg = CM_SDCDIV,
816 .int_bits = 6,
817 .frac_bits = 0,
820 /* Clock for the temperature sensor. Generally run at 2Mhz, max 5Mhz. */
821 static const struct bcm2835_clock_data bcm2835_clock_tsens_data = {
822 .name = "tsens",
823 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
824 .parents = bcm2835_clock_osc_parents,
825 .ctl_reg = CM_TSENSCTL,
826 .div_reg = CM_TSENSDIV,
827 .int_bits = 5,
828 .frac_bits = 0,
831 /* Arasan EMMC clock */
832 static const struct bcm2835_clock_data bcm2835_clock_emmc_data = {
833 .name = "emmc",
834 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
835 .parents = bcm2835_clock_per_parents,
836 .ctl_reg = CM_EMMCCTL,
837 .div_reg = CM_EMMCDIV,
838 .int_bits = 4,
839 .frac_bits = 8,
842 static const struct bcm2835_clock_data bcm2835_clock_pwm_data = {
843 .name = "pwm",
844 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
845 .parents = bcm2835_clock_per_parents,
846 .ctl_reg = CM_PWMCTL,
847 .div_reg = CM_PWMDIV,
848 .int_bits = 12,
849 .frac_bits = 12,
850 .is_mash_clock = true,
853 struct bcm2835_gate_data {
854 const char *name;
855 const char *parent;
857 u32 ctl_reg;
861 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
862 * you have the debug bit set in the power manager, which we
863 * don't bother exposing) are individual gates off of the
864 * non-stop vpu clock.
866 static const struct bcm2835_gate_data bcm2835_clock_peri_image_data = {
867 .name = "peri_image",
868 .parent = "vpu",
869 .ctl_reg = CM_PERIICTL,
872 struct bcm2835_pll {
873 struct clk_hw hw;
874 struct bcm2835_cprman *cprman;
875 const struct bcm2835_pll_data *data;
878 static int bcm2835_pll_is_on(struct clk_hw *hw)
880 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
881 struct bcm2835_cprman *cprman = pll->cprman;
882 const struct bcm2835_pll_data *data = pll->data;
884 return cprman_read(cprman, data->a2w_ctrl_reg) &
885 A2W_PLL_CTRL_PRST_DISABLE;
888 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
889 unsigned long parent_rate,
890 u32 *ndiv, u32 *fdiv)
892 u64 div;
894 div = (u64)rate << A2W_PLL_FRAC_BITS;
895 do_div(div, parent_rate);
897 *ndiv = div >> A2W_PLL_FRAC_BITS;
898 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
901 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
902 u32 ndiv, u32 fdiv, u32 pdiv)
904 u64 rate;
906 if (pdiv == 0)
907 return 0;
909 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
910 do_div(rate, pdiv);
911 return rate >> A2W_PLL_FRAC_BITS;
914 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
915 unsigned long *parent_rate)
917 u32 ndiv, fdiv;
919 bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
921 return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
924 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
925 unsigned long parent_rate)
927 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
928 struct bcm2835_cprman *cprman = pll->cprman;
929 const struct bcm2835_pll_data *data = pll->data;
930 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
931 u32 ndiv, pdiv, fdiv;
932 bool using_prediv;
934 if (parent_rate == 0)
935 return 0;
937 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
938 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
939 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
940 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
941 data->ana->fb_prediv_mask;
943 if (using_prediv)
944 ndiv *= 2;
946 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
949 static void bcm2835_pll_off(struct clk_hw *hw)
951 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
952 struct bcm2835_cprman *cprman = pll->cprman;
953 const struct bcm2835_pll_data *data = pll->data;
955 spin_lock(&cprman->regs_lock);
956 cprman_write(cprman, data->cm_ctrl_reg,
957 cprman_read(cprman, data->cm_ctrl_reg) |
958 CM_PLL_ANARST);
959 cprman_write(cprman, data->a2w_ctrl_reg,
960 cprman_read(cprman, data->a2w_ctrl_reg) |
961 A2W_PLL_CTRL_PWRDN);
962 spin_unlock(&cprman->regs_lock);
965 static int bcm2835_pll_on(struct clk_hw *hw)
967 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
968 struct bcm2835_cprman *cprman = pll->cprman;
969 const struct bcm2835_pll_data *data = pll->data;
970 ktime_t timeout;
972 /* Take the PLL out of reset. */
973 cprman_write(cprman, data->cm_ctrl_reg,
974 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
976 /* Wait for the PLL to lock. */
977 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
978 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
979 if (ktime_after(ktime_get(), timeout)) {
980 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
981 clk_hw_get_name(hw));
982 return -ETIMEDOUT;
985 cpu_relax();
988 return 0;
991 static void
992 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
994 int i;
997 * ANA register setup is done as a series of writes to
998 * ANA3-ANA0, in that order. This lets us write all 4
999 * registers as a single cycle of the serdes interface (taking
1000 * 100 xosc clocks), whereas if we were to update ana0, 1, and
1001 * 3 individually through their partial-write registers, each
1002 * would be their own serdes cycle.
1004 for (i = 3; i >= 0; i--)
1005 cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
1008 static int bcm2835_pll_set_rate(struct clk_hw *hw,
1009 unsigned long rate, unsigned long parent_rate)
1011 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
1012 struct bcm2835_cprman *cprman = pll->cprman;
1013 const struct bcm2835_pll_data *data = pll->data;
1014 bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
1015 u32 ndiv, fdiv, a2w_ctl;
1016 u32 ana[4];
1017 int i;
1019 if (rate < data->min_rate || rate > data->max_rate) {
1020 dev_err(cprman->dev, "%s: rate out of spec: %lu vs (%lu, %lu)\n",
1021 clk_hw_get_name(hw), rate,
1022 data->min_rate, data->max_rate);
1023 return -EINVAL;
1026 if (rate > data->max_fb_rate) {
1027 use_fb_prediv = true;
1028 rate /= 2;
1029 } else {
1030 use_fb_prediv = false;
1033 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
1035 for (i = 3; i >= 0; i--)
1036 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
1038 was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
1040 ana[0] &= ~data->ana->mask0;
1041 ana[0] |= data->ana->set0;
1042 ana[1] &= ~data->ana->mask1;
1043 ana[1] |= data->ana->set1;
1044 ana[3] &= ~data->ana->mask3;
1045 ana[3] |= data->ana->set3;
1047 if (was_using_prediv && !use_fb_prediv) {
1048 ana[1] &= ~data->ana->fb_prediv_mask;
1049 do_ana_setup_first = true;
1050 } else if (!was_using_prediv && use_fb_prediv) {
1051 ana[1] |= data->ana->fb_prediv_mask;
1052 do_ana_setup_first = false;
1053 } else {
1054 do_ana_setup_first = true;
1057 /* Unmask the reference clock from the oscillator. */
1058 cprman_write(cprman, A2W_XOSC_CTRL,
1059 cprman_read(cprman, A2W_XOSC_CTRL) |
1060 data->reference_enable_mask);
1062 if (do_ana_setup_first)
1063 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
1065 /* Set the PLL multiplier from the oscillator. */
1066 cprman_write(cprman, data->frac_reg, fdiv);
1068 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
1069 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
1070 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
1071 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
1072 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
1073 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
1075 if (!do_ana_setup_first)
1076 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
1078 return 0;
1081 static int bcm2835_pll_debug_init(struct clk_hw *hw,
1082 struct dentry *dentry)
1084 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
1085 struct bcm2835_cprman *cprman = pll->cprman;
1086 const struct bcm2835_pll_data *data = pll->data;
1087 struct debugfs_reg32 *regs;
1089 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
1090 if (!regs)
1091 return -ENOMEM;
1093 regs[0].name = "cm_ctrl";
1094 regs[0].offset = data->cm_ctrl_reg;
1095 regs[1].name = "a2w_ctrl";
1096 regs[1].offset = data->a2w_ctrl_reg;
1097 regs[2].name = "frac";
1098 regs[2].offset = data->frac_reg;
1099 regs[3].name = "ana0";
1100 regs[3].offset = data->ana_reg_base + 0 * 4;
1101 regs[4].name = "ana1";
1102 regs[4].offset = data->ana_reg_base + 1 * 4;
1103 regs[5].name = "ana2";
1104 regs[5].offset = data->ana_reg_base + 2 * 4;
1105 regs[6].name = "ana3";
1106 regs[6].offset = data->ana_reg_base + 3 * 4;
1108 return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
1111 static const struct clk_ops bcm2835_pll_clk_ops = {
1112 .is_prepared = bcm2835_pll_is_on,
1113 .prepare = bcm2835_pll_on,
1114 .unprepare = bcm2835_pll_off,
1115 .recalc_rate = bcm2835_pll_get_rate,
1116 .set_rate = bcm2835_pll_set_rate,
1117 .round_rate = bcm2835_pll_round_rate,
1118 .debug_init = bcm2835_pll_debug_init,
1121 struct bcm2835_pll_divider {
1122 struct clk_divider div;
1123 struct bcm2835_cprman *cprman;
1124 const struct bcm2835_pll_divider_data *data;
1127 static struct bcm2835_pll_divider *
1128 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
1130 return container_of(hw, struct bcm2835_pll_divider, div.hw);
1133 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
1135 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
1136 struct bcm2835_cprman *cprman = divider->cprman;
1137 const struct bcm2835_pll_divider_data *data = divider->data;
1139 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
1142 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
1143 unsigned long rate,
1144 unsigned long *parent_rate)
1146 return clk_divider_ops.round_rate(hw, rate, parent_rate);
1149 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
1150 unsigned long parent_rate)
1152 return clk_divider_ops.recalc_rate(hw, parent_rate);
1155 static void bcm2835_pll_divider_off(struct clk_hw *hw)
1157 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
1158 struct bcm2835_cprman *cprman = divider->cprman;
1159 const struct bcm2835_pll_divider_data *data = divider->data;
1161 spin_lock(&cprman->regs_lock);
1162 cprman_write(cprman, data->cm_reg,
1163 (cprman_read(cprman, data->cm_reg) &
1164 ~data->load_mask) | data->hold_mask);
1165 cprman_write(cprman, data->a2w_reg, A2W_PLL_CHANNEL_DISABLE);
1166 spin_unlock(&cprman->regs_lock);
1169 static int bcm2835_pll_divider_on(struct clk_hw *hw)
1171 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
1172 struct bcm2835_cprman *cprman = divider->cprman;
1173 const struct bcm2835_pll_divider_data *data = divider->data;
1175 spin_lock(&cprman->regs_lock);
1176 cprman_write(cprman, data->a2w_reg,
1177 cprman_read(cprman, data->a2w_reg) &
1178 ~A2W_PLL_CHANNEL_DISABLE);
1180 cprman_write(cprman, data->cm_reg,
1181 cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
1182 spin_unlock(&cprman->regs_lock);
1184 return 0;
1187 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
1188 unsigned long rate,
1189 unsigned long parent_rate)
1191 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
1192 struct bcm2835_cprman *cprman = divider->cprman;
1193 const struct bcm2835_pll_divider_data *data = divider->data;
1194 u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
1196 div = DIV_ROUND_UP_ULL(parent_rate, rate);
1198 div = min(div, max_div);
1199 if (div == max_div)
1200 div = 0;
1202 cprman_write(cprman, data->a2w_reg, div);
1203 cm = cprman_read(cprman, data->cm_reg);
1204 cprman_write(cprman, data->cm_reg, cm | data->load_mask);
1205 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
1207 return 0;
1210 static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
1211 struct dentry *dentry)
1213 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
1214 struct bcm2835_cprman *cprman = divider->cprman;
1215 const struct bcm2835_pll_divider_data *data = divider->data;
1216 struct debugfs_reg32 *regs;
1218 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
1219 if (!regs)
1220 return -ENOMEM;
1222 regs[0].name = "cm";
1223 regs[0].offset = data->cm_reg;
1224 regs[1].name = "a2w";
1225 regs[1].offset = data->a2w_reg;
1227 return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
1230 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
1231 .is_prepared = bcm2835_pll_divider_is_on,
1232 .prepare = bcm2835_pll_divider_on,
1233 .unprepare = bcm2835_pll_divider_off,
1234 .recalc_rate = bcm2835_pll_divider_get_rate,
1235 .set_rate = bcm2835_pll_divider_set_rate,
1236 .round_rate = bcm2835_pll_divider_round_rate,
1237 .debug_init = bcm2835_pll_divider_debug_init,
1241 * The CM dividers do fixed-point division, so we can't use the
1242 * generic integer divider code like the PLL dividers do (and we can't
1243 * fake it by having some fixed shifts preceding it in the clock tree,
1244 * because we'd run out of bits in a 32-bit unsigned long).
1246 struct bcm2835_clock {
1247 struct clk_hw hw;
1248 struct bcm2835_cprman *cprman;
1249 const struct bcm2835_clock_data *data;
1252 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
1254 return container_of(hw, struct bcm2835_clock, hw);
1257 static int bcm2835_clock_is_on(struct clk_hw *hw)
1259 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1260 struct bcm2835_cprman *cprman = clock->cprman;
1261 const struct bcm2835_clock_data *data = clock->data;
1263 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
1266 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
1267 unsigned long rate,
1268 unsigned long parent_rate,
1269 bool round_up)
1271 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1272 const struct bcm2835_clock_data *data = clock->data;
1273 u32 unused_frac_mask =
1274 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
1275 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
1276 u64 rem;
1277 u32 div, mindiv, maxdiv;
1279 rem = do_div(temp, rate);
1280 div = temp;
1282 /* Round up and mask off the unused bits */
1283 if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
1284 div += unused_frac_mask + 1;
1285 div &= ~unused_frac_mask;
1287 /* different clamping limits apply for a mash clock */
1288 if (data->is_mash_clock) {
1289 /* clamp to min divider of 2 */
1290 mindiv = 2 << CM_DIV_FRAC_BITS;
1291 /* clamp to the highest possible integer divider */
1292 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
1293 } else {
1294 /* clamp to min divider of 1 */
1295 mindiv = 1 << CM_DIV_FRAC_BITS;
1296 /* clamp to the highest possible fractional divider */
1297 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
1298 CM_DIV_FRAC_BITS - data->frac_bits);
1301 /* apply the clamping limits */
1302 div = max_t(u32, div, mindiv);
1303 div = min_t(u32, div, maxdiv);
1305 return div;
1308 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
1309 unsigned long parent_rate,
1310 u32 div)
1312 const struct bcm2835_clock_data *data = clock->data;
1313 u64 temp;
1316 * The divisor is a 12.12 fixed point field, but only some of
1317 * the bits are populated in any given clock.
1319 div >>= CM_DIV_FRAC_BITS - data->frac_bits;
1320 div &= (1 << (data->int_bits + data->frac_bits)) - 1;
1322 if (div == 0)
1323 return 0;
1325 temp = (u64)parent_rate << data->frac_bits;
1327 do_div(temp, div);
1329 return temp;
1332 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
1333 unsigned long parent_rate)
1335 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1336 struct bcm2835_cprman *cprman = clock->cprman;
1337 const struct bcm2835_clock_data *data = clock->data;
1338 u32 div = cprman_read(cprman, data->div_reg);
1340 return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1343 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1345 struct bcm2835_cprman *cprman = clock->cprman;
1346 const struct bcm2835_clock_data *data = clock->data;
1347 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1349 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1350 if (ktime_after(ktime_get(), timeout)) {
1351 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1352 clk_hw_get_name(&clock->hw));
1353 return;
1355 cpu_relax();
1359 static void bcm2835_clock_off(struct clk_hw *hw)
1361 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1362 struct bcm2835_cprman *cprman = clock->cprman;
1363 const struct bcm2835_clock_data *data = clock->data;
1365 spin_lock(&cprman->regs_lock);
1366 cprman_write(cprman, data->ctl_reg,
1367 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1368 spin_unlock(&cprman->regs_lock);
1370 /* BUSY will remain high until the divider completes its cycle. */
1371 bcm2835_clock_wait_busy(clock);
1374 static int bcm2835_clock_on(struct clk_hw *hw)
1376 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1377 struct bcm2835_cprman *cprman = clock->cprman;
1378 const struct bcm2835_clock_data *data = clock->data;
1380 spin_lock(&cprman->regs_lock);
1381 cprman_write(cprman, data->ctl_reg,
1382 cprman_read(cprman, data->ctl_reg) |
1383 CM_ENABLE |
1384 CM_GATE);
1385 spin_unlock(&cprman->regs_lock);
1387 return 0;
1390 static int bcm2835_clock_set_rate(struct clk_hw *hw,
1391 unsigned long rate, unsigned long parent_rate)
1393 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1394 struct bcm2835_cprman *cprman = clock->cprman;
1395 const struct bcm2835_clock_data *data = clock->data;
1396 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1397 u32 ctl;
1399 spin_lock(&cprman->regs_lock);
1402 * Setting up frac support
1404 * In principle it is recommended to stop/start the clock first,
1405 * but as we set CLK_SET_RATE_GATE during registration of the
1406 * clock this requirement should be take care of by the
1407 * clk-framework.
1409 ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1410 ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1411 cprman_write(cprman, data->ctl_reg, ctl);
1413 cprman_write(cprman, data->div_reg, div);
1415 spin_unlock(&cprman->regs_lock);
1417 return 0;
1420 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1421 struct clk_rate_request *req)
1423 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1424 struct clk_hw *parent, *best_parent = NULL;
1425 unsigned long rate, best_rate = 0;
1426 unsigned long prate, best_prate = 0;
1427 size_t i;
1428 u32 div;
1431 * Select parent clock that results in the closest but lower rate
1433 for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1434 parent = clk_hw_get_parent_by_index(hw, i);
1435 if (!parent)
1436 continue;
1437 prate = clk_hw_get_rate(parent);
1438 div = bcm2835_clock_choose_div(hw, req->rate, prate, true);
1439 rate = bcm2835_clock_rate_from_divisor(clock, prate, div);
1440 if (rate > best_rate && rate <= req->rate) {
1441 best_parent = parent;
1442 best_prate = prate;
1443 best_rate = rate;
1447 if (!best_parent)
1448 return -EINVAL;
1450 req->best_parent_hw = best_parent;
1451 req->best_parent_rate = best_prate;
1453 req->rate = best_rate;
1455 return 0;
1458 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1460 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1461 struct bcm2835_cprman *cprman = clock->cprman;
1462 const struct bcm2835_clock_data *data = clock->data;
1463 u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1465 cprman_write(cprman, data->ctl_reg, src);
1466 return 0;
1469 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1471 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1472 struct bcm2835_cprman *cprman = clock->cprman;
1473 const struct bcm2835_clock_data *data = clock->data;
1474 u32 src = cprman_read(cprman, data->ctl_reg);
1476 return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1479 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1481 .name = "ctl",
1482 .offset = 0,
1485 .name = "div",
1486 .offset = 4,
1490 static int bcm2835_clock_debug_init(struct clk_hw *hw,
1491 struct dentry *dentry)
1493 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1494 struct bcm2835_cprman *cprman = clock->cprman;
1495 const struct bcm2835_clock_data *data = clock->data;
1497 return bcm2835_debugfs_regset(
1498 cprman, data->ctl_reg,
1499 bcm2835_debugfs_clock_reg32,
1500 ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1501 dentry);
1504 static const struct clk_ops bcm2835_clock_clk_ops = {
1505 .is_prepared = bcm2835_clock_is_on,
1506 .prepare = bcm2835_clock_on,
1507 .unprepare = bcm2835_clock_off,
1508 .recalc_rate = bcm2835_clock_get_rate,
1509 .set_rate = bcm2835_clock_set_rate,
1510 .determine_rate = bcm2835_clock_determine_rate,
1511 .set_parent = bcm2835_clock_set_parent,
1512 .get_parent = bcm2835_clock_get_parent,
1513 .debug_init = bcm2835_clock_debug_init,
1516 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1518 return true;
1522 * The VPU clock can never be disabled (it doesn't have an ENABLE
1523 * bit), so it gets its own set of clock ops.
1525 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1526 .is_prepared = bcm2835_vpu_clock_is_on,
1527 .recalc_rate = bcm2835_clock_get_rate,
1528 .set_rate = bcm2835_clock_set_rate,
1529 .determine_rate = bcm2835_clock_determine_rate,
1530 .set_parent = bcm2835_clock_set_parent,
1531 .get_parent = bcm2835_clock_get_parent,
1532 .debug_init = bcm2835_clock_debug_init,
1535 static struct clk *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1536 const struct bcm2835_pll_data *data)
1538 struct bcm2835_pll *pll;
1539 struct clk_init_data init;
1541 memset(&init, 0, sizeof(init));
1543 /* All of the PLLs derive from the external oscillator. */
1544 init.parent_names = &cprman->osc_name;
1545 init.num_parents = 1;
1546 init.name = data->name;
1547 init.ops = &bcm2835_pll_clk_ops;
1548 init.flags = CLK_IGNORE_UNUSED;
1550 pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1551 if (!pll)
1552 return NULL;
1554 pll->cprman = cprman;
1555 pll->data = data;
1556 pll->hw.init = &init;
1558 return devm_clk_register(cprman->dev, &pll->hw);
1561 static struct clk *
1562 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1563 const struct bcm2835_pll_divider_data *data)
1565 struct bcm2835_pll_divider *divider;
1566 struct clk_init_data init;
1567 struct clk *clk;
1568 const char *divider_name;
1570 if (data->fixed_divider != 1) {
1571 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1572 "%s_prediv", data->name);
1573 if (!divider_name)
1574 return NULL;
1575 } else {
1576 divider_name = data->name;
1579 memset(&init, 0, sizeof(init));
1581 init.parent_names = &data->source_pll->name;
1582 init.num_parents = 1;
1583 init.name = divider_name;
1584 init.ops = &bcm2835_pll_divider_clk_ops;
1585 init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED;
1587 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1588 if (!divider)
1589 return NULL;
1591 divider->div.reg = cprman->regs + data->a2w_reg;
1592 divider->div.shift = A2W_PLL_DIV_SHIFT;
1593 divider->div.width = A2W_PLL_DIV_BITS;
1594 divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1595 divider->div.lock = &cprman->regs_lock;
1596 divider->div.hw.init = &init;
1597 divider->div.table = NULL;
1599 divider->cprman = cprman;
1600 divider->data = data;
1602 clk = devm_clk_register(cprman->dev, &divider->div.hw);
1603 if (IS_ERR(clk))
1604 return clk;
1607 * PLLH's channels have a fixed divide by 10 afterwards, which
1608 * is what our consumers are actually using.
1610 if (data->fixed_divider != 1) {
1611 return clk_register_fixed_factor(cprman->dev, data->name,
1612 divider_name,
1613 CLK_SET_RATE_PARENT,
1615 data->fixed_divider);
1618 return clk;
1621 static struct clk *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1622 const struct bcm2835_clock_data *data)
1624 struct bcm2835_clock *clock;
1625 struct clk_init_data init;
1626 const char *parents[1 << CM_SRC_BITS];
1627 size_t i;
1630 * Replace our "xosc" references with the oscillator's
1631 * actual name.
1633 for (i = 0; i < data->num_mux_parents; i++) {
1634 if (strcmp(data->parents[i], "xosc") == 0)
1635 parents[i] = cprman->osc_name;
1636 else
1637 parents[i] = data->parents[i];
1640 memset(&init, 0, sizeof(init));
1641 init.parent_names = parents;
1642 init.num_parents = data->num_mux_parents;
1643 init.name = data->name;
1644 init.flags = CLK_IGNORE_UNUSED;
1646 if (data->is_vpu_clock) {
1647 init.ops = &bcm2835_vpu_clock_clk_ops;
1648 } else {
1649 init.ops = &bcm2835_clock_clk_ops;
1650 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1653 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1654 if (!clock)
1655 return NULL;
1657 clock->cprman = cprman;
1658 clock->data = data;
1659 clock->hw.init = &init;
1661 return devm_clk_register(cprman->dev, &clock->hw);
1664 static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1665 const struct bcm2835_gate_data *data)
1667 return clk_register_gate(cprman->dev, data->name, data->parent,
1668 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1669 cprman->regs + data->ctl_reg,
1670 CM_GATE_BIT, 0, &cprman->regs_lock);
1673 typedef struct clk *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1674 const void *data);
1675 struct bcm2835_clk_desc {
1676 bcm2835_clk_register clk_register;
1677 const void *data;
1680 #define _REGISTER(f, d) { .clk_register = (bcm2835_clk_register)f, \
1681 .data = d }
1682 #define REGISTER_PLL(d) _REGISTER(&bcm2835_register_pll, d)
1683 #define REGISTER_PLL_DIV(d) _REGISTER(&bcm2835_register_pll_divider, d)
1684 #define REGISTER_CLK(d) _REGISTER(&bcm2835_register_clock, d)
1685 #define REGISTER_GATE(d) _REGISTER(&bcm2835_register_gate, d)
1687 static const struct bcm2835_clk_desc clk_desc_array[] = {
1688 /* register PLL */
1689 [BCM2835_PLLA] = REGISTER_PLL(&bcm2835_plla_data),
1690 [BCM2835_PLLB] = REGISTER_PLL(&bcm2835_pllb_data),
1691 [BCM2835_PLLC] = REGISTER_PLL(&bcm2835_pllc_data),
1692 [BCM2835_PLLD] = REGISTER_PLL(&bcm2835_plld_data),
1693 [BCM2835_PLLH] = REGISTER_PLL(&bcm2835_pllh_data),
1694 /* the PLL dividers */
1695 [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(&bcm2835_plla_core_data),
1696 [BCM2835_PLLA_PER] = REGISTER_PLL_DIV(&bcm2835_plla_per_data),
1697 [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(&bcm2835_pllc_core0_data),
1698 [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(&bcm2835_pllc_core1_data),
1699 [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(&bcm2835_pllc_core2_data),
1700 [BCM2835_PLLC_PER] = REGISTER_PLL_DIV(&bcm2835_pllc_per_data),
1701 [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(&bcm2835_plld_core_data),
1702 [BCM2835_PLLD_PER] = REGISTER_PLL_DIV(&bcm2835_plld_per_data),
1703 [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(&bcm2835_pllh_rcal_data),
1704 [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(&bcm2835_pllh_aux_data),
1705 [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(&bcm2835_pllh_pix_data),
1706 /* the clocks */
1707 [BCM2835_CLOCK_TIMER] = REGISTER_CLK(&bcm2835_clock_timer_data),
1708 [BCM2835_CLOCK_OTP] = REGISTER_CLK(&bcm2835_clock_otp_data),
1709 [BCM2835_CLOCK_TSENS] = REGISTER_CLK(&bcm2835_clock_tsens_data),
1710 [BCM2835_CLOCK_VPU] = REGISTER_CLK(&bcm2835_clock_vpu_data),
1711 [BCM2835_CLOCK_V3D] = REGISTER_CLK(&bcm2835_clock_v3d_data),
1712 [BCM2835_CLOCK_ISP] = REGISTER_CLK(&bcm2835_clock_isp_data),
1713 [BCM2835_CLOCK_H264] = REGISTER_CLK(&bcm2835_clock_h264_data),
1714 [BCM2835_CLOCK_V3D] = REGISTER_CLK(&bcm2835_clock_v3d_data),
1715 [BCM2835_CLOCK_SDRAM] = REGISTER_CLK(&bcm2835_clock_sdram_data),
1716 [BCM2835_CLOCK_UART] = REGISTER_CLK(&bcm2835_clock_uart_data),
1717 [BCM2835_CLOCK_VEC] = REGISTER_CLK(&bcm2835_clock_vec_data),
1718 [BCM2835_CLOCK_HSM] = REGISTER_CLK(&bcm2835_clock_hsm_data),
1719 [BCM2835_CLOCK_EMMC] = REGISTER_CLK(&bcm2835_clock_emmc_data),
1720 [BCM2835_CLOCK_PWM] = REGISTER_CLK(&bcm2835_clock_pwm_data),
1721 /* the gates */
1722 [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
1723 &bcm2835_clock_peri_image_data),
1726 static int bcm2835_clk_probe(struct platform_device *pdev)
1728 struct device *dev = &pdev->dev;
1729 struct clk **clks;
1730 struct bcm2835_cprman *cprman;
1731 struct resource *res;
1732 const struct bcm2835_clk_desc *desc;
1733 const size_t asize = ARRAY_SIZE(clk_desc_array);
1734 size_t i;
1736 cprman = devm_kzalloc(dev,
1737 sizeof(*cprman) + asize * sizeof(*clks),
1738 GFP_KERNEL);
1739 if (!cprman)
1740 return -ENOMEM;
1742 spin_lock_init(&cprman->regs_lock);
1743 cprman->dev = dev;
1744 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1745 cprman->regs = devm_ioremap_resource(dev, res);
1746 if (IS_ERR(cprman->regs))
1747 return PTR_ERR(cprman->regs);
1749 cprman->osc_name = of_clk_get_parent_name(dev->of_node, 0);
1750 if (!cprman->osc_name)
1751 return -ENODEV;
1753 platform_set_drvdata(pdev, cprman);
1755 cprman->onecell.clk_num = asize;
1756 cprman->onecell.clks = cprman->clks;
1757 clks = cprman->clks;
1759 for (i = 0; i < asize; i++) {
1760 desc = &clk_desc_array[i];
1761 if (desc->clk_register && desc->data)
1762 clks[i] = desc->clk_register(cprman, desc->data);
1765 return of_clk_add_provider(dev->of_node, of_clk_src_onecell_get,
1766 &cprman->onecell);
1769 static const struct of_device_id bcm2835_clk_of_match[] = {
1770 { .compatible = "brcm,bcm2835-cprman", },
1773 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
1775 static struct platform_driver bcm2835_clk_driver = {
1776 .driver = {
1777 .name = "bcm2835-clk",
1778 .of_match_table = bcm2835_clk_of_match,
1780 .probe = bcm2835_clk_probe,
1783 builtin_platform_driver(bcm2835_clk_driver);
1785 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
1786 MODULE_DESCRIPTION("BCM2835 clock driver");
1787 MODULE_LICENSE("GPL v2");