2 * Public API and common code for kernel->userspace relay file support.
4 * See Documentation/filesystems/relay.txt for an overview.
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
13 * This file is released under the GPL.
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex
);
28 static LIST_HEAD(relay_channels
);
31 * close() vm_op implementation for relay file mapping.
33 static void relay_file_mmap_close(struct vm_area_struct
*vma
)
35 struct rchan_buf
*buf
= vma
->vm_private_data
;
36 buf
->chan
->cb
->buf_unmapped(buf
, vma
->vm_file
);
40 * fault() vm_op implementation for relay file mapping.
42 static int relay_buf_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
45 struct rchan_buf
*buf
= vma
->vm_private_data
;
46 pgoff_t pgoff
= vmf
->pgoff
;
51 page
= vmalloc_to_page(buf
->start
+ (pgoff
<< PAGE_SHIFT
));
53 return VM_FAULT_SIGBUS
;
61 * vm_ops for relay file mappings.
63 static const struct vm_operations_struct relay_file_mmap_ops
= {
64 .fault
= relay_buf_fault
,
65 .close
= relay_file_mmap_close
,
69 * allocate an array of pointers of struct page
71 static struct page
**relay_alloc_page_array(unsigned int n_pages
)
73 const size_t pa_size
= n_pages
* sizeof(struct page
*);
74 if (pa_size
> PAGE_SIZE
)
75 return vzalloc(pa_size
);
76 return kzalloc(pa_size
, GFP_KERNEL
);
80 * free an array of pointers of struct page
82 static void relay_free_page_array(struct page
**array
)
88 * relay_mmap_buf: - mmap channel buffer to process address space
89 * @buf: relay channel buffer
90 * @vma: vm_area_struct describing memory to be mapped
92 * Returns 0 if ok, negative on error
94 * Caller should already have grabbed mmap_sem.
96 static int relay_mmap_buf(struct rchan_buf
*buf
, struct vm_area_struct
*vma
)
98 unsigned long length
= vma
->vm_end
- vma
->vm_start
;
99 struct file
*filp
= vma
->vm_file
;
104 if (length
!= (unsigned long)buf
->chan
->alloc_size
)
107 vma
->vm_ops
= &relay_file_mmap_ops
;
108 vma
->vm_flags
|= VM_DONTEXPAND
;
109 vma
->vm_private_data
= buf
;
110 buf
->chan
->cb
->buf_mapped(buf
, filp
);
116 * relay_alloc_buf - allocate a channel buffer
117 * @buf: the buffer struct
118 * @size: total size of the buffer
120 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
121 * passed in size will get page aligned, if it isn't already.
123 static void *relay_alloc_buf(struct rchan_buf
*buf
, size_t *size
)
126 unsigned int i
, j
, n_pages
;
128 *size
= PAGE_ALIGN(*size
);
129 n_pages
= *size
>> PAGE_SHIFT
;
131 buf
->page_array
= relay_alloc_page_array(n_pages
);
132 if (!buf
->page_array
)
135 for (i
= 0; i
< n_pages
; i
++) {
136 buf
->page_array
[i
] = alloc_page(GFP_KERNEL
);
137 if (unlikely(!buf
->page_array
[i
]))
139 set_page_private(buf
->page_array
[i
], (unsigned long)buf
);
141 mem
= vmap(buf
->page_array
, n_pages
, VM_MAP
, PAGE_KERNEL
);
145 memset(mem
, 0, *size
);
146 buf
->page_count
= n_pages
;
150 for (j
= 0; j
< i
; j
++)
151 __free_page(buf
->page_array
[j
]);
152 relay_free_page_array(buf
->page_array
);
157 * relay_create_buf - allocate and initialize a channel buffer
158 * @chan: the relay channel
160 * Returns channel buffer if successful, %NULL otherwise.
162 static struct rchan_buf
*relay_create_buf(struct rchan
*chan
)
164 struct rchan_buf
*buf
;
166 if (chan
->n_subbufs
> UINT_MAX
/ sizeof(size_t *))
169 buf
= kzalloc(sizeof(struct rchan_buf
), GFP_KERNEL
);
172 buf
->padding
= kmalloc(chan
->n_subbufs
* sizeof(size_t *), GFP_KERNEL
);
176 buf
->start
= relay_alloc_buf(buf
, &chan
->alloc_size
);
181 kref_get(&buf
->chan
->kref
);
191 * relay_destroy_channel - free the channel struct
192 * @kref: target kernel reference that contains the relay channel
194 * Should only be called from kref_put().
196 static void relay_destroy_channel(struct kref
*kref
)
198 struct rchan
*chan
= container_of(kref
, struct rchan
, kref
);
203 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
204 * @buf: the buffer struct
206 static void relay_destroy_buf(struct rchan_buf
*buf
)
208 struct rchan
*chan
= buf
->chan
;
211 if (likely(buf
->start
)) {
213 for (i
= 0; i
< buf
->page_count
; i
++)
214 __free_page(buf
->page_array
[i
]);
215 relay_free_page_array(buf
->page_array
);
217 chan
->buf
[buf
->cpu
] = NULL
;
220 kref_put(&chan
->kref
, relay_destroy_channel
);
224 * relay_remove_buf - remove a channel buffer
225 * @kref: target kernel reference that contains the relay buffer
227 * Removes the file from the filesystem, which also frees the
228 * rchan_buf_struct and the channel buffer. Should only be called from
231 static void relay_remove_buf(struct kref
*kref
)
233 struct rchan_buf
*buf
= container_of(kref
, struct rchan_buf
, kref
);
234 relay_destroy_buf(buf
);
238 * relay_buf_empty - boolean, is the channel buffer empty?
239 * @buf: channel buffer
241 * Returns 1 if the buffer is empty, 0 otherwise.
243 static int relay_buf_empty(struct rchan_buf
*buf
)
245 return (buf
->subbufs_produced
- buf
->subbufs_consumed
) ? 0 : 1;
249 * relay_buf_full - boolean, is the channel buffer full?
250 * @buf: channel buffer
252 * Returns 1 if the buffer is full, 0 otherwise.
254 int relay_buf_full(struct rchan_buf
*buf
)
256 size_t ready
= buf
->subbufs_produced
- buf
->subbufs_consumed
;
257 return (ready
>= buf
->chan
->n_subbufs
) ? 1 : 0;
259 EXPORT_SYMBOL_GPL(relay_buf_full
);
262 * High-level relay kernel API and associated functions.
266 * rchan_callback implementations defining default channel behavior. Used
267 * in place of corresponding NULL values in client callback struct.
271 * subbuf_start() default callback. Does nothing.
273 static int subbuf_start_default_callback (struct rchan_buf
*buf
,
278 if (relay_buf_full(buf
))
285 * buf_mapped() default callback. Does nothing.
287 static void buf_mapped_default_callback(struct rchan_buf
*buf
,
293 * buf_unmapped() default callback. Does nothing.
295 static void buf_unmapped_default_callback(struct rchan_buf
*buf
,
301 * create_buf_file_create() default callback. Does nothing.
303 static struct dentry
*create_buf_file_default_callback(const char *filename
,
304 struct dentry
*parent
,
306 struct rchan_buf
*buf
,
313 * remove_buf_file() default callback. Does nothing.
315 static int remove_buf_file_default_callback(struct dentry
*dentry
)
320 /* relay channel default callbacks */
321 static struct rchan_callbacks default_channel_callbacks
= {
322 .subbuf_start
= subbuf_start_default_callback
,
323 .buf_mapped
= buf_mapped_default_callback
,
324 .buf_unmapped
= buf_unmapped_default_callback
,
325 .create_buf_file
= create_buf_file_default_callback
,
326 .remove_buf_file
= remove_buf_file_default_callback
,
330 * wakeup_readers - wake up readers waiting on a channel
331 * @data: contains the channel buffer
333 * This is the timer function used to defer reader waking.
335 static void wakeup_readers(unsigned long data
)
337 struct rchan_buf
*buf
= (struct rchan_buf
*)data
;
338 wake_up_interruptible(&buf
->read_wait
);
342 * __relay_reset - reset a channel buffer
343 * @buf: the channel buffer
344 * @init: 1 if this is a first-time initialization
346 * See relay_reset() for description of effect.
348 static void __relay_reset(struct rchan_buf
*buf
, unsigned int init
)
353 init_waitqueue_head(&buf
->read_wait
);
354 kref_init(&buf
->kref
);
355 setup_timer(&buf
->timer
, wakeup_readers
, (unsigned long)buf
);
357 del_timer_sync(&buf
->timer
);
359 buf
->subbufs_produced
= 0;
360 buf
->subbufs_consumed
= 0;
361 buf
->bytes_consumed
= 0;
363 buf
->data
= buf
->start
;
366 for (i
= 0; i
< buf
->chan
->n_subbufs
; i
++)
369 buf
->chan
->cb
->subbuf_start(buf
, buf
->data
, NULL
, 0);
373 * relay_reset - reset the channel
376 * This has the effect of erasing all data from all channel buffers
377 * and restarting the channel in its initial state. The buffers
378 * are not freed, so any mappings are still in effect.
380 * NOTE. Care should be taken that the channel isn't actually
381 * being used by anything when this call is made.
383 void relay_reset(struct rchan
*chan
)
390 if (chan
->is_global
&& chan
->buf
[0]) {
391 __relay_reset(chan
->buf
[0], 0);
395 mutex_lock(&relay_channels_mutex
);
396 for_each_possible_cpu(i
)
398 __relay_reset(chan
->buf
[i
], 0);
399 mutex_unlock(&relay_channels_mutex
);
401 EXPORT_SYMBOL_GPL(relay_reset
);
403 static inline void relay_set_buf_dentry(struct rchan_buf
*buf
,
404 struct dentry
*dentry
)
406 buf
->dentry
= dentry
;
407 d_inode(buf
->dentry
)->i_size
= buf
->early_bytes
;
410 static struct dentry
*relay_create_buf_file(struct rchan
*chan
,
411 struct rchan_buf
*buf
,
414 struct dentry
*dentry
;
417 tmpname
= kzalloc(NAME_MAX
+ 1, GFP_KERNEL
);
420 snprintf(tmpname
, NAME_MAX
, "%s%d", chan
->base_filename
, cpu
);
422 /* Create file in fs */
423 dentry
= chan
->cb
->create_buf_file(tmpname
, chan
->parent
,
433 * relay_open_buf - create a new relay channel buffer
435 * used by relay_open() and CPU hotplug.
437 static struct rchan_buf
*relay_open_buf(struct rchan
*chan
, unsigned int cpu
)
439 struct rchan_buf
*buf
= NULL
;
440 struct dentry
*dentry
;
445 buf
= relay_create_buf(chan
);
449 if (chan
->has_base_filename
) {
450 dentry
= relay_create_buf_file(chan
, buf
, cpu
);
453 relay_set_buf_dentry(buf
, dentry
);
457 __relay_reset(buf
, 1);
459 if(chan
->is_global
) {
467 relay_destroy_buf(buf
);
472 * relay_close_buf - close a channel buffer
473 * @buf: channel buffer
475 * Marks the buffer finalized and restores the default callbacks.
476 * The channel buffer and channel buffer data structure are then freed
477 * automatically when the last reference is given up.
479 static void relay_close_buf(struct rchan_buf
*buf
)
482 del_timer_sync(&buf
->timer
);
483 buf
->chan
->cb
->remove_buf_file(buf
->dentry
);
484 kref_put(&buf
->kref
, relay_remove_buf
);
487 static void setup_callbacks(struct rchan
*chan
,
488 struct rchan_callbacks
*cb
)
491 chan
->cb
= &default_channel_callbacks
;
495 if (!cb
->subbuf_start
)
496 cb
->subbuf_start
= subbuf_start_default_callback
;
498 cb
->buf_mapped
= buf_mapped_default_callback
;
499 if (!cb
->buf_unmapped
)
500 cb
->buf_unmapped
= buf_unmapped_default_callback
;
501 if (!cb
->create_buf_file
)
502 cb
->create_buf_file
= create_buf_file_default_callback
;
503 if (!cb
->remove_buf_file
)
504 cb
->remove_buf_file
= remove_buf_file_default_callback
;
509 * relay_hotcpu_callback - CPU hotplug callback
510 * @nb: notifier block
511 * @action: hotplug action to take
514 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
516 static int relay_hotcpu_callback(struct notifier_block
*nb
,
517 unsigned long action
,
520 unsigned int hotcpu
= (unsigned long)hcpu
;
525 case CPU_UP_PREPARE_FROZEN
:
526 mutex_lock(&relay_channels_mutex
);
527 list_for_each_entry(chan
, &relay_channels
, list
) {
528 if (chan
->buf
[hotcpu
])
530 chan
->buf
[hotcpu
] = relay_open_buf(chan
, hotcpu
);
531 if(!chan
->buf
[hotcpu
]) {
533 "relay_hotcpu_callback: cpu %d buffer "
534 "creation failed\n", hotcpu
);
535 mutex_unlock(&relay_channels_mutex
);
536 return notifier_from_errno(-ENOMEM
);
539 mutex_unlock(&relay_channels_mutex
);
542 case CPU_DEAD_FROZEN
:
543 /* No need to flush the cpu : will be flushed upon
544 * final relay_flush() call. */
551 * relay_open - create a new relay channel
552 * @base_filename: base name of files to create, %NULL for buffering only
553 * @parent: dentry of parent directory, %NULL for root directory or buffer
554 * @subbuf_size: size of sub-buffers
555 * @n_subbufs: number of sub-buffers
556 * @cb: client callback functions
557 * @private_data: user-defined data
559 * Returns channel pointer if successful, %NULL otherwise.
561 * Creates a channel buffer for each cpu using the sizes and
562 * attributes specified. The created channel buffer files
563 * will be named base_filename0...base_filenameN-1. File
564 * permissions will be %S_IRUSR.
566 struct rchan
*relay_open(const char *base_filename
,
567 struct dentry
*parent
,
570 struct rchan_callbacks
*cb
,
576 if (!(subbuf_size
&& n_subbufs
))
578 if (subbuf_size
> UINT_MAX
/ n_subbufs
)
581 chan
= kzalloc(sizeof(struct rchan
), GFP_KERNEL
);
585 chan
->version
= RELAYFS_CHANNEL_VERSION
;
586 chan
->n_subbufs
= n_subbufs
;
587 chan
->subbuf_size
= subbuf_size
;
588 chan
->alloc_size
= PAGE_ALIGN(subbuf_size
* n_subbufs
);
589 chan
->parent
= parent
;
590 chan
->private_data
= private_data
;
592 chan
->has_base_filename
= 1;
593 strlcpy(chan
->base_filename
, base_filename
, NAME_MAX
);
595 setup_callbacks(chan
, cb
);
596 kref_init(&chan
->kref
);
598 mutex_lock(&relay_channels_mutex
);
599 for_each_online_cpu(i
) {
600 chan
->buf
[i
] = relay_open_buf(chan
, i
);
604 list_add(&chan
->list
, &relay_channels
);
605 mutex_unlock(&relay_channels_mutex
);
610 for_each_possible_cpu(i
) {
612 relay_close_buf(chan
->buf
[i
]);
615 kref_put(&chan
->kref
, relay_destroy_channel
);
616 mutex_unlock(&relay_channels_mutex
);
619 EXPORT_SYMBOL_GPL(relay_open
);
621 struct rchan_percpu_buf_dispatcher
{
622 struct rchan_buf
*buf
;
623 struct dentry
*dentry
;
626 /* Called in atomic context. */
627 static void __relay_set_buf_dentry(void *info
)
629 struct rchan_percpu_buf_dispatcher
*p
= info
;
631 relay_set_buf_dentry(p
->buf
, p
->dentry
);
635 * relay_late_setup_files - triggers file creation
636 * @chan: channel to operate on
637 * @base_filename: base name of files to create
638 * @parent: dentry of parent directory, %NULL for root directory
640 * Returns 0 if successful, non-zero otherwise.
642 * Use to setup files for a previously buffer-only channel.
643 * Useful to do early tracing in kernel, before VFS is up, for example.
645 int relay_late_setup_files(struct rchan
*chan
,
646 const char *base_filename
,
647 struct dentry
*parent
)
650 unsigned int i
, curr_cpu
;
652 struct dentry
*dentry
;
653 struct rchan_percpu_buf_dispatcher disp
;
655 if (!chan
|| !base_filename
)
658 strlcpy(chan
->base_filename
, base_filename
, NAME_MAX
);
660 mutex_lock(&relay_channels_mutex
);
661 /* Is chan already set up? */
662 if (unlikely(chan
->has_base_filename
)) {
663 mutex_unlock(&relay_channels_mutex
);
666 chan
->has_base_filename
= 1;
667 chan
->parent
= parent
;
668 curr_cpu
= get_cpu();
670 * The CPU hotplug notifier ran before us and created buffers with
671 * no files associated. So it's safe to call relay_setup_buf_file()
672 * on all currently online CPUs.
674 for_each_online_cpu(i
) {
675 if (unlikely(!chan
->buf
[i
])) {
676 WARN_ONCE(1, KERN_ERR
"CPU has no buffer!\n");
681 dentry
= relay_create_buf_file(chan
, chan
->buf
[i
], i
);
682 if (unlikely(!dentry
)) {
688 local_irq_save(flags
);
689 relay_set_buf_dentry(chan
->buf
[i
], dentry
);
690 local_irq_restore(flags
);
692 disp
.buf
= chan
->buf
[i
];
693 disp
.dentry
= dentry
;
695 /* relay_channels_mutex must be held, so wait. */
696 err
= smp_call_function_single(i
,
697 __relay_set_buf_dentry
,
704 mutex_unlock(&relay_channels_mutex
);
710 * relay_switch_subbuf - switch to a new sub-buffer
711 * @buf: channel buffer
712 * @length: size of current event
714 * Returns either the length passed in or 0 if full.
716 * Performs sub-buffer-switch tasks such as invoking callbacks,
717 * updating padding counts, waking up readers, etc.
719 size_t relay_switch_subbuf(struct rchan_buf
*buf
, size_t length
)
722 size_t old_subbuf
, new_subbuf
;
724 if (unlikely(length
> buf
->chan
->subbuf_size
))
727 if (buf
->offset
!= buf
->chan
->subbuf_size
+ 1) {
728 buf
->prev_padding
= buf
->chan
->subbuf_size
- buf
->offset
;
729 old_subbuf
= buf
->subbufs_produced
% buf
->chan
->n_subbufs
;
730 buf
->padding
[old_subbuf
] = buf
->prev_padding
;
731 buf
->subbufs_produced
++;
733 d_inode(buf
->dentry
)->i_size
+=
734 buf
->chan
->subbuf_size
-
735 buf
->padding
[old_subbuf
];
737 buf
->early_bytes
+= buf
->chan
->subbuf_size
-
738 buf
->padding
[old_subbuf
];
740 if (waitqueue_active(&buf
->read_wait
))
742 * Calling wake_up_interruptible() from here
743 * will deadlock if we happen to be logging
744 * from the scheduler (trying to re-grab
745 * rq->lock), so defer it.
747 mod_timer(&buf
->timer
, jiffies
+ 1);
751 new_subbuf
= buf
->subbufs_produced
% buf
->chan
->n_subbufs
;
752 new = buf
->start
+ new_subbuf
* buf
->chan
->subbuf_size
;
754 if (!buf
->chan
->cb
->subbuf_start(buf
, new, old
, buf
->prev_padding
)) {
755 buf
->offset
= buf
->chan
->subbuf_size
+ 1;
759 buf
->padding
[new_subbuf
] = 0;
761 if (unlikely(length
+ buf
->offset
> buf
->chan
->subbuf_size
))
767 buf
->chan
->last_toobig
= length
;
770 EXPORT_SYMBOL_GPL(relay_switch_subbuf
);
773 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
775 * @cpu: the cpu associated with the channel buffer to update
776 * @subbufs_consumed: number of sub-buffers to add to current buf's count
778 * Adds to the channel buffer's consumed sub-buffer count.
779 * subbufs_consumed should be the number of sub-buffers newly consumed,
780 * not the total consumed.
782 * NOTE. Kernel clients don't need to call this function if the channel
783 * mode is 'overwrite'.
785 void relay_subbufs_consumed(struct rchan
*chan
,
787 size_t subbufs_consumed
)
789 struct rchan_buf
*buf
;
794 if (cpu
>= NR_CPUS
|| !chan
->buf
[cpu
] ||
795 subbufs_consumed
> chan
->n_subbufs
)
798 buf
= chan
->buf
[cpu
];
799 if (subbufs_consumed
> buf
->subbufs_produced
- buf
->subbufs_consumed
)
800 buf
->subbufs_consumed
= buf
->subbufs_produced
;
802 buf
->subbufs_consumed
+= subbufs_consumed
;
804 EXPORT_SYMBOL_GPL(relay_subbufs_consumed
);
807 * relay_close - close the channel
810 * Closes all channel buffers and frees the channel.
812 void relay_close(struct rchan
*chan
)
819 mutex_lock(&relay_channels_mutex
);
820 if (chan
->is_global
&& chan
->buf
[0])
821 relay_close_buf(chan
->buf
[0]);
823 for_each_possible_cpu(i
)
825 relay_close_buf(chan
->buf
[i
]);
827 if (chan
->last_toobig
)
828 printk(KERN_WARNING
"relay: one or more items not logged "
829 "[item size (%Zd) > sub-buffer size (%Zd)]\n",
830 chan
->last_toobig
, chan
->subbuf_size
);
832 list_del(&chan
->list
);
833 kref_put(&chan
->kref
, relay_destroy_channel
);
834 mutex_unlock(&relay_channels_mutex
);
836 EXPORT_SYMBOL_GPL(relay_close
);
839 * relay_flush - close the channel
842 * Flushes all channel buffers, i.e. forces buffer switch.
844 void relay_flush(struct rchan
*chan
)
851 if (chan
->is_global
&& chan
->buf
[0]) {
852 relay_switch_subbuf(chan
->buf
[0], 0);
856 mutex_lock(&relay_channels_mutex
);
857 for_each_possible_cpu(i
)
859 relay_switch_subbuf(chan
->buf
[i
], 0);
860 mutex_unlock(&relay_channels_mutex
);
862 EXPORT_SYMBOL_GPL(relay_flush
);
865 * relay_file_open - open file op for relay files
869 * Increments the channel buffer refcount.
871 static int relay_file_open(struct inode
*inode
, struct file
*filp
)
873 struct rchan_buf
*buf
= inode
->i_private
;
874 kref_get(&buf
->kref
);
875 filp
->private_data
= buf
;
877 return nonseekable_open(inode
, filp
);
881 * relay_file_mmap - mmap file op for relay files
883 * @vma: the vma describing what to map
885 * Calls upon relay_mmap_buf() to map the file into user space.
887 static int relay_file_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
889 struct rchan_buf
*buf
= filp
->private_data
;
890 return relay_mmap_buf(buf
, vma
);
894 * relay_file_poll - poll file op for relay files
900 static unsigned int relay_file_poll(struct file
*filp
, poll_table
*wait
)
902 unsigned int mask
= 0;
903 struct rchan_buf
*buf
= filp
->private_data
;
908 if (filp
->f_mode
& FMODE_READ
) {
909 poll_wait(filp
, &buf
->read_wait
, wait
);
910 if (!relay_buf_empty(buf
))
911 mask
|= POLLIN
| POLLRDNORM
;
918 * relay_file_release - release file op for relay files
922 * Decrements the channel refcount, as the filesystem is
923 * no longer using it.
925 static int relay_file_release(struct inode
*inode
, struct file
*filp
)
927 struct rchan_buf
*buf
= filp
->private_data
;
928 kref_put(&buf
->kref
, relay_remove_buf
);
934 * relay_file_read_consume - update the consumed count for the buffer
936 static void relay_file_read_consume(struct rchan_buf
*buf
,
938 size_t bytes_consumed
)
940 size_t subbuf_size
= buf
->chan
->subbuf_size
;
941 size_t n_subbufs
= buf
->chan
->n_subbufs
;
944 if (buf
->subbufs_produced
== buf
->subbufs_consumed
&&
945 buf
->offset
== buf
->bytes_consumed
)
948 if (buf
->bytes_consumed
+ bytes_consumed
> subbuf_size
) {
949 relay_subbufs_consumed(buf
->chan
, buf
->cpu
, 1);
950 buf
->bytes_consumed
= 0;
953 buf
->bytes_consumed
+= bytes_consumed
;
955 read_subbuf
= buf
->subbufs_consumed
% n_subbufs
;
957 read_subbuf
= read_pos
/ buf
->chan
->subbuf_size
;
958 if (buf
->bytes_consumed
+ buf
->padding
[read_subbuf
] == subbuf_size
) {
959 if ((read_subbuf
== buf
->subbufs_produced
% n_subbufs
) &&
960 (buf
->offset
== subbuf_size
))
962 relay_subbufs_consumed(buf
->chan
, buf
->cpu
, 1);
963 buf
->bytes_consumed
= 0;
968 * relay_file_read_avail - boolean, are there unconsumed bytes available?
970 static int relay_file_read_avail(struct rchan_buf
*buf
, size_t read_pos
)
972 size_t subbuf_size
= buf
->chan
->subbuf_size
;
973 size_t n_subbufs
= buf
->chan
->n_subbufs
;
974 size_t produced
= buf
->subbufs_produced
;
975 size_t consumed
= buf
->subbufs_consumed
;
977 relay_file_read_consume(buf
, read_pos
, 0);
979 consumed
= buf
->subbufs_consumed
;
981 if (unlikely(buf
->offset
> subbuf_size
)) {
982 if (produced
== consumed
)
987 if (unlikely(produced
- consumed
>= n_subbufs
)) {
988 consumed
= produced
- n_subbufs
+ 1;
989 buf
->subbufs_consumed
= consumed
;
990 buf
->bytes_consumed
= 0;
993 produced
= (produced
% n_subbufs
) * subbuf_size
+ buf
->offset
;
994 consumed
= (consumed
% n_subbufs
) * subbuf_size
+ buf
->bytes_consumed
;
996 if (consumed
> produced
)
997 produced
+= n_subbufs
* subbuf_size
;
999 if (consumed
== produced
) {
1000 if (buf
->offset
== subbuf_size
&&
1001 buf
->subbufs_produced
> buf
->subbufs_consumed
)
1010 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
1011 * @read_pos: file read position
1012 * @buf: relay channel buffer
1014 static size_t relay_file_read_subbuf_avail(size_t read_pos
,
1015 struct rchan_buf
*buf
)
1017 size_t padding
, avail
= 0;
1018 size_t read_subbuf
, read_offset
, write_subbuf
, write_offset
;
1019 size_t subbuf_size
= buf
->chan
->subbuf_size
;
1021 write_subbuf
= (buf
->data
- buf
->start
) / subbuf_size
;
1022 write_offset
= buf
->offset
> subbuf_size
? subbuf_size
: buf
->offset
;
1023 read_subbuf
= read_pos
/ subbuf_size
;
1024 read_offset
= read_pos
% subbuf_size
;
1025 padding
= buf
->padding
[read_subbuf
];
1027 if (read_subbuf
== write_subbuf
) {
1028 if (read_offset
+ padding
< write_offset
)
1029 avail
= write_offset
- (read_offset
+ padding
);
1031 avail
= (subbuf_size
- padding
) - read_offset
;
1037 * relay_file_read_start_pos - find the first available byte to read
1038 * @read_pos: file read position
1039 * @buf: relay channel buffer
1041 * If the @read_pos is in the middle of padding, return the
1042 * position of the first actually available byte, otherwise
1043 * return the original value.
1045 static size_t relay_file_read_start_pos(size_t read_pos
,
1046 struct rchan_buf
*buf
)
1048 size_t read_subbuf
, padding
, padding_start
, padding_end
;
1049 size_t subbuf_size
= buf
->chan
->subbuf_size
;
1050 size_t n_subbufs
= buf
->chan
->n_subbufs
;
1051 size_t consumed
= buf
->subbufs_consumed
% n_subbufs
;
1054 read_pos
= consumed
* subbuf_size
+ buf
->bytes_consumed
;
1055 read_subbuf
= read_pos
/ subbuf_size
;
1056 padding
= buf
->padding
[read_subbuf
];
1057 padding_start
= (read_subbuf
+ 1) * subbuf_size
- padding
;
1058 padding_end
= (read_subbuf
+ 1) * subbuf_size
;
1059 if (read_pos
>= padding_start
&& read_pos
< padding_end
) {
1060 read_subbuf
= (read_subbuf
+ 1) % n_subbufs
;
1061 read_pos
= read_subbuf
* subbuf_size
;
1068 * relay_file_read_end_pos - return the new read position
1069 * @read_pos: file read position
1070 * @buf: relay channel buffer
1071 * @count: number of bytes to be read
1073 static size_t relay_file_read_end_pos(struct rchan_buf
*buf
,
1077 size_t read_subbuf
, padding
, end_pos
;
1078 size_t subbuf_size
= buf
->chan
->subbuf_size
;
1079 size_t n_subbufs
= buf
->chan
->n_subbufs
;
1081 read_subbuf
= read_pos
/ subbuf_size
;
1082 padding
= buf
->padding
[read_subbuf
];
1083 if (read_pos
% subbuf_size
+ count
+ padding
== subbuf_size
)
1084 end_pos
= (read_subbuf
+ 1) * subbuf_size
;
1086 end_pos
= read_pos
+ count
;
1087 if (end_pos
>= subbuf_size
* n_subbufs
)
1094 * subbuf_read_actor - read up to one subbuf's worth of data
1096 static int subbuf_read_actor(size_t read_start
,
1097 struct rchan_buf
*buf
,
1099 read_descriptor_t
*desc
)
1104 from
= buf
->start
+ read_start
;
1106 if (copy_to_user(desc
->arg
.buf
, from
, avail
)) {
1107 desc
->error
= -EFAULT
;
1110 desc
->arg
.data
+= ret
;
1111 desc
->written
+= ret
;
1117 typedef int (*subbuf_actor_t
) (size_t read_start
,
1118 struct rchan_buf
*buf
,
1120 read_descriptor_t
*desc
);
1123 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1125 static ssize_t
relay_file_read_subbufs(struct file
*filp
, loff_t
*ppos
,
1126 subbuf_actor_t subbuf_actor
,
1127 read_descriptor_t
*desc
)
1129 struct rchan_buf
*buf
= filp
->private_data
;
1130 size_t read_start
, avail
;
1136 inode_lock(file_inode(filp
));
1138 if (!relay_file_read_avail(buf
, *ppos
))
1141 read_start
= relay_file_read_start_pos(*ppos
, buf
);
1142 avail
= relay_file_read_subbuf_avail(read_start
, buf
);
1146 avail
= min(desc
->count
, avail
);
1147 ret
= subbuf_actor(read_start
, buf
, avail
, desc
);
1148 if (desc
->error
< 0)
1152 relay_file_read_consume(buf
, read_start
, ret
);
1153 *ppos
= relay_file_read_end_pos(buf
, read_start
, ret
);
1155 } while (desc
->count
&& ret
);
1156 inode_unlock(file_inode(filp
));
1158 return desc
->written
;
1161 static ssize_t
relay_file_read(struct file
*filp
,
1162 char __user
*buffer
,
1166 read_descriptor_t desc
;
1169 desc
.arg
.buf
= buffer
;
1171 return relay_file_read_subbufs(filp
, ppos
, subbuf_read_actor
, &desc
);
1174 static void relay_consume_bytes(struct rchan_buf
*rbuf
, int bytes_consumed
)
1176 rbuf
->bytes_consumed
+= bytes_consumed
;
1178 if (rbuf
->bytes_consumed
>= rbuf
->chan
->subbuf_size
) {
1179 relay_subbufs_consumed(rbuf
->chan
, rbuf
->cpu
, 1);
1180 rbuf
->bytes_consumed
%= rbuf
->chan
->subbuf_size
;
1184 static void relay_pipe_buf_release(struct pipe_inode_info
*pipe
,
1185 struct pipe_buffer
*buf
)
1187 struct rchan_buf
*rbuf
;
1189 rbuf
= (struct rchan_buf
*)page_private(buf
->page
);
1190 relay_consume_bytes(rbuf
, buf
->private);
1193 static const struct pipe_buf_operations relay_pipe_buf_ops
= {
1195 .confirm
= generic_pipe_buf_confirm
,
1196 .release
= relay_pipe_buf_release
,
1197 .steal
= generic_pipe_buf_steal
,
1198 .get
= generic_pipe_buf_get
,
1201 static void relay_page_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1206 * subbuf_splice_actor - splice up to one subbuf's worth of data
1208 static ssize_t
subbuf_splice_actor(struct file
*in
,
1210 struct pipe_inode_info
*pipe
,
1215 unsigned int pidx
, poff
, total_len
, subbuf_pages
, nr_pages
;
1216 struct rchan_buf
*rbuf
= in
->private_data
;
1217 unsigned int subbuf_size
= rbuf
->chan
->subbuf_size
;
1218 uint64_t pos
= (uint64_t) *ppos
;
1219 uint32_t alloc_size
= (uint32_t) rbuf
->chan
->alloc_size
;
1220 size_t read_start
= (size_t) do_div(pos
, alloc_size
);
1221 size_t read_subbuf
= read_start
/ subbuf_size
;
1222 size_t padding
= rbuf
->padding
[read_subbuf
];
1223 size_t nonpad_end
= read_subbuf
* subbuf_size
+ subbuf_size
- padding
;
1224 struct page
*pages
[PIPE_DEF_BUFFERS
];
1225 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1226 struct splice_pipe_desc spd
= {
1229 .nr_pages_max
= PIPE_DEF_BUFFERS
,
1232 .ops
= &relay_pipe_buf_ops
,
1233 .spd_release
= relay_page_release
,
1237 if (rbuf
->subbufs_produced
== rbuf
->subbufs_consumed
)
1239 if (splice_grow_spd(pipe
, &spd
))
1243 * Adjust read len, if longer than what is available
1245 if (len
> (subbuf_size
- read_start
% subbuf_size
))
1246 len
= subbuf_size
- read_start
% subbuf_size
;
1248 subbuf_pages
= rbuf
->chan
->alloc_size
>> PAGE_SHIFT
;
1249 pidx
= (read_start
/ PAGE_SIZE
) % subbuf_pages
;
1250 poff
= read_start
& ~PAGE_MASK
;
1251 nr_pages
= min_t(unsigned int, subbuf_pages
, spd
.nr_pages_max
);
1253 for (total_len
= 0; spd
.nr_pages
< nr_pages
; spd
.nr_pages
++) {
1254 unsigned int this_len
, this_end
, private;
1255 unsigned int cur_pos
= read_start
+ total_len
;
1260 this_len
= min_t(unsigned long, len
, PAGE_SIZE
- poff
);
1263 spd
.pages
[spd
.nr_pages
] = rbuf
->page_array
[pidx
];
1264 spd
.partial
[spd
.nr_pages
].offset
= poff
;
1266 this_end
= cur_pos
+ this_len
;
1267 if (this_end
>= nonpad_end
) {
1268 this_len
= nonpad_end
- cur_pos
;
1269 private = this_len
+ padding
;
1271 spd
.partial
[spd
.nr_pages
].len
= this_len
;
1272 spd
.partial
[spd
.nr_pages
].private = private;
1275 total_len
+= this_len
;
1277 pidx
= (pidx
+ 1) % subbuf_pages
;
1279 if (this_end
>= nonpad_end
) {
1289 ret
= *nonpad_ret
= splice_to_pipe(pipe
, &spd
);
1290 if (ret
< 0 || ret
< total_len
)
1293 if (read_start
+ ret
== nonpad_end
)
1297 splice_shrink_spd(&spd
);
1301 static ssize_t
relay_file_splice_read(struct file
*in
,
1303 struct pipe_inode_info
*pipe
,
1314 while (len
&& !spliced
) {
1315 ret
= subbuf_splice_actor(in
, ppos
, pipe
, len
, flags
, &nonpad_ret
);
1319 if (flags
& SPLICE_F_NONBLOCK
)
1329 spliced
+= nonpad_ret
;
1339 const struct file_operations relay_file_operations
= {
1340 .open
= relay_file_open
,
1341 .poll
= relay_file_poll
,
1342 .mmap
= relay_file_mmap
,
1343 .read
= relay_file_read
,
1344 .llseek
= no_llseek
,
1345 .release
= relay_file_release
,
1346 .splice_read
= relay_file_splice_read
,
1348 EXPORT_SYMBOL_GPL(relay_file_operations
);
1350 static __init
int relay_init(void)
1353 hotcpu_notifier(relay_hotcpu_callback
, 0);
1357 early_initcall(relay_init
);