4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim
;
66 /* This context's GFP mask */
69 /* Allocation order */
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
82 struct mem_cgroup
*target_mem_cgroup
;
84 /* Scan (total_size >> priority) pages at once */
87 unsigned int may_writepage
:1;
89 /* Can mapped pages be reclaimed? */
90 unsigned int may_unmap
:1;
92 /* Can pages be swapped as part of reclaim? */
93 unsigned int may_swap
:1;
95 /* Can cgroups be reclaimed below their normal consumption range? */
96 unsigned int may_thrash
:1;
98 unsigned int hibernation_mode
:1;
100 /* One of the zones is ready for compaction */
101 unsigned int compaction_ready
:1;
103 /* Incremented by the number of inactive pages that were scanned */
104 unsigned long nr_scanned
;
106 /* Number of pages freed so far during a call to shrink_zones() */
107 unsigned long nr_reclaimed
;
110 #ifdef ARCH_HAS_PREFETCH
111 #define prefetch_prev_lru_page(_page, _base, _field) \
113 if ((_page)->lru.prev != _base) { \
116 prev = lru_to_page(&(_page->lru)); \
117 prefetch(&prev->_field); \
121 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
124 #ifdef ARCH_HAS_PREFETCHW
125 #define prefetchw_prev_lru_page(_page, _base, _field) \
127 if ((_page)->lru.prev != _base) { \
130 prev = lru_to_page(&(_page->lru)); \
131 prefetchw(&prev->_field); \
135 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
139 * From 0 .. 100. Higher means more swappy.
141 int vm_swappiness
= 60;
143 * The total number of pages which are beyond the high watermark within all
146 unsigned long vm_total_pages
;
148 static LIST_HEAD(shrinker_list
);
149 static DECLARE_RWSEM(shrinker_rwsem
);
152 static bool global_reclaim(struct scan_control
*sc
)
154 return !sc
->target_mem_cgroup
;
158 * sane_reclaim - is the usual dirty throttling mechanism operational?
159 * @sc: scan_control in question
161 * The normal page dirty throttling mechanism in balance_dirty_pages() is
162 * completely broken with the legacy memcg and direct stalling in
163 * shrink_page_list() is used for throttling instead, which lacks all the
164 * niceties such as fairness, adaptive pausing, bandwidth proportional
165 * allocation and configurability.
167 * This function tests whether the vmscan currently in progress can assume
168 * that the normal dirty throttling mechanism is operational.
170 static bool sane_reclaim(struct scan_control
*sc
)
172 struct mem_cgroup
*memcg
= sc
->target_mem_cgroup
;
176 #ifdef CONFIG_CGROUP_WRITEBACK
177 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
183 static bool global_reclaim(struct scan_control
*sc
)
188 static bool sane_reclaim(struct scan_control
*sc
)
194 static unsigned long zone_reclaimable_pages(struct zone
*zone
)
198 nr
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
199 zone_page_state(zone
, NR_INACTIVE_FILE
) +
200 zone_page_state(zone
, NR_ISOLATED_FILE
);
202 if (get_nr_swap_pages() > 0)
203 nr
+= zone_page_state(zone
, NR_ACTIVE_ANON
) +
204 zone_page_state(zone
, NR_INACTIVE_ANON
) +
205 zone_page_state(zone
, NR_ISOLATED_ANON
);
210 bool zone_reclaimable(struct zone
*zone
)
212 return zone_page_state(zone
, NR_PAGES_SCANNED
) <
213 zone_reclaimable_pages(zone
) * 6;
216 static unsigned long get_lru_size(struct lruvec
*lruvec
, enum lru_list lru
)
218 if (!mem_cgroup_disabled())
219 return mem_cgroup_get_lru_size(lruvec
, lru
);
221 return zone_page_state(lruvec_zone(lruvec
), NR_LRU_BASE
+ lru
);
225 * Add a shrinker callback to be called from the vm.
227 int register_shrinker(struct shrinker
*shrinker
)
229 size_t size
= sizeof(*shrinker
->nr_deferred
);
232 * If we only have one possible node in the system anyway, save
233 * ourselves the trouble and disable NUMA aware behavior. This way we
234 * will save memory and some small loop time later.
236 if (nr_node_ids
== 1)
237 shrinker
->flags
&= ~SHRINKER_NUMA_AWARE
;
239 if (shrinker
->flags
& SHRINKER_NUMA_AWARE
)
242 shrinker
->nr_deferred
= kzalloc(size
, GFP_KERNEL
);
243 if (!shrinker
->nr_deferred
)
246 down_write(&shrinker_rwsem
);
247 list_add_tail(&shrinker
->list
, &shrinker_list
);
248 up_write(&shrinker_rwsem
);
251 EXPORT_SYMBOL(register_shrinker
);
256 void unregister_shrinker(struct shrinker
*shrinker
)
258 down_write(&shrinker_rwsem
);
259 list_del(&shrinker
->list
);
260 up_write(&shrinker_rwsem
);
261 kfree(shrinker
->nr_deferred
);
263 EXPORT_SYMBOL(unregister_shrinker
);
265 #define SHRINK_BATCH 128
267 static unsigned long do_shrink_slab(struct shrink_control
*shrinkctl
,
268 struct shrinker
*shrinker
,
269 unsigned long nr_scanned
,
270 unsigned long nr_eligible
)
272 unsigned long freed
= 0;
273 unsigned long long delta
;
278 int nid
= shrinkctl
->nid
;
279 long batch_size
= shrinker
->batch
? shrinker
->batch
282 freeable
= shrinker
->count_objects(shrinker
, shrinkctl
);
287 * copy the current shrinker scan count into a local variable
288 * and zero it so that other concurrent shrinker invocations
289 * don't also do this scanning work.
291 nr
= atomic_long_xchg(&shrinker
->nr_deferred
[nid
], 0);
294 delta
= (4 * nr_scanned
) / shrinker
->seeks
;
296 do_div(delta
, nr_eligible
+ 1);
298 if (total_scan
< 0) {
299 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
300 shrinker
->scan_objects
, total_scan
);
301 total_scan
= freeable
;
305 * We need to avoid excessive windup on filesystem shrinkers
306 * due to large numbers of GFP_NOFS allocations causing the
307 * shrinkers to return -1 all the time. This results in a large
308 * nr being built up so when a shrink that can do some work
309 * comes along it empties the entire cache due to nr >>>
310 * freeable. This is bad for sustaining a working set in
313 * Hence only allow the shrinker to scan the entire cache when
314 * a large delta change is calculated directly.
316 if (delta
< freeable
/ 4)
317 total_scan
= min(total_scan
, freeable
/ 2);
320 * Avoid risking looping forever due to too large nr value:
321 * never try to free more than twice the estimate number of
324 if (total_scan
> freeable
* 2)
325 total_scan
= freeable
* 2;
327 trace_mm_shrink_slab_start(shrinker
, shrinkctl
, nr
,
328 nr_scanned
, nr_eligible
,
329 freeable
, delta
, total_scan
);
332 * Normally, we should not scan less than batch_size objects in one
333 * pass to avoid too frequent shrinker calls, but if the slab has less
334 * than batch_size objects in total and we are really tight on memory,
335 * we will try to reclaim all available objects, otherwise we can end
336 * up failing allocations although there are plenty of reclaimable
337 * objects spread over several slabs with usage less than the
340 * We detect the "tight on memory" situations by looking at the total
341 * number of objects we want to scan (total_scan). If it is greater
342 * than the total number of objects on slab (freeable), we must be
343 * scanning at high prio and therefore should try to reclaim as much as
346 while (total_scan
>= batch_size
||
347 total_scan
>= freeable
) {
349 unsigned long nr_to_scan
= min(batch_size
, total_scan
);
351 shrinkctl
->nr_to_scan
= nr_to_scan
;
352 ret
= shrinker
->scan_objects(shrinker
, shrinkctl
);
353 if (ret
== SHRINK_STOP
)
357 count_vm_events(SLABS_SCANNED
, nr_to_scan
);
358 total_scan
-= nr_to_scan
;
364 * move the unused scan count back into the shrinker in a
365 * manner that handles concurrent updates. If we exhausted the
366 * scan, there is no need to do an update.
369 new_nr
= atomic_long_add_return(total_scan
,
370 &shrinker
->nr_deferred
[nid
]);
372 new_nr
= atomic_long_read(&shrinker
->nr_deferred
[nid
]);
374 trace_mm_shrink_slab_end(shrinker
, nid
, freed
, nr
, new_nr
, total_scan
);
379 * shrink_slab - shrink slab caches
380 * @gfp_mask: allocation context
381 * @nid: node whose slab caches to target
382 * @memcg: memory cgroup whose slab caches to target
383 * @nr_scanned: pressure numerator
384 * @nr_eligible: pressure denominator
386 * Call the shrink functions to age shrinkable caches.
388 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
389 * unaware shrinkers will receive a node id of 0 instead.
391 * @memcg specifies the memory cgroup to target. If it is not NULL,
392 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
393 * objects from the memory cgroup specified. Otherwise all shrinkers
394 * are called, and memcg aware shrinkers are supposed to scan the
397 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
398 * the available objects should be scanned. Page reclaim for example
399 * passes the number of pages scanned and the number of pages on the
400 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
401 * when it encountered mapped pages. The ratio is further biased by
402 * the ->seeks setting of the shrink function, which indicates the
403 * cost to recreate an object relative to that of an LRU page.
405 * Returns the number of reclaimed slab objects.
407 static unsigned long shrink_slab(gfp_t gfp_mask
, int nid
,
408 struct mem_cgroup
*memcg
,
409 unsigned long nr_scanned
,
410 unsigned long nr_eligible
)
412 struct shrinker
*shrinker
;
413 unsigned long freed
= 0;
415 if (memcg
&& !memcg_kmem_online(memcg
))
419 nr_scanned
= SWAP_CLUSTER_MAX
;
421 if (!down_read_trylock(&shrinker_rwsem
)) {
423 * If we would return 0, our callers would understand that we
424 * have nothing else to shrink and give up trying. By returning
425 * 1 we keep it going and assume we'll be able to shrink next
432 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
433 struct shrink_control sc
= {
434 .gfp_mask
= gfp_mask
,
439 if (memcg
&& !(shrinker
->flags
& SHRINKER_MEMCG_AWARE
))
442 if (!(shrinker
->flags
& SHRINKER_NUMA_AWARE
))
445 freed
+= do_shrink_slab(&sc
, shrinker
, nr_scanned
, nr_eligible
);
448 up_read(&shrinker_rwsem
);
454 void drop_slab_node(int nid
)
459 struct mem_cgroup
*memcg
= NULL
;
463 freed
+= shrink_slab(GFP_KERNEL
, nid
, memcg
,
465 } while ((memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
)) != NULL
);
466 } while (freed
> 10);
473 for_each_online_node(nid
)
477 static inline int is_page_cache_freeable(struct page
*page
)
480 * A freeable page cache page is referenced only by the caller
481 * that isolated the page, the page cache radix tree and
482 * optional buffer heads at page->private.
484 return page_count(page
) - page_has_private(page
) == 2;
487 static int may_write_to_inode(struct inode
*inode
, struct scan_control
*sc
)
489 if (current
->flags
& PF_SWAPWRITE
)
491 if (!inode_write_congested(inode
))
493 if (inode_to_bdi(inode
) == current
->backing_dev_info
)
499 * We detected a synchronous write error writing a page out. Probably
500 * -ENOSPC. We need to propagate that into the address_space for a subsequent
501 * fsync(), msync() or close().
503 * The tricky part is that after writepage we cannot touch the mapping: nothing
504 * prevents it from being freed up. But we have a ref on the page and once
505 * that page is locked, the mapping is pinned.
507 * We're allowed to run sleeping lock_page() here because we know the caller has
510 static void handle_write_error(struct address_space
*mapping
,
511 struct page
*page
, int error
)
514 if (page_mapping(page
) == mapping
)
515 mapping_set_error(mapping
, error
);
519 /* possible outcome of pageout() */
521 /* failed to write page out, page is locked */
523 /* move page to the active list, page is locked */
525 /* page has been sent to the disk successfully, page is unlocked */
527 /* page is clean and locked */
532 * pageout is called by shrink_page_list() for each dirty page.
533 * Calls ->writepage().
535 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
536 struct scan_control
*sc
)
539 * If the page is dirty, only perform writeback if that write
540 * will be non-blocking. To prevent this allocation from being
541 * stalled by pagecache activity. But note that there may be
542 * stalls if we need to run get_block(). We could test
543 * PagePrivate for that.
545 * If this process is currently in __generic_file_write_iter() against
546 * this page's queue, we can perform writeback even if that
549 * If the page is swapcache, write it back even if that would
550 * block, for some throttling. This happens by accident, because
551 * swap_backing_dev_info is bust: it doesn't reflect the
552 * congestion state of the swapdevs. Easy to fix, if needed.
554 if (!is_page_cache_freeable(page
))
558 * Some data journaling orphaned pages can have
559 * page->mapping == NULL while being dirty with clean buffers.
561 if (page_has_private(page
)) {
562 if (try_to_free_buffers(page
)) {
563 ClearPageDirty(page
);
564 pr_info("%s: orphaned page\n", __func__
);
570 if (mapping
->a_ops
->writepage
== NULL
)
571 return PAGE_ACTIVATE
;
572 if (!may_write_to_inode(mapping
->host
, sc
))
575 if (clear_page_dirty_for_io(page
)) {
577 struct writeback_control wbc
= {
578 .sync_mode
= WB_SYNC_NONE
,
579 .nr_to_write
= SWAP_CLUSTER_MAX
,
581 .range_end
= LLONG_MAX
,
585 SetPageReclaim(page
);
586 res
= mapping
->a_ops
->writepage(page
, &wbc
);
588 handle_write_error(mapping
, page
, res
);
589 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
590 ClearPageReclaim(page
);
591 return PAGE_ACTIVATE
;
594 if (!PageWriteback(page
)) {
595 /* synchronous write or broken a_ops? */
596 ClearPageReclaim(page
);
598 trace_mm_vmscan_writepage(page
);
599 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
607 * Same as remove_mapping, but if the page is removed from the mapping, it
608 * gets returned with a refcount of 0.
610 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
,
614 struct mem_cgroup
*memcg
;
616 BUG_ON(!PageLocked(page
));
617 BUG_ON(mapping
!= page_mapping(page
));
619 memcg
= mem_cgroup_begin_page_stat(page
);
620 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
622 * The non racy check for a busy page.
624 * Must be careful with the order of the tests. When someone has
625 * a ref to the page, it may be possible that they dirty it then
626 * drop the reference. So if PageDirty is tested before page_count
627 * here, then the following race may occur:
629 * get_user_pages(&page);
630 * [user mapping goes away]
632 * !PageDirty(page) [good]
633 * SetPageDirty(page);
635 * !page_count(page) [good, discard it]
637 * [oops, our write_to data is lost]
639 * Reversing the order of the tests ensures such a situation cannot
640 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
641 * load is not satisfied before that of page->_count.
643 * Note that if SetPageDirty is always performed via set_page_dirty,
644 * and thus under tree_lock, then this ordering is not required.
646 if (!page_freeze_refs(page
, 2))
648 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
649 if (unlikely(PageDirty(page
))) {
650 page_unfreeze_refs(page
, 2);
654 if (PageSwapCache(page
)) {
655 swp_entry_t swap
= { .val
= page_private(page
) };
656 mem_cgroup_swapout(page
, swap
);
657 __delete_from_swap_cache(page
);
658 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
659 mem_cgroup_end_page_stat(memcg
);
660 swapcache_free(swap
);
662 void (*freepage
)(struct page
*);
665 freepage
= mapping
->a_ops
->freepage
;
667 * Remember a shadow entry for reclaimed file cache in
668 * order to detect refaults, thus thrashing, later on.
670 * But don't store shadows in an address space that is
671 * already exiting. This is not just an optizimation,
672 * inode reclaim needs to empty out the radix tree or
673 * the nodes are lost. Don't plant shadows behind its
676 * We also don't store shadows for DAX mappings because the
677 * only page cache pages found in these are zero pages
678 * covering holes, and because we don't want to mix DAX
679 * exceptional entries and shadow exceptional entries in the
682 if (reclaimed
&& page_is_file_cache(page
) &&
683 !mapping_exiting(mapping
) && !dax_mapping(mapping
))
684 shadow
= workingset_eviction(mapping
, page
);
685 __delete_from_page_cache(page
, shadow
, memcg
);
686 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
687 mem_cgroup_end_page_stat(memcg
);
689 if (freepage
!= NULL
)
696 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
697 mem_cgroup_end_page_stat(memcg
);
702 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
703 * someone else has a ref on the page, abort and return 0. If it was
704 * successfully detached, return 1. Assumes the caller has a single ref on
707 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
709 if (__remove_mapping(mapping
, page
, false)) {
711 * Unfreezing the refcount with 1 rather than 2 effectively
712 * drops the pagecache ref for us without requiring another
715 page_unfreeze_refs(page
, 1);
722 * putback_lru_page - put previously isolated page onto appropriate LRU list
723 * @page: page to be put back to appropriate lru list
725 * Add previously isolated @page to appropriate LRU list.
726 * Page may still be unevictable for other reasons.
728 * lru_lock must not be held, interrupts must be enabled.
730 void putback_lru_page(struct page
*page
)
733 int was_unevictable
= PageUnevictable(page
);
735 VM_BUG_ON_PAGE(PageLRU(page
), page
);
738 ClearPageUnevictable(page
);
740 if (page_evictable(page
)) {
742 * For evictable pages, we can use the cache.
743 * In event of a race, worst case is we end up with an
744 * unevictable page on [in]active list.
745 * We know how to handle that.
747 is_unevictable
= false;
751 * Put unevictable pages directly on zone's unevictable
754 is_unevictable
= true;
755 add_page_to_unevictable_list(page
);
757 * When racing with an mlock or AS_UNEVICTABLE clearing
758 * (page is unlocked) make sure that if the other thread
759 * does not observe our setting of PG_lru and fails
760 * isolation/check_move_unevictable_pages,
761 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
762 * the page back to the evictable list.
764 * The other side is TestClearPageMlocked() or shmem_lock().
770 * page's status can change while we move it among lru. If an evictable
771 * page is on unevictable list, it never be freed. To avoid that,
772 * check after we added it to the list, again.
774 if (is_unevictable
&& page_evictable(page
)) {
775 if (!isolate_lru_page(page
)) {
779 /* This means someone else dropped this page from LRU
780 * So, it will be freed or putback to LRU again. There is
781 * nothing to do here.
785 if (was_unevictable
&& !is_unevictable
)
786 count_vm_event(UNEVICTABLE_PGRESCUED
);
787 else if (!was_unevictable
&& is_unevictable
)
788 count_vm_event(UNEVICTABLE_PGCULLED
);
790 put_page(page
); /* drop ref from isolate */
793 enum page_references
{
795 PAGEREF_RECLAIM_CLEAN
,
800 static enum page_references
page_check_references(struct page
*page
,
801 struct scan_control
*sc
)
803 int referenced_ptes
, referenced_page
;
804 unsigned long vm_flags
;
806 referenced_ptes
= page_referenced(page
, 1, sc
->target_mem_cgroup
,
808 referenced_page
= TestClearPageReferenced(page
);
811 * Mlock lost the isolation race with us. Let try_to_unmap()
812 * move the page to the unevictable list.
814 if (vm_flags
& VM_LOCKED
)
815 return PAGEREF_RECLAIM
;
817 if (referenced_ptes
) {
818 if (PageSwapBacked(page
))
819 return PAGEREF_ACTIVATE
;
821 * All mapped pages start out with page table
822 * references from the instantiating fault, so we need
823 * to look twice if a mapped file page is used more
826 * Mark it and spare it for another trip around the
827 * inactive list. Another page table reference will
828 * lead to its activation.
830 * Note: the mark is set for activated pages as well
831 * so that recently deactivated but used pages are
834 SetPageReferenced(page
);
836 if (referenced_page
|| referenced_ptes
> 1)
837 return PAGEREF_ACTIVATE
;
840 * Activate file-backed executable pages after first usage.
842 if (vm_flags
& VM_EXEC
)
843 return PAGEREF_ACTIVATE
;
848 /* Reclaim if clean, defer dirty pages to writeback */
849 if (referenced_page
&& !PageSwapBacked(page
))
850 return PAGEREF_RECLAIM_CLEAN
;
852 return PAGEREF_RECLAIM
;
855 /* Check if a page is dirty or under writeback */
856 static void page_check_dirty_writeback(struct page
*page
,
857 bool *dirty
, bool *writeback
)
859 struct address_space
*mapping
;
862 * Anonymous pages are not handled by flushers and must be written
863 * from reclaim context. Do not stall reclaim based on them
865 if (!page_is_file_cache(page
)) {
871 /* By default assume that the page flags are accurate */
872 *dirty
= PageDirty(page
);
873 *writeback
= PageWriteback(page
);
875 /* Verify dirty/writeback state if the filesystem supports it */
876 if (!page_has_private(page
))
879 mapping
= page_mapping(page
);
880 if (mapping
&& mapping
->a_ops
->is_dirty_writeback
)
881 mapping
->a_ops
->is_dirty_writeback(page
, dirty
, writeback
);
885 * shrink_page_list() returns the number of reclaimed pages
887 static unsigned long shrink_page_list(struct list_head
*page_list
,
889 struct scan_control
*sc
,
890 enum ttu_flags ttu_flags
,
891 unsigned long *ret_nr_dirty
,
892 unsigned long *ret_nr_unqueued_dirty
,
893 unsigned long *ret_nr_congested
,
894 unsigned long *ret_nr_writeback
,
895 unsigned long *ret_nr_immediate
,
898 LIST_HEAD(ret_pages
);
899 LIST_HEAD(free_pages
);
901 unsigned long nr_unqueued_dirty
= 0;
902 unsigned long nr_dirty
= 0;
903 unsigned long nr_congested
= 0;
904 unsigned long nr_reclaimed
= 0;
905 unsigned long nr_writeback
= 0;
906 unsigned long nr_immediate
= 0;
910 while (!list_empty(page_list
)) {
911 struct address_space
*mapping
;
914 enum page_references references
= PAGEREF_RECLAIM_CLEAN
;
915 bool dirty
, writeback
;
916 bool lazyfree
= false;
917 int ret
= SWAP_SUCCESS
;
921 page
= lru_to_page(page_list
);
922 list_del(&page
->lru
);
924 if (!trylock_page(page
))
927 VM_BUG_ON_PAGE(PageActive(page
), page
);
928 VM_BUG_ON_PAGE(page_zone(page
) != zone
, page
);
932 if (unlikely(!page_evictable(page
)))
935 if (!sc
->may_unmap
&& page_mapped(page
))
938 /* Double the slab pressure for mapped and swapcache pages */
939 if (page_mapped(page
) || PageSwapCache(page
))
942 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
943 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
946 * The number of dirty pages determines if a zone is marked
947 * reclaim_congested which affects wait_iff_congested. kswapd
948 * will stall and start writing pages if the tail of the LRU
949 * is all dirty unqueued pages.
951 page_check_dirty_writeback(page
, &dirty
, &writeback
);
952 if (dirty
|| writeback
)
955 if (dirty
&& !writeback
)
959 * Treat this page as congested if the underlying BDI is or if
960 * pages are cycling through the LRU so quickly that the
961 * pages marked for immediate reclaim are making it to the
962 * end of the LRU a second time.
964 mapping
= page_mapping(page
);
965 if (((dirty
|| writeback
) && mapping
&&
966 inode_write_congested(mapping
->host
)) ||
967 (writeback
&& PageReclaim(page
)))
971 * If a page at the tail of the LRU is under writeback, there
972 * are three cases to consider.
974 * 1) If reclaim is encountering an excessive number of pages
975 * under writeback and this page is both under writeback and
976 * PageReclaim then it indicates that pages are being queued
977 * for IO but are being recycled through the LRU before the
978 * IO can complete. Waiting on the page itself risks an
979 * indefinite stall if it is impossible to writeback the
980 * page due to IO error or disconnected storage so instead
981 * note that the LRU is being scanned too quickly and the
982 * caller can stall after page list has been processed.
984 * 2) Global or new memcg reclaim encounters a page that is
985 * not marked for immediate reclaim, or the caller does not
986 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
987 * not to fs). In this case mark the page for immediate
988 * reclaim and continue scanning.
990 * Require may_enter_fs because we would wait on fs, which
991 * may not have submitted IO yet. And the loop driver might
992 * enter reclaim, and deadlock if it waits on a page for
993 * which it is needed to do the write (loop masks off
994 * __GFP_IO|__GFP_FS for this reason); but more thought
995 * would probably show more reasons.
997 * 3) Legacy memcg encounters a page that is already marked
998 * PageReclaim. memcg does not have any dirty pages
999 * throttling so we could easily OOM just because too many
1000 * pages are in writeback and there is nothing else to
1001 * reclaim. Wait for the writeback to complete.
1003 if (PageWriteback(page
)) {
1005 if (current_is_kswapd() &&
1006 PageReclaim(page
) &&
1007 test_bit(ZONE_WRITEBACK
, &zone
->flags
)) {
1012 } else if (sane_reclaim(sc
) ||
1013 !PageReclaim(page
) || !may_enter_fs
) {
1015 * This is slightly racy - end_page_writeback()
1016 * might have just cleared PageReclaim, then
1017 * setting PageReclaim here end up interpreted
1018 * as PageReadahead - but that does not matter
1019 * enough to care. What we do want is for this
1020 * page to have PageReclaim set next time memcg
1021 * reclaim reaches the tests above, so it will
1022 * then wait_on_page_writeback() to avoid OOM;
1023 * and it's also appropriate in global reclaim.
1025 SetPageReclaim(page
);
1032 wait_on_page_writeback(page
);
1033 /* then go back and try same page again */
1034 list_add_tail(&page
->lru
, page_list
);
1040 references
= page_check_references(page
, sc
);
1042 switch (references
) {
1043 case PAGEREF_ACTIVATE
:
1044 goto activate_locked
;
1047 case PAGEREF_RECLAIM
:
1048 case PAGEREF_RECLAIM_CLEAN
:
1049 ; /* try to reclaim the page below */
1053 * Anonymous process memory has backing store?
1054 * Try to allocate it some swap space here.
1056 if (PageAnon(page
) && !PageSwapCache(page
)) {
1057 if (!(sc
->gfp_mask
& __GFP_IO
))
1059 if (!add_to_swap(page
, page_list
))
1060 goto activate_locked
;
1064 /* Adding to swap updated mapping */
1065 mapping
= page_mapping(page
);
1069 * The page is mapped into the page tables of one or more
1070 * processes. Try to unmap it here.
1072 if (page_mapped(page
) && mapping
) {
1073 switch (ret
= try_to_unmap(page
, lazyfree
?
1074 (ttu_flags
| TTU_BATCH_FLUSH
| TTU_LZFREE
) :
1075 (ttu_flags
| TTU_BATCH_FLUSH
))) {
1077 goto activate_locked
;
1085 ; /* try to free the page below */
1089 if (PageDirty(page
)) {
1091 * Only kswapd can writeback filesystem pages to
1092 * avoid risk of stack overflow but only writeback
1093 * if many dirty pages have been encountered.
1095 if (page_is_file_cache(page
) &&
1096 (!current_is_kswapd() ||
1097 !test_bit(ZONE_DIRTY
, &zone
->flags
))) {
1099 * Immediately reclaim when written back.
1100 * Similar in principal to deactivate_page()
1101 * except we already have the page isolated
1102 * and know it's dirty
1104 inc_zone_page_state(page
, NR_VMSCAN_IMMEDIATE
);
1105 SetPageReclaim(page
);
1110 if (references
== PAGEREF_RECLAIM_CLEAN
)
1114 if (!sc
->may_writepage
)
1118 * Page is dirty. Flush the TLB if a writable entry
1119 * potentially exists to avoid CPU writes after IO
1120 * starts and then write it out here.
1122 try_to_unmap_flush_dirty();
1123 switch (pageout(page
, mapping
, sc
)) {
1127 goto activate_locked
;
1129 if (PageWriteback(page
))
1131 if (PageDirty(page
))
1135 * A synchronous write - probably a ramdisk. Go
1136 * ahead and try to reclaim the page.
1138 if (!trylock_page(page
))
1140 if (PageDirty(page
) || PageWriteback(page
))
1142 mapping
= page_mapping(page
);
1144 ; /* try to free the page below */
1149 * If the page has buffers, try to free the buffer mappings
1150 * associated with this page. If we succeed we try to free
1153 * We do this even if the page is PageDirty().
1154 * try_to_release_page() does not perform I/O, but it is
1155 * possible for a page to have PageDirty set, but it is actually
1156 * clean (all its buffers are clean). This happens if the
1157 * buffers were written out directly, with submit_bh(). ext3
1158 * will do this, as well as the blockdev mapping.
1159 * try_to_release_page() will discover that cleanness and will
1160 * drop the buffers and mark the page clean - it can be freed.
1162 * Rarely, pages can have buffers and no ->mapping. These are
1163 * the pages which were not successfully invalidated in
1164 * truncate_complete_page(). We try to drop those buffers here
1165 * and if that worked, and the page is no longer mapped into
1166 * process address space (page_count == 1) it can be freed.
1167 * Otherwise, leave the page on the LRU so it is swappable.
1169 if (page_has_private(page
)) {
1170 if (!try_to_release_page(page
, sc
->gfp_mask
))
1171 goto activate_locked
;
1172 if (!mapping
&& page_count(page
) == 1) {
1174 if (put_page_testzero(page
))
1178 * rare race with speculative reference.
1179 * the speculative reference will free
1180 * this page shortly, so we may
1181 * increment nr_reclaimed here (and
1182 * leave it off the LRU).
1191 if (!mapping
|| !__remove_mapping(mapping
, page
, true))
1195 * At this point, we have no other references and there is
1196 * no way to pick any more up (removed from LRU, removed
1197 * from pagecache). Can use non-atomic bitops now (and
1198 * we obviously don't have to worry about waking up a process
1199 * waiting on the page lock, because there are no references.
1201 __ClearPageLocked(page
);
1203 if (ret
== SWAP_LZFREE
)
1204 count_vm_event(PGLAZYFREED
);
1209 * Is there need to periodically free_page_list? It would
1210 * appear not as the counts should be low
1212 list_add(&page
->lru
, &free_pages
);
1216 if (PageSwapCache(page
))
1217 try_to_free_swap(page
);
1219 list_add(&page
->lru
, &ret_pages
);
1223 /* Not a candidate for swapping, so reclaim swap space. */
1224 if (PageSwapCache(page
) && mem_cgroup_swap_full(page
))
1225 try_to_free_swap(page
);
1226 VM_BUG_ON_PAGE(PageActive(page
), page
);
1227 SetPageActive(page
);
1232 list_add(&page
->lru
, &ret_pages
);
1233 VM_BUG_ON_PAGE(PageLRU(page
) || PageUnevictable(page
), page
);
1236 mem_cgroup_uncharge_list(&free_pages
);
1237 try_to_unmap_flush();
1238 free_hot_cold_page_list(&free_pages
, true);
1240 list_splice(&ret_pages
, page_list
);
1241 count_vm_events(PGACTIVATE
, pgactivate
);
1243 *ret_nr_dirty
+= nr_dirty
;
1244 *ret_nr_congested
+= nr_congested
;
1245 *ret_nr_unqueued_dirty
+= nr_unqueued_dirty
;
1246 *ret_nr_writeback
+= nr_writeback
;
1247 *ret_nr_immediate
+= nr_immediate
;
1248 return nr_reclaimed
;
1251 unsigned long reclaim_clean_pages_from_list(struct zone
*zone
,
1252 struct list_head
*page_list
)
1254 struct scan_control sc
= {
1255 .gfp_mask
= GFP_KERNEL
,
1256 .priority
= DEF_PRIORITY
,
1259 unsigned long ret
, dummy1
, dummy2
, dummy3
, dummy4
, dummy5
;
1260 struct page
*page
, *next
;
1261 LIST_HEAD(clean_pages
);
1263 list_for_each_entry_safe(page
, next
, page_list
, lru
) {
1264 if (page_is_file_cache(page
) && !PageDirty(page
) &&
1265 !isolated_balloon_page(page
)) {
1266 ClearPageActive(page
);
1267 list_move(&page
->lru
, &clean_pages
);
1271 ret
= shrink_page_list(&clean_pages
, zone
, &sc
,
1272 TTU_UNMAP
|TTU_IGNORE_ACCESS
,
1273 &dummy1
, &dummy2
, &dummy3
, &dummy4
, &dummy5
, true);
1274 list_splice(&clean_pages
, page_list
);
1275 mod_zone_page_state(zone
, NR_ISOLATED_FILE
, -ret
);
1280 * Attempt to remove the specified page from its LRU. Only take this page
1281 * if it is of the appropriate PageActive status. Pages which are being
1282 * freed elsewhere are also ignored.
1284 * page: page to consider
1285 * mode: one of the LRU isolation modes defined above
1287 * returns 0 on success, -ve errno on failure.
1289 int __isolate_lru_page(struct page
*page
, isolate_mode_t mode
)
1293 /* Only take pages on the LRU. */
1297 /* Compaction should not handle unevictable pages but CMA can do so */
1298 if (PageUnevictable(page
) && !(mode
& ISOLATE_UNEVICTABLE
))
1304 * To minimise LRU disruption, the caller can indicate that it only
1305 * wants to isolate pages it will be able to operate on without
1306 * blocking - clean pages for the most part.
1308 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1309 * is used by reclaim when it is cannot write to backing storage
1311 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1312 * that it is possible to migrate without blocking
1314 if (mode
& (ISOLATE_CLEAN
|ISOLATE_ASYNC_MIGRATE
)) {
1315 /* All the caller can do on PageWriteback is block */
1316 if (PageWriteback(page
))
1319 if (PageDirty(page
)) {
1320 struct address_space
*mapping
;
1322 /* ISOLATE_CLEAN means only clean pages */
1323 if (mode
& ISOLATE_CLEAN
)
1327 * Only pages without mappings or that have a
1328 * ->migratepage callback are possible to migrate
1331 mapping
= page_mapping(page
);
1332 if (mapping
&& !mapping
->a_ops
->migratepage
)
1337 if ((mode
& ISOLATE_UNMAPPED
) && page_mapped(page
))
1340 if (likely(get_page_unless_zero(page
))) {
1342 * Be careful not to clear PageLRU until after we're
1343 * sure the page is not being freed elsewhere -- the
1344 * page release code relies on it.
1354 * zone->lru_lock is heavily contended. Some of the functions that
1355 * shrink the lists perform better by taking out a batch of pages
1356 * and working on them outside the LRU lock.
1358 * For pagecache intensive workloads, this function is the hottest
1359 * spot in the kernel (apart from copy_*_user functions).
1361 * Appropriate locks must be held before calling this function.
1363 * @nr_to_scan: The number of pages to look through on the list.
1364 * @lruvec: The LRU vector to pull pages from.
1365 * @dst: The temp list to put pages on to.
1366 * @nr_scanned: The number of pages that were scanned.
1367 * @sc: The scan_control struct for this reclaim session
1368 * @mode: One of the LRU isolation modes
1369 * @lru: LRU list id for isolating
1371 * returns how many pages were moved onto *@dst.
1373 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1374 struct lruvec
*lruvec
, struct list_head
*dst
,
1375 unsigned long *nr_scanned
, struct scan_control
*sc
,
1376 isolate_mode_t mode
, enum lru_list lru
)
1378 struct list_head
*src
= &lruvec
->lists
[lru
];
1379 unsigned long nr_taken
= 0;
1382 for (scan
= 0; scan
< nr_to_scan
&& nr_taken
< nr_to_scan
&&
1383 !list_empty(src
); scan
++) {
1387 page
= lru_to_page(src
);
1388 prefetchw_prev_lru_page(page
, src
, flags
);
1390 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
1392 switch (__isolate_lru_page(page
, mode
)) {
1394 nr_pages
= hpage_nr_pages(page
);
1395 mem_cgroup_update_lru_size(lruvec
, lru
, -nr_pages
);
1396 list_move(&page
->lru
, dst
);
1397 nr_taken
+= nr_pages
;
1401 /* else it is being freed elsewhere */
1402 list_move(&page
->lru
, src
);
1411 trace_mm_vmscan_lru_isolate(sc
->order
, nr_to_scan
, scan
,
1412 nr_taken
, mode
, is_file_lru(lru
));
1417 * isolate_lru_page - tries to isolate a page from its LRU list
1418 * @page: page to isolate from its LRU list
1420 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1421 * vmstat statistic corresponding to whatever LRU list the page was on.
1423 * Returns 0 if the page was removed from an LRU list.
1424 * Returns -EBUSY if the page was not on an LRU list.
1426 * The returned page will have PageLRU() cleared. If it was found on
1427 * the active list, it will have PageActive set. If it was found on
1428 * the unevictable list, it will have the PageUnevictable bit set. That flag
1429 * may need to be cleared by the caller before letting the page go.
1431 * The vmstat statistic corresponding to the list on which the page was
1432 * found will be decremented.
1435 * (1) Must be called with an elevated refcount on the page. This is a
1436 * fundamentnal difference from isolate_lru_pages (which is called
1437 * without a stable reference).
1438 * (2) the lru_lock must not be held.
1439 * (3) interrupts must be enabled.
1441 int isolate_lru_page(struct page
*page
)
1445 VM_BUG_ON_PAGE(!page_count(page
), page
);
1446 VM_BUG_ON_PAGE(PageTail(page
), page
);
1448 if (PageLRU(page
)) {
1449 struct zone
*zone
= page_zone(page
);
1450 struct lruvec
*lruvec
;
1452 spin_lock_irq(&zone
->lru_lock
);
1453 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
1454 if (PageLRU(page
)) {
1455 int lru
= page_lru(page
);
1458 del_page_from_lru_list(page
, lruvec
, lru
);
1461 spin_unlock_irq(&zone
->lru_lock
);
1467 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1468 * then get resheduled. When there are massive number of tasks doing page
1469 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1470 * the LRU list will go small and be scanned faster than necessary, leading to
1471 * unnecessary swapping, thrashing and OOM.
1473 static int too_many_isolated(struct zone
*zone
, int file
,
1474 struct scan_control
*sc
)
1476 unsigned long inactive
, isolated
;
1478 if (current_is_kswapd())
1481 if (!sane_reclaim(sc
))
1485 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1486 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
);
1488 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1489 isolated
= zone_page_state(zone
, NR_ISOLATED_ANON
);
1493 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1494 * won't get blocked by normal direct-reclaimers, forming a circular
1497 if ((sc
->gfp_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
1500 return isolated
> inactive
;
1503 static noinline_for_stack
void
1504 putback_inactive_pages(struct lruvec
*lruvec
, struct list_head
*page_list
)
1506 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1507 struct zone
*zone
= lruvec_zone(lruvec
);
1508 LIST_HEAD(pages_to_free
);
1511 * Put back any unfreeable pages.
1513 while (!list_empty(page_list
)) {
1514 struct page
*page
= lru_to_page(page_list
);
1517 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1518 list_del(&page
->lru
);
1519 if (unlikely(!page_evictable(page
))) {
1520 spin_unlock_irq(&zone
->lru_lock
);
1521 putback_lru_page(page
);
1522 spin_lock_irq(&zone
->lru_lock
);
1526 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
1529 lru
= page_lru(page
);
1530 add_page_to_lru_list(page
, lruvec
, lru
);
1532 if (is_active_lru(lru
)) {
1533 int file
= is_file_lru(lru
);
1534 int numpages
= hpage_nr_pages(page
);
1535 reclaim_stat
->recent_rotated
[file
] += numpages
;
1537 if (put_page_testzero(page
)) {
1538 __ClearPageLRU(page
);
1539 __ClearPageActive(page
);
1540 del_page_from_lru_list(page
, lruvec
, lru
);
1542 if (unlikely(PageCompound(page
))) {
1543 spin_unlock_irq(&zone
->lru_lock
);
1544 mem_cgroup_uncharge(page
);
1545 (*get_compound_page_dtor(page
))(page
);
1546 spin_lock_irq(&zone
->lru_lock
);
1548 list_add(&page
->lru
, &pages_to_free
);
1553 * To save our caller's stack, now use input list for pages to free.
1555 list_splice(&pages_to_free
, page_list
);
1559 * If a kernel thread (such as nfsd for loop-back mounts) services
1560 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1561 * In that case we should only throttle if the backing device it is
1562 * writing to is congested. In other cases it is safe to throttle.
1564 static int current_may_throttle(void)
1566 return !(current
->flags
& PF_LESS_THROTTLE
) ||
1567 current
->backing_dev_info
== NULL
||
1568 bdi_write_congested(current
->backing_dev_info
);
1572 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1573 * of reclaimed pages
1575 static noinline_for_stack
unsigned long
1576 shrink_inactive_list(unsigned long nr_to_scan
, struct lruvec
*lruvec
,
1577 struct scan_control
*sc
, enum lru_list lru
)
1579 LIST_HEAD(page_list
);
1580 unsigned long nr_scanned
;
1581 unsigned long nr_reclaimed
= 0;
1582 unsigned long nr_taken
;
1583 unsigned long nr_dirty
= 0;
1584 unsigned long nr_congested
= 0;
1585 unsigned long nr_unqueued_dirty
= 0;
1586 unsigned long nr_writeback
= 0;
1587 unsigned long nr_immediate
= 0;
1588 isolate_mode_t isolate_mode
= 0;
1589 int file
= is_file_lru(lru
);
1590 struct zone
*zone
= lruvec_zone(lruvec
);
1591 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1593 while (unlikely(too_many_isolated(zone
, file
, sc
))) {
1594 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1596 /* We are about to die and free our memory. Return now. */
1597 if (fatal_signal_pending(current
))
1598 return SWAP_CLUSTER_MAX
;
1604 isolate_mode
|= ISOLATE_UNMAPPED
;
1605 if (!sc
->may_writepage
)
1606 isolate_mode
|= ISOLATE_CLEAN
;
1608 spin_lock_irq(&zone
->lru_lock
);
1610 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &page_list
,
1611 &nr_scanned
, sc
, isolate_mode
, lru
);
1613 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, -nr_taken
);
1614 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1616 if (global_reclaim(sc
)) {
1617 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, nr_scanned
);
1618 if (current_is_kswapd())
1619 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
, nr_scanned
);
1621 __count_zone_vm_events(PGSCAN_DIRECT
, zone
, nr_scanned
);
1623 spin_unlock_irq(&zone
->lru_lock
);
1628 nr_reclaimed
= shrink_page_list(&page_list
, zone
, sc
, TTU_UNMAP
,
1629 &nr_dirty
, &nr_unqueued_dirty
, &nr_congested
,
1630 &nr_writeback
, &nr_immediate
,
1633 spin_lock_irq(&zone
->lru_lock
);
1635 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1637 if (global_reclaim(sc
)) {
1638 if (current_is_kswapd())
1639 __count_zone_vm_events(PGSTEAL_KSWAPD
, zone
,
1642 __count_zone_vm_events(PGSTEAL_DIRECT
, zone
,
1646 putback_inactive_pages(lruvec
, &page_list
);
1648 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1650 spin_unlock_irq(&zone
->lru_lock
);
1652 mem_cgroup_uncharge_list(&page_list
);
1653 free_hot_cold_page_list(&page_list
, true);
1656 * If reclaim is isolating dirty pages under writeback, it implies
1657 * that the long-lived page allocation rate is exceeding the page
1658 * laundering rate. Either the global limits are not being effective
1659 * at throttling processes due to the page distribution throughout
1660 * zones or there is heavy usage of a slow backing device. The
1661 * only option is to throttle from reclaim context which is not ideal
1662 * as there is no guarantee the dirtying process is throttled in the
1663 * same way balance_dirty_pages() manages.
1665 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1666 * of pages under pages flagged for immediate reclaim and stall if any
1667 * are encountered in the nr_immediate check below.
1669 if (nr_writeback
&& nr_writeback
== nr_taken
)
1670 set_bit(ZONE_WRITEBACK
, &zone
->flags
);
1673 * Legacy memcg will stall in page writeback so avoid forcibly
1676 if (sane_reclaim(sc
)) {
1678 * Tag a zone as congested if all the dirty pages scanned were
1679 * backed by a congested BDI and wait_iff_congested will stall.
1681 if (nr_dirty
&& nr_dirty
== nr_congested
)
1682 set_bit(ZONE_CONGESTED
, &zone
->flags
);
1685 * If dirty pages are scanned that are not queued for IO, it
1686 * implies that flushers are not keeping up. In this case, flag
1687 * the zone ZONE_DIRTY and kswapd will start writing pages from
1690 if (nr_unqueued_dirty
== nr_taken
)
1691 set_bit(ZONE_DIRTY
, &zone
->flags
);
1694 * If kswapd scans pages marked marked for immediate
1695 * reclaim and under writeback (nr_immediate), it implies
1696 * that pages are cycling through the LRU faster than
1697 * they are written so also forcibly stall.
1699 if (nr_immediate
&& current_may_throttle())
1700 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1704 * Stall direct reclaim for IO completions if underlying BDIs or zone
1705 * is congested. Allow kswapd to continue until it starts encountering
1706 * unqueued dirty pages or cycling through the LRU too quickly.
1708 if (!sc
->hibernation_mode
&& !current_is_kswapd() &&
1709 current_may_throttle())
1710 wait_iff_congested(zone
, BLK_RW_ASYNC
, HZ
/10);
1712 trace_mm_vmscan_lru_shrink_inactive(zone
, nr_scanned
, nr_reclaimed
,
1713 sc
->priority
, file
);
1714 return nr_reclaimed
;
1718 * This moves pages from the active list to the inactive list.
1720 * We move them the other way if the page is referenced by one or more
1721 * processes, from rmap.
1723 * If the pages are mostly unmapped, the processing is fast and it is
1724 * appropriate to hold zone->lru_lock across the whole operation. But if
1725 * the pages are mapped, the processing is slow (page_referenced()) so we
1726 * should drop zone->lru_lock around each page. It's impossible to balance
1727 * this, so instead we remove the pages from the LRU while processing them.
1728 * It is safe to rely on PG_active against the non-LRU pages in here because
1729 * nobody will play with that bit on a non-LRU page.
1731 * The downside is that we have to touch page->_count against each page.
1732 * But we had to alter page->flags anyway.
1735 static void move_active_pages_to_lru(struct lruvec
*lruvec
,
1736 struct list_head
*list
,
1737 struct list_head
*pages_to_free
,
1740 struct zone
*zone
= lruvec_zone(lruvec
);
1741 unsigned long pgmoved
= 0;
1745 while (!list_empty(list
)) {
1746 page
= lru_to_page(list
);
1747 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
1749 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1752 nr_pages
= hpage_nr_pages(page
);
1753 mem_cgroup_update_lru_size(lruvec
, lru
, nr_pages
);
1754 list_move(&page
->lru
, &lruvec
->lists
[lru
]);
1755 pgmoved
+= nr_pages
;
1757 if (put_page_testzero(page
)) {
1758 __ClearPageLRU(page
);
1759 __ClearPageActive(page
);
1760 del_page_from_lru_list(page
, lruvec
, lru
);
1762 if (unlikely(PageCompound(page
))) {
1763 spin_unlock_irq(&zone
->lru_lock
);
1764 mem_cgroup_uncharge(page
);
1765 (*get_compound_page_dtor(page
))(page
);
1766 spin_lock_irq(&zone
->lru_lock
);
1768 list_add(&page
->lru
, pages_to_free
);
1771 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1772 if (!is_active_lru(lru
))
1773 __count_vm_events(PGDEACTIVATE
, pgmoved
);
1776 static void shrink_active_list(unsigned long nr_to_scan
,
1777 struct lruvec
*lruvec
,
1778 struct scan_control
*sc
,
1781 unsigned long nr_taken
;
1782 unsigned long nr_scanned
;
1783 unsigned long vm_flags
;
1784 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1785 LIST_HEAD(l_active
);
1786 LIST_HEAD(l_inactive
);
1788 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1789 unsigned long nr_rotated
= 0;
1790 isolate_mode_t isolate_mode
= 0;
1791 int file
= is_file_lru(lru
);
1792 struct zone
*zone
= lruvec_zone(lruvec
);
1797 isolate_mode
|= ISOLATE_UNMAPPED
;
1798 if (!sc
->may_writepage
)
1799 isolate_mode
|= ISOLATE_CLEAN
;
1801 spin_lock_irq(&zone
->lru_lock
);
1803 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &l_hold
,
1804 &nr_scanned
, sc
, isolate_mode
, lru
);
1805 if (global_reclaim(sc
))
1806 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, nr_scanned
);
1808 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1810 __count_zone_vm_events(PGREFILL
, zone
, nr_scanned
);
1811 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, -nr_taken
);
1812 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1813 spin_unlock_irq(&zone
->lru_lock
);
1815 while (!list_empty(&l_hold
)) {
1817 page
= lru_to_page(&l_hold
);
1818 list_del(&page
->lru
);
1820 if (unlikely(!page_evictable(page
))) {
1821 putback_lru_page(page
);
1825 if (unlikely(buffer_heads_over_limit
)) {
1826 if (page_has_private(page
) && trylock_page(page
)) {
1827 if (page_has_private(page
))
1828 try_to_release_page(page
, 0);
1833 if (page_referenced(page
, 0, sc
->target_mem_cgroup
,
1835 nr_rotated
+= hpage_nr_pages(page
);
1837 * Identify referenced, file-backed active pages and
1838 * give them one more trip around the active list. So
1839 * that executable code get better chances to stay in
1840 * memory under moderate memory pressure. Anon pages
1841 * are not likely to be evicted by use-once streaming
1842 * IO, plus JVM can create lots of anon VM_EXEC pages,
1843 * so we ignore them here.
1845 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
1846 list_add(&page
->lru
, &l_active
);
1851 ClearPageActive(page
); /* we are de-activating */
1852 list_add(&page
->lru
, &l_inactive
);
1856 * Move pages back to the lru list.
1858 spin_lock_irq(&zone
->lru_lock
);
1860 * Count referenced pages from currently used mappings as rotated,
1861 * even though only some of them are actually re-activated. This
1862 * helps balance scan pressure between file and anonymous pages in
1865 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
1867 move_active_pages_to_lru(lruvec
, &l_active
, &l_hold
, lru
);
1868 move_active_pages_to_lru(lruvec
, &l_inactive
, &l_hold
, lru
- LRU_ACTIVE
);
1869 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1870 spin_unlock_irq(&zone
->lru_lock
);
1872 mem_cgroup_uncharge_list(&l_hold
);
1873 free_hot_cold_page_list(&l_hold
, true);
1877 static bool inactive_anon_is_low_global(struct zone
*zone
)
1879 unsigned long active
, inactive
;
1881 active
= zone_page_state(zone
, NR_ACTIVE_ANON
);
1882 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1884 return inactive
* zone
->inactive_ratio
< active
;
1888 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1889 * @lruvec: LRU vector to check
1891 * Returns true if the zone does not have enough inactive anon pages,
1892 * meaning some active anon pages need to be deactivated.
1894 static bool inactive_anon_is_low(struct lruvec
*lruvec
)
1897 * If we don't have swap space, anonymous page deactivation
1900 if (!total_swap_pages
)
1903 if (!mem_cgroup_disabled())
1904 return mem_cgroup_inactive_anon_is_low(lruvec
);
1906 return inactive_anon_is_low_global(lruvec_zone(lruvec
));
1909 static inline bool inactive_anon_is_low(struct lruvec
*lruvec
)
1916 * inactive_file_is_low - check if file pages need to be deactivated
1917 * @lruvec: LRU vector to check
1919 * When the system is doing streaming IO, memory pressure here
1920 * ensures that active file pages get deactivated, until more
1921 * than half of the file pages are on the inactive list.
1923 * Once we get to that situation, protect the system's working
1924 * set from being evicted by disabling active file page aging.
1926 * This uses a different ratio than the anonymous pages, because
1927 * the page cache uses a use-once replacement algorithm.
1929 static bool inactive_file_is_low(struct lruvec
*lruvec
)
1931 unsigned long inactive
;
1932 unsigned long active
;
1934 inactive
= get_lru_size(lruvec
, LRU_INACTIVE_FILE
);
1935 active
= get_lru_size(lruvec
, LRU_ACTIVE_FILE
);
1937 return active
> inactive
;
1940 static bool inactive_list_is_low(struct lruvec
*lruvec
, enum lru_list lru
)
1942 if (is_file_lru(lru
))
1943 return inactive_file_is_low(lruvec
);
1945 return inactive_anon_is_low(lruvec
);
1948 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1949 struct lruvec
*lruvec
, struct scan_control
*sc
)
1951 if (is_active_lru(lru
)) {
1952 if (inactive_list_is_low(lruvec
, lru
))
1953 shrink_active_list(nr_to_scan
, lruvec
, sc
, lru
);
1957 return shrink_inactive_list(nr_to_scan
, lruvec
, sc
, lru
);
1968 * Determine how aggressively the anon and file LRU lists should be
1969 * scanned. The relative value of each set of LRU lists is determined
1970 * by looking at the fraction of the pages scanned we did rotate back
1971 * onto the active list instead of evict.
1973 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1974 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1976 static void get_scan_count(struct lruvec
*lruvec
, struct mem_cgroup
*memcg
,
1977 struct scan_control
*sc
, unsigned long *nr
,
1978 unsigned long *lru_pages
)
1980 int swappiness
= mem_cgroup_swappiness(memcg
);
1981 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1983 u64 denominator
= 0; /* gcc */
1984 struct zone
*zone
= lruvec_zone(lruvec
);
1985 unsigned long anon_prio
, file_prio
;
1986 enum scan_balance scan_balance
;
1987 unsigned long anon
, file
;
1988 bool force_scan
= false;
1989 unsigned long ap
, fp
;
1995 * If the zone or memcg is small, nr[l] can be 0. This
1996 * results in no scanning on this priority and a potential
1997 * priority drop. Global direct reclaim can go to the next
1998 * zone and tends to have no problems. Global kswapd is for
1999 * zone balancing and it needs to scan a minimum amount. When
2000 * reclaiming for a memcg, a priority drop can cause high
2001 * latencies, so it's better to scan a minimum amount there as
2004 if (current_is_kswapd()) {
2005 if (!zone_reclaimable(zone
))
2007 if (!mem_cgroup_online(memcg
))
2010 if (!global_reclaim(sc
))
2013 /* If we have no swap space, do not bother scanning anon pages. */
2014 if (!sc
->may_swap
|| mem_cgroup_get_nr_swap_pages(memcg
) <= 0) {
2015 scan_balance
= SCAN_FILE
;
2020 * Global reclaim will swap to prevent OOM even with no
2021 * swappiness, but memcg users want to use this knob to
2022 * disable swapping for individual groups completely when
2023 * using the memory controller's swap limit feature would be
2026 if (!global_reclaim(sc
) && !swappiness
) {
2027 scan_balance
= SCAN_FILE
;
2032 * Do not apply any pressure balancing cleverness when the
2033 * system is close to OOM, scan both anon and file equally
2034 * (unless the swappiness setting disagrees with swapping).
2036 if (!sc
->priority
&& swappiness
) {
2037 scan_balance
= SCAN_EQUAL
;
2042 * Prevent the reclaimer from falling into the cache trap: as
2043 * cache pages start out inactive, every cache fault will tip
2044 * the scan balance towards the file LRU. And as the file LRU
2045 * shrinks, so does the window for rotation from references.
2046 * This means we have a runaway feedback loop where a tiny
2047 * thrashing file LRU becomes infinitely more attractive than
2048 * anon pages. Try to detect this based on file LRU size.
2050 if (global_reclaim(sc
)) {
2051 unsigned long zonefile
;
2052 unsigned long zonefree
;
2054 zonefree
= zone_page_state(zone
, NR_FREE_PAGES
);
2055 zonefile
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
2056 zone_page_state(zone
, NR_INACTIVE_FILE
);
2058 if (unlikely(zonefile
+ zonefree
<= high_wmark_pages(zone
))) {
2059 scan_balance
= SCAN_ANON
;
2065 * If there is enough inactive page cache, i.e. if the size of the
2066 * inactive list is greater than that of the active list *and* the
2067 * inactive list actually has some pages to scan on this priority, we
2068 * do not reclaim anything from the anonymous working set right now.
2069 * Without the second condition we could end up never scanning an
2070 * lruvec even if it has plenty of old anonymous pages unless the
2071 * system is under heavy pressure.
2073 if (!inactive_file_is_low(lruvec
) &&
2074 get_lru_size(lruvec
, LRU_INACTIVE_FILE
) >> sc
->priority
) {
2075 scan_balance
= SCAN_FILE
;
2079 scan_balance
= SCAN_FRACT
;
2082 * With swappiness at 100, anonymous and file have the same priority.
2083 * This scanning priority is essentially the inverse of IO cost.
2085 anon_prio
= swappiness
;
2086 file_prio
= 200 - anon_prio
;
2089 * OK, so we have swap space and a fair amount of page cache
2090 * pages. We use the recently rotated / recently scanned
2091 * ratios to determine how valuable each cache is.
2093 * Because workloads change over time (and to avoid overflow)
2094 * we keep these statistics as a floating average, which ends
2095 * up weighing recent references more than old ones.
2097 * anon in [0], file in [1]
2100 anon
= get_lru_size(lruvec
, LRU_ACTIVE_ANON
) +
2101 get_lru_size(lruvec
, LRU_INACTIVE_ANON
);
2102 file
= get_lru_size(lruvec
, LRU_ACTIVE_FILE
) +
2103 get_lru_size(lruvec
, LRU_INACTIVE_FILE
);
2105 spin_lock_irq(&zone
->lru_lock
);
2106 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
2107 reclaim_stat
->recent_scanned
[0] /= 2;
2108 reclaim_stat
->recent_rotated
[0] /= 2;
2111 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
2112 reclaim_stat
->recent_scanned
[1] /= 2;
2113 reclaim_stat
->recent_rotated
[1] /= 2;
2117 * The amount of pressure on anon vs file pages is inversely
2118 * proportional to the fraction of recently scanned pages on
2119 * each list that were recently referenced and in active use.
2121 ap
= anon_prio
* (reclaim_stat
->recent_scanned
[0] + 1);
2122 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
2124 fp
= file_prio
* (reclaim_stat
->recent_scanned
[1] + 1);
2125 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
2126 spin_unlock_irq(&zone
->lru_lock
);
2130 denominator
= ap
+ fp
+ 1;
2132 some_scanned
= false;
2133 /* Only use force_scan on second pass. */
2134 for (pass
= 0; !some_scanned
&& pass
< 2; pass
++) {
2136 for_each_evictable_lru(lru
) {
2137 int file
= is_file_lru(lru
);
2141 size
= get_lru_size(lruvec
, lru
);
2142 scan
= size
>> sc
->priority
;
2144 if (!scan
&& pass
&& force_scan
)
2145 scan
= min(size
, SWAP_CLUSTER_MAX
);
2147 switch (scan_balance
) {
2149 /* Scan lists relative to size */
2153 * Scan types proportional to swappiness and
2154 * their relative recent reclaim efficiency.
2156 scan
= div64_u64(scan
* fraction
[file
],
2161 /* Scan one type exclusively */
2162 if ((scan_balance
== SCAN_FILE
) != file
) {
2168 /* Look ma, no brain */
2176 * Skip the second pass and don't force_scan,
2177 * if we found something to scan.
2179 some_scanned
|= !!scan
;
2184 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2185 static void init_tlb_ubc(void)
2188 * This deliberately does not clear the cpumask as it's expensive
2189 * and unnecessary. If there happens to be data in there then the
2190 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2191 * then will be cleared.
2193 current
->tlb_ubc
.flush_required
= false;
2196 static inline void init_tlb_ubc(void)
2199 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2202 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2204 static void shrink_zone_memcg(struct zone
*zone
, struct mem_cgroup
*memcg
,
2205 struct scan_control
*sc
, unsigned long *lru_pages
)
2207 struct lruvec
*lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
2208 unsigned long nr
[NR_LRU_LISTS
];
2209 unsigned long targets
[NR_LRU_LISTS
];
2210 unsigned long nr_to_scan
;
2212 unsigned long nr_reclaimed
= 0;
2213 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
2214 struct blk_plug plug
;
2217 get_scan_count(lruvec
, memcg
, sc
, nr
, lru_pages
);
2219 /* Record the original scan target for proportional adjustments later */
2220 memcpy(targets
, nr
, sizeof(nr
));
2223 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2224 * event that can occur when there is little memory pressure e.g.
2225 * multiple streaming readers/writers. Hence, we do not abort scanning
2226 * when the requested number of pages are reclaimed when scanning at
2227 * DEF_PRIORITY on the assumption that the fact we are direct
2228 * reclaiming implies that kswapd is not keeping up and it is best to
2229 * do a batch of work at once. For memcg reclaim one check is made to
2230 * abort proportional reclaim if either the file or anon lru has already
2231 * dropped to zero at the first pass.
2233 scan_adjusted
= (global_reclaim(sc
) && !current_is_kswapd() &&
2234 sc
->priority
== DEF_PRIORITY
);
2238 blk_start_plug(&plug
);
2239 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
2240 nr
[LRU_INACTIVE_FILE
]) {
2241 unsigned long nr_anon
, nr_file
, percentage
;
2242 unsigned long nr_scanned
;
2244 for_each_evictable_lru(lru
) {
2246 nr_to_scan
= min(nr
[lru
], SWAP_CLUSTER_MAX
);
2247 nr
[lru
] -= nr_to_scan
;
2249 nr_reclaimed
+= shrink_list(lru
, nr_to_scan
,
2254 if (nr_reclaimed
< nr_to_reclaim
|| scan_adjusted
)
2258 * For kswapd and memcg, reclaim at least the number of pages
2259 * requested. Ensure that the anon and file LRUs are scanned
2260 * proportionally what was requested by get_scan_count(). We
2261 * stop reclaiming one LRU and reduce the amount scanning
2262 * proportional to the original scan target.
2264 nr_file
= nr
[LRU_INACTIVE_FILE
] + nr
[LRU_ACTIVE_FILE
];
2265 nr_anon
= nr
[LRU_INACTIVE_ANON
] + nr
[LRU_ACTIVE_ANON
];
2268 * It's just vindictive to attack the larger once the smaller
2269 * has gone to zero. And given the way we stop scanning the
2270 * smaller below, this makes sure that we only make one nudge
2271 * towards proportionality once we've got nr_to_reclaim.
2273 if (!nr_file
|| !nr_anon
)
2276 if (nr_file
> nr_anon
) {
2277 unsigned long scan_target
= targets
[LRU_INACTIVE_ANON
] +
2278 targets
[LRU_ACTIVE_ANON
] + 1;
2280 percentage
= nr_anon
* 100 / scan_target
;
2282 unsigned long scan_target
= targets
[LRU_INACTIVE_FILE
] +
2283 targets
[LRU_ACTIVE_FILE
] + 1;
2285 percentage
= nr_file
* 100 / scan_target
;
2288 /* Stop scanning the smaller of the LRU */
2290 nr
[lru
+ LRU_ACTIVE
] = 0;
2293 * Recalculate the other LRU scan count based on its original
2294 * scan target and the percentage scanning already complete
2296 lru
= (lru
== LRU_FILE
) ? LRU_BASE
: LRU_FILE
;
2297 nr_scanned
= targets
[lru
] - nr
[lru
];
2298 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2299 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2302 nr_scanned
= targets
[lru
] - nr
[lru
];
2303 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2304 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2306 scan_adjusted
= true;
2308 blk_finish_plug(&plug
);
2309 sc
->nr_reclaimed
+= nr_reclaimed
;
2312 * Even if we did not try to evict anon pages at all, we want to
2313 * rebalance the anon lru active/inactive ratio.
2315 if (inactive_anon_is_low(lruvec
))
2316 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2317 sc
, LRU_ACTIVE_ANON
);
2319 throttle_vm_writeout(sc
->gfp_mask
);
2322 /* Use reclaim/compaction for costly allocs or under memory pressure */
2323 static bool in_reclaim_compaction(struct scan_control
*sc
)
2325 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
2326 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
||
2327 sc
->priority
< DEF_PRIORITY
- 2))
2334 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2335 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2336 * true if more pages should be reclaimed such that when the page allocator
2337 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2338 * It will give up earlier than that if there is difficulty reclaiming pages.
2340 static inline bool should_continue_reclaim(struct zone
*zone
,
2341 unsigned long nr_reclaimed
,
2342 unsigned long nr_scanned
,
2343 struct scan_control
*sc
)
2345 unsigned long pages_for_compaction
;
2346 unsigned long inactive_lru_pages
;
2348 /* If not in reclaim/compaction mode, stop */
2349 if (!in_reclaim_compaction(sc
))
2352 /* Consider stopping depending on scan and reclaim activity */
2353 if (sc
->gfp_mask
& __GFP_REPEAT
) {
2355 * For __GFP_REPEAT allocations, stop reclaiming if the
2356 * full LRU list has been scanned and we are still failing
2357 * to reclaim pages. This full LRU scan is potentially
2358 * expensive but a __GFP_REPEAT caller really wants to succeed
2360 if (!nr_reclaimed
&& !nr_scanned
)
2364 * For non-__GFP_REPEAT allocations which can presumably
2365 * fail without consequence, stop if we failed to reclaim
2366 * any pages from the last SWAP_CLUSTER_MAX number of
2367 * pages that were scanned. This will return to the
2368 * caller faster at the risk reclaim/compaction and
2369 * the resulting allocation attempt fails
2376 * If we have not reclaimed enough pages for compaction and the
2377 * inactive lists are large enough, continue reclaiming
2379 pages_for_compaction
= (2UL << sc
->order
);
2380 inactive_lru_pages
= zone_page_state(zone
, NR_INACTIVE_FILE
);
2381 if (get_nr_swap_pages() > 0)
2382 inactive_lru_pages
+= zone_page_state(zone
, NR_INACTIVE_ANON
);
2383 if (sc
->nr_reclaimed
< pages_for_compaction
&&
2384 inactive_lru_pages
> pages_for_compaction
)
2387 /* If compaction would go ahead or the allocation would succeed, stop */
2388 switch (compaction_suitable(zone
, sc
->order
, 0, 0)) {
2389 case COMPACT_PARTIAL
:
2390 case COMPACT_CONTINUE
:
2397 static bool shrink_zone(struct zone
*zone
, struct scan_control
*sc
,
2400 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2401 unsigned long nr_reclaimed
, nr_scanned
;
2402 bool reclaimable
= false;
2405 struct mem_cgroup
*root
= sc
->target_mem_cgroup
;
2406 struct mem_cgroup_reclaim_cookie reclaim
= {
2408 .priority
= sc
->priority
,
2410 unsigned long zone_lru_pages
= 0;
2411 struct mem_cgroup
*memcg
;
2413 nr_reclaimed
= sc
->nr_reclaimed
;
2414 nr_scanned
= sc
->nr_scanned
;
2416 memcg
= mem_cgroup_iter(root
, NULL
, &reclaim
);
2418 unsigned long lru_pages
;
2419 unsigned long reclaimed
;
2420 unsigned long scanned
;
2422 if (mem_cgroup_low(root
, memcg
)) {
2423 if (!sc
->may_thrash
)
2425 mem_cgroup_events(memcg
, MEMCG_LOW
, 1);
2428 reclaimed
= sc
->nr_reclaimed
;
2429 scanned
= sc
->nr_scanned
;
2431 shrink_zone_memcg(zone
, memcg
, sc
, &lru_pages
);
2432 zone_lru_pages
+= lru_pages
;
2434 if (memcg
&& is_classzone
)
2435 shrink_slab(sc
->gfp_mask
, zone_to_nid(zone
),
2436 memcg
, sc
->nr_scanned
- scanned
,
2439 /* Record the group's reclaim efficiency */
2440 vmpressure(sc
->gfp_mask
, memcg
, false,
2441 sc
->nr_scanned
- scanned
,
2442 sc
->nr_reclaimed
- reclaimed
);
2445 * Direct reclaim and kswapd have to scan all memory
2446 * cgroups to fulfill the overall scan target for the
2449 * Limit reclaim, on the other hand, only cares about
2450 * nr_to_reclaim pages to be reclaimed and it will
2451 * retry with decreasing priority if one round over the
2452 * whole hierarchy is not sufficient.
2454 if (!global_reclaim(sc
) &&
2455 sc
->nr_reclaimed
>= sc
->nr_to_reclaim
) {
2456 mem_cgroup_iter_break(root
, memcg
);
2459 } while ((memcg
= mem_cgroup_iter(root
, memcg
, &reclaim
)));
2462 * Shrink the slab caches in the same proportion that
2463 * the eligible LRU pages were scanned.
2465 if (global_reclaim(sc
) && is_classzone
)
2466 shrink_slab(sc
->gfp_mask
, zone_to_nid(zone
), NULL
,
2467 sc
->nr_scanned
- nr_scanned
,
2470 if (reclaim_state
) {
2471 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2472 reclaim_state
->reclaimed_slab
= 0;
2475 /* Record the subtree's reclaim efficiency */
2476 vmpressure(sc
->gfp_mask
, sc
->target_mem_cgroup
, true,
2477 sc
->nr_scanned
- nr_scanned
,
2478 sc
->nr_reclaimed
- nr_reclaimed
);
2480 if (sc
->nr_reclaimed
- nr_reclaimed
)
2483 } while (should_continue_reclaim(zone
, sc
->nr_reclaimed
- nr_reclaimed
,
2484 sc
->nr_scanned
- nr_scanned
, sc
));
2490 * Returns true if compaction should go ahead for a high-order request, or
2491 * the high-order allocation would succeed without compaction.
2493 static inline bool compaction_ready(struct zone
*zone
, int order
)
2495 unsigned long balance_gap
, watermark
;
2499 * Compaction takes time to run and there are potentially other
2500 * callers using the pages just freed. Continue reclaiming until
2501 * there is a buffer of free pages available to give compaction
2502 * a reasonable chance of completing and allocating the page
2504 balance_gap
= min(low_wmark_pages(zone
), DIV_ROUND_UP(
2505 zone
->managed_pages
, KSWAPD_ZONE_BALANCE_GAP_RATIO
));
2506 watermark
= high_wmark_pages(zone
) + balance_gap
+ (2UL << order
);
2507 watermark_ok
= zone_watermark_ok_safe(zone
, 0, watermark
, 0);
2510 * If compaction is deferred, reclaim up to a point where
2511 * compaction will have a chance of success when re-enabled
2513 if (compaction_deferred(zone
, order
))
2514 return watermark_ok
;
2517 * If compaction is not ready to start and allocation is not likely
2518 * to succeed without it, then keep reclaiming.
2520 if (compaction_suitable(zone
, order
, 0, 0) == COMPACT_SKIPPED
)
2523 return watermark_ok
;
2527 * This is the direct reclaim path, for page-allocating processes. We only
2528 * try to reclaim pages from zones which will satisfy the caller's allocation
2531 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2533 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2535 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2536 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2537 * zone defense algorithm.
2539 * If a zone is deemed to be full of pinned pages then just give it a light
2540 * scan then give up on it.
2542 * Returns true if a zone was reclaimable.
2544 static bool shrink_zones(struct zonelist
*zonelist
, struct scan_control
*sc
)
2548 unsigned long nr_soft_reclaimed
;
2549 unsigned long nr_soft_scanned
;
2551 enum zone_type requested_highidx
= gfp_zone(sc
->gfp_mask
);
2552 bool reclaimable
= false;
2555 * If the number of buffer_heads in the machine exceeds the maximum
2556 * allowed level, force direct reclaim to scan the highmem zone as
2557 * highmem pages could be pinning lowmem pages storing buffer_heads
2559 orig_mask
= sc
->gfp_mask
;
2560 if (buffer_heads_over_limit
)
2561 sc
->gfp_mask
|= __GFP_HIGHMEM
;
2563 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2564 requested_highidx
, sc
->nodemask
) {
2565 enum zone_type classzone_idx
;
2567 if (!populated_zone(zone
))
2570 classzone_idx
= requested_highidx
;
2571 while (!populated_zone(zone
->zone_pgdat
->node_zones
+
2576 * Take care memory controller reclaiming has small influence
2579 if (global_reclaim(sc
)) {
2580 if (!cpuset_zone_allowed(zone
,
2581 GFP_KERNEL
| __GFP_HARDWALL
))
2584 if (sc
->priority
!= DEF_PRIORITY
&&
2585 !zone_reclaimable(zone
))
2586 continue; /* Let kswapd poll it */
2589 * If we already have plenty of memory free for
2590 * compaction in this zone, don't free any more.
2591 * Even though compaction is invoked for any
2592 * non-zero order, only frequent costly order
2593 * reclamation is disruptive enough to become a
2594 * noticeable problem, like transparent huge
2597 if (IS_ENABLED(CONFIG_COMPACTION
) &&
2598 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
&&
2599 zonelist_zone_idx(z
) <= requested_highidx
&&
2600 compaction_ready(zone
, sc
->order
)) {
2601 sc
->compaction_ready
= true;
2606 * This steals pages from memory cgroups over softlimit
2607 * and returns the number of reclaimed pages and
2608 * scanned pages. This works for global memory pressure
2609 * and balancing, not for a memcg's limit.
2611 nr_soft_scanned
= 0;
2612 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
,
2613 sc
->order
, sc
->gfp_mask
,
2615 sc
->nr_reclaimed
+= nr_soft_reclaimed
;
2616 sc
->nr_scanned
+= nr_soft_scanned
;
2617 if (nr_soft_reclaimed
)
2619 /* need some check for avoid more shrink_zone() */
2622 if (shrink_zone(zone
, sc
, zone_idx(zone
) == classzone_idx
))
2625 if (global_reclaim(sc
) &&
2626 !reclaimable
&& zone_reclaimable(zone
))
2631 * Restore to original mask to avoid the impact on the caller if we
2632 * promoted it to __GFP_HIGHMEM.
2634 sc
->gfp_mask
= orig_mask
;
2640 * This is the main entry point to direct page reclaim.
2642 * If a full scan of the inactive list fails to free enough memory then we
2643 * are "out of memory" and something needs to be killed.
2645 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2646 * high - the zone may be full of dirty or under-writeback pages, which this
2647 * caller can't do much about. We kick the writeback threads and take explicit
2648 * naps in the hope that some of these pages can be written. But if the
2649 * allocating task holds filesystem locks which prevent writeout this might not
2650 * work, and the allocation attempt will fail.
2652 * returns: 0, if no pages reclaimed
2653 * else, the number of pages reclaimed
2655 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
2656 struct scan_control
*sc
)
2658 int initial_priority
= sc
->priority
;
2659 unsigned long total_scanned
= 0;
2660 unsigned long writeback_threshold
;
2661 bool zones_reclaimable
;
2663 delayacct_freepages_start();
2665 if (global_reclaim(sc
))
2666 count_vm_event(ALLOCSTALL
);
2669 vmpressure_prio(sc
->gfp_mask
, sc
->target_mem_cgroup
,
2672 zones_reclaimable
= shrink_zones(zonelist
, sc
);
2674 total_scanned
+= sc
->nr_scanned
;
2675 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
2678 if (sc
->compaction_ready
)
2682 * If we're getting trouble reclaiming, start doing
2683 * writepage even in laptop mode.
2685 if (sc
->priority
< DEF_PRIORITY
- 2)
2686 sc
->may_writepage
= 1;
2689 * Try to write back as many pages as we just scanned. This
2690 * tends to cause slow streaming writers to write data to the
2691 * disk smoothly, at the dirtying rate, which is nice. But
2692 * that's undesirable in laptop mode, where we *want* lumpy
2693 * writeout. So in laptop mode, write out the whole world.
2695 writeback_threshold
= sc
->nr_to_reclaim
+ sc
->nr_to_reclaim
/ 2;
2696 if (total_scanned
> writeback_threshold
) {
2697 wakeup_flusher_threads(laptop_mode
? 0 : total_scanned
,
2698 WB_REASON_TRY_TO_FREE_PAGES
);
2699 sc
->may_writepage
= 1;
2701 } while (--sc
->priority
>= 0);
2703 delayacct_freepages_end();
2705 if (sc
->nr_reclaimed
)
2706 return sc
->nr_reclaimed
;
2708 /* Aborted reclaim to try compaction? don't OOM, then */
2709 if (sc
->compaction_ready
)
2712 /* Untapped cgroup reserves? Don't OOM, retry. */
2713 if (!sc
->may_thrash
) {
2714 sc
->priority
= initial_priority
;
2719 /* Any of the zones still reclaimable? Don't OOM. */
2720 if (zones_reclaimable
)
2726 static bool pfmemalloc_watermark_ok(pg_data_t
*pgdat
)
2729 unsigned long pfmemalloc_reserve
= 0;
2730 unsigned long free_pages
= 0;
2734 for (i
= 0; i
<= ZONE_NORMAL
; i
++) {
2735 zone
= &pgdat
->node_zones
[i
];
2736 if (!populated_zone(zone
) ||
2737 zone_reclaimable_pages(zone
) == 0)
2740 pfmemalloc_reserve
+= min_wmark_pages(zone
);
2741 free_pages
+= zone_page_state(zone
, NR_FREE_PAGES
);
2744 /* If there are no reserves (unexpected config) then do not throttle */
2745 if (!pfmemalloc_reserve
)
2748 wmark_ok
= free_pages
> pfmemalloc_reserve
/ 2;
2750 /* kswapd must be awake if processes are being throttled */
2751 if (!wmark_ok
&& waitqueue_active(&pgdat
->kswapd_wait
)) {
2752 pgdat
->classzone_idx
= min(pgdat
->classzone_idx
,
2753 (enum zone_type
)ZONE_NORMAL
);
2754 wake_up_interruptible(&pgdat
->kswapd_wait
);
2761 * Throttle direct reclaimers if backing storage is backed by the network
2762 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2763 * depleted. kswapd will continue to make progress and wake the processes
2764 * when the low watermark is reached.
2766 * Returns true if a fatal signal was delivered during throttling. If this
2767 * happens, the page allocator should not consider triggering the OOM killer.
2769 static bool throttle_direct_reclaim(gfp_t gfp_mask
, struct zonelist
*zonelist
,
2770 nodemask_t
*nodemask
)
2774 pg_data_t
*pgdat
= NULL
;
2777 * Kernel threads should not be throttled as they may be indirectly
2778 * responsible for cleaning pages necessary for reclaim to make forward
2779 * progress. kjournald for example may enter direct reclaim while
2780 * committing a transaction where throttling it could forcing other
2781 * processes to block on log_wait_commit().
2783 if (current
->flags
& PF_KTHREAD
)
2787 * If a fatal signal is pending, this process should not throttle.
2788 * It should return quickly so it can exit and free its memory
2790 if (fatal_signal_pending(current
))
2794 * Check if the pfmemalloc reserves are ok by finding the first node
2795 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2796 * GFP_KERNEL will be required for allocating network buffers when
2797 * swapping over the network so ZONE_HIGHMEM is unusable.
2799 * Throttling is based on the first usable node and throttled processes
2800 * wait on a queue until kswapd makes progress and wakes them. There
2801 * is an affinity then between processes waking up and where reclaim
2802 * progress has been made assuming the process wakes on the same node.
2803 * More importantly, processes running on remote nodes will not compete
2804 * for remote pfmemalloc reserves and processes on different nodes
2805 * should make reasonable progress.
2807 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2808 gfp_zone(gfp_mask
), nodemask
) {
2809 if (zone_idx(zone
) > ZONE_NORMAL
)
2812 /* Throttle based on the first usable node */
2813 pgdat
= zone
->zone_pgdat
;
2814 if (pfmemalloc_watermark_ok(pgdat
))
2819 /* If no zone was usable by the allocation flags then do not throttle */
2823 /* Account for the throttling */
2824 count_vm_event(PGSCAN_DIRECT_THROTTLE
);
2827 * If the caller cannot enter the filesystem, it's possible that it
2828 * is due to the caller holding an FS lock or performing a journal
2829 * transaction in the case of a filesystem like ext[3|4]. In this case,
2830 * it is not safe to block on pfmemalloc_wait as kswapd could be
2831 * blocked waiting on the same lock. Instead, throttle for up to a
2832 * second before continuing.
2834 if (!(gfp_mask
& __GFP_FS
)) {
2835 wait_event_interruptible_timeout(pgdat
->pfmemalloc_wait
,
2836 pfmemalloc_watermark_ok(pgdat
), HZ
);
2841 /* Throttle until kswapd wakes the process */
2842 wait_event_killable(zone
->zone_pgdat
->pfmemalloc_wait
,
2843 pfmemalloc_watermark_ok(pgdat
));
2846 if (fatal_signal_pending(current
))
2853 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
2854 gfp_t gfp_mask
, nodemask_t
*nodemask
)
2856 unsigned long nr_reclaimed
;
2857 struct scan_control sc
= {
2858 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2859 .gfp_mask
= (gfp_mask
= memalloc_noio_flags(gfp_mask
)),
2861 .nodemask
= nodemask
,
2862 .priority
= DEF_PRIORITY
,
2863 .may_writepage
= !laptop_mode
,
2869 * Do not enter reclaim if fatal signal was delivered while throttled.
2870 * 1 is returned so that the page allocator does not OOM kill at this
2873 if (throttle_direct_reclaim(gfp_mask
, zonelist
, nodemask
))
2876 trace_mm_vmscan_direct_reclaim_begin(order
,
2880 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2882 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
2884 return nr_reclaimed
;
2889 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup
*memcg
,
2890 gfp_t gfp_mask
, bool noswap
,
2892 unsigned long *nr_scanned
)
2894 struct scan_control sc
= {
2895 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2896 .target_mem_cgroup
= memcg
,
2897 .may_writepage
= !laptop_mode
,
2899 .may_swap
= !noswap
,
2901 unsigned long lru_pages
;
2903 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2904 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
2906 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc
.order
,
2911 * NOTE: Although we can get the priority field, using it
2912 * here is not a good idea, since it limits the pages we can scan.
2913 * if we don't reclaim here, the shrink_zone from balance_pgdat
2914 * will pick up pages from other mem cgroup's as well. We hack
2915 * the priority and make it zero.
2917 shrink_zone_memcg(zone
, memcg
, &sc
, &lru_pages
);
2919 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
2921 *nr_scanned
= sc
.nr_scanned
;
2922 return sc
.nr_reclaimed
;
2925 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*memcg
,
2926 unsigned long nr_pages
,
2930 struct zonelist
*zonelist
;
2931 unsigned long nr_reclaimed
;
2933 struct scan_control sc
= {
2934 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
2935 .gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2936 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
),
2937 .target_mem_cgroup
= memcg
,
2938 .priority
= DEF_PRIORITY
,
2939 .may_writepage
= !laptop_mode
,
2941 .may_swap
= may_swap
,
2945 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2946 * take care of from where we get pages. So the node where we start the
2947 * scan does not need to be the current node.
2949 nid
= mem_cgroup_select_victim_node(memcg
);
2951 zonelist
= NODE_DATA(nid
)->node_zonelists
;
2953 trace_mm_vmscan_memcg_reclaim_begin(0,
2957 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2959 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
2961 return nr_reclaimed
;
2965 static void age_active_anon(struct zone
*zone
, struct scan_control
*sc
)
2967 struct mem_cgroup
*memcg
;
2969 if (!total_swap_pages
)
2972 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
2974 struct lruvec
*lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
2976 if (inactive_anon_is_low(lruvec
))
2977 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2978 sc
, LRU_ACTIVE_ANON
);
2980 memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
);
2984 static bool zone_balanced(struct zone
*zone
, int order
,
2985 unsigned long balance_gap
, int classzone_idx
)
2987 if (!zone_watermark_ok_safe(zone
, order
, high_wmark_pages(zone
) +
2988 balance_gap
, classzone_idx
))
2991 if (IS_ENABLED(CONFIG_COMPACTION
) && order
&& compaction_suitable(zone
,
2992 order
, 0, classzone_idx
) == COMPACT_SKIPPED
)
2999 * pgdat_balanced() is used when checking if a node is balanced.
3001 * For order-0, all zones must be balanced!
3003 * For high-order allocations only zones that meet watermarks and are in a
3004 * zone allowed by the callers classzone_idx are added to balanced_pages. The
3005 * total of balanced pages must be at least 25% of the zones allowed by
3006 * classzone_idx for the node to be considered balanced. Forcing all zones to
3007 * be balanced for high orders can cause excessive reclaim when there are
3009 * The choice of 25% is due to
3010 * o a 16M DMA zone that is balanced will not balance a zone on any
3011 * reasonable sized machine
3012 * o On all other machines, the top zone must be at least a reasonable
3013 * percentage of the middle zones. For example, on 32-bit x86, highmem
3014 * would need to be at least 256M for it to be balance a whole node.
3015 * Similarly, on x86-64 the Normal zone would need to be at least 1G
3016 * to balance a node on its own. These seemed like reasonable ratios.
3018 static bool pgdat_balanced(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3020 unsigned long managed_pages
= 0;
3021 unsigned long balanced_pages
= 0;
3024 /* Check the watermark levels */
3025 for (i
= 0; i
<= classzone_idx
; i
++) {
3026 struct zone
*zone
= pgdat
->node_zones
+ i
;
3028 if (!populated_zone(zone
))
3031 managed_pages
+= zone
->managed_pages
;
3034 * A special case here:
3036 * balance_pgdat() skips over all_unreclaimable after
3037 * DEF_PRIORITY. Effectively, it considers them balanced so
3038 * they must be considered balanced here as well!
3040 if (!zone_reclaimable(zone
)) {
3041 balanced_pages
+= zone
->managed_pages
;
3045 if (zone_balanced(zone
, order
, 0, i
))
3046 balanced_pages
+= zone
->managed_pages
;
3052 return balanced_pages
>= (managed_pages
>> 2);
3058 * Prepare kswapd for sleeping. This verifies that there are no processes
3059 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3061 * Returns true if kswapd is ready to sleep
3063 static bool prepare_kswapd_sleep(pg_data_t
*pgdat
, int order
, long remaining
,
3066 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3071 * The throttled processes are normally woken up in balance_pgdat() as
3072 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3073 * race between when kswapd checks the watermarks and a process gets
3074 * throttled. There is also a potential race if processes get
3075 * throttled, kswapd wakes, a large process exits thereby balancing the
3076 * zones, which causes kswapd to exit balance_pgdat() before reaching
3077 * the wake up checks. If kswapd is going to sleep, no process should
3078 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3079 * the wake up is premature, processes will wake kswapd and get
3080 * throttled again. The difference from wake ups in balance_pgdat() is
3081 * that here we are under prepare_to_wait().
3083 if (waitqueue_active(&pgdat
->pfmemalloc_wait
))
3084 wake_up_all(&pgdat
->pfmemalloc_wait
);
3086 return pgdat_balanced(pgdat
, order
, classzone_idx
);
3090 * kswapd shrinks the zone by the number of pages required to reach
3091 * the high watermark.
3093 * Returns true if kswapd scanned at least the requested number of pages to
3094 * reclaim or if the lack of progress was due to pages under writeback.
3095 * This is used to determine if the scanning priority needs to be raised.
3097 static bool kswapd_shrink_zone(struct zone
*zone
,
3099 struct scan_control
*sc
,
3100 unsigned long *nr_attempted
)
3102 int testorder
= sc
->order
;
3103 unsigned long balance_gap
;
3104 bool lowmem_pressure
;
3106 /* Reclaim above the high watermark. */
3107 sc
->nr_to_reclaim
= max(SWAP_CLUSTER_MAX
, high_wmark_pages(zone
));
3110 * Kswapd reclaims only single pages with compaction enabled. Trying
3111 * too hard to reclaim until contiguous free pages have become
3112 * available can hurt performance by evicting too much useful data
3113 * from memory. Do not reclaim more than needed for compaction.
3115 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
3116 compaction_suitable(zone
, sc
->order
, 0, classzone_idx
)
3121 * We put equal pressure on every zone, unless one zone has way too
3122 * many pages free already. The "too many pages" is defined as the
3123 * high wmark plus a "gap" where the gap is either the low
3124 * watermark or 1% of the zone, whichever is smaller.
3126 balance_gap
= min(low_wmark_pages(zone
), DIV_ROUND_UP(
3127 zone
->managed_pages
, KSWAPD_ZONE_BALANCE_GAP_RATIO
));
3130 * If there is no low memory pressure or the zone is balanced then no
3131 * reclaim is necessary
3133 lowmem_pressure
= (buffer_heads_over_limit
&& is_highmem(zone
));
3134 if (!lowmem_pressure
&& zone_balanced(zone
, testorder
,
3135 balance_gap
, classzone_idx
))
3138 shrink_zone(zone
, sc
, zone_idx(zone
) == classzone_idx
);
3140 /* Account for the number of pages attempted to reclaim */
3141 *nr_attempted
+= sc
->nr_to_reclaim
;
3143 clear_bit(ZONE_WRITEBACK
, &zone
->flags
);
3146 * If a zone reaches its high watermark, consider it to be no longer
3147 * congested. It's possible there are dirty pages backed by congested
3148 * BDIs but as pressure is relieved, speculatively avoid congestion
3151 if (zone_reclaimable(zone
) &&
3152 zone_balanced(zone
, testorder
, 0, classzone_idx
)) {
3153 clear_bit(ZONE_CONGESTED
, &zone
->flags
);
3154 clear_bit(ZONE_DIRTY
, &zone
->flags
);
3157 return sc
->nr_scanned
>= sc
->nr_to_reclaim
;
3161 * For kswapd, balance_pgdat() will work across all this node's zones until
3162 * they are all at high_wmark_pages(zone).
3164 * Returns the final order kswapd was reclaiming at
3166 * There is special handling here for zones which are full of pinned pages.
3167 * This can happen if the pages are all mlocked, or if they are all used by
3168 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3169 * What we do is to detect the case where all pages in the zone have been
3170 * scanned twice and there has been zero successful reclaim. Mark the zone as
3171 * dead and from now on, only perform a short scan. Basically we're polling
3172 * the zone for when the problem goes away.
3174 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3175 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3176 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3177 * lower zones regardless of the number of free pages in the lower zones. This
3178 * interoperates with the page allocator fallback scheme to ensure that aging
3179 * of pages is balanced across the zones.
3181 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
,
3185 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
3186 unsigned long nr_soft_reclaimed
;
3187 unsigned long nr_soft_scanned
;
3188 struct scan_control sc
= {
3189 .gfp_mask
= GFP_KERNEL
,
3191 .priority
= DEF_PRIORITY
,
3192 .may_writepage
= !laptop_mode
,
3196 count_vm_event(PAGEOUTRUN
);
3199 unsigned long nr_attempted
= 0;
3200 bool raise_priority
= true;
3201 bool pgdat_needs_compaction
= (order
> 0);
3203 sc
.nr_reclaimed
= 0;
3206 * Scan in the highmem->dma direction for the highest
3207 * zone which needs scanning
3209 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
3210 struct zone
*zone
= pgdat
->node_zones
+ i
;
3212 if (!populated_zone(zone
))
3215 if (sc
.priority
!= DEF_PRIORITY
&&
3216 !zone_reclaimable(zone
))
3220 * Do some background aging of the anon list, to give
3221 * pages a chance to be referenced before reclaiming.
3223 age_active_anon(zone
, &sc
);
3226 * If the number of buffer_heads in the machine
3227 * exceeds the maximum allowed level and this node
3228 * has a highmem zone, force kswapd to reclaim from
3229 * it to relieve lowmem pressure.
3231 if (buffer_heads_over_limit
&& is_highmem_idx(i
)) {
3236 if (!zone_balanced(zone
, order
, 0, 0)) {
3241 * If balanced, clear the dirty and congested
3244 clear_bit(ZONE_CONGESTED
, &zone
->flags
);
3245 clear_bit(ZONE_DIRTY
, &zone
->flags
);
3252 for (i
= 0; i
<= end_zone
; i
++) {
3253 struct zone
*zone
= pgdat
->node_zones
+ i
;
3255 if (!populated_zone(zone
))
3259 * If any zone is currently balanced then kswapd will
3260 * not call compaction as it is expected that the
3261 * necessary pages are already available.
3263 if (pgdat_needs_compaction
&&
3264 zone_watermark_ok(zone
, order
,
3265 low_wmark_pages(zone
),
3267 pgdat_needs_compaction
= false;
3271 * If we're getting trouble reclaiming, start doing writepage
3272 * even in laptop mode.
3274 if (sc
.priority
< DEF_PRIORITY
- 2)
3275 sc
.may_writepage
= 1;
3278 * Now scan the zone in the dma->highmem direction, stopping
3279 * at the last zone which needs scanning.
3281 * We do this because the page allocator works in the opposite
3282 * direction. This prevents the page allocator from allocating
3283 * pages behind kswapd's direction of progress, which would
3284 * cause too much scanning of the lower zones.
3286 for (i
= 0; i
<= end_zone
; i
++) {
3287 struct zone
*zone
= pgdat
->node_zones
+ i
;
3289 if (!populated_zone(zone
))
3292 if (sc
.priority
!= DEF_PRIORITY
&&
3293 !zone_reclaimable(zone
))
3298 nr_soft_scanned
= 0;
3300 * Call soft limit reclaim before calling shrink_zone.
3302 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
,
3305 sc
.nr_reclaimed
+= nr_soft_reclaimed
;
3308 * There should be no need to raise the scanning
3309 * priority if enough pages are already being scanned
3310 * that that high watermark would be met at 100%
3313 if (kswapd_shrink_zone(zone
, end_zone
,
3314 &sc
, &nr_attempted
))
3315 raise_priority
= false;
3319 * If the low watermark is met there is no need for processes
3320 * to be throttled on pfmemalloc_wait as they should not be
3321 * able to safely make forward progress. Wake them
3323 if (waitqueue_active(&pgdat
->pfmemalloc_wait
) &&
3324 pfmemalloc_watermark_ok(pgdat
))
3325 wake_up_all(&pgdat
->pfmemalloc_wait
);
3328 * Fragmentation may mean that the system cannot be rebalanced
3329 * for high-order allocations in all zones. If twice the
3330 * allocation size has been reclaimed and the zones are still
3331 * not balanced then recheck the watermarks at order-0 to
3332 * prevent kswapd reclaiming excessively. Assume that a
3333 * process requested a high-order can direct reclaim/compact.
3335 if (order
&& sc
.nr_reclaimed
>= 2UL << order
)
3336 order
= sc
.order
= 0;
3338 /* Check if kswapd should be suspending */
3339 if (try_to_freeze() || kthread_should_stop())
3343 * Compact if necessary and kswapd is reclaiming at least the
3344 * high watermark number of pages as requsted
3346 if (pgdat_needs_compaction
&& sc
.nr_reclaimed
> nr_attempted
)
3347 compact_pgdat(pgdat
, order
);
3350 * Raise priority if scanning rate is too low or there was no
3351 * progress in reclaiming pages
3353 if (raise_priority
|| !sc
.nr_reclaimed
)
3355 } while (sc
.priority
>= 1 &&
3356 !pgdat_balanced(pgdat
, order
, *classzone_idx
));
3360 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3361 * makes a decision on the order we were last reclaiming at. However,
3362 * if another caller entered the allocator slow path while kswapd
3363 * was awake, order will remain at the higher level
3365 *classzone_idx
= end_zone
;
3369 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3374 if (freezing(current
) || kthread_should_stop())
3377 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3379 /* Try to sleep for a short interval */
3380 if (prepare_kswapd_sleep(pgdat
, order
, remaining
, classzone_idx
)) {
3381 remaining
= schedule_timeout(HZ
/10);
3382 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3383 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3387 * After a short sleep, check if it was a premature sleep. If not, then
3388 * go fully to sleep until explicitly woken up.
3390 if (prepare_kswapd_sleep(pgdat
, order
, remaining
, classzone_idx
)) {
3391 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
3394 * vmstat counters are not perfectly accurate and the estimated
3395 * value for counters such as NR_FREE_PAGES can deviate from the
3396 * true value by nr_online_cpus * threshold. To avoid the zone
3397 * watermarks being breached while under pressure, we reduce the
3398 * per-cpu vmstat threshold while kswapd is awake and restore
3399 * them before going back to sleep.
3401 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
3404 * Compaction records what page blocks it recently failed to
3405 * isolate pages from and skips them in the future scanning.
3406 * When kswapd is going to sleep, it is reasonable to assume
3407 * that pages and compaction may succeed so reset the cache.
3409 reset_isolation_suitable(pgdat
);
3411 if (!kthread_should_stop())
3414 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
3417 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
3419 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
3421 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3425 * The background pageout daemon, started as a kernel thread
3426 * from the init process.
3428 * This basically trickles out pages so that we have _some_
3429 * free memory available even if there is no other activity
3430 * that frees anything up. This is needed for things like routing
3431 * etc, where we otherwise might have all activity going on in
3432 * asynchronous contexts that cannot page things out.
3434 * If there are applications that are active memory-allocators
3435 * (most normal use), this basically shouldn't matter.
3437 static int kswapd(void *p
)
3439 unsigned long order
, new_order
;
3440 unsigned balanced_order
;
3441 int classzone_idx
, new_classzone_idx
;
3442 int balanced_classzone_idx
;
3443 pg_data_t
*pgdat
= (pg_data_t
*)p
;
3444 struct task_struct
*tsk
= current
;
3446 struct reclaim_state reclaim_state
= {
3447 .reclaimed_slab
= 0,
3449 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
3451 lockdep_set_current_reclaim_state(GFP_KERNEL
);
3453 if (!cpumask_empty(cpumask
))
3454 set_cpus_allowed_ptr(tsk
, cpumask
);
3455 current
->reclaim_state
= &reclaim_state
;
3458 * Tell the memory management that we're a "memory allocator",
3459 * and that if we need more memory we should get access to it
3460 * regardless (see "__alloc_pages()"). "kswapd" should
3461 * never get caught in the normal page freeing logic.
3463 * (Kswapd normally doesn't need memory anyway, but sometimes
3464 * you need a small amount of memory in order to be able to
3465 * page out something else, and this flag essentially protects
3466 * us from recursively trying to free more memory as we're
3467 * trying to free the first piece of memory in the first place).
3469 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
3472 order
= new_order
= 0;
3474 classzone_idx
= new_classzone_idx
= pgdat
->nr_zones
- 1;
3475 balanced_classzone_idx
= classzone_idx
;
3480 * If the last balance_pgdat was unsuccessful it's unlikely a
3481 * new request of a similar or harder type will succeed soon
3482 * so consider going to sleep on the basis we reclaimed at
3484 if (balanced_classzone_idx
>= new_classzone_idx
&&
3485 balanced_order
== new_order
) {
3486 new_order
= pgdat
->kswapd_max_order
;
3487 new_classzone_idx
= pgdat
->classzone_idx
;
3488 pgdat
->kswapd_max_order
= 0;
3489 pgdat
->classzone_idx
= pgdat
->nr_zones
- 1;
3492 if (order
< new_order
|| classzone_idx
> new_classzone_idx
) {
3494 * Don't sleep if someone wants a larger 'order'
3495 * allocation or has tigher zone constraints
3498 classzone_idx
= new_classzone_idx
;
3500 kswapd_try_to_sleep(pgdat
, balanced_order
,
3501 balanced_classzone_idx
);
3502 order
= pgdat
->kswapd_max_order
;
3503 classzone_idx
= pgdat
->classzone_idx
;
3505 new_classzone_idx
= classzone_idx
;
3506 pgdat
->kswapd_max_order
= 0;
3507 pgdat
->classzone_idx
= pgdat
->nr_zones
- 1;
3510 ret
= try_to_freeze();
3511 if (kthread_should_stop())
3515 * We can speed up thawing tasks if we don't call balance_pgdat
3516 * after returning from the refrigerator
3519 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, order
);
3520 balanced_classzone_idx
= classzone_idx
;
3521 balanced_order
= balance_pgdat(pgdat
, order
,
3522 &balanced_classzone_idx
);
3526 tsk
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
);
3527 current
->reclaim_state
= NULL
;
3528 lockdep_clear_current_reclaim_state();
3534 * A zone is low on free memory, so wake its kswapd task to service it.
3536 void wakeup_kswapd(struct zone
*zone
, int order
, enum zone_type classzone_idx
)
3540 if (!populated_zone(zone
))
3543 if (!cpuset_zone_allowed(zone
, GFP_KERNEL
| __GFP_HARDWALL
))
3545 pgdat
= zone
->zone_pgdat
;
3546 if (pgdat
->kswapd_max_order
< order
) {
3547 pgdat
->kswapd_max_order
= order
;
3548 pgdat
->classzone_idx
= min(pgdat
->classzone_idx
, classzone_idx
);
3550 if (!waitqueue_active(&pgdat
->kswapd_wait
))
3552 if (zone_balanced(zone
, order
, 0, 0))
3555 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, zone_idx(zone
), order
);
3556 wake_up_interruptible(&pgdat
->kswapd_wait
);
3559 #ifdef CONFIG_HIBERNATION
3561 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3564 * Rather than trying to age LRUs the aim is to preserve the overall
3565 * LRU order by reclaiming preferentially
3566 * inactive > active > active referenced > active mapped
3568 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
3570 struct reclaim_state reclaim_state
;
3571 struct scan_control sc
= {
3572 .nr_to_reclaim
= nr_to_reclaim
,
3573 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
3574 .priority
= DEF_PRIORITY
,
3578 .hibernation_mode
= 1,
3580 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
3581 struct task_struct
*p
= current
;
3582 unsigned long nr_reclaimed
;
3584 p
->flags
|= PF_MEMALLOC
;
3585 lockdep_set_current_reclaim_state(sc
.gfp_mask
);
3586 reclaim_state
.reclaimed_slab
= 0;
3587 p
->reclaim_state
= &reclaim_state
;
3589 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3591 p
->reclaim_state
= NULL
;
3592 lockdep_clear_current_reclaim_state();
3593 p
->flags
&= ~PF_MEMALLOC
;
3595 return nr_reclaimed
;
3597 #endif /* CONFIG_HIBERNATION */
3599 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3600 not required for correctness. So if the last cpu in a node goes
3601 away, we get changed to run anywhere: as the first one comes back,
3602 restore their cpu bindings. */
3603 static int cpu_callback(struct notifier_block
*nfb
, unsigned long action
,
3608 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
3609 for_each_node_state(nid
, N_MEMORY
) {
3610 pg_data_t
*pgdat
= NODE_DATA(nid
);
3611 const struct cpumask
*mask
;
3613 mask
= cpumask_of_node(pgdat
->node_id
);
3615 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
3616 /* One of our CPUs online: restore mask */
3617 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
3624 * This kswapd start function will be called by init and node-hot-add.
3625 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3627 int kswapd_run(int nid
)
3629 pg_data_t
*pgdat
= NODE_DATA(nid
);
3635 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
3636 if (IS_ERR(pgdat
->kswapd
)) {
3637 /* failure at boot is fatal */
3638 BUG_ON(system_state
== SYSTEM_BOOTING
);
3639 pr_err("Failed to start kswapd on node %d\n", nid
);
3640 ret
= PTR_ERR(pgdat
->kswapd
);
3641 pgdat
->kswapd
= NULL
;
3647 * Called by memory hotplug when all memory in a node is offlined. Caller must
3648 * hold mem_hotplug_begin/end().
3650 void kswapd_stop(int nid
)
3652 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
3655 kthread_stop(kswapd
);
3656 NODE_DATA(nid
)->kswapd
= NULL
;
3660 static int __init
kswapd_init(void)
3665 for_each_node_state(nid
, N_MEMORY
)
3667 hotcpu_notifier(cpu_callback
, 0);
3671 module_init(kswapd_init
)
3677 * If non-zero call zone_reclaim when the number of free pages falls below
3680 int zone_reclaim_mode __read_mostly
;
3682 #define RECLAIM_OFF 0
3683 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3684 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3685 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3688 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3689 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3692 #define ZONE_RECLAIM_PRIORITY 4
3695 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3698 int sysctl_min_unmapped_ratio
= 1;
3701 * If the number of slab pages in a zone grows beyond this percentage then
3702 * slab reclaim needs to occur.
3704 int sysctl_min_slab_ratio
= 5;
3706 static inline unsigned long zone_unmapped_file_pages(struct zone
*zone
)
3708 unsigned long file_mapped
= zone_page_state(zone
, NR_FILE_MAPPED
);
3709 unsigned long file_lru
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
3710 zone_page_state(zone
, NR_ACTIVE_FILE
);
3713 * It's possible for there to be more file mapped pages than
3714 * accounted for by the pages on the file LRU lists because
3715 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3717 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
3720 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3721 static unsigned long zone_pagecache_reclaimable(struct zone
*zone
)
3723 unsigned long nr_pagecache_reclaimable
;
3724 unsigned long delta
= 0;
3727 * If RECLAIM_UNMAP is set, then all file pages are considered
3728 * potentially reclaimable. Otherwise, we have to worry about
3729 * pages like swapcache and zone_unmapped_file_pages() provides
3732 if (zone_reclaim_mode
& RECLAIM_UNMAP
)
3733 nr_pagecache_reclaimable
= zone_page_state(zone
, NR_FILE_PAGES
);
3735 nr_pagecache_reclaimable
= zone_unmapped_file_pages(zone
);
3737 /* If we can't clean pages, remove dirty pages from consideration */
3738 if (!(zone_reclaim_mode
& RECLAIM_WRITE
))
3739 delta
+= zone_page_state(zone
, NR_FILE_DIRTY
);
3741 /* Watch for any possible underflows due to delta */
3742 if (unlikely(delta
> nr_pagecache_reclaimable
))
3743 delta
= nr_pagecache_reclaimable
;
3745 return nr_pagecache_reclaimable
- delta
;
3749 * Try to free up some pages from this zone through reclaim.
3751 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
3753 /* Minimum pages needed in order to stay on node */
3754 const unsigned long nr_pages
= 1 << order
;
3755 struct task_struct
*p
= current
;
3756 struct reclaim_state reclaim_state
;
3757 struct scan_control sc
= {
3758 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3759 .gfp_mask
= (gfp_mask
= memalloc_noio_flags(gfp_mask
)),
3761 .priority
= ZONE_RECLAIM_PRIORITY
,
3762 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
3763 .may_unmap
= !!(zone_reclaim_mode
& RECLAIM_UNMAP
),
3769 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3770 * and we also need to be able to write out pages for RECLAIM_WRITE
3771 * and RECLAIM_UNMAP.
3773 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
3774 lockdep_set_current_reclaim_state(gfp_mask
);
3775 reclaim_state
.reclaimed_slab
= 0;
3776 p
->reclaim_state
= &reclaim_state
;
3778 if (zone_pagecache_reclaimable(zone
) > zone
->min_unmapped_pages
) {
3780 * Free memory by calling shrink zone with increasing
3781 * priorities until we have enough memory freed.
3784 shrink_zone(zone
, &sc
, true);
3785 } while (sc
.nr_reclaimed
< nr_pages
&& --sc
.priority
>= 0);
3788 p
->reclaim_state
= NULL
;
3789 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
3790 lockdep_clear_current_reclaim_state();
3791 return sc
.nr_reclaimed
>= nr_pages
;
3794 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
3800 * Zone reclaim reclaims unmapped file backed pages and
3801 * slab pages if we are over the defined limits.
3803 * A small portion of unmapped file backed pages is needed for
3804 * file I/O otherwise pages read by file I/O will be immediately
3805 * thrown out if the zone is overallocated. So we do not reclaim
3806 * if less than a specified percentage of the zone is used by
3807 * unmapped file backed pages.
3809 if (zone_pagecache_reclaimable(zone
) <= zone
->min_unmapped_pages
&&
3810 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) <= zone
->min_slab_pages
)
3811 return ZONE_RECLAIM_FULL
;
3813 if (!zone_reclaimable(zone
))
3814 return ZONE_RECLAIM_FULL
;
3817 * Do not scan if the allocation should not be delayed.
3819 if (!gfpflags_allow_blocking(gfp_mask
) || (current
->flags
& PF_MEMALLOC
))
3820 return ZONE_RECLAIM_NOSCAN
;
3823 * Only run zone reclaim on the local zone or on zones that do not
3824 * have associated processors. This will favor the local processor
3825 * over remote processors and spread off node memory allocations
3826 * as wide as possible.
3828 node_id
= zone_to_nid(zone
);
3829 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
3830 return ZONE_RECLAIM_NOSCAN
;
3832 if (test_and_set_bit(ZONE_RECLAIM_LOCKED
, &zone
->flags
))
3833 return ZONE_RECLAIM_NOSCAN
;
3835 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
3836 clear_bit(ZONE_RECLAIM_LOCKED
, &zone
->flags
);
3839 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
3846 * page_evictable - test whether a page is evictable
3847 * @page: the page to test
3849 * Test whether page is evictable--i.e., should be placed on active/inactive
3850 * lists vs unevictable list.
3852 * Reasons page might not be evictable:
3853 * (1) page's mapping marked unevictable
3854 * (2) page is part of an mlocked VMA
3857 int page_evictable(struct page
*page
)
3859 return !mapping_unevictable(page_mapping(page
)) && !PageMlocked(page
);
3864 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3865 * @pages: array of pages to check
3866 * @nr_pages: number of pages to check
3868 * Checks pages for evictability and moves them to the appropriate lru list.
3870 * This function is only used for SysV IPC SHM_UNLOCK.
3872 void check_move_unevictable_pages(struct page
**pages
, int nr_pages
)
3874 struct lruvec
*lruvec
;
3875 struct zone
*zone
= NULL
;
3880 for (i
= 0; i
< nr_pages
; i
++) {
3881 struct page
*page
= pages
[i
];
3882 struct zone
*pagezone
;
3885 pagezone
= page_zone(page
);
3886 if (pagezone
!= zone
) {
3888 spin_unlock_irq(&zone
->lru_lock
);
3890 spin_lock_irq(&zone
->lru_lock
);
3892 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
3894 if (!PageLRU(page
) || !PageUnevictable(page
))
3897 if (page_evictable(page
)) {
3898 enum lru_list lru
= page_lru_base_type(page
);
3900 VM_BUG_ON_PAGE(PageActive(page
), page
);
3901 ClearPageUnevictable(page
);
3902 del_page_from_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
3903 add_page_to_lru_list(page
, lruvec
, lru
);
3909 __count_vm_events(UNEVICTABLE_PGRESCUED
, pgrescued
);
3910 __count_vm_events(UNEVICTABLE_PGSCANNED
, pgscanned
);
3911 spin_unlock_irq(&zone
->lru_lock
);
3914 #endif /* CONFIG_SHMEM */