clk: bcm2835: remove use of BCM2835_CLOCK_COUNT in driver
[linux/fpc-iii.git] / mm / vmscan.c
blobeb3dd37ccd7c727dcc0b6030f62c183097b956bb
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
57 #include "internal.h"
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
62 struct scan_control {
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
66 /* This context's GFP mask */
67 gfp_t gfp_mask;
69 /* Allocation order */
70 int order;
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
76 nodemask_t *nodemask;
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
82 struct mem_cgroup *target_mem_cgroup;
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
87 unsigned int may_writepage:1;
89 /* Can mapped pages be reclaimed? */
90 unsigned int may_unmap:1;
92 /* Can pages be swapped as part of reclaim? */
93 unsigned int may_swap:1;
95 /* Can cgroups be reclaimed below their normal consumption range? */
96 unsigned int may_thrash:1;
98 unsigned int hibernation_mode:1;
100 /* One of the zones is ready for compaction */
101 unsigned int compaction_ready:1;
103 /* Incremented by the number of inactive pages that were scanned */
104 unsigned long nr_scanned;
106 /* Number of pages freed so far during a call to shrink_zones() */
107 unsigned long nr_reclaimed;
110 #ifdef ARCH_HAS_PREFETCH
111 #define prefetch_prev_lru_page(_page, _base, _field) \
112 do { \
113 if ((_page)->lru.prev != _base) { \
114 struct page *prev; \
116 prev = lru_to_page(&(_page->lru)); \
117 prefetch(&prev->_field); \
119 } while (0)
120 #else
121 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
122 #endif
124 #ifdef ARCH_HAS_PREFETCHW
125 #define prefetchw_prev_lru_page(_page, _base, _field) \
126 do { \
127 if ((_page)->lru.prev != _base) { \
128 struct page *prev; \
130 prev = lru_to_page(&(_page->lru)); \
131 prefetchw(&prev->_field); \
133 } while (0)
134 #else
135 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
136 #endif
139 * From 0 .. 100. Higher means more swappy.
141 int vm_swappiness = 60;
143 * The total number of pages which are beyond the high watermark within all
144 * zones.
146 unsigned long vm_total_pages;
148 static LIST_HEAD(shrinker_list);
149 static DECLARE_RWSEM(shrinker_rwsem);
151 #ifdef CONFIG_MEMCG
152 static bool global_reclaim(struct scan_control *sc)
154 return !sc->target_mem_cgroup;
158 * sane_reclaim - is the usual dirty throttling mechanism operational?
159 * @sc: scan_control in question
161 * The normal page dirty throttling mechanism in balance_dirty_pages() is
162 * completely broken with the legacy memcg and direct stalling in
163 * shrink_page_list() is used for throttling instead, which lacks all the
164 * niceties such as fairness, adaptive pausing, bandwidth proportional
165 * allocation and configurability.
167 * This function tests whether the vmscan currently in progress can assume
168 * that the normal dirty throttling mechanism is operational.
170 static bool sane_reclaim(struct scan_control *sc)
172 struct mem_cgroup *memcg = sc->target_mem_cgroup;
174 if (!memcg)
175 return true;
176 #ifdef CONFIG_CGROUP_WRITEBACK
177 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
178 return true;
179 #endif
180 return false;
182 #else
183 static bool global_reclaim(struct scan_control *sc)
185 return true;
188 static bool sane_reclaim(struct scan_control *sc)
190 return true;
192 #endif
194 static unsigned long zone_reclaimable_pages(struct zone *zone)
196 unsigned long nr;
198 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
199 zone_page_state(zone, NR_INACTIVE_FILE) +
200 zone_page_state(zone, NR_ISOLATED_FILE);
202 if (get_nr_swap_pages() > 0)
203 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
204 zone_page_state(zone, NR_INACTIVE_ANON) +
205 zone_page_state(zone, NR_ISOLATED_ANON);
207 return nr;
210 bool zone_reclaimable(struct zone *zone)
212 return zone_page_state(zone, NR_PAGES_SCANNED) <
213 zone_reclaimable_pages(zone) * 6;
216 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
218 if (!mem_cgroup_disabled())
219 return mem_cgroup_get_lru_size(lruvec, lru);
221 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
225 * Add a shrinker callback to be called from the vm.
227 int register_shrinker(struct shrinker *shrinker)
229 size_t size = sizeof(*shrinker->nr_deferred);
232 * If we only have one possible node in the system anyway, save
233 * ourselves the trouble and disable NUMA aware behavior. This way we
234 * will save memory and some small loop time later.
236 if (nr_node_ids == 1)
237 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
239 if (shrinker->flags & SHRINKER_NUMA_AWARE)
240 size *= nr_node_ids;
242 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
243 if (!shrinker->nr_deferred)
244 return -ENOMEM;
246 down_write(&shrinker_rwsem);
247 list_add_tail(&shrinker->list, &shrinker_list);
248 up_write(&shrinker_rwsem);
249 return 0;
251 EXPORT_SYMBOL(register_shrinker);
254 * Remove one
256 void unregister_shrinker(struct shrinker *shrinker)
258 down_write(&shrinker_rwsem);
259 list_del(&shrinker->list);
260 up_write(&shrinker_rwsem);
261 kfree(shrinker->nr_deferred);
263 EXPORT_SYMBOL(unregister_shrinker);
265 #define SHRINK_BATCH 128
267 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
268 struct shrinker *shrinker,
269 unsigned long nr_scanned,
270 unsigned long nr_eligible)
272 unsigned long freed = 0;
273 unsigned long long delta;
274 long total_scan;
275 long freeable;
276 long nr;
277 long new_nr;
278 int nid = shrinkctl->nid;
279 long batch_size = shrinker->batch ? shrinker->batch
280 : SHRINK_BATCH;
282 freeable = shrinker->count_objects(shrinker, shrinkctl);
283 if (freeable == 0)
284 return 0;
287 * copy the current shrinker scan count into a local variable
288 * and zero it so that other concurrent shrinker invocations
289 * don't also do this scanning work.
291 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
293 total_scan = nr;
294 delta = (4 * nr_scanned) / shrinker->seeks;
295 delta *= freeable;
296 do_div(delta, nr_eligible + 1);
297 total_scan += delta;
298 if (total_scan < 0) {
299 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
300 shrinker->scan_objects, total_scan);
301 total_scan = freeable;
305 * We need to avoid excessive windup on filesystem shrinkers
306 * due to large numbers of GFP_NOFS allocations causing the
307 * shrinkers to return -1 all the time. This results in a large
308 * nr being built up so when a shrink that can do some work
309 * comes along it empties the entire cache due to nr >>>
310 * freeable. This is bad for sustaining a working set in
311 * memory.
313 * Hence only allow the shrinker to scan the entire cache when
314 * a large delta change is calculated directly.
316 if (delta < freeable / 4)
317 total_scan = min(total_scan, freeable / 2);
320 * Avoid risking looping forever due to too large nr value:
321 * never try to free more than twice the estimate number of
322 * freeable entries.
324 if (total_scan > freeable * 2)
325 total_scan = freeable * 2;
327 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
328 nr_scanned, nr_eligible,
329 freeable, delta, total_scan);
332 * Normally, we should not scan less than batch_size objects in one
333 * pass to avoid too frequent shrinker calls, but if the slab has less
334 * than batch_size objects in total and we are really tight on memory,
335 * we will try to reclaim all available objects, otherwise we can end
336 * up failing allocations although there are plenty of reclaimable
337 * objects spread over several slabs with usage less than the
338 * batch_size.
340 * We detect the "tight on memory" situations by looking at the total
341 * number of objects we want to scan (total_scan). If it is greater
342 * than the total number of objects on slab (freeable), we must be
343 * scanning at high prio and therefore should try to reclaim as much as
344 * possible.
346 while (total_scan >= batch_size ||
347 total_scan >= freeable) {
348 unsigned long ret;
349 unsigned long nr_to_scan = min(batch_size, total_scan);
351 shrinkctl->nr_to_scan = nr_to_scan;
352 ret = shrinker->scan_objects(shrinker, shrinkctl);
353 if (ret == SHRINK_STOP)
354 break;
355 freed += ret;
357 count_vm_events(SLABS_SCANNED, nr_to_scan);
358 total_scan -= nr_to_scan;
360 cond_resched();
364 * move the unused scan count back into the shrinker in a
365 * manner that handles concurrent updates. If we exhausted the
366 * scan, there is no need to do an update.
368 if (total_scan > 0)
369 new_nr = atomic_long_add_return(total_scan,
370 &shrinker->nr_deferred[nid]);
371 else
372 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
374 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
375 return freed;
379 * shrink_slab - shrink slab caches
380 * @gfp_mask: allocation context
381 * @nid: node whose slab caches to target
382 * @memcg: memory cgroup whose slab caches to target
383 * @nr_scanned: pressure numerator
384 * @nr_eligible: pressure denominator
386 * Call the shrink functions to age shrinkable caches.
388 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
389 * unaware shrinkers will receive a node id of 0 instead.
391 * @memcg specifies the memory cgroup to target. If it is not NULL,
392 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
393 * objects from the memory cgroup specified. Otherwise all shrinkers
394 * are called, and memcg aware shrinkers are supposed to scan the
395 * global list then.
397 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
398 * the available objects should be scanned. Page reclaim for example
399 * passes the number of pages scanned and the number of pages on the
400 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
401 * when it encountered mapped pages. The ratio is further biased by
402 * the ->seeks setting of the shrink function, which indicates the
403 * cost to recreate an object relative to that of an LRU page.
405 * Returns the number of reclaimed slab objects.
407 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
408 struct mem_cgroup *memcg,
409 unsigned long nr_scanned,
410 unsigned long nr_eligible)
412 struct shrinker *shrinker;
413 unsigned long freed = 0;
415 if (memcg && !memcg_kmem_online(memcg))
416 return 0;
418 if (nr_scanned == 0)
419 nr_scanned = SWAP_CLUSTER_MAX;
421 if (!down_read_trylock(&shrinker_rwsem)) {
423 * If we would return 0, our callers would understand that we
424 * have nothing else to shrink and give up trying. By returning
425 * 1 we keep it going and assume we'll be able to shrink next
426 * time.
428 freed = 1;
429 goto out;
432 list_for_each_entry(shrinker, &shrinker_list, list) {
433 struct shrink_control sc = {
434 .gfp_mask = gfp_mask,
435 .nid = nid,
436 .memcg = memcg,
439 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
440 continue;
442 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
443 sc.nid = 0;
445 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
448 up_read(&shrinker_rwsem);
449 out:
450 cond_resched();
451 return freed;
454 void drop_slab_node(int nid)
456 unsigned long freed;
458 do {
459 struct mem_cgroup *memcg = NULL;
461 freed = 0;
462 do {
463 freed += shrink_slab(GFP_KERNEL, nid, memcg,
464 1000, 1000);
465 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
466 } while (freed > 10);
469 void drop_slab(void)
471 int nid;
473 for_each_online_node(nid)
474 drop_slab_node(nid);
477 static inline int is_page_cache_freeable(struct page *page)
480 * A freeable page cache page is referenced only by the caller
481 * that isolated the page, the page cache radix tree and
482 * optional buffer heads at page->private.
484 return page_count(page) - page_has_private(page) == 2;
487 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
489 if (current->flags & PF_SWAPWRITE)
490 return 1;
491 if (!inode_write_congested(inode))
492 return 1;
493 if (inode_to_bdi(inode) == current->backing_dev_info)
494 return 1;
495 return 0;
499 * We detected a synchronous write error writing a page out. Probably
500 * -ENOSPC. We need to propagate that into the address_space for a subsequent
501 * fsync(), msync() or close().
503 * The tricky part is that after writepage we cannot touch the mapping: nothing
504 * prevents it from being freed up. But we have a ref on the page and once
505 * that page is locked, the mapping is pinned.
507 * We're allowed to run sleeping lock_page() here because we know the caller has
508 * __GFP_FS.
510 static void handle_write_error(struct address_space *mapping,
511 struct page *page, int error)
513 lock_page(page);
514 if (page_mapping(page) == mapping)
515 mapping_set_error(mapping, error);
516 unlock_page(page);
519 /* possible outcome of pageout() */
520 typedef enum {
521 /* failed to write page out, page is locked */
522 PAGE_KEEP,
523 /* move page to the active list, page is locked */
524 PAGE_ACTIVATE,
525 /* page has been sent to the disk successfully, page is unlocked */
526 PAGE_SUCCESS,
527 /* page is clean and locked */
528 PAGE_CLEAN,
529 } pageout_t;
532 * pageout is called by shrink_page_list() for each dirty page.
533 * Calls ->writepage().
535 static pageout_t pageout(struct page *page, struct address_space *mapping,
536 struct scan_control *sc)
539 * If the page is dirty, only perform writeback if that write
540 * will be non-blocking. To prevent this allocation from being
541 * stalled by pagecache activity. But note that there may be
542 * stalls if we need to run get_block(). We could test
543 * PagePrivate for that.
545 * If this process is currently in __generic_file_write_iter() against
546 * this page's queue, we can perform writeback even if that
547 * will block.
549 * If the page is swapcache, write it back even if that would
550 * block, for some throttling. This happens by accident, because
551 * swap_backing_dev_info is bust: it doesn't reflect the
552 * congestion state of the swapdevs. Easy to fix, if needed.
554 if (!is_page_cache_freeable(page))
555 return PAGE_KEEP;
556 if (!mapping) {
558 * Some data journaling orphaned pages can have
559 * page->mapping == NULL while being dirty with clean buffers.
561 if (page_has_private(page)) {
562 if (try_to_free_buffers(page)) {
563 ClearPageDirty(page);
564 pr_info("%s: orphaned page\n", __func__);
565 return PAGE_CLEAN;
568 return PAGE_KEEP;
570 if (mapping->a_ops->writepage == NULL)
571 return PAGE_ACTIVATE;
572 if (!may_write_to_inode(mapping->host, sc))
573 return PAGE_KEEP;
575 if (clear_page_dirty_for_io(page)) {
576 int res;
577 struct writeback_control wbc = {
578 .sync_mode = WB_SYNC_NONE,
579 .nr_to_write = SWAP_CLUSTER_MAX,
580 .range_start = 0,
581 .range_end = LLONG_MAX,
582 .for_reclaim = 1,
585 SetPageReclaim(page);
586 res = mapping->a_ops->writepage(page, &wbc);
587 if (res < 0)
588 handle_write_error(mapping, page, res);
589 if (res == AOP_WRITEPAGE_ACTIVATE) {
590 ClearPageReclaim(page);
591 return PAGE_ACTIVATE;
594 if (!PageWriteback(page)) {
595 /* synchronous write or broken a_ops? */
596 ClearPageReclaim(page);
598 trace_mm_vmscan_writepage(page);
599 inc_zone_page_state(page, NR_VMSCAN_WRITE);
600 return PAGE_SUCCESS;
603 return PAGE_CLEAN;
607 * Same as remove_mapping, but if the page is removed from the mapping, it
608 * gets returned with a refcount of 0.
610 static int __remove_mapping(struct address_space *mapping, struct page *page,
611 bool reclaimed)
613 unsigned long flags;
614 struct mem_cgroup *memcg;
616 BUG_ON(!PageLocked(page));
617 BUG_ON(mapping != page_mapping(page));
619 memcg = mem_cgroup_begin_page_stat(page);
620 spin_lock_irqsave(&mapping->tree_lock, flags);
622 * The non racy check for a busy page.
624 * Must be careful with the order of the tests. When someone has
625 * a ref to the page, it may be possible that they dirty it then
626 * drop the reference. So if PageDirty is tested before page_count
627 * here, then the following race may occur:
629 * get_user_pages(&page);
630 * [user mapping goes away]
631 * write_to(page);
632 * !PageDirty(page) [good]
633 * SetPageDirty(page);
634 * put_page(page);
635 * !page_count(page) [good, discard it]
637 * [oops, our write_to data is lost]
639 * Reversing the order of the tests ensures such a situation cannot
640 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
641 * load is not satisfied before that of page->_count.
643 * Note that if SetPageDirty is always performed via set_page_dirty,
644 * and thus under tree_lock, then this ordering is not required.
646 if (!page_freeze_refs(page, 2))
647 goto cannot_free;
648 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
649 if (unlikely(PageDirty(page))) {
650 page_unfreeze_refs(page, 2);
651 goto cannot_free;
654 if (PageSwapCache(page)) {
655 swp_entry_t swap = { .val = page_private(page) };
656 mem_cgroup_swapout(page, swap);
657 __delete_from_swap_cache(page);
658 spin_unlock_irqrestore(&mapping->tree_lock, flags);
659 mem_cgroup_end_page_stat(memcg);
660 swapcache_free(swap);
661 } else {
662 void (*freepage)(struct page *);
663 void *shadow = NULL;
665 freepage = mapping->a_ops->freepage;
667 * Remember a shadow entry for reclaimed file cache in
668 * order to detect refaults, thus thrashing, later on.
670 * But don't store shadows in an address space that is
671 * already exiting. This is not just an optizimation,
672 * inode reclaim needs to empty out the radix tree or
673 * the nodes are lost. Don't plant shadows behind its
674 * back.
676 * We also don't store shadows for DAX mappings because the
677 * only page cache pages found in these are zero pages
678 * covering holes, and because we don't want to mix DAX
679 * exceptional entries and shadow exceptional entries in the
680 * same page_tree.
682 if (reclaimed && page_is_file_cache(page) &&
683 !mapping_exiting(mapping) && !dax_mapping(mapping))
684 shadow = workingset_eviction(mapping, page);
685 __delete_from_page_cache(page, shadow, memcg);
686 spin_unlock_irqrestore(&mapping->tree_lock, flags);
687 mem_cgroup_end_page_stat(memcg);
689 if (freepage != NULL)
690 freepage(page);
693 return 1;
695 cannot_free:
696 spin_unlock_irqrestore(&mapping->tree_lock, flags);
697 mem_cgroup_end_page_stat(memcg);
698 return 0;
702 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
703 * someone else has a ref on the page, abort and return 0. If it was
704 * successfully detached, return 1. Assumes the caller has a single ref on
705 * this page.
707 int remove_mapping(struct address_space *mapping, struct page *page)
709 if (__remove_mapping(mapping, page, false)) {
711 * Unfreezing the refcount with 1 rather than 2 effectively
712 * drops the pagecache ref for us without requiring another
713 * atomic operation.
715 page_unfreeze_refs(page, 1);
716 return 1;
718 return 0;
722 * putback_lru_page - put previously isolated page onto appropriate LRU list
723 * @page: page to be put back to appropriate lru list
725 * Add previously isolated @page to appropriate LRU list.
726 * Page may still be unevictable for other reasons.
728 * lru_lock must not be held, interrupts must be enabled.
730 void putback_lru_page(struct page *page)
732 bool is_unevictable;
733 int was_unevictable = PageUnevictable(page);
735 VM_BUG_ON_PAGE(PageLRU(page), page);
737 redo:
738 ClearPageUnevictable(page);
740 if (page_evictable(page)) {
742 * For evictable pages, we can use the cache.
743 * In event of a race, worst case is we end up with an
744 * unevictable page on [in]active list.
745 * We know how to handle that.
747 is_unevictable = false;
748 lru_cache_add(page);
749 } else {
751 * Put unevictable pages directly on zone's unevictable
752 * list.
754 is_unevictable = true;
755 add_page_to_unevictable_list(page);
757 * When racing with an mlock or AS_UNEVICTABLE clearing
758 * (page is unlocked) make sure that if the other thread
759 * does not observe our setting of PG_lru and fails
760 * isolation/check_move_unevictable_pages,
761 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
762 * the page back to the evictable list.
764 * The other side is TestClearPageMlocked() or shmem_lock().
766 smp_mb();
770 * page's status can change while we move it among lru. If an evictable
771 * page is on unevictable list, it never be freed. To avoid that,
772 * check after we added it to the list, again.
774 if (is_unevictable && page_evictable(page)) {
775 if (!isolate_lru_page(page)) {
776 put_page(page);
777 goto redo;
779 /* This means someone else dropped this page from LRU
780 * So, it will be freed or putback to LRU again. There is
781 * nothing to do here.
785 if (was_unevictable && !is_unevictable)
786 count_vm_event(UNEVICTABLE_PGRESCUED);
787 else if (!was_unevictable && is_unevictable)
788 count_vm_event(UNEVICTABLE_PGCULLED);
790 put_page(page); /* drop ref from isolate */
793 enum page_references {
794 PAGEREF_RECLAIM,
795 PAGEREF_RECLAIM_CLEAN,
796 PAGEREF_KEEP,
797 PAGEREF_ACTIVATE,
800 static enum page_references page_check_references(struct page *page,
801 struct scan_control *sc)
803 int referenced_ptes, referenced_page;
804 unsigned long vm_flags;
806 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
807 &vm_flags);
808 referenced_page = TestClearPageReferenced(page);
811 * Mlock lost the isolation race with us. Let try_to_unmap()
812 * move the page to the unevictable list.
814 if (vm_flags & VM_LOCKED)
815 return PAGEREF_RECLAIM;
817 if (referenced_ptes) {
818 if (PageSwapBacked(page))
819 return PAGEREF_ACTIVATE;
821 * All mapped pages start out with page table
822 * references from the instantiating fault, so we need
823 * to look twice if a mapped file page is used more
824 * than once.
826 * Mark it and spare it for another trip around the
827 * inactive list. Another page table reference will
828 * lead to its activation.
830 * Note: the mark is set for activated pages as well
831 * so that recently deactivated but used pages are
832 * quickly recovered.
834 SetPageReferenced(page);
836 if (referenced_page || referenced_ptes > 1)
837 return PAGEREF_ACTIVATE;
840 * Activate file-backed executable pages after first usage.
842 if (vm_flags & VM_EXEC)
843 return PAGEREF_ACTIVATE;
845 return PAGEREF_KEEP;
848 /* Reclaim if clean, defer dirty pages to writeback */
849 if (referenced_page && !PageSwapBacked(page))
850 return PAGEREF_RECLAIM_CLEAN;
852 return PAGEREF_RECLAIM;
855 /* Check if a page is dirty or under writeback */
856 static void page_check_dirty_writeback(struct page *page,
857 bool *dirty, bool *writeback)
859 struct address_space *mapping;
862 * Anonymous pages are not handled by flushers and must be written
863 * from reclaim context. Do not stall reclaim based on them
865 if (!page_is_file_cache(page)) {
866 *dirty = false;
867 *writeback = false;
868 return;
871 /* By default assume that the page flags are accurate */
872 *dirty = PageDirty(page);
873 *writeback = PageWriteback(page);
875 /* Verify dirty/writeback state if the filesystem supports it */
876 if (!page_has_private(page))
877 return;
879 mapping = page_mapping(page);
880 if (mapping && mapping->a_ops->is_dirty_writeback)
881 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
885 * shrink_page_list() returns the number of reclaimed pages
887 static unsigned long shrink_page_list(struct list_head *page_list,
888 struct zone *zone,
889 struct scan_control *sc,
890 enum ttu_flags ttu_flags,
891 unsigned long *ret_nr_dirty,
892 unsigned long *ret_nr_unqueued_dirty,
893 unsigned long *ret_nr_congested,
894 unsigned long *ret_nr_writeback,
895 unsigned long *ret_nr_immediate,
896 bool force_reclaim)
898 LIST_HEAD(ret_pages);
899 LIST_HEAD(free_pages);
900 int pgactivate = 0;
901 unsigned long nr_unqueued_dirty = 0;
902 unsigned long nr_dirty = 0;
903 unsigned long nr_congested = 0;
904 unsigned long nr_reclaimed = 0;
905 unsigned long nr_writeback = 0;
906 unsigned long nr_immediate = 0;
908 cond_resched();
910 while (!list_empty(page_list)) {
911 struct address_space *mapping;
912 struct page *page;
913 int may_enter_fs;
914 enum page_references references = PAGEREF_RECLAIM_CLEAN;
915 bool dirty, writeback;
916 bool lazyfree = false;
917 int ret = SWAP_SUCCESS;
919 cond_resched();
921 page = lru_to_page(page_list);
922 list_del(&page->lru);
924 if (!trylock_page(page))
925 goto keep;
927 VM_BUG_ON_PAGE(PageActive(page), page);
928 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
930 sc->nr_scanned++;
932 if (unlikely(!page_evictable(page)))
933 goto cull_mlocked;
935 if (!sc->may_unmap && page_mapped(page))
936 goto keep_locked;
938 /* Double the slab pressure for mapped and swapcache pages */
939 if (page_mapped(page) || PageSwapCache(page))
940 sc->nr_scanned++;
942 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
943 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
946 * The number of dirty pages determines if a zone is marked
947 * reclaim_congested which affects wait_iff_congested. kswapd
948 * will stall and start writing pages if the tail of the LRU
949 * is all dirty unqueued pages.
951 page_check_dirty_writeback(page, &dirty, &writeback);
952 if (dirty || writeback)
953 nr_dirty++;
955 if (dirty && !writeback)
956 nr_unqueued_dirty++;
959 * Treat this page as congested if the underlying BDI is or if
960 * pages are cycling through the LRU so quickly that the
961 * pages marked for immediate reclaim are making it to the
962 * end of the LRU a second time.
964 mapping = page_mapping(page);
965 if (((dirty || writeback) && mapping &&
966 inode_write_congested(mapping->host)) ||
967 (writeback && PageReclaim(page)))
968 nr_congested++;
971 * If a page at the tail of the LRU is under writeback, there
972 * are three cases to consider.
974 * 1) If reclaim is encountering an excessive number of pages
975 * under writeback and this page is both under writeback and
976 * PageReclaim then it indicates that pages are being queued
977 * for IO but are being recycled through the LRU before the
978 * IO can complete. Waiting on the page itself risks an
979 * indefinite stall if it is impossible to writeback the
980 * page due to IO error or disconnected storage so instead
981 * note that the LRU is being scanned too quickly and the
982 * caller can stall after page list has been processed.
984 * 2) Global or new memcg reclaim encounters a page that is
985 * not marked for immediate reclaim, or the caller does not
986 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
987 * not to fs). In this case mark the page for immediate
988 * reclaim and continue scanning.
990 * Require may_enter_fs because we would wait on fs, which
991 * may not have submitted IO yet. And the loop driver might
992 * enter reclaim, and deadlock if it waits on a page for
993 * which it is needed to do the write (loop masks off
994 * __GFP_IO|__GFP_FS for this reason); but more thought
995 * would probably show more reasons.
997 * 3) Legacy memcg encounters a page that is already marked
998 * PageReclaim. memcg does not have any dirty pages
999 * throttling so we could easily OOM just because too many
1000 * pages are in writeback and there is nothing else to
1001 * reclaim. Wait for the writeback to complete.
1003 if (PageWriteback(page)) {
1004 /* Case 1 above */
1005 if (current_is_kswapd() &&
1006 PageReclaim(page) &&
1007 test_bit(ZONE_WRITEBACK, &zone->flags)) {
1008 nr_immediate++;
1009 goto keep_locked;
1011 /* Case 2 above */
1012 } else if (sane_reclaim(sc) ||
1013 !PageReclaim(page) || !may_enter_fs) {
1015 * This is slightly racy - end_page_writeback()
1016 * might have just cleared PageReclaim, then
1017 * setting PageReclaim here end up interpreted
1018 * as PageReadahead - but that does not matter
1019 * enough to care. What we do want is for this
1020 * page to have PageReclaim set next time memcg
1021 * reclaim reaches the tests above, so it will
1022 * then wait_on_page_writeback() to avoid OOM;
1023 * and it's also appropriate in global reclaim.
1025 SetPageReclaim(page);
1026 nr_writeback++;
1027 goto keep_locked;
1029 /* Case 3 above */
1030 } else {
1031 unlock_page(page);
1032 wait_on_page_writeback(page);
1033 /* then go back and try same page again */
1034 list_add_tail(&page->lru, page_list);
1035 continue;
1039 if (!force_reclaim)
1040 references = page_check_references(page, sc);
1042 switch (references) {
1043 case PAGEREF_ACTIVATE:
1044 goto activate_locked;
1045 case PAGEREF_KEEP:
1046 goto keep_locked;
1047 case PAGEREF_RECLAIM:
1048 case PAGEREF_RECLAIM_CLEAN:
1049 ; /* try to reclaim the page below */
1053 * Anonymous process memory has backing store?
1054 * Try to allocate it some swap space here.
1056 if (PageAnon(page) && !PageSwapCache(page)) {
1057 if (!(sc->gfp_mask & __GFP_IO))
1058 goto keep_locked;
1059 if (!add_to_swap(page, page_list))
1060 goto activate_locked;
1061 lazyfree = true;
1062 may_enter_fs = 1;
1064 /* Adding to swap updated mapping */
1065 mapping = page_mapping(page);
1069 * The page is mapped into the page tables of one or more
1070 * processes. Try to unmap it here.
1072 if (page_mapped(page) && mapping) {
1073 switch (ret = try_to_unmap(page, lazyfree ?
1074 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1075 (ttu_flags | TTU_BATCH_FLUSH))) {
1076 case SWAP_FAIL:
1077 goto activate_locked;
1078 case SWAP_AGAIN:
1079 goto keep_locked;
1080 case SWAP_MLOCK:
1081 goto cull_mlocked;
1082 case SWAP_LZFREE:
1083 goto lazyfree;
1084 case SWAP_SUCCESS:
1085 ; /* try to free the page below */
1089 if (PageDirty(page)) {
1091 * Only kswapd can writeback filesystem pages to
1092 * avoid risk of stack overflow but only writeback
1093 * if many dirty pages have been encountered.
1095 if (page_is_file_cache(page) &&
1096 (!current_is_kswapd() ||
1097 !test_bit(ZONE_DIRTY, &zone->flags))) {
1099 * Immediately reclaim when written back.
1100 * Similar in principal to deactivate_page()
1101 * except we already have the page isolated
1102 * and know it's dirty
1104 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1105 SetPageReclaim(page);
1107 goto keep_locked;
1110 if (references == PAGEREF_RECLAIM_CLEAN)
1111 goto keep_locked;
1112 if (!may_enter_fs)
1113 goto keep_locked;
1114 if (!sc->may_writepage)
1115 goto keep_locked;
1118 * Page is dirty. Flush the TLB if a writable entry
1119 * potentially exists to avoid CPU writes after IO
1120 * starts and then write it out here.
1122 try_to_unmap_flush_dirty();
1123 switch (pageout(page, mapping, sc)) {
1124 case PAGE_KEEP:
1125 goto keep_locked;
1126 case PAGE_ACTIVATE:
1127 goto activate_locked;
1128 case PAGE_SUCCESS:
1129 if (PageWriteback(page))
1130 goto keep;
1131 if (PageDirty(page))
1132 goto keep;
1135 * A synchronous write - probably a ramdisk. Go
1136 * ahead and try to reclaim the page.
1138 if (!trylock_page(page))
1139 goto keep;
1140 if (PageDirty(page) || PageWriteback(page))
1141 goto keep_locked;
1142 mapping = page_mapping(page);
1143 case PAGE_CLEAN:
1144 ; /* try to free the page below */
1149 * If the page has buffers, try to free the buffer mappings
1150 * associated with this page. If we succeed we try to free
1151 * the page as well.
1153 * We do this even if the page is PageDirty().
1154 * try_to_release_page() does not perform I/O, but it is
1155 * possible for a page to have PageDirty set, but it is actually
1156 * clean (all its buffers are clean). This happens if the
1157 * buffers were written out directly, with submit_bh(). ext3
1158 * will do this, as well as the blockdev mapping.
1159 * try_to_release_page() will discover that cleanness and will
1160 * drop the buffers and mark the page clean - it can be freed.
1162 * Rarely, pages can have buffers and no ->mapping. These are
1163 * the pages which were not successfully invalidated in
1164 * truncate_complete_page(). We try to drop those buffers here
1165 * and if that worked, and the page is no longer mapped into
1166 * process address space (page_count == 1) it can be freed.
1167 * Otherwise, leave the page on the LRU so it is swappable.
1169 if (page_has_private(page)) {
1170 if (!try_to_release_page(page, sc->gfp_mask))
1171 goto activate_locked;
1172 if (!mapping && page_count(page) == 1) {
1173 unlock_page(page);
1174 if (put_page_testzero(page))
1175 goto free_it;
1176 else {
1178 * rare race with speculative reference.
1179 * the speculative reference will free
1180 * this page shortly, so we may
1181 * increment nr_reclaimed here (and
1182 * leave it off the LRU).
1184 nr_reclaimed++;
1185 continue;
1190 lazyfree:
1191 if (!mapping || !__remove_mapping(mapping, page, true))
1192 goto keep_locked;
1195 * At this point, we have no other references and there is
1196 * no way to pick any more up (removed from LRU, removed
1197 * from pagecache). Can use non-atomic bitops now (and
1198 * we obviously don't have to worry about waking up a process
1199 * waiting on the page lock, because there are no references.
1201 __ClearPageLocked(page);
1202 free_it:
1203 if (ret == SWAP_LZFREE)
1204 count_vm_event(PGLAZYFREED);
1206 nr_reclaimed++;
1209 * Is there need to periodically free_page_list? It would
1210 * appear not as the counts should be low
1212 list_add(&page->lru, &free_pages);
1213 continue;
1215 cull_mlocked:
1216 if (PageSwapCache(page))
1217 try_to_free_swap(page);
1218 unlock_page(page);
1219 list_add(&page->lru, &ret_pages);
1220 continue;
1222 activate_locked:
1223 /* Not a candidate for swapping, so reclaim swap space. */
1224 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1225 try_to_free_swap(page);
1226 VM_BUG_ON_PAGE(PageActive(page), page);
1227 SetPageActive(page);
1228 pgactivate++;
1229 keep_locked:
1230 unlock_page(page);
1231 keep:
1232 list_add(&page->lru, &ret_pages);
1233 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1236 mem_cgroup_uncharge_list(&free_pages);
1237 try_to_unmap_flush();
1238 free_hot_cold_page_list(&free_pages, true);
1240 list_splice(&ret_pages, page_list);
1241 count_vm_events(PGACTIVATE, pgactivate);
1243 *ret_nr_dirty += nr_dirty;
1244 *ret_nr_congested += nr_congested;
1245 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1246 *ret_nr_writeback += nr_writeback;
1247 *ret_nr_immediate += nr_immediate;
1248 return nr_reclaimed;
1251 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1252 struct list_head *page_list)
1254 struct scan_control sc = {
1255 .gfp_mask = GFP_KERNEL,
1256 .priority = DEF_PRIORITY,
1257 .may_unmap = 1,
1259 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1260 struct page *page, *next;
1261 LIST_HEAD(clean_pages);
1263 list_for_each_entry_safe(page, next, page_list, lru) {
1264 if (page_is_file_cache(page) && !PageDirty(page) &&
1265 !isolated_balloon_page(page)) {
1266 ClearPageActive(page);
1267 list_move(&page->lru, &clean_pages);
1271 ret = shrink_page_list(&clean_pages, zone, &sc,
1272 TTU_UNMAP|TTU_IGNORE_ACCESS,
1273 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1274 list_splice(&clean_pages, page_list);
1275 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1276 return ret;
1280 * Attempt to remove the specified page from its LRU. Only take this page
1281 * if it is of the appropriate PageActive status. Pages which are being
1282 * freed elsewhere are also ignored.
1284 * page: page to consider
1285 * mode: one of the LRU isolation modes defined above
1287 * returns 0 on success, -ve errno on failure.
1289 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1291 int ret = -EINVAL;
1293 /* Only take pages on the LRU. */
1294 if (!PageLRU(page))
1295 return ret;
1297 /* Compaction should not handle unevictable pages but CMA can do so */
1298 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1299 return ret;
1301 ret = -EBUSY;
1304 * To minimise LRU disruption, the caller can indicate that it only
1305 * wants to isolate pages it will be able to operate on without
1306 * blocking - clean pages for the most part.
1308 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1309 * is used by reclaim when it is cannot write to backing storage
1311 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1312 * that it is possible to migrate without blocking
1314 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1315 /* All the caller can do on PageWriteback is block */
1316 if (PageWriteback(page))
1317 return ret;
1319 if (PageDirty(page)) {
1320 struct address_space *mapping;
1322 /* ISOLATE_CLEAN means only clean pages */
1323 if (mode & ISOLATE_CLEAN)
1324 return ret;
1327 * Only pages without mappings or that have a
1328 * ->migratepage callback are possible to migrate
1329 * without blocking
1331 mapping = page_mapping(page);
1332 if (mapping && !mapping->a_ops->migratepage)
1333 return ret;
1337 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1338 return ret;
1340 if (likely(get_page_unless_zero(page))) {
1342 * Be careful not to clear PageLRU until after we're
1343 * sure the page is not being freed elsewhere -- the
1344 * page release code relies on it.
1346 ClearPageLRU(page);
1347 ret = 0;
1350 return ret;
1354 * zone->lru_lock is heavily contended. Some of the functions that
1355 * shrink the lists perform better by taking out a batch of pages
1356 * and working on them outside the LRU lock.
1358 * For pagecache intensive workloads, this function is the hottest
1359 * spot in the kernel (apart from copy_*_user functions).
1361 * Appropriate locks must be held before calling this function.
1363 * @nr_to_scan: The number of pages to look through on the list.
1364 * @lruvec: The LRU vector to pull pages from.
1365 * @dst: The temp list to put pages on to.
1366 * @nr_scanned: The number of pages that were scanned.
1367 * @sc: The scan_control struct for this reclaim session
1368 * @mode: One of the LRU isolation modes
1369 * @lru: LRU list id for isolating
1371 * returns how many pages were moved onto *@dst.
1373 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1374 struct lruvec *lruvec, struct list_head *dst,
1375 unsigned long *nr_scanned, struct scan_control *sc,
1376 isolate_mode_t mode, enum lru_list lru)
1378 struct list_head *src = &lruvec->lists[lru];
1379 unsigned long nr_taken = 0;
1380 unsigned long scan;
1382 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1383 !list_empty(src); scan++) {
1384 struct page *page;
1385 int nr_pages;
1387 page = lru_to_page(src);
1388 prefetchw_prev_lru_page(page, src, flags);
1390 VM_BUG_ON_PAGE(!PageLRU(page), page);
1392 switch (__isolate_lru_page(page, mode)) {
1393 case 0:
1394 nr_pages = hpage_nr_pages(page);
1395 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1396 list_move(&page->lru, dst);
1397 nr_taken += nr_pages;
1398 break;
1400 case -EBUSY:
1401 /* else it is being freed elsewhere */
1402 list_move(&page->lru, src);
1403 continue;
1405 default:
1406 BUG();
1410 *nr_scanned = scan;
1411 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1412 nr_taken, mode, is_file_lru(lru));
1413 return nr_taken;
1417 * isolate_lru_page - tries to isolate a page from its LRU list
1418 * @page: page to isolate from its LRU list
1420 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1421 * vmstat statistic corresponding to whatever LRU list the page was on.
1423 * Returns 0 if the page was removed from an LRU list.
1424 * Returns -EBUSY if the page was not on an LRU list.
1426 * The returned page will have PageLRU() cleared. If it was found on
1427 * the active list, it will have PageActive set. If it was found on
1428 * the unevictable list, it will have the PageUnevictable bit set. That flag
1429 * may need to be cleared by the caller before letting the page go.
1431 * The vmstat statistic corresponding to the list on which the page was
1432 * found will be decremented.
1434 * Restrictions:
1435 * (1) Must be called with an elevated refcount on the page. This is a
1436 * fundamentnal difference from isolate_lru_pages (which is called
1437 * without a stable reference).
1438 * (2) the lru_lock must not be held.
1439 * (3) interrupts must be enabled.
1441 int isolate_lru_page(struct page *page)
1443 int ret = -EBUSY;
1445 VM_BUG_ON_PAGE(!page_count(page), page);
1446 VM_BUG_ON_PAGE(PageTail(page), page);
1448 if (PageLRU(page)) {
1449 struct zone *zone = page_zone(page);
1450 struct lruvec *lruvec;
1452 spin_lock_irq(&zone->lru_lock);
1453 lruvec = mem_cgroup_page_lruvec(page, zone);
1454 if (PageLRU(page)) {
1455 int lru = page_lru(page);
1456 get_page(page);
1457 ClearPageLRU(page);
1458 del_page_from_lru_list(page, lruvec, lru);
1459 ret = 0;
1461 spin_unlock_irq(&zone->lru_lock);
1463 return ret;
1467 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1468 * then get resheduled. When there are massive number of tasks doing page
1469 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1470 * the LRU list will go small and be scanned faster than necessary, leading to
1471 * unnecessary swapping, thrashing and OOM.
1473 static int too_many_isolated(struct zone *zone, int file,
1474 struct scan_control *sc)
1476 unsigned long inactive, isolated;
1478 if (current_is_kswapd())
1479 return 0;
1481 if (!sane_reclaim(sc))
1482 return 0;
1484 if (file) {
1485 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1486 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1487 } else {
1488 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1489 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1493 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1494 * won't get blocked by normal direct-reclaimers, forming a circular
1495 * deadlock.
1497 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1498 inactive >>= 3;
1500 return isolated > inactive;
1503 static noinline_for_stack void
1504 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1506 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1507 struct zone *zone = lruvec_zone(lruvec);
1508 LIST_HEAD(pages_to_free);
1511 * Put back any unfreeable pages.
1513 while (!list_empty(page_list)) {
1514 struct page *page = lru_to_page(page_list);
1515 int lru;
1517 VM_BUG_ON_PAGE(PageLRU(page), page);
1518 list_del(&page->lru);
1519 if (unlikely(!page_evictable(page))) {
1520 spin_unlock_irq(&zone->lru_lock);
1521 putback_lru_page(page);
1522 spin_lock_irq(&zone->lru_lock);
1523 continue;
1526 lruvec = mem_cgroup_page_lruvec(page, zone);
1528 SetPageLRU(page);
1529 lru = page_lru(page);
1530 add_page_to_lru_list(page, lruvec, lru);
1532 if (is_active_lru(lru)) {
1533 int file = is_file_lru(lru);
1534 int numpages = hpage_nr_pages(page);
1535 reclaim_stat->recent_rotated[file] += numpages;
1537 if (put_page_testzero(page)) {
1538 __ClearPageLRU(page);
1539 __ClearPageActive(page);
1540 del_page_from_lru_list(page, lruvec, lru);
1542 if (unlikely(PageCompound(page))) {
1543 spin_unlock_irq(&zone->lru_lock);
1544 mem_cgroup_uncharge(page);
1545 (*get_compound_page_dtor(page))(page);
1546 spin_lock_irq(&zone->lru_lock);
1547 } else
1548 list_add(&page->lru, &pages_to_free);
1553 * To save our caller's stack, now use input list for pages to free.
1555 list_splice(&pages_to_free, page_list);
1559 * If a kernel thread (such as nfsd for loop-back mounts) services
1560 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1561 * In that case we should only throttle if the backing device it is
1562 * writing to is congested. In other cases it is safe to throttle.
1564 static int current_may_throttle(void)
1566 return !(current->flags & PF_LESS_THROTTLE) ||
1567 current->backing_dev_info == NULL ||
1568 bdi_write_congested(current->backing_dev_info);
1572 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1573 * of reclaimed pages
1575 static noinline_for_stack unsigned long
1576 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1577 struct scan_control *sc, enum lru_list lru)
1579 LIST_HEAD(page_list);
1580 unsigned long nr_scanned;
1581 unsigned long nr_reclaimed = 0;
1582 unsigned long nr_taken;
1583 unsigned long nr_dirty = 0;
1584 unsigned long nr_congested = 0;
1585 unsigned long nr_unqueued_dirty = 0;
1586 unsigned long nr_writeback = 0;
1587 unsigned long nr_immediate = 0;
1588 isolate_mode_t isolate_mode = 0;
1589 int file = is_file_lru(lru);
1590 struct zone *zone = lruvec_zone(lruvec);
1591 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1593 while (unlikely(too_many_isolated(zone, file, sc))) {
1594 congestion_wait(BLK_RW_ASYNC, HZ/10);
1596 /* We are about to die and free our memory. Return now. */
1597 if (fatal_signal_pending(current))
1598 return SWAP_CLUSTER_MAX;
1601 lru_add_drain();
1603 if (!sc->may_unmap)
1604 isolate_mode |= ISOLATE_UNMAPPED;
1605 if (!sc->may_writepage)
1606 isolate_mode |= ISOLATE_CLEAN;
1608 spin_lock_irq(&zone->lru_lock);
1610 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1611 &nr_scanned, sc, isolate_mode, lru);
1613 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1614 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1616 if (global_reclaim(sc)) {
1617 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1618 if (current_is_kswapd())
1619 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1620 else
1621 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1623 spin_unlock_irq(&zone->lru_lock);
1625 if (nr_taken == 0)
1626 return 0;
1628 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1629 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1630 &nr_writeback, &nr_immediate,
1631 false);
1633 spin_lock_irq(&zone->lru_lock);
1635 reclaim_stat->recent_scanned[file] += nr_taken;
1637 if (global_reclaim(sc)) {
1638 if (current_is_kswapd())
1639 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1640 nr_reclaimed);
1641 else
1642 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1643 nr_reclaimed);
1646 putback_inactive_pages(lruvec, &page_list);
1648 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1650 spin_unlock_irq(&zone->lru_lock);
1652 mem_cgroup_uncharge_list(&page_list);
1653 free_hot_cold_page_list(&page_list, true);
1656 * If reclaim is isolating dirty pages under writeback, it implies
1657 * that the long-lived page allocation rate is exceeding the page
1658 * laundering rate. Either the global limits are not being effective
1659 * at throttling processes due to the page distribution throughout
1660 * zones or there is heavy usage of a slow backing device. The
1661 * only option is to throttle from reclaim context which is not ideal
1662 * as there is no guarantee the dirtying process is throttled in the
1663 * same way balance_dirty_pages() manages.
1665 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1666 * of pages under pages flagged for immediate reclaim and stall if any
1667 * are encountered in the nr_immediate check below.
1669 if (nr_writeback && nr_writeback == nr_taken)
1670 set_bit(ZONE_WRITEBACK, &zone->flags);
1673 * Legacy memcg will stall in page writeback so avoid forcibly
1674 * stalling here.
1676 if (sane_reclaim(sc)) {
1678 * Tag a zone as congested if all the dirty pages scanned were
1679 * backed by a congested BDI and wait_iff_congested will stall.
1681 if (nr_dirty && nr_dirty == nr_congested)
1682 set_bit(ZONE_CONGESTED, &zone->flags);
1685 * If dirty pages are scanned that are not queued for IO, it
1686 * implies that flushers are not keeping up. In this case, flag
1687 * the zone ZONE_DIRTY and kswapd will start writing pages from
1688 * reclaim context.
1690 if (nr_unqueued_dirty == nr_taken)
1691 set_bit(ZONE_DIRTY, &zone->flags);
1694 * If kswapd scans pages marked marked for immediate
1695 * reclaim and under writeback (nr_immediate), it implies
1696 * that pages are cycling through the LRU faster than
1697 * they are written so also forcibly stall.
1699 if (nr_immediate && current_may_throttle())
1700 congestion_wait(BLK_RW_ASYNC, HZ/10);
1704 * Stall direct reclaim for IO completions if underlying BDIs or zone
1705 * is congested. Allow kswapd to continue until it starts encountering
1706 * unqueued dirty pages or cycling through the LRU too quickly.
1708 if (!sc->hibernation_mode && !current_is_kswapd() &&
1709 current_may_throttle())
1710 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1712 trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed,
1713 sc->priority, file);
1714 return nr_reclaimed;
1718 * This moves pages from the active list to the inactive list.
1720 * We move them the other way if the page is referenced by one or more
1721 * processes, from rmap.
1723 * If the pages are mostly unmapped, the processing is fast and it is
1724 * appropriate to hold zone->lru_lock across the whole operation. But if
1725 * the pages are mapped, the processing is slow (page_referenced()) so we
1726 * should drop zone->lru_lock around each page. It's impossible to balance
1727 * this, so instead we remove the pages from the LRU while processing them.
1728 * It is safe to rely on PG_active against the non-LRU pages in here because
1729 * nobody will play with that bit on a non-LRU page.
1731 * The downside is that we have to touch page->_count against each page.
1732 * But we had to alter page->flags anyway.
1735 static void move_active_pages_to_lru(struct lruvec *lruvec,
1736 struct list_head *list,
1737 struct list_head *pages_to_free,
1738 enum lru_list lru)
1740 struct zone *zone = lruvec_zone(lruvec);
1741 unsigned long pgmoved = 0;
1742 struct page *page;
1743 int nr_pages;
1745 while (!list_empty(list)) {
1746 page = lru_to_page(list);
1747 lruvec = mem_cgroup_page_lruvec(page, zone);
1749 VM_BUG_ON_PAGE(PageLRU(page), page);
1750 SetPageLRU(page);
1752 nr_pages = hpage_nr_pages(page);
1753 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1754 list_move(&page->lru, &lruvec->lists[lru]);
1755 pgmoved += nr_pages;
1757 if (put_page_testzero(page)) {
1758 __ClearPageLRU(page);
1759 __ClearPageActive(page);
1760 del_page_from_lru_list(page, lruvec, lru);
1762 if (unlikely(PageCompound(page))) {
1763 spin_unlock_irq(&zone->lru_lock);
1764 mem_cgroup_uncharge(page);
1765 (*get_compound_page_dtor(page))(page);
1766 spin_lock_irq(&zone->lru_lock);
1767 } else
1768 list_add(&page->lru, pages_to_free);
1771 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1772 if (!is_active_lru(lru))
1773 __count_vm_events(PGDEACTIVATE, pgmoved);
1776 static void shrink_active_list(unsigned long nr_to_scan,
1777 struct lruvec *lruvec,
1778 struct scan_control *sc,
1779 enum lru_list lru)
1781 unsigned long nr_taken;
1782 unsigned long nr_scanned;
1783 unsigned long vm_flags;
1784 LIST_HEAD(l_hold); /* The pages which were snipped off */
1785 LIST_HEAD(l_active);
1786 LIST_HEAD(l_inactive);
1787 struct page *page;
1788 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1789 unsigned long nr_rotated = 0;
1790 isolate_mode_t isolate_mode = 0;
1791 int file = is_file_lru(lru);
1792 struct zone *zone = lruvec_zone(lruvec);
1794 lru_add_drain();
1796 if (!sc->may_unmap)
1797 isolate_mode |= ISOLATE_UNMAPPED;
1798 if (!sc->may_writepage)
1799 isolate_mode |= ISOLATE_CLEAN;
1801 spin_lock_irq(&zone->lru_lock);
1803 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1804 &nr_scanned, sc, isolate_mode, lru);
1805 if (global_reclaim(sc))
1806 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1808 reclaim_stat->recent_scanned[file] += nr_taken;
1810 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1811 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1812 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1813 spin_unlock_irq(&zone->lru_lock);
1815 while (!list_empty(&l_hold)) {
1816 cond_resched();
1817 page = lru_to_page(&l_hold);
1818 list_del(&page->lru);
1820 if (unlikely(!page_evictable(page))) {
1821 putback_lru_page(page);
1822 continue;
1825 if (unlikely(buffer_heads_over_limit)) {
1826 if (page_has_private(page) && trylock_page(page)) {
1827 if (page_has_private(page))
1828 try_to_release_page(page, 0);
1829 unlock_page(page);
1833 if (page_referenced(page, 0, sc->target_mem_cgroup,
1834 &vm_flags)) {
1835 nr_rotated += hpage_nr_pages(page);
1837 * Identify referenced, file-backed active pages and
1838 * give them one more trip around the active list. So
1839 * that executable code get better chances to stay in
1840 * memory under moderate memory pressure. Anon pages
1841 * are not likely to be evicted by use-once streaming
1842 * IO, plus JVM can create lots of anon VM_EXEC pages,
1843 * so we ignore them here.
1845 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1846 list_add(&page->lru, &l_active);
1847 continue;
1851 ClearPageActive(page); /* we are de-activating */
1852 list_add(&page->lru, &l_inactive);
1856 * Move pages back to the lru list.
1858 spin_lock_irq(&zone->lru_lock);
1860 * Count referenced pages from currently used mappings as rotated,
1861 * even though only some of them are actually re-activated. This
1862 * helps balance scan pressure between file and anonymous pages in
1863 * get_scan_count.
1865 reclaim_stat->recent_rotated[file] += nr_rotated;
1867 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1868 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1869 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1870 spin_unlock_irq(&zone->lru_lock);
1872 mem_cgroup_uncharge_list(&l_hold);
1873 free_hot_cold_page_list(&l_hold, true);
1876 #ifdef CONFIG_SWAP
1877 static bool inactive_anon_is_low_global(struct zone *zone)
1879 unsigned long active, inactive;
1881 active = zone_page_state(zone, NR_ACTIVE_ANON);
1882 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1884 return inactive * zone->inactive_ratio < active;
1888 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1889 * @lruvec: LRU vector to check
1891 * Returns true if the zone does not have enough inactive anon pages,
1892 * meaning some active anon pages need to be deactivated.
1894 static bool inactive_anon_is_low(struct lruvec *lruvec)
1897 * If we don't have swap space, anonymous page deactivation
1898 * is pointless.
1900 if (!total_swap_pages)
1901 return false;
1903 if (!mem_cgroup_disabled())
1904 return mem_cgroup_inactive_anon_is_low(lruvec);
1906 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1908 #else
1909 static inline bool inactive_anon_is_low(struct lruvec *lruvec)
1911 return false;
1913 #endif
1916 * inactive_file_is_low - check if file pages need to be deactivated
1917 * @lruvec: LRU vector to check
1919 * When the system is doing streaming IO, memory pressure here
1920 * ensures that active file pages get deactivated, until more
1921 * than half of the file pages are on the inactive list.
1923 * Once we get to that situation, protect the system's working
1924 * set from being evicted by disabling active file page aging.
1926 * This uses a different ratio than the anonymous pages, because
1927 * the page cache uses a use-once replacement algorithm.
1929 static bool inactive_file_is_low(struct lruvec *lruvec)
1931 unsigned long inactive;
1932 unsigned long active;
1934 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1935 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1937 return active > inactive;
1940 static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1942 if (is_file_lru(lru))
1943 return inactive_file_is_low(lruvec);
1944 else
1945 return inactive_anon_is_low(lruvec);
1948 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1949 struct lruvec *lruvec, struct scan_control *sc)
1951 if (is_active_lru(lru)) {
1952 if (inactive_list_is_low(lruvec, lru))
1953 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1954 return 0;
1957 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1960 enum scan_balance {
1961 SCAN_EQUAL,
1962 SCAN_FRACT,
1963 SCAN_ANON,
1964 SCAN_FILE,
1968 * Determine how aggressively the anon and file LRU lists should be
1969 * scanned. The relative value of each set of LRU lists is determined
1970 * by looking at the fraction of the pages scanned we did rotate back
1971 * onto the active list instead of evict.
1973 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1974 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1976 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
1977 struct scan_control *sc, unsigned long *nr,
1978 unsigned long *lru_pages)
1980 int swappiness = mem_cgroup_swappiness(memcg);
1981 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1982 u64 fraction[2];
1983 u64 denominator = 0; /* gcc */
1984 struct zone *zone = lruvec_zone(lruvec);
1985 unsigned long anon_prio, file_prio;
1986 enum scan_balance scan_balance;
1987 unsigned long anon, file;
1988 bool force_scan = false;
1989 unsigned long ap, fp;
1990 enum lru_list lru;
1991 bool some_scanned;
1992 int pass;
1995 * If the zone or memcg is small, nr[l] can be 0. This
1996 * results in no scanning on this priority and a potential
1997 * priority drop. Global direct reclaim can go to the next
1998 * zone and tends to have no problems. Global kswapd is for
1999 * zone balancing and it needs to scan a minimum amount. When
2000 * reclaiming for a memcg, a priority drop can cause high
2001 * latencies, so it's better to scan a minimum amount there as
2002 * well.
2004 if (current_is_kswapd()) {
2005 if (!zone_reclaimable(zone))
2006 force_scan = true;
2007 if (!mem_cgroup_online(memcg))
2008 force_scan = true;
2010 if (!global_reclaim(sc))
2011 force_scan = true;
2013 /* If we have no swap space, do not bother scanning anon pages. */
2014 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2015 scan_balance = SCAN_FILE;
2016 goto out;
2020 * Global reclaim will swap to prevent OOM even with no
2021 * swappiness, but memcg users want to use this knob to
2022 * disable swapping for individual groups completely when
2023 * using the memory controller's swap limit feature would be
2024 * too expensive.
2026 if (!global_reclaim(sc) && !swappiness) {
2027 scan_balance = SCAN_FILE;
2028 goto out;
2032 * Do not apply any pressure balancing cleverness when the
2033 * system is close to OOM, scan both anon and file equally
2034 * (unless the swappiness setting disagrees with swapping).
2036 if (!sc->priority && swappiness) {
2037 scan_balance = SCAN_EQUAL;
2038 goto out;
2042 * Prevent the reclaimer from falling into the cache trap: as
2043 * cache pages start out inactive, every cache fault will tip
2044 * the scan balance towards the file LRU. And as the file LRU
2045 * shrinks, so does the window for rotation from references.
2046 * This means we have a runaway feedback loop where a tiny
2047 * thrashing file LRU becomes infinitely more attractive than
2048 * anon pages. Try to detect this based on file LRU size.
2050 if (global_reclaim(sc)) {
2051 unsigned long zonefile;
2052 unsigned long zonefree;
2054 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2055 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2056 zone_page_state(zone, NR_INACTIVE_FILE);
2058 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2059 scan_balance = SCAN_ANON;
2060 goto out;
2065 * If there is enough inactive page cache, i.e. if the size of the
2066 * inactive list is greater than that of the active list *and* the
2067 * inactive list actually has some pages to scan on this priority, we
2068 * do not reclaim anything from the anonymous working set right now.
2069 * Without the second condition we could end up never scanning an
2070 * lruvec even if it has plenty of old anonymous pages unless the
2071 * system is under heavy pressure.
2073 if (!inactive_file_is_low(lruvec) &&
2074 get_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2075 scan_balance = SCAN_FILE;
2076 goto out;
2079 scan_balance = SCAN_FRACT;
2082 * With swappiness at 100, anonymous and file have the same priority.
2083 * This scanning priority is essentially the inverse of IO cost.
2085 anon_prio = swappiness;
2086 file_prio = 200 - anon_prio;
2089 * OK, so we have swap space and a fair amount of page cache
2090 * pages. We use the recently rotated / recently scanned
2091 * ratios to determine how valuable each cache is.
2093 * Because workloads change over time (and to avoid overflow)
2094 * we keep these statistics as a floating average, which ends
2095 * up weighing recent references more than old ones.
2097 * anon in [0], file in [1]
2100 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2101 get_lru_size(lruvec, LRU_INACTIVE_ANON);
2102 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2103 get_lru_size(lruvec, LRU_INACTIVE_FILE);
2105 spin_lock_irq(&zone->lru_lock);
2106 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2107 reclaim_stat->recent_scanned[0] /= 2;
2108 reclaim_stat->recent_rotated[0] /= 2;
2111 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2112 reclaim_stat->recent_scanned[1] /= 2;
2113 reclaim_stat->recent_rotated[1] /= 2;
2117 * The amount of pressure on anon vs file pages is inversely
2118 * proportional to the fraction of recently scanned pages on
2119 * each list that were recently referenced and in active use.
2121 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2122 ap /= reclaim_stat->recent_rotated[0] + 1;
2124 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2125 fp /= reclaim_stat->recent_rotated[1] + 1;
2126 spin_unlock_irq(&zone->lru_lock);
2128 fraction[0] = ap;
2129 fraction[1] = fp;
2130 denominator = ap + fp + 1;
2131 out:
2132 some_scanned = false;
2133 /* Only use force_scan on second pass. */
2134 for (pass = 0; !some_scanned && pass < 2; pass++) {
2135 *lru_pages = 0;
2136 for_each_evictable_lru(lru) {
2137 int file = is_file_lru(lru);
2138 unsigned long size;
2139 unsigned long scan;
2141 size = get_lru_size(lruvec, lru);
2142 scan = size >> sc->priority;
2144 if (!scan && pass && force_scan)
2145 scan = min(size, SWAP_CLUSTER_MAX);
2147 switch (scan_balance) {
2148 case SCAN_EQUAL:
2149 /* Scan lists relative to size */
2150 break;
2151 case SCAN_FRACT:
2153 * Scan types proportional to swappiness and
2154 * their relative recent reclaim efficiency.
2156 scan = div64_u64(scan * fraction[file],
2157 denominator);
2158 break;
2159 case SCAN_FILE:
2160 case SCAN_ANON:
2161 /* Scan one type exclusively */
2162 if ((scan_balance == SCAN_FILE) != file) {
2163 size = 0;
2164 scan = 0;
2166 break;
2167 default:
2168 /* Look ma, no brain */
2169 BUG();
2172 *lru_pages += size;
2173 nr[lru] = scan;
2176 * Skip the second pass and don't force_scan,
2177 * if we found something to scan.
2179 some_scanned |= !!scan;
2184 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2185 static void init_tlb_ubc(void)
2188 * This deliberately does not clear the cpumask as it's expensive
2189 * and unnecessary. If there happens to be data in there then the
2190 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2191 * then will be cleared.
2193 current->tlb_ubc.flush_required = false;
2195 #else
2196 static inline void init_tlb_ubc(void)
2199 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2202 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2204 static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg,
2205 struct scan_control *sc, unsigned long *lru_pages)
2207 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2208 unsigned long nr[NR_LRU_LISTS];
2209 unsigned long targets[NR_LRU_LISTS];
2210 unsigned long nr_to_scan;
2211 enum lru_list lru;
2212 unsigned long nr_reclaimed = 0;
2213 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2214 struct blk_plug plug;
2215 bool scan_adjusted;
2217 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2219 /* Record the original scan target for proportional adjustments later */
2220 memcpy(targets, nr, sizeof(nr));
2223 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2224 * event that can occur when there is little memory pressure e.g.
2225 * multiple streaming readers/writers. Hence, we do not abort scanning
2226 * when the requested number of pages are reclaimed when scanning at
2227 * DEF_PRIORITY on the assumption that the fact we are direct
2228 * reclaiming implies that kswapd is not keeping up and it is best to
2229 * do a batch of work at once. For memcg reclaim one check is made to
2230 * abort proportional reclaim if either the file or anon lru has already
2231 * dropped to zero at the first pass.
2233 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2234 sc->priority == DEF_PRIORITY);
2236 init_tlb_ubc();
2238 blk_start_plug(&plug);
2239 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2240 nr[LRU_INACTIVE_FILE]) {
2241 unsigned long nr_anon, nr_file, percentage;
2242 unsigned long nr_scanned;
2244 for_each_evictable_lru(lru) {
2245 if (nr[lru]) {
2246 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2247 nr[lru] -= nr_to_scan;
2249 nr_reclaimed += shrink_list(lru, nr_to_scan,
2250 lruvec, sc);
2254 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2255 continue;
2258 * For kswapd and memcg, reclaim at least the number of pages
2259 * requested. Ensure that the anon and file LRUs are scanned
2260 * proportionally what was requested by get_scan_count(). We
2261 * stop reclaiming one LRU and reduce the amount scanning
2262 * proportional to the original scan target.
2264 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2265 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2268 * It's just vindictive to attack the larger once the smaller
2269 * has gone to zero. And given the way we stop scanning the
2270 * smaller below, this makes sure that we only make one nudge
2271 * towards proportionality once we've got nr_to_reclaim.
2273 if (!nr_file || !nr_anon)
2274 break;
2276 if (nr_file > nr_anon) {
2277 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2278 targets[LRU_ACTIVE_ANON] + 1;
2279 lru = LRU_BASE;
2280 percentage = nr_anon * 100 / scan_target;
2281 } else {
2282 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2283 targets[LRU_ACTIVE_FILE] + 1;
2284 lru = LRU_FILE;
2285 percentage = nr_file * 100 / scan_target;
2288 /* Stop scanning the smaller of the LRU */
2289 nr[lru] = 0;
2290 nr[lru + LRU_ACTIVE] = 0;
2293 * Recalculate the other LRU scan count based on its original
2294 * scan target and the percentage scanning already complete
2296 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2297 nr_scanned = targets[lru] - nr[lru];
2298 nr[lru] = targets[lru] * (100 - percentage) / 100;
2299 nr[lru] -= min(nr[lru], nr_scanned);
2301 lru += LRU_ACTIVE;
2302 nr_scanned = targets[lru] - nr[lru];
2303 nr[lru] = targets[lru] * (100 - percentage) / 100;
2304 nr[lru] -= min(nr[lru], nr_scanned);
2306 scan_adjusted = true;
2308 blk_finish_plug(&plug);
2309 sc->nr_reclaimed += nr_reclaimed;
2312 * Even if we did not try to evict anon pages at all, we want to
2313 * rebalance the anon lru active/inactive ratio.
2315 if (inactive_anon_is_low(lruvec))
2316 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2317 sc, LRU_ACTIVE_ANON);
2319 throttle_vm_writeout(sc->gfp_mask);
2322 /* Use reclaim/compaction for costly allocs or under memory pressure */
2323 static bool in_reclaim_compaction(struct scan_control *sc)
2325 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2326 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2327 sc->priority < DEF_PRIORITY - 2))
2328 return true;
2330 return false;
2334 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2335 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2336 * true if more pages should be reclaimed such that when the page allocator
2337 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2338 * It will give up earlier than that if there is difficulty reclaiming pages.
2340 static inline bool should_continue_reclaim(struct zone *zone,
2341 unsigned long nr_reclaimed,
2342 unsigned long nr_scanned,
2343 struct scan_control *sc)
2345 unsigned long pages_for_compaction;
2346 unsigned long inactive_lru_pages;
2348 /* If not in reclaim/compaction mode, stop */
2349 if (!in_reclaim_compaction(sc))
2350 return false;
2352 /* Consider stopping depending on scan and reclaim activity */
2353 if (sc->gfp_mask & __GFP_REPEAT) {
2355 * For __GFP_REPEAT allocations, stop reclaiming if the
2356 * full LRU list has been scanned and we are still failing
2357 * to reclaim pages. This full LRU scan is potentially
2358 * expensive but a __GFP_REPEAT caller really wants to succeed
2360 if (!nr_reclaimed && !nr_scanned)
2361 return false;
2362 } else {
2364 * For non-__GFP_REPEAT allocations which can presumably
2365 * fail without consequence, stop if we failed to reclaim
2366 * any pages from the last SWAP_CLUSTER_MAX number of
2367 * pages that were scanned. This will return to the
2368 * caller faster at the risk reclaim/compaction and
2369 * the resulting allocation attempt fails
2371 if (!nr_reclaimed)
2372 return false;
2376 * If we have not reclaimed enough pages for compaction and the
2377 * inactive lists are large enough, continue reclaiming
2379 pages_for_compaction = (2UL << sc->order);
2380 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2381 if (get_nr_swap_pages() > 0)
2382 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2383 if (sc->nr_reclaimed < pages_for_compaction &&
2384 inactive_lru_pages > pages_for_compaction)
2385 return true;
2387 /* If compaction would go ahead or the allocation would succeed, stop */
2388 switch (compaction_suitable(zone, sc->order, 0, 0)) {
2389 case COMPACT_PARTIAL:
2390 case COMPACT_CONTINUE:
2391 return false;
2392 default:
2393 return true;
2397 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2398 bool is_classzone)
2400 struct reclaim_state *reclaim_state = current->reclaim_state;
2401 unsigned long nr_reclaimed, nr_scanned;
2402 bool reclaimable = false;
2404 do {
2405 struct mem_cgroup *root = sc->target_mem_cgroup;
2406 struct mem_cgroup_reclaim_cookie reclaim = {
2407 .zone = zone,
2408 .priority = sc->priority,
2410 unsigned long zone_lru_pages = 0;
2411 struct mem_cgroup *memcg;
2413 nr_reclaimed = sc->nr_reclaimed;
2414 nr_scanned = sc->nr_scanned;
2416 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2417 do {
2418 unsigned long lru_pages;
2419 unsigned long reclaimed;
2420 unsigned long scanned;
2422 if (mem_cgroup_low(root, memcg)) {
2423 if (!sc->may_thrash)
2424 continue;
2425 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2428 reclaimed = sc->nr_reclaimed;
2429 scanned = sc->nr_scanned;
2431 shrink_zone_memcg(zone, memcg, sc, &lru_pages);
2432 zone_lru_pages += lru_pages;
2434 if (memcg && is_classzone)
2435 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2436 memcg, sc->nr_scanned - scanned,
2437 lru_pages);
2439 /* Record the group's reclaim efficiency */
2440 vmpressure(sc->gfp_mask, memcg, false,
2441 sc->nr_scanned - scanned,
2442 sc->nr_reclaimed - reclaimed);
2445 * Direct reclaim and kswapd have to scan all memory
2446 * cgroups to fulfill the overall scan target for the
2447 * zone.
2449 * Limit reclaim, on the other hand, only cares about
2450 * nr_to_reclaim pages to be reclaimed and it will
2451 * retry with decreasing priority if one round over the
2452 * whole hierarchy is not sufficient.
2454 if (!global_reclaim(sc) &&
2455 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2456 mem_cgroup_iter_break(root, memcg);
2457 break;
2459 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2462 * Shrink the slab caches in the same proportion that
2463 * the eligible LRU pages were scanned.
2465 if (global_reclaim(sc) && is_classzone)
2466 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2467 sc->nr_scanned - nr_scanned,
2468 zone_lru_pages);
2470 if (reclaim_state) {
2471 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2472 reclaim_state->reclaimed_slab = 0;
2475 /* Record the subtree's reclaim efficiency */
2476 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2477 sc->nr_scanned - nr_scanned,
2478 sc->nr_reclaimed - nr_reclaimed);
2480 if (sc->nr_reclaimed - nr_reclaimed)
2481 reclaimable = true;
2483 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2484 sc->nr_scanned - nr_scanned, sc));
2486 return reclaimable;
2490 * Returns true if compaction should go ahead for a high-order request, or
2491 * the high-order allocation would succeed without compaction.
2493 static inline bool compaction_ready(struct zone *zone, int order)
2495 unsigned long balance_gap, watermark;
2496 bool watermark_ok;
2499 * Compaction takes time to run and there are potentially other
2500 * callers using the pages just freed. Continue reclaiming until
2501 * there is a buffer of free pages available to give compaction
2502 * a reasonable chance of completing and allocating the page
2504 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2505 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2506 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2507 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0);
2510 * If compaction is deferred, reclaim up to a point where
2511 * compaction will have a chance of success when re-enabled
2513 if (compaction_deferred(zone, order))
2514 return watermark_ok;
2517 * If compaction is not ready to start and allocation is not likely
2518 * to succeed without it, then keep reclaiming.
2520 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2521 return false;
2523 return watermark_ok;
2527 * This is the direct reclaim path, for page-allocating processes. We only
2528 * try to reclaim pages from zones which will satisfy the caller's allocation
2529 * request.
2531 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2532 * Because:
2533 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2534 * allocation or
2535 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2536 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2537 * zone defense algorithm.
2539 * If a zone is deemed to be full of pinned pages then just give it a light
2540 * scan then give up on it.
2542 * Returns true if a zone was reclaimable.
2544 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2546 struct zoneref *z;
2547 struct zone *zone;
2548 unsigned long nr_soft_reclaimed;
2549 unsigned long nr_soft_scanned;
2550 gfp_t orig_mask;
2551 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2552 bool reclaimable = false;
2555 * If the number of buffer_heads in the machine exceeds the maximum
2556 * allowed level, force direct reclaim to scan the highmem zone as
2557 * highmem pages could be pinning lowmem pages storing buffer_heads
2559 orig_mask = sc->gfp_mask;
2560 if (buffer_heads_over_limit)
2561 sc->gfp_mask |= __GFP_HIGHMEM;
2563 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2564 requested_highidx, sc->nodemask) {
2565 enum zone_type classzone_idx;
2567 if (!populated_zone(zone))
2568 continue;
2570 classzone_idx = requested_highidx;
2571 while (!populated_zone(zone->zone_pgdat->node_zones +
2572 classzone_idx))
2573 classzone_idx--;
2576 * Take care memory controller reclaiming has small influence
2577 * to global LRU.
2579 if (global_reclaim(sc)) {
2580 if (!cpuset_zone_allowed(zone,
2581 GFP_KERNEL | __GFP_HARDWALL))
2582 continue;
2584 if (sc->priority != DEF_PRIORITY &&
2585 !zone_reclaimable(zone))
2586 continue; /* Let kswapd poll it */
2589 * If we already have plenty of memory free for
2590 * compaction in this zone, don't free any more.
2591 * Even though compaction is invoked for any
2592 * non-zero order, only frequent costly order
2593 * reclamation is disruptive enough to become a
2594 * noticeable problem, like transparent huge
2595 * page allocations.
2597 if (IS_ENABLED(CONFIG_COMPACTION) &&
2598 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2599 zonelist_zone_idx(z) <= requested_highidx &&
2600 compaction_ready(zone, sc->order)) {
2601 sc->compaction_ready = true;
2602 continue;
2606 * This steals pages from memory cgroups over softlimit
2607 * and returns the number of reclaimed pages and
2608 * scanned pages. This works for global memory pressure
2609 * and balancing, not for a memcg's limit.
2611 nr_soft_scanned = 0;
2612 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2613 sc->order, sc->gfp_mask,
2614 &nr_soft_scanned);
2615 sc->nr_reclaimed += nr_soft_reclaimed;
2616 sc->nr_scanned += nr_soft_scanned;
2617 if (nr_soft_reclaimed)
2618 reclaimable = true;
2619 /* need some check for avoid more shrink_zone() */
2622 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2623 reclaimable = true;
2625 if (global_reclaim(sc) &&
2626 !reclaimable && zone_reclaimable(zone))
2627 reclaimable = true;
2631 * Restore to original mask to avoid the impact on the caller if we
2632 * promoted it to __GFP_HIGHMEM.
2634 sc->gfp_mask = orig_mask;
2636 return reclaimable;
2640 * This is the main entry point to direct page reclaim.
2642 * If a full scan of the inactive list fails to free enough memory then we
2643 * are "out of memory" and something needs to be killed.
2645 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2646 * high - the zone may be full of dirty or under-writeback pages, which this
2647 * caller can't do much about. We kick the writeback threads and take explicit
2648 * naps in the hope that some of these pages can be written. But if the
2649 * allocating task holds filesystem locks which prevent writeout this might not
2650 * work, and the allocation attempt will fail.
2652 * returns: 0, if no pages reclaimed
2653 * else, the number of pages reclaimed
2655 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2656 struct scan_control *sc)
2658 int initial_priority = sc->priority;
2659 unsigned long total_scanned = 0;
2660 unsigned long writeback_threshold;
2661 bool zones_reclaimable;
2662 retry:
2663 delayacct_freepages_start();
2665 if (global_reclaim(sc))
2666 count_vm_event(ALLOCSTALL);
2668 do {
2669 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2670 sc->priority);
2671 sc->nr_scanned = 0;
2672 zones_reclaimable = shrink_zones(zonelist, sc);
2674 total_scanned += sc->nr_scanned;
2675 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2676 break;
2678 if (sc->compaction_ready)
2679 break;
2682 * If we're getting trouble reclaiming, start doing
2683 * writepage even in laptop mode.
2685 if (sc->priority < DEF_PRIORITY - 2)
2686 sc->may_writepage = 1;
2689 * Try to write back as many pages as we just scanned. This
2690 * tends to cause slow streaming writers to write data to the
2691 * disk smoothly, at the dirtying rate, which is nice. But
2692 * that's undesirable in laptop mode, where we *want* lumpy
2693 * writeout. So in laptop mode, write out the whole world.
2695 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2696 if (total_scanned > writeback_threshold) {
2697 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2698 WB_REASON_TRY_TO_FREE_PAGES);
2699 sc->may_writepage = 1;
2701 } while (--sc->priority >= 0);
2703 delayacct_freepages_end();
2705 if (sc->nr_reclaimed)
2706 return sc->nr_reclaimed;
2708 /* Aborted reclaim to try compaction? don't OOM, then */
2709 if (sc->compaction_ready)
2710 return 1;
2712 /* Untapped cgroup reserves? Don't OOM, retry. */
2713 if (!sc->may_thrash) {
2714 sc->priority = initial_priority;
2715 sc->may_thrash = 1;
2716 goto retry;
2719 /* Any of the zones still reclaimable? Don't OOM. */
2720 if (zones_reclaimable)
2721 return 1;
2723 return 0;
2726 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2728 struct zone *zone;
2729 unsigned long pfmemalloc_reserve = 0;
2730 unsigned long free_pages = 0;
2731 int i;
2732 bool wmark_ok;
2734 for (i = 0; i <= ZONE_NORMAL; i++) {
2735 zone = &pgdat->node_zones[i];
2736 if (!populated_zone(zone) ||
2737 zone_reclaimable_pages(zone) == 0)
2738 continue;
2740 pfmemalloc_reserve += min_wmark_pages(zone);
2741 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2744 /* If there are no reserves (unexpected config) then do not throttle */
2745 if (!pfmemalloc_reserve)
2746 return true;
2748 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2750 /* kswapd must be awake if processes are being throttled */
2751 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2752 pgdat->classzone_idx = min(pgdat->classzone_idx,
2753 (enum zone_type)ZONE_NORMAL);
2754 wake_up_interruptible(&pgdat->kswapd_wait);
2757 return wmark_ok;
2761 * Throttle direct reclaimers if backing storage is backed by the network
2762 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2763 * depleted. kswapd will continue to make progress and wake the processes
2764 * when the low watermark is reached.
2766 * Returns true if a fatal signal was delivered during throttling. If this
2767 * happens, the page allocator should not consider triggering the OOM killer.
2769 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2770 nodemask_t *nodemask)
2772 struct zoneref *z;
2773 struct zone *zone;
2774 pg_data_t *pgdat = NULL;
2777 * Kernel threads should not be throttled as they may be indirectly
2778 * responsible for cleaning pages necessary for reclaim to make forward
2779 * progress. kjournald for example may enter direct reclaim while
2780 * committing a transaction where throttling it could forcing other
2781 * processes to block on log_wait_commit().
2783 if (current->flags & PF_KTHREAD)
2784 goto out;
2787 * If a fatal signal is pending, this process should not throttle.
2788 * It should return quickly so it can exit and free its memory
2790 if (fatal_signal_pending(current))
2791 goto out;
2794 * Check if the pfmemalloc reserves are ok by finding the first node
2795 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2796 * GFP_KERNEL will be required for allocating network buffers when
2797 * swapping over the network so ZONE_HIGHMEM is unusable.
2799 * Throttling is based on the first usable node and throttled processes
2800 * wait on a queue until kswapd makes progress and wakes them. There
2801 * is an affinity then between processes waking up and where reclaim
2802 * progress has been made assuming the process wakes on the same node.
2803 * More importantly, processes running on remote nodes will not compete
2804 * for remote pfmemalloc reserves and processes on different nodes
2805 * should make reasonable progress.
2807 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2808 gfp_zone(gfp_mask), nodemask) {
2809 if (zone_idx(zone) > ZONE_NORMAL)
2810 continue;
2812 /* Throttle based on the first usable node */
2813 pgdat = zone->zone_pgdat;
2814 if (pfmemalloc_watermark_ok(pgdat))
2815 goto out;
2816 break;
2819 /* If no zone was usable by the allocation flags then do not throttle */
2820 if (!pgdat)
2821 goto out;
2823 /* Account for the throttling */
2824 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2827 * If the caller cannot enter the filesystem, it's possible that it
2828 * is due to the caller holding an FS lock or performing a journal
2829 * transaction in the case of a filesystem like ext[3|4]. In this case,
2830 * it is not safe to block on pfmemalloc_wait as kswapd could be
2831 * blocked waiting on the same lock. Instead, throttle for up to a
2832 * second before continuing.
2834 if (!(gfp_mask & __GFP_FS)) {
2835 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2836 pfmemalloc_watermark_ok(pgdat), HZ);
2838 goto check_pending;
2841 /* Throttle until kswapd wakes the process */
2842 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2843 pfmemalloc_watermark_ok(pgdat));
2845 check_pending:
2846 if (fatal_signal_pending(current))
2847 return true;
2849 out:
2850 return false;
2853 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2854 gfp_t gfp_mask, nodemask_t *nodemask)
2856 unsigned long nr_reclaimed;
2857 struct scan_control sc = {
2858 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2859 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2860 .order = order,
2861 .nodemask = nodemask,
2862 .priority = DEF_PRIORITY,
2863 .may_writepage = !laptop_mode,
2864 .may_unmap = 1,
2865 .may_swap = 1,
2869 * Do not enter reclaim if fatal signal was delivered while throttled.
2870 * 1 is returned so that the page allocator does not OOM kill at this
2871 * point.
2873 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2874 return 1;
2876 trace_mm_vmscan_direct_reclaim_begin(order,
2877 sc.may_writepage,
2878 gfp_mask);
2880 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2882 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2884 return nr_reclaimed;
2887 #ifdef CONFIG_MEMCG
2889 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2890 gfp_t gfp_mask, bool noswap,
2891 struct zone *zone,
2892 unsigned long *nr_scanned)
2894 struct scan_control sc = {
2895 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2896 .target_mem_cgroup = memcg,
2897 .may_writepage = !laptop_mode,
2898 .may_unmap = 1,
2899 .may_swap = !noswap,
2901 unsigned long lru_pages;
2903 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2904 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2906 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2907 sc.may_writepage,
2908 sc.gfp_mask);
2911 * NOTE: Although we can get the priority field, using it
2912 * here is not a good idea, since it limits the pages we can scan.
2913 * if we don't reclaim here, the shrink_zone from balance_pgdat
2914 * will pick up pages from other mem cgroup's as well. We hack
2915 * the priority and make it zero.
2917 shrink_zone_memcg(zone, memcg, &sc, &lru_pages);
2919 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2921 *nr_scanned = sc.nr_scanned;
2922 return sc.nr_reclaimed;
2925 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2926 unsigned long nr_pages,
2927 gfp_t gfp_mask,
2928 bool may_swap)
2930 struct zonelist *zonelist;
2931 unsigned long nr_reclaimed;
2932 int nid;
2933 struct scan_control sc = {
2934 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2935 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2936 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2937 .target_mem_cgroup = memcg,
2938 .priority = DEF_PRIORITY,
2939 .may_writepage = !laptop_mode,
2940 .may_unmap = 1,
2941 .may_swap = may_swap,
2945 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2946 * take care of from where we get pages. So the node where we start the
2947 * scan does not need to be the current node.
2949 nid = mem_cgroup_select_victim_node(memcg);
2951 zonelist = NODE_DATA(nid)->node_zonelists;
2953 trace_mm_vmscan_memcg_reclaim_begin(0,
2954 sc.may_writepage,
2955 sc.gfp_mask);
2957 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2959 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2961 return nr_reclaimed;
2963 #endif
2965 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2967 struct mem_cgroup *memcg;
2969 if (!total_swap_pages)
2970 return;
2972 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2973 do {
2974 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2976 if (inactive_anon_is_low(lruvec))
2977 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2978 sc, LRU_ACTIVE_ANON);
2980 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2981 } while (memcg);
2984 static bool zone_balanced(struct zone *zone, int order,
2985 unsigned long balance_gap, int classzone_idx)
2987 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2988 balance_gap, classzone_idx))
2989 return false;
2991 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2992 order, 0, classzone_idx) == COMPACT_SKIPPED)
2993 return false;
2995 return true;
2999 * pgdat_balanced() is used when checking if a node is balanced.
3001 * For order-0, all zones must be balanced!
3003 * For high-order allocations only zones that meet watermarks and are in a
3004 * zone allowed by the callers classzone_idx are added to balanced_pages. The
3005 * total of balanced pages must be at least 25% of the zones allowed by
3006 * classzone_idx for the node to be considered balanced. Forcing all zones to
3007 * be balanced for high orders can cause excessive reclaim when there are
3008 * imbalanced zones.
3009 * The choice of 25% is due to
3010 * o a 16M DMA zone that is balanced will not balance a zone on any
3011 * reasonable sized machine
3012 * o On all other machines, the top zone must be at least a reasonable
3013 * percentage of the middle zones. For example, on 32-bit x86, highmem
3014 * would need to be at least 256M for it to be balance a whole node.
3015 * Similarly, on x86-64 the Normal zone would need to be at least 1G
3016 * to balance a node on its own. These seemed like reasonable ratios.
3018 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3020 unsigned long managed_pages = 0;
3021 unsigned long balanced_pages = 0;
3022 int i;
3024 /* Check the watermark levels */
3025 for (i = 0; i <= classzone_idx; i++) {
3026 struct zone *zone = pgdat->node_zones + i;
3028 if (!populated_zone(zone))
3029 continue;
3031 managed_pages += zone->managed_pages;
3034 * A special case here:
3036 * balance_pgdat() skips over all_unreclaimable after
3037 * DEF_PRIORITY. Effectively, it considers them balanced so
3038 * they must be considered balanced here as well!
3040 if (!zone_reclaimable(zone)) {
3041 balanced_pages += zone->managed_pages;
3042 continue;
3045 if (zone_balanced(zone, order, 0, i))
3046 balanced_pages += zone->managed_pages;
3047 else if (!order)
3048 return false;
3051 if (order)
3052 return balanced_pages >= (managed_pages >> 2);
3053 else
3054 return true;
3058 * Prepare kswapd for sleeping. This verifies that there are no processes
3059 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3061 * Returns true if kswapd is ready to sleep
3063 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3064 int classzone_idx)
3066 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3067 if (remaining)
3068 return false;
3071 * The throttled processes are normally woken up in balance_pgdat() as
3072 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3073 * race between when kswapd checks the watermarks and a process gets
3074 * throttled. There is also a potential race if processes get
3075 * throttled, kswapd wakes, a large process exits thereby balancing the
3076 * zones, which causes kswapd to exit balance_pgdat() before reaching
3077 * the wake up checks. If kswapd is going to sleep, no process should
3078 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3079 * the wake up is premature, processes will wake kswapd and get
3080 * throttled again. The difference from wake ups in balance_pgdat() is
3081 * that here we are under prepare_to_wait().
3083 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3084 wake_up_all(&pgdat->pfmemalloc_wait);
3086 return pgdat_balanced(pgdat, order, classzone_idx);
3090 * kswapd shrinks the zone by the number of pages required to reach
3091 * the high watermark.
3093 * Returns true if kswapd scanned at least the requested number of pages to
3094 * reclaim or if the lack of progress was due to pages under writeback.
3095 * This is used to determine if the scanning priority needs to be raised.
3097 static bool kswapd_shrink_zone(struct zone *zone,
3098 int classzone_idx,
3099 struct scan_control *sc,
3100 unsigned long *nr_attempted)
3102 int testorder = sc->order;
3103 unsigned long balance_gap;
3104 bool lowmem_pressure;
3106 /* Reclaim above the high watermark. */
3107 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3110 * Kswapd reclaims only single pages with compaction enabled. Trying
3111 * too hard to reclaim until contiguous free pages have become
3112 * available can hurt performance by evicting too much useful data
3113 * from memory. Do not reclaim more than needed for compaction.
3115 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3116 compaction_suitable(zone, sc->order, 0, classzone_idx)
3117 != COMPACT_SKIPPED)
3118 testorder = 0;
3121 * We put equal pressure on every zone, unless one zone has way too
3122 * many pages free already. The "too many pages" is defined as the
3123 * high wmark plus a "gap" where the gap is either the low
3124 * watermark or 1% of the zone, whichever is smaller.
3126 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3127 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3130 * If there is no low memory pressure or the zone is balanced then no
3131 * reclaim is necessary
3133 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3134 if (!lowmem_pressure && zone_balanced(zone, testorder,
3135 balance_gap, classzone_idx))
3136 return true;
3138 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3140 /* Account for the number of pages attempted to reclaim */
3141 *nr_attempted += sc->nr_to_reclaim;
3143 clear_bit(ZONE_WRITEBACK, &zone->flags);
3146 * If a zone reaches its high watermark, consider it to be no longer
3147 * congested. It's possible there are dirty pages backed by congested
3148 * BDIs but as pressure is relieved, speculatively avoid congestion
3149 * waits.
3151 if (zone_reclaimable(zone) &&
3152 zone_balanced(zone, testorder, 0, classzone_idx)) {
3153 clear_bit(ZONE_CONGESTED, &zone->flags);
3154 clear_bit(ZONE_DIRTY, &zone->flags);
3157 return sc->nr_scanned >= sc->nr_to_reclaim;
3161 * For kswapd, balance_pgdat() will work across all this node's zones until
3162 * they are all at high_wmark_pages(zone).
3164 * Returns the final order kswapd was reclaiming at
3166 * There is special handling here for zones which are full of pinned pages.
3167 * This can happen if the pages are all mlocked, or if they are all used by
3168 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3169 * What we do is to detect the case where all pages in the zone have been
3170 * scanned twice and there has been zero successful reclaim. Mark the zone as
3171 * dead and from now on, only perform a short scan. Basically we're polling
3172 * the zone for when the problem goes away.
3174 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3175 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3176 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3177 * lower zones regardless of the number of free pages in the lower zones. This
3178 * interoperates with the page allocator fallback scheme to ensure that aging
3179 * of pages is balanced across the zones.
3181 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3182 int *classzone_idx)
3184 int i;
3185 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
3186 unsigned long nr_soft_reclaimed;
3187 unsigned long nr_soft_scanned;
3188 struct scan_control sc = {
3189 .gfp_mask = GFP_KERNEL,
3190 .order = order,
3191 .priority = DEF_PRIORITY,
3192 .may_writepage = !laptop_mode,
3193 .may_unmap = 1,
3194 .may_swap = 1,
3196 count_vm_event(PAGEOUTRUN);
3198 do {
3199 unsigned long nr_attempted = 0;
3200 bool raise_priority = true;
3201 bool pgdat_needs_compaction = (order > 0);
3203 sc.nr_reclaimed = 0;
3206 * Scan in the highmem->dma direction for the highest
3207 * zone which needs scanning
3209 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3210 struct zone *zone = pgdat->node_zones + i;
3212 if (!populated_zone(zone))
3213 continue;
3215 if (sc.priority != DEF_PRIORITY &&
3216 !zone_reclaimable(zone))
3217 continue;
3220 * Do some background aging of the anon list, to give
3221 * pages a chance to be referenced before reclaiming.
3223 age_active_anon(zone, &sc);
3226 * If the number of buffer_heads in the machine
3227 * exceeds the maximum allowed level and this node
3228 * has a highmem zone, force kswapd to reclaim from
3229 * it to relieve lowmem pressure.
3231 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3232 end_zone = i;
3233 break;
3236 if (!zone_balanced(zone, order, 0, 0)) {
3237 end_zone = i;
3238 break;
3239 } else {
3241 * If balanced, clear the dirty and congested
3242 * flags
3244 clear_bit(ZONE_CONGESTED, &zone->flags);
3245 clear_bit(ZONE_DIRTY, &zone->flags);
3249 if (i < 0)
3250 goto out;
3252 for (i = 0; i <= end_zone; i++) {
3253 struct zone *zone = pgdat->node_zones + i;
3255 if (!populated_zone(zone))
3256 continue;
3259 * If any zone is currently balanced then kswapd will
3260 * not call compaction as it is expected that the
3261 * necessary pages are already available.
3263 if (pgdat_needs_compaction &&
3264 zone_watermark_ok(zone, order,
3265 low_wmark_pages(zone),
3266 *classzone_idx, 0))
3267 pgdat_needs_compaction = false;
3271 * If we're getting trouble reclaiming, start doing writepage
3272 * even in laptop mode.
3274 if (sc.priority < DEF_PRIORITY - 2)
3275 sc.may_writepage = 1;
3278 * Now scan the zone in the dma->highmem direction, stopping
3279 * at the last zone which needs scanning.
3281 * We do this because the page allocator works in the opposite
3282 * direction. This prevents the page allocator from allocating
3283 * pages behind kswapd's direction of progress, which would
3284 * cause too much scanning of the lower zones.
3286 for (i = 0; i <= end_zone; i++) {
3287 struct zone *zone = pgdat->node_zones + i;
3289 if (!populated_zone(zone))
3290 continue;
3292 if (sc.priority != DEF_PRIORITY &&
3293 !zone_reclaimable(zone))
3294 continue;
3296 sc.nr_scanned = 0;
3298 nr_soft_scanned = 0;
3300 * Call soft limit reclaim before calling shrink_zone.
3302 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3303 order, sc.gfp_mask,
3304 &nr_soft_scanned);
3305 sc.nr_reclaimed += nr_soft_reclaimed;
3308 * There should be no need to raise the scanning
3309 * priority if enough pages are already being scanned
3310 * that that high watermark would be met at 100%
3311 * efficiency.
3313 if (kswapd_shrink_zone(zone, end_zone,
3314 &sc, &nr_attempted))
3315 raise_priority = false;
3319 * If the low watermark is met there is no need for processes
3320 * to be throttled on pfmemalloc_wait as they should not be
3321 * able to safely make forward progress. Wake them
3323 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3324 pfmemalloc_watermark_ok(pgdat))
3325 wake_up_all(&pgdat->pfmemalloc_wait);
3328 * Fragmentation may mean that the system cannot be rebalanced
3329 * for high-order allocations in all zones. If twice the
3330 * allocation size has been reclaimed and the zones are still
3331 * not balanced then recheck the watermarks at order-0 to
3332 * prevent kswapd reclaiming excessively. Assume that a
3333 * process requested a high-order can direct reclaim/compact.
3335 if (order && sc.nr_reclaimed >= 2UL << order)
3336 order = sc.order = 0;
3338 /* Check if kswapd should be suspending */
3339 if (try_to_freeze() || kthread_should_stop())
3340 break;
3343 * Compact if necessary and kswapd is reclaiming at least the
3344 * high watermark number of pages as requsted
3346 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3347 compact_pgdat(pgdat, order);
3350 * Raise priority if scanning rate is too low or there was no
3351 * progress in reclaiming pages
3353 if (raise_priority || !sc.nr_reclaimed)
3354 sc.priority--;
3355 } while (sc.priority >= 1 &&
3356 !pgdat_balanced(pgdat, order, *classzone_idx));
3358 out:
3360 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3361 * makes a decision on the order we were last reclaiming at. However,
3362 * if another caller entered the allocator slow path while kswapd
3363 * was awake, order will remain at the higher level
3365 *classzone_idx = end_zone;
3366 return order;
3369 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3371 long remaining = 0;
3372 DEFINE_WAIT(wait);
3374 if (freezing(current) || kthread_should_stop())
3375 return;
3377 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3379 /* Try to sleep for a short interval */
3380 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3381 remaining = schedule_timeout(HZ/10);
3382 finish_wait(&pgdat->kswapd_wait, &wait);
3383 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3387 * After a short sleep, check if it was a premature sleep. If not, then
3388 * go fully to sleep until explicitly woken up.
3390 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3391 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3394 * vmstat counters are not perfectly accurate and the estimated
3395 * value for counters such as NR_FREE_PAGES can deviate from the
3396 * true value by nr_online_cpus * threshold. To avoid the zone
3397 * watermarks being breached while under pressure, we reduce the
3398 * per-cpu vmstat threshold while kswapd is awake and restore
3399 * them before going back to sleep.
3401 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3404 * Compaction records what page blocks it recently failed to
3405 * isolate pages from and skips them in the future scanning.
3406 * When kswapd is going to sleep, it is reasonable to assume
3407 * that pages and compaction may succeed so reset the cache.
3409 reset_isolation_suitable(pgdat);
3411 if (!kthread_should_stop())
3412 schedule();
3414 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3415 } else {
3416 if (remaining)
3417 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3418 else
3419 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3421 finish_wait(&pgdat->kswapd_wait, &wait);
3425 * The background pageout daemon, started as a kernel thread
3426 * from the init process.
3428 * This basically trickles out pages so that we have _some_
3429 * free memory available even if there is no other activity
3430 * that frees anything up. This is needed for things like routing
3431 * etc, where we otherwise might have all activity going on in
3432 * asynchronous contexts that cannot page things out.
3434 * If there are applications that are active memory-allocators
3435 * (most normal use), this basically shouldn't matter.
3437 static int kswapd(void *p)
3439 unsigned long order, new_order;
3440 unsigned balanced_order;
3441 int classzone_idx, new_classzone_idx;
3442 int balanced_classzone_idx;
3443 pg_data_t *pgdat = (pg_data_t*)p;
3444 struct task_struct *tsk = current;
3446 struct reclaim_state reclaim_state = {
3447 .reclaimed_slab = 0,
3449 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3451 lockdep_set_current_reclaim_state(GFP_KERNEL);
3453 if (!cpumask_empty(cpumask))
3454 set_cpus_allowed_ptr(tsk, cpumask);
3455 current->reclaim_state = &reclaim_state;
3458 * Tell the memory management that we're a "memory allocator",
3459 * and that if we need more memory we should get access to it
3460 * regardless (see "__alloc_pages()"). "kswapd" should
3461 * never get caught in the normal page freeing logic.
3463 * (Kswapd normally doesn't need memory anyway, but sometimes
3464 * you need a small amount of memory in order to be able to
3465 * page out something else, and this flag essentially protects
3466 * us from recursively trying to free more memory as we're
3467 * trying to free the first piece of memory in the first place).
3469 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3470 set_freezable();
3472 order = new_order = 0;
3473 balanced_order = 0;
3474 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3475 balanced_classzone_idx = classzone_idx;
3476 for ( ; ; ) {
3477 bool ret;
3480 * If the last balance_pgdat was unsuccessful it's unlikely a
3481 * new request of a similar or harder type will succeed soon
3482 * so consider going to sleep on the basis we reclaimed at
3484 if (balanced_classzone_idx >= new_classzone_idx &&
3485 balanced_order == new_order) {
3486 new_order = pgdat->kswapd_max_order;
3487 new_classzone_idx = pgdat->classzone_idx;
3488 pgdat->kswapd_max_order = 0;
3489 pgdat->classzone_idx = pgdat->nr_zones - 1;
3492 if (order < new_order || classzone_idx > new_classzone_idx) {
3494 * Don't sleep if someone wants a larger 'order'
3495 * allocation or has tigher zone constraints
3497 order = new_order;
3498 classzone_idx = new_classzone_idx;
3499 } else {
3500 kswapd_try_to_sleep(pgdat, balanced_order,
3501 balanced_classzone_idx);
3502 order = pgdat->kswapd_max_order;
3503 classzone_idx = pgdat->classzone_idx;
3504 new_order = order;
3505 new_classzone_idx = classzone_idx;
3506 pgdat->kswapd_max_order = 0;
3507 pgdat->classzone_idx = pgdat->nr_zones - 1;
3510 ret = try_to_freeze();
3511 if (kthread_should_stop())
3512 break;
3515 * We can speed up thawing tasks if we don't call balance_pgdat
3516 * after returning from the refrigerator
3518 if (!ret) {
3519 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3520 balanced_classzone_idx = classzone_idx;
3521 balanced_order = balance_pgdat(pgdat, order,
3522 &balanced_classzone_idx);
3526 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3527 current->reclaim_state = NULL;
3528 lockdep_clear_current_reclaim_state();
3530 return 0;
3534 * A zone is low on free memory, so wake its kswapd task to service it.
3536 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3538 pg_data_t *pgdat;
3540 if (!populated_zone(zone))
3541 return;
3543 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3544 return;
3545 pgdat = zone->zone_pgdat;
3546 if (pgdat->kswapd_max_order < order) {
3547 pgdat->kswapd_max_order = order;
3548 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3550 if (!waitqueue_active(&pgdat->kswapd_wait))
3551 return;
3552 if (zone_balanced(zone, order, 0, 0))
3553 return;
3555 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3556 wake_up_interruptible(&pgdat->kswapd_wait);
3559 #ifdef CONFIG_HIBERNATION
3561 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3562 * freed pages.
3564 * Rather than trying to age LRUs the aim is to preserve the overall
3565 * LRU order by reclaiming preferentially
3566 * inactive > active > active referenced > active mapped
3568 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3570 struct reclaim_state reclaim_state;
3571 struct scan_control sc = {
3572 .nr_to_reclaim = nr_to_reclaim,
3573 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3574 .priority = DEF_PRIORITY,
3575 .may_writepage = 1,
3576 .may_unmap = 1,
3577 .may_swap = 1,
3578 .hibernation_mode = 1,
3580 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3581 struct task_struct *p = current;
3582 unsigned long nr_reclaimed;
3584 p->flags |= PF_MEMALLOC;
3585 lockdep_set_current_reclaim_state(sc.gfp_mask);
3586 reclaim_state.reclaimed_slab = 0;
3587 p->reclaim_state = &reclaim_state;
3589 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3591 p->reclaim_state = NULL;
3592 lockdep_clear_current_reclaim_state();
3593 p->flags &= ~PF_MEMALLOC;
3595 return nr_reclaimed;
3597 #endif /* CONFIG_HIBERNATION */
3599 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3600 not required for correctness. So if the last cpu in a node goes
3601 away, we get changed to run anywhere: as the first one comes back,
3602 restore their cpu bindings. */
3603 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3604 void *hcpu)
3606 int nid;
3608 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3609 for_each_node_state(nid, N_MEMORY) {
3610 pg_data_t *pgdat = NODE_DATA(nid);
3611 const struct cpumask *mask;
3613 mask = cpumask_of_node(pgdat->node_id);
3615 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3616 /* One of our CPUs online: restore mask */
3617 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3620 return NOTIFY_OK;
3624 * This kswapd start function will be called by init and node-hot-add.
3625 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3627 int kswapd_run(int nid)
3629 pg_data_t *pgdat = NODE_DATA(nid);
3630 int ret = 0;
3632 if (pgdat->kswapd)
3633 return 0;
3635 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3636 if (IS_ERR(pgdat->kswapd)) {
3637 /* failure at boot is fatal */
3638 BUG_ON(system_state == SYSTEM_BOOTING);
3639 pr_err("Failed to start kswapd on node %d\n", nid);
3640 ret = PTR_ERR(pgdat->kswapd);
3641 pgdat->kswapd = NULL;
3643 return ret;
3647 * Called by memory hotplug when all memory in a node is offlined. Caller must
3648 * hold mem_hotplug_begin/end().
3650 void kswapd_stop(int nid)
3652 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3654 if (kswapd) {
3655 kthread_stop(kswapd);
3656 NODE_DATA(nid)->kswapd = NULL;
3660 static int __init kswapd_init(void)
3662 int nid;
3664 swap_setup();
3665 for_each_node_state(nid, N_MEMORY)
3666 kswapd_run(nid);
3667 hotcpu_notifier(cpu_callback, 0);
3668 return 0;
3671 module_init(kswapd_init)
3673 #ifdef CONFIG_NUMA
3675 * Zone reclaim mode
3677 * If non-zero call zone_reclaim when the number of free pages falls below
3678 * the watermarks.
3680 int zone_reclaim_mode __read_mostly;
3682 #define RECLAIM_OFF 0
3683 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3684 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3685 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3688 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3689 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3690 * a zone.
3692 #define ZONE_RECLAIM_PRIORITY 4
3695 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3696 * occur.
3698 int sysctl_min_unmapped_ratio = 1;
3701 * If the number of slab pages in a zone grows beyond this percentage then
3702 * slab reclaim needs to occur.
3704 int sysctl_min_slab_ratio = 5;
3706 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3708 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3709 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3710 zone_page_state(zone, NR_ACTIVE_FILE);
3713 * It's possible for there to be more file mapped pages than
3714 * accounted for by the pages on the file LRU lists because
3715 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3717 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3720 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3721 static unsigned long zone_pagecache_reclaimable(struct zone *zone)
3723 unsigned long nr_pagecache_reclaimable;
3724 unsigned long delta = 0;
3727 * If RECLAIM_UNMAP is set, then all file pages are considered
3728 * potentially reclaimable. Otherwise, we have to worry about
3729 * pages like swapcache and zone_unmapped_file_pages() provides
3730 * a better estimate
3732 if (zone_reclaim_mode & RECLAIM_UNMAP)
3733 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3734 else
3735 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3737 /* If we can't clean pages, remove dirty pages from consideration */
3738 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3739 delta += zone_page_state(zone, NR_FILE_DIRTY);
3741 /* Watch for any possible underflows due to delta */
3742 if (unlikely(delta > nr_pagecache_reclaimable))
3743 delta = nr_pagecache_reclaimable;
3745 return nr_pagecache_reclaimable - delta;
3749 * Try to free up some pages from this zone through reclaim.
3751 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3753 /* Minimum pages needed in order to stay on node */
3754 const unsigned long nr_pages = 1 << order;
3755 struct task_struct *p = current;
3756 struct reclaim_state reclaim_state;
3757 struct scan_control sc = {
3758 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3759 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3760 .order = order,
3761 .priority = ZONE_RECLAIM_PRIORITY,
3762 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3763 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3764 .may_swap = 1,
3767 cond_resched();
3769 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3770 * and we also need to be able to write out pages for RECLAIM_WRITE
3771 * and RECLAIM_UNMAP.
3773 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3774 lockdep_set_current_reclaim_state(gfp_mask);
3775 reclaim_state.reclaimed_slab = 0;
3776 p->reclaim_state = &reclaim_state;
3778 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3780 * Free memory by calling shrink zone with increasing
3781 * priorities until we have enough memory freed.
3783 do {
3784 shrink_zone(zone, &sc, true);
3785 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3788 p->reclaim_state = NULL;
3789 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3790 lockdep_clear_current_reclaim_state();
3791 return sc.nr_reclaimed >= nr_pages;
3794 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3796 int node_id;
3797 int ret;
3800 * Zone reclaim reclaims unmapped file backed pages and
3801 * slab pages if we are over the defined limits.
3803 * A small portion of unmapped file backed pages is needed for
3804 * file I/O otherwise pages read by file I/O will be immediately
3805 * thrown out if the zone is overallocated. So we do not reclaim
3806 * if less than a specified percentage of the zone is used by
3807 * unmapped file backed pages.
3809 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3810 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3811 return ZONE_RECLAIM_FULL;
3813 if (!zone_reclaimable(zone))
3814 return ZONE_RECLAIM_FULL;
3817 * Do not scan if the allocation should not be delayed.
3819 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3820 return ZONE_RECLAIM_NOSCAN;
3823 * Only run zone reclaim on the local zone or on zones that do not
3824 * have associated processors. This will favor the local processor
3825 * over remote processors and spread off node memory allocations
3826 * as wide as possible.
3828 node_id = zone_to_nid(zone);
3829 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3830 return ZONE_RECLAIM_NOSCAN;
3832 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3833 return ZONE_RECLAIM_NOSCAN;
3835 ret = __zone_reclaim(zone, gfp_mask, order);
3836 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3838 if (!ret)
3839 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3841 return ret;
3843 #endif
3846 * page_evictable - test whether a page is evictable
3847 * @page: the page to test
3849 * Test whether page is evictable--i.e., should be placed on active/inactive
3850 * lists vs unevictable list.
3852 * Reasons page might not be evictable:
3853 * (1) page's mapping marked unevictable
3854 * (2) page is part of an mlocked VMA
3857 int page_evictable(struct page *page)
3859 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3862 #ifdef CONFIG_SHMEM
3864 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3865 * @pages: array of pages to check
3866 * @nr_pages: number of pages to check
3868 * Checks pages for evictability and moves them to the appropriate lru list.
3870 * This function is only used for SysV IPC SHM_UNLOCK.
3872 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3874 struct lruvec *lruvec;
3875 struct zone *zone = NULL;
3876 int pgscanned = 0;
3877 int pgrescued = 0;
3878 int i;
3880 for (i = 0; i < nr_pages; i++) {
3881 struct page *page = pages[i];
3882 struct zone *pagezone;
3884 pgscanned++;
3885 pagezone = page_zone(page);
3886 if (pagezone != zone) {
3887 if (zone)
3888 spin_unlock_irq(&zone->lru_lock);
3889 zone = pagezone;
3890 spin_lock_irq(&zone->lru_lock);
3892 lruvec = mem_cgroup_page_lruvec(page, zone);
3894 if (!PageLRU(page) || !PageUnevictable(page))
3895 continue;
3897 if (page_evictable(page)) {
3898 enum lru_list lru = page_lru_base_type(page);
3900 VM_BUG_ON_PAGE(PageActive(page), page);
3901 ClearPageUnevictable(page);
3902 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3903 add_page_to_lru_list(page, lruvec, lru);
3904 pgrescued++;
3908 if (zone) {
3909 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3910 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3911 spin_unlock_irq(&zone->lru_lock);
3914 #endif /* CONFIG_SHMEM */