2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/posix-timers.h>
26 #include <linux/signal.h>
27 #include <linux/audit.h>
28 #include <asm/param.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/siginfo.h>
34 * SLAB caches for signal bits.
37 static kmem_cache_t
*sigqueue_cachep
;
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
114 #define M_SIGEMT M(SIGEMT)
119 #if SIGRTMIN > BITS_PER_LONG
120 #define M(sig) (1ULL << ((sig)-1))
122 #define M(sig) (1UL << ((sig)-1))
124 #define T(sig, mask) (M(sig) & (mask))
126 #define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
129 #define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
132 #define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
137 #define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
140 #define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142 #define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144 #define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146 #define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
149 #define sig_user_defined(t, signr) \
150 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
151 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
153 #define sig_fatal(t, signr) \
154 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
157 static int sig_ignored(struct task_struct
*t
, int sig
)
159 void __user
* handler
;
162 * Tracers always want to know about signals..
164 if (t
->ptrace
& PT_PTRACED
)
168 * Blocked signals are never ignored, since the
169 * signal handler may change by the time it is
172 if (sigismember(&t
->blocked
, sig
))
175 /* Is it explicitly or implicitly ignored? */
176 handler
= t
->sighand
->action
[sig
-1].sa
.sa_handler
;
177 return handler
== SIG_IGN
||
178 (handler
== SIG_DFL
&& sig_kernel_ignore(sig
));
182 * Re-calculate pending state from the set of locally pending
183 * signals, globally pending signals, and blocked signals.
185 static inline int has_pending_signals(sigset_t
*signal
, sigset_t
*blocked
)
190 switch (_NSIG_WORDS
) {
192 for (i
= _NSIG_WORDS
, ready
= 0; --i
>= 0 ;)
193 ready
|= signal
->sig
[i
] &~ blocked
->sig
[i
];
196 case 4: ready
= signal
->sig
[3] &~ blocked
->sig
[3];
197 ready
|= signal
->sig
[2] &~ blocked
->sig
[2];
198 ready
|= signal
->sig
[1] &~ blocked
->sig
[1];
199 ready
|= signal
->sig
[0] &~ blocked
->sig
[0];
202 case 2: ready
= signal
->sig
[1] &~ blocked
->sig
[1];
203 ready
|= signal
->sig
[0] &~ blocked
->sig
[0];
206 case 1: ready
= signal
->sig
[0] &~ blocked
->sig
[0];
211 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
213 fastcall
void recalc_sigpending_tsk(struct task_struct
*t
)
215 if (t
->signal
->group_stop_count
> 0 ||
217 PENDING(&t
->pending
, &t
->blocked
) ||
218 PENDING(&t
->signal
->shared_pending
, &t
->blocked
))
219 set_tsk_thread_flag(t
, TIF_SIGPENDING
);
221 clear_tsk_thread_flag(t
, TIF_SIGPENDING
);
224 void recalc_sigpending(void)
226 recalc_sigpending_tsk(current
);
229 /* Given the mask, find the first available signal that should be serviced. */
232 next_signal(struct sigpending
*pending
, sigset_t
*mask
)
234 unsigned long i
, *s
, *m
, x
;
237 s
= pending
->signal
.sig
;
239 switch (_NSIG_WORDS
) {
241 for (i
= 0; i
< _NSIG_WORDS
; ++i
, ++s
, ++m
)
242 if ((x
= *s
&~ *m
) != 0) {
243 sig
= ffz(~x
) + i
*_NSIG_BPW
+ 1;
248 case 2: if ((x
= s
[0] &~ m
[0]) != 0)
250 else if ((x
= s
[1] &~ m
[1]) != 0)
257 case 1: if ((x
= *s
&~ *m
) != 0)
265 static struct sigqueue
*__sigqueue_alloc(struct task_struct
*t
, gfp_t flags
,
268 struct sigqueue
*q
= NULL
;
270 atomic_inc(&t
->user
->sigpending
);
271 if (override_rlimit
||
272 atomic_read(&t
->user
->sigpending
) <=
273 t
->signal
->rlim
[RLIMIT_SIGPENDING
].rlim_cur
)
274 q
= kmem_cache_alloc(sigqueue_cachep
, flags
);
275 if (unlikely(q
== NULL
)) {
276 atomic_dec(&t
->user
->sigpending
);
278 INIT_LIST_HEAD(&q
->list
);
280 q
->user
= get_uid(t
->user
);
285 static inline void __sigqueue_free(struct sigqueue
*q
)
287 if (q
->flags
& SIGQUEUE_PREALLOC
)
289 atomic_dec(&q
->user
->sigpending
);
291 kmem_cache_free(sigqueue_cachep
, q
);
294 static void flush_sigqueue(struct sigpending
*queue
)
298 sigemptyset(&queue
->signal
);
299 while (!list_empty(&queue
->list
)) {
300 q
= list_entry(queue
->list
.next
, struct sigqueue
, list
);
301 list_del_init(&q
->list
);
307 * Flush all pending signals for a task.
311 flush_signals(struct task_struct
*t
)
315 spin_lock_irqsave(&t
->sighand
->siglock
, flags
);
316 clear_tsk_thread_flag(t
,TIF_SIGPENDING
);
317 flush_sigqueue(&t
->pending
);
318 flush_sigqueue(&t
->signal
->shared_pending
);
319 spin_unlock_irqrestore(&t
->sighand
->siglock
, flags
);
323 * This function expects the tasklist_lock write-locked.
325 void __exit_sighand(struct task_struct
*tsk
)
327 struct sighand_struct
* sighand
= tsk
->sighand
;
329 /* Ok, we're done with the signal handlers */
331 if (atomic_dec_and_test(&sighand
->count
))
332 kmem_cache_free(sighand_cachep
, sighand
);
335 void exit_sighand(struct task_struct
*tsk
)
337 write_lock_irq(&tasklist_lock
);
339 write_unlock_irq(&tasklist_lock
);
343 * This function expects the tasklist_lock write-locked.
345 void __exit_signal(struct task_struct
*tsk
)
347 struct signal_struct
* sig
= tsk
->signal
;
348 struct sighand_struct
* sighand
= tsk
->sighand
;
352 if (!atomic_read(&sig
->count
))
354 spin_lock(&sighand
->siglock
);
355 posix_cpu_timers_exit(tsk
);
356 if (atomic_dec_and_test(&sig
->count
)) {
357 posix_cpu_timers_exit_group(tsk
);
358 if (tsk
== sig
->curr_target
)
359 sig
->curr_target
= next_thread(tsk
);
361 spin_unlock(&sighand
->siglock
);
362 flush_sigqueue(&sig
->shared_pending
);
365 * If there is any task waiting for the group exit
368 if (sig
->group_exit_task
&& atomic_read(&sig
->count
) == sig
->notify_count
) {
369 wake_up_process(sig
->group_exit_task
);
370 sig
->group_exit_task
= NULL
;
372 if (tsk
== sig
->curr_target
)
373 sig
->curr_target
= next_thread(tsk
);
376 * Accumulate here the counters for all threads but the
377 * group leader as they die, so they can be added into
378 * the process-wide totals when those are taken.
379 * The group leader stays around as a zombie as long
380 * as there are other threads. When it gets reaped,
381 * the exit.c code will add its counts into these totals.
382 * We won't ever get here for the group leader, since it
383 * will have been the last reference on the signal_struct.
385 sig
->utime
= cputime_add(sig
->utime
, tsk
->utime
);
386 sig
->stime
= cputime_add(sig
->stime
, tsk
->stime
);
387 sig
->min_flt
+= tsk
->min_flt
;
388 sig
->maj_flt
+= tsk
->maj_flt
;
389 sig
->nvcsw
+= tsk
->nvcsw
;
390 sig
->nivcsw
+= tsk
->nivcsw
;
391 sig
->sched_time
+= tsk
->sched_time
;
392 spin_unlock(&sighand
->siglock
);
393 sig
= NULL
; /* Marker for below. */
395 clear_tsk_thread_flag(tsk
,TIF_SIGPENDING
);
396 flush_sigqueue(&tsk
->pending
);
399 * We are cleaning up the signal_struct here.
401 exit_thread_group_keys(sig
);
402 kmem_cache_free(signal_cachep
, sig
);
406 void exit_signal(struct task_struct
*tsk
)
408 atomic_dec(&tsk
->signal
->live
);
410 write_lock_irq(&tasklist_lock
);
412 write_unlock_irq(&tasklist_lock
);
416 * Flush all handlers for a task.
420 flush_signal_handlers(struct task_struct
*t
, int force_default
)
423 struct k_sigaction
*ka
= &t
->sighand
->action
[0];
424 for (i
= _NSIG
; i
!= 0 ; i
--) {
425 if (force_default
|| ka
->sa
.sa_handler
!= SIG_IGN
)
426 ka
->sa
.sa_handler
= SIG_DFL
;
428 sigemptyset(&ka
->sa
.sa_mask
);
434 /* Notify the system that a driver wants to block all signals for this
435 * process, and wants to be notified if any signals at all were to be
436 * sent/acted upon. If the notifier routine returns non-zero, then the
437 * signal will be acted upon after all. If the notifier routine returns 0,
438 * then then signal will be blocked. Only one block per process is
439 * allowed. priv is a pointer to private data that the notifier routine
440 * can use to determine if the signal should be blocked or not. */
443 block_all_signals(int (*notifier
)(void *priv
), void *priv
, sigset_t
*mask
)
447 spin_lock_irqsave(¤t
->sighand
->siglock
, flags
);
448 current
->notifier_mask
= mask
;
449 current
->notifier_data
= priv
;
450 current
->notifier
= notifier
;
451 spin_unlock_irqrestore(¤t
->sighand
->siglock
, flags
);
454 /* Notify the system that blocking has ended. */
457 unblock_all_signals(void)
461 spin_lock_irqsave(¤t
->sighand
->siglock
, flags
);
462 current
->notifier
= NULL
;
463 current
->notifier_data
= NULL
;
465 spin_unlock_irqrestore(¤t
->sighand
->siglock
, flags
);
468 static inline int collect_signal(int sig
, struct sigpending
*list
, siginfo_t
*info
)
470 struct sigqueue
*q
, *first
= NULL
;
471 int still_pending
= 0;
473 if (unlikely(!sigismember(&list
->signal
, sig
)))
477 * Collect the siginfo appropriate to this signal. Check if
478 * there is another siginfo for the same signal.
480 list_for_each_entry(q
, &list
->list
, list
) {
481 if (q
->info
.si_signo
== sig
) {
490 list_del_init(&first
->list
);
491 copy_siginfo(info
, &first
->info
);
492 __sigqueue_free(first
);
494 sigdelset(&list
->signal
, sig
);
497 /* Ok, it wasn't in the queue. This must be
498 a fast-pathed signal or we must have been
499 out of queue space. So zero out the info.
501 sigdelset(&list
->signal
, sig
);
502 info
->si_signo
= sig
;
511 static int __dequeue_signal(struct sigpending
*pending
, sigset_t
*mask
,
516 /* SIGKILL must have priority, otherwise it is quite easy
517 * to create an unkillable process, sending sig < SIGKILL
519 if (unlikely(sigismember(&pending
->signal
, SIGKILL
))) {
520 if (!sigismember(mask
, SIGKILL
))
525 sig
= next_signal(pending
, mask
);
527 if (current
->notifier
) {
528 if (sigismember(current
->notifier_mask
, sig
)) {
529 if (!(current
->notifier
)(current
->notifier_data
)) {
530 clear_thread_flag(TIF_SIGPENDING
);
536 if (!collect_signal(sig
, pending
, info
))
546 * Dequeue a signal and return the element to the caller, which is
547 * expected to free it.
549 * All callers have to hold the siglock.
551 int dequeue_signal(struct task_struct
*tsk
, sigset_t
*mask
, siginfo_t
*info
)
553 int signr
= __dequeue_signal(&tsk
->pending
, mask
, info
);
555 signr
= __dequeue_signal(&tsk
->signal
->shared_pending
,
557 if (signr
&& unlikely(sig_kernel_stop(signr
))) {
559 * Set a marker that we have dequeued a stop signal. Our
560 * caller might release the siglock and then the pending
561 * stop signal it is about to process is no longer in the
562 * pending bitmasks, but must still be cleared by a SIGCONT
563 * (and overruled by a SIGKILL). So those cases clear this
564 * shared flag after we've set it. Note that this flag may
565 * remain set after the signal we return is ignored or
566 * handled. That doesn't matter because its only purpose
567 * is to alert stop-signal processing code when another
568 * processor has come along and cleared the flag.
570 if (!(tsk
->signal
->flags
& SIGNAL_GROUP_EXIT
))
571 tsk
->signal
->flags
|= SIGNAL_STOP_DEQUEUED
;
574 ((info
->si_code
& __SI_MASK
) == __SI_TIMER
) &&
575 info
->si_sys_private
){
577 * Release the siglock to ensure proper locking order
578 * of timer locks outside of siglocks. Note, we leave
579 * irqs disabled here, since the posix-timers code is
580 * about to disable them again anyway.
582 spin_unlock(&tsk
->sighand
->siglock
);
583 do_schedule_next_timer(info
);
584 spin_lock(&tsk
->sighand
->siglock
);
590 * Tell a process that it has a new active signal..
592 * NOTE! we rely on the previous spin_lock to
593 * lock interrupts for us! We can only be called with
594 * "siglock" held, and the local interrupt must
595 * have been disabled when that got acquired!
597 * No need to set need_resched since signal event passing
598 * goes through ->blocked
600 void signal_wake_up(struct task_struct
*t
, int resume
)
604 set_tsk_thread_flag(t
, TIF_SIGPENDING
);
607 * For SIGKILL, we want to wake it up in the stopped/traced case.
608 * We don't check t->state here because there is a race with it
609 * executing another processor and just now entering stopped state.
610 * By using wake_up_state, we ensure the process will wake up and
611 * handle its death signal.
613 mask
= TASK_INTERRUPTIBLE
;
615 mask
|= TASK_STOPPED
| TASK_TRACED
;
616 if (!wake_up_state(t
, mask
))
621 * Remove signals in mask from the pending set and queue.
622 * Returns 1 if any signals were found.
624 * All callers must be holding the siglock.
626 static int rm_from_queue(unsigned long mask
, struct sigpending
*s
)
628 struct sigqueue
*q
, *n
;
630 if (!sigtestsetmask(&s
->signal
, mask
))
633 sigdelsetmask(&s
->signal
, mask
);
634 list_for_each_entry_safe(q
, n
, &s
->list
, list
) {
635 if (q
->info
.si_signo
< SIGRTMIN
&&
636 (mask
& sigmask(q
->info
.si_signo
))) {
637 list_del_init(&q
->list
);
645 * Bad permissions for sending the signal
647 static int check_kill_permission(int sig
, struct siginfo
*info
,
648 struct task_struct
*t
)
651 if (!valid_signal(sig
))
654 if ((info
== SEND_SIG_NOINFO
|| (!is_si_special(info
) && SI_FROMUSER(info
)))
655 && ((sig
!= SIGCONT
) ||
656 (current
->signal
->session
!= t
->signal
->session
))
657 && (current
->euid
^ t
->suid
) && (current
->euid
^ t
->uid
)
658 && (current
->uid
^ t
->suid
) && (current
->uid
^ t
->uid
)
659 && !capable(CAP_KILL
))
662 error
= security_task_kill(t
, info
, sig
);
664 audit_signal_info(sig
, t
); /* Let audit system see the signal */
669 static void do_notify_parent_cldstop(struct task_struct
*tsk
,
674 * Handle magic process-wide effects of stop/continue signals.
675 * Unlike the signal actions, these happen immediately at signal-generation
676 * time regardless of blocking, ignoring, or handling. This does the
677 * actual continuing for SIGCONT, but not the actual stopping for stop
678 * signals. The process stop is done as a signal action for SIG_DFL.
680 static void handle_stop_signal(int sig
, struct task_struct
*p
)
682 struct task_struct
*t
;
684 if (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
686 * The process is in the middle of dying already.
690 if (sig_kernel_stop(sig
)) {
692 * This is a stop signal. Remove SIGCONT from all queues.
694 rm_from_queue(sigmask(SIGCONT
), &p
->signal
->shared_pending
);
697 rm_from_queue(sigmask(SIGCONT
), &t
->pending
);
700 } else if (sig
== SIGCONT
) {
702 * Remove all stop signals from all queues,
703 * and wake all threads.
705 if (unlikely(p
->signal
->group_stop_count
> 0)) {
707 * There was a group stop in progress. We'll
708 * pretend it finished before we got here. We are
709 * obliged to report it to the parent: if the
710 * SIGSTOP happened "after" this SIGCONT, then it
711 * would have cleared this pending SIGCONT. If it
712 * happened "before" this SIGCONT, then the parent
713 * got the SIGCHLD about the stop finishing before
714 * the continue happened. We do the notification
715 * now, and it's as if the stop had finished and
716 * the SIGCHLD was pending on entry to this kill.
718 p
->signal
->group_stop_count
= 0;
719 p
->signal
->flags
= SIGNAL_STOP_CONTINUED
;
720 spin_unlock(&p
->sighand
->siglock
);
721 do_notify_parent_cldstop(p
, (p
->ptrace
& PT_PTRACED
), CLD_STOPPED
);
722 spin_lock(&p
->sighand
->siglock
);
724 rm_from_queue(SIG_KERNEL_STOP_MASK
, &p
->signal
->shared_pending
);
728 rm_from_queue(SIG_KERNEL_STOP_MASK
, &t
->pending
);
731 * If there is a handler for SIGCONT, we must make
732 * sure that no thread returns to user mode before
733 * we post the signal, in case it was the only
734 * thread eligible to run the signal handler--then
735 * it must not do anything between resuming and
736 * running the handler. With the TIF_SIGPENDING
737 * flag set, the thread will pause and acquire the
738 * siglock that we hold now and until we've queued
739 * the pending signal.
741 * Wake up the stopped thread _after_ setting
744 state
= TASK_STOPPED
;
745 if (sig_user_defined(t
, SIGCONT
) && !sigismember(&t
->blocked
, SIGCONT
)) {
746 set_tsk_thread_flag(t
, TIF_SIGPENDING
);
747 state
|= TASK_INTERRUPTIBLE
;
749 wake_up_state(t
, state
);
754 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
) {
756 * We were in fact stopped, and are now continued.
757 * Notify the parent with CLD_CONTINUED.
759 p
->signal
->flags
= SIGNAL_STOP_CONTINUED
;
760 p
->signal
->group_exit_code
= 0;
761 spin_unlock(&p
->sighand
->siglock
);
762 do_notify_parent_cldstop(p
, (p
->ptrace
& PT_PTRACED
), CLD_CONTINUED
);
763 spin_lock(&p
->sighand
->siglock
);
766 * We are not stopped, but there could be a stop
767 * signal in the middle of being processed after
768 * being removed from the queue. Clear that too.
770 p
->signal
->flags
= 0;
772 } else if (sig
== SIGKILL
) {
774 * Make sure that any pending stop signal already dequeued
775 * is undone by the wakeup for SIGKILL.
777 p
->signal
->flags
= 0;
781 static int send_signal(int sig
, struct siginfo
*info
, struct task_struct
*t
,
782 struct sigpending
*signals
)
784 struct sigqueue
* q
= NULL
;
788 * fast-pathed signals for kernel-internal things like SIGSTOP
791 if (info
== SEND_SIG_FORCED
)
794 /* Real-time signals must be queued if sent by sigqueue, or
795 some other real-time mechanism. It is implementation
796 defined whether kill() does so. We attempt to do so, on
797 the principle of least surprise, but since kill is not
798 allowed to fail with EAGAIN when low on memory we just
799 make sure at least one signal gets delivered and don't
800 pass on the info struct. */
802 q
= __sigqueue_alloc(t
, GFP_ATOMIC
, (sig
< SIGRTMIN
&&
803 (is_si_special(info
) ||
804 info
->si_code
>= 0)));
806 list_add_tail(&q
->list
, &signals
->list
);
807 switch ((unsigned long) info
) {
808 case (unsigned long) SEND_SIG_NOINFO
:
809 q
->info
.si_signo
= sig
;
810 q
->info
.si_errno
= 0;
811 q
->info
.si_code
= SI_USER
;
812 q
->info
.si_pid
= current
->pid
;
813 q
->info
.si_uid
= current
->uid
;
815 case (unsigned long) SEND_SIG_PRIV
:
816 q
->info
.si_signo
= sig
;
817 q
->info
.si_errno
= 0;
818 q
->info
.si_code
= SI_KERNEL
;
823 copy_siginfo(&q
->info
, info
);
826 } else if (!is_si_special(info
)) {
827 if (sig
>= SIGRTMIN
&& info
->si_code
!= SI_USER
)
829 * Queue overflow, abort. We may abort if the signal was rt
830 * and sent by user using something other than kill().
836 sigaddset(&signals
->signal
, sig
);
840 #define LEGACY_QUEUE(sigptr, sig) \
841 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
845 specific_send_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*t
)
849 if (!irqs_disabled())
851 assert_spin_locked(&t
->sighand
->siglock
);
853 /* Short-circuit ignored signals. */
854 if (sig_ignored(t
, sig
))
857 /* Support queueing exactly one non-rt signal, so that we
858 can get more detailed information about the cause of
860 if (LEGACY_QUEUE(&t
->pending
, sig
))
863 ret
= send_signal(sig
, info
, t
, &t
->pending
);
864 if (!ret
&& !sigismember(&t
->blocked
, sig
))
865 signal_wake_up(t
, sig
== SIGKILL
);
871 * Force a signal that the process can't ignore: if necessary
872 * we unblock the signal and change any SIG_IGN to SIG_DFL.
876 force_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*t
)
878 unsigned long int flags
;
881 spin_lock_irqsave(&t
->sighand
->siglock
, flags
);
882 if (t
->sighand
->action
[sig
-1].sa
.sa_handler
== SIG_IGN
) {
883 t
->sighand
->action
[sig
-1].sa
.sa_handler
= SIG_DFL
;
885 if (sigismember(&t
->blocked
, sig
)) {
886 sigdelset(&t
->blocked
, sig
);
888 recalc_sigpending_tsk(t
);
889 ret
= specific_send_sig_info(sig
, info
, t
);
890 spin_unlock_irqrestore(&t
->sighand
->siglock
, flags
);
896 force_sig_specific(int sig
, struct task_struct
*t
)
898 force_sig_info(sig
, SEND_SIG_FORCED
, t
);
902 * Test if P wants to take SIG. After we've checked all threads with this,
903 * it's equivalent to finding no threads not blocking SIG. Any threads not
904 * blocking SIG were ruled out because they are not running and already
905 * have pending signals. Such threads will dequeue from the shared queue
906 * as soon as they're available, so putting the signal on the shared queue
907 * will be equivalent to sending it to one such thread.
909 static inline int wants_signal(int sig
, struct task_struct
*p
)
911 if (sigismember(&p
->blocked
, sig
))
913 if (p
->flags
& PF_EXITING
)
917 if (p
->state
& (TASK_STOPPED
| TASK_TRACED
))
919 return task_curr(p
) || !signal_pending(p
);
923 __group_complete_signal(int sig
, struct task_struct
*p
)
925 struct task_struct
*t
;
928 * Now find a thread we can wake up to take the signal off the queue.
930 * If the main thread wants the signal, it gets first crack.
931 * Probably the least surprising to the average bear.
933 if (wants_signal(sig
, p
))
935 else if (thread_group_empty(p
))
937 * There is just one thread and it does not need to be woken.
938 * It will dequeue unblocked signals before it runs again.
943 * Otherwise try to find a suitable thread.
945 t
= p
->signal
->curr_target
;
947 /* restart balancing at this thread */
948 t
= p
->signal
->curr_target
= p
;
949 BUG_ON(t
->tgid
!= p
->tgid
);
951 while (!wants_signal(sig
, t
)) {
953 if (t
== p
->signal
->curr_target
)
955 * No thread needs to be woken.
956 * Any eligible threads will see
957 * the signal in the queue soon.
961 p
->signal
->curr_target
= t
;
965 * Found a killable thread. If the signal will be fatal,
966 * then start taking the whole group down immediately.
968 if (sig_fatal(p
, sig
) && !(p
->signal
->flags
& SIGNAL_GROUP_EXIT
) &&
969 !sigismember(&t
->real_blocked
, sig
) &&
970 (sig
== SIGKILL
|| !(t
->ptrace
& PT_PTRACED
))) {
972 * This signal will be fatal to the whole group.
974 if (!sig_kernel_coredump(sig
)) {
976 * Start a group exit and wake everybody up.
977 * This way we don't have other threads
978 * running and doing things after a slower
979 * thread has the fatal signal pending.
981 p
->signal
->flags
= SIGNAL_GROUP_EXIT
;
982 p
->signal
->group_exit_code
= sig
;
983 p
->signal
->group_stop_count
= 0;
986 sigaddset(&t
->pending
.signal
, SIGKILL
);
987 signal_wake_up(t
, 1);
994 * There will be a core dump. We make all threads other
995 * than the chosen one go into a group stop so that nothing
996 * happens until it gets scheduled, takes the signal off
997 * the shared queue, and does the core dump. This is a
998 * little more complicated than strictly necessary, but it
999 * keeps the signal state that winds up in the core dump
1000 * unchanged from the death state, e.g. which thread had
1001 * the core-dump signal unblocked.
1003 rm_from_queue(SIG_KERNEL_STOP_MASK
, &t
->pending
);
1004 rm_from_queue(SIG_KERNEL_STOP_MASK
, &p
->signal
->shared_pending
);
1005 p
->signal
->group_stop_count
= 0;
1006 p
->signal
->group_exit_task
= t
;
1009 p
->signal
->group_stop_count
++;
1010 signal_wake_up(t
, 0);
1013 wake_up_process(p
->signal
->group_exit_task
);
1018 * The signal is already in the shared-pending queue.
1019 * Tell the chosen thread to wake up and dequeue it.
1021 signal_wake_up(t
, sig
== SIGKILL
);
1026 __group_send_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*p
)
1030 assert_spin_locked(&p
->sighand
->siglock
);
1031 handle_stop_signal(sig
, p
);
1033 /* Short-circuit ignored signals. */
1034 if (sig_ignored(p
, sig
))
1037 if (LEGACY_QUEUE(&p
->signal
->shared_pending
, sig
))
1038 /* This is a non-RT signal and we already have one queued. */
1042 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1043 * We always use the shared queue for process-wide signals,
1044 * to avoid several races.
1046 ret
= send_signal(sig
, info
, p
, &p
->signal
->shared_pending
);
1050 __group_complete_signal(sig
, p
);
1055 * Nuke all other threads in the group.
1057 void zap_other_threads(struct task_struct
*p
)
1059 struct task_struct
*t
;
1061 p
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1062 p
->signal
->group_stop_count
= 0;
1064 if (thread_group_empty(p
))
1067 for (t
= next_thread(p
); t
!= p
; t
= next_thread(t
)) {
1069 * Don't bother with already dead threads
1075 * We don't want to notify the parent, since we are
1076 * killed as part of a thread group due to another
1077 * thread doing an execve() or similar. So set the
1078 * exit signal to -1 to allow immediate reaping of
1079 * the process. But don't detach the thread group
1082 if (t
!= p
->group_leader
)
1083 t
->exit_signal
= -1;
1085 /* SIGKILL will be handled before any pending SIGSTOP */
1086 sigaddset(&t
->pending
.signal
, SIGKILL
);
1087 signal_wake_up(t
, 1);
1092 * Must be called with the tasklist_lock held for reading!
1094 int group_send_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*p
)
1096 unsigned long flags
;
1099 ret
= check_kill_permission(sig
, info
, p
);
1100 if (!ret
&& sig
&& p
->sighand
) {
1101 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1102 ret
= __group_send_sig_info(sig
, info
, p
);
1103 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
1110 * kill_pg_info() sends a signal to a process group: this is what the tty
1111 * control characters do (^C, ^Z etc)
1114 int __kill_pg_info(int sig
, struct siginfo
*info
, pid_t pgrp
)
1116 struct task_struct
*p
= NULL
;
1117 int retval
, success
;
1124 do_each_task_pid(pgrp
, PIDTYPE_PGID
, p
) {
1125 int err
= group_send_sig_info(sig
, info
, p
);
1128 } while_each_task_pid(pgrp
, PIDTYPE_PGID
, p
);
1129 return success
? 0 : retval
;
1133 kill_pg_info(int sig
, struct siginfo
*info
, pid_t pgrp
)
1137 read_lock(&tasklist_lock
);
1138 retval
= __kill_pg_info(sig
, info
, pgrp
);
1139 read_unlock(&tasklist_lock
);
1145 kill_proc_info(int sig
, struct siginfo
*info
, pid_t pid
)
1148 struct task_struct
*p
;
1150 read_lock(&tasklist_lock
);
1151 p
= find_task_by_pid(pid
);
1154 error
= group_send_sig_info(sig
, info
, p
);
1155 read_unlock(&tasklist_lock
);
1159 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1160 int kill_proc_info_as_uid(int sig
, struct siginfo
*info
, pid_t pid
,
1161 uid_t uid
, uid_t euid
)
1164 struct task_struct
*p
;
1166 if (!valid_signal(sig
))
1169 read_lock(&tasklist_lock
);
1170 p
= find_task_by_pid(pid
);
1175 if ((!info
|| ((unsigned long)info
!= 1 &&
1176 (unsigned long)info
!= 2 && SI_FROMUSER(info
)))
1177 && (euid
!= p
->suid
) && (euid
!= p
->uid
)
1178 && (uid
!= p
->suid
) && (uid
!= p
->uid
)) {
1182 if (sig
&& p
->sighand
) {
1183 unsigned long flags
;
1184 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1185 ret
= __group_send_sig_info(sig
, info
, p
);
1186 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
1189 read_unlock(&tasklist_lock
);
1192 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid
);
1195 * kill_something_info() interprets pid in interesting ways just like kill(2).
1197 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1198 * is probably wrong. Should make it like BSD or SYSV.
1201 static int kill_something_info(int sig
, struct siginfo
*info
, int pid
)
1204 return kill_pg_info(sig
, info
, process_group(current
));
1205 } else if (pid
== -1) {
1206 int retval
= 0, count
= 0;
1207 struct task_struct
* p
;
1209 read_lock(&tasklist_lock
);
1210 for_each_process(p
) {
1211 if (p
->pid
> 1 && p
->tgid
!= current
->tgid
) {
1212 int err
= group_send_sig_info(sig
, info
, p
);
1218 read_unlock(&tasklist_lock
);
1219 return count
? retval
: -ESRCH
;
1220 } else if (pid
< 0) {
1221 return kill_pg_info(sig
, info
, -pid
);
1223 return kill_proc_info(sig
, info
, pid
);
1228 * These are for backward compatibility with the rest of the kernel source.
1232 * These two are the most common entry points. They send a signal
1233 * just to the specific thread.
1236 send_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*p
)
1239 unsigned long flags
;
1242 * Make sure legacy kernel users don't send in bad values
1243 * (normal paths check this in check_kill_permission).
1245 if (!valid_signal(sig
))
1249 * We need the tasklist lock even for the specific
1250 * thread case (when we don't need to follow the group
1251 * lists) in order to avoid races with "p->sighand"
1252 * going away or changing from under us.
1254 read_lock(&tasklist_lock
);
1255 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1256 ret
= specific_send_sig_info(sig
, info
, p
);
1257 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
1258 read_unlock(&tasklist_lock
);
1262 #define __si_special(priv) \
1263 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1266 send_sig(int sig
, struct task_struct
*p
, int priv
)
1268 return send_sig_info(sig
, __si_special(priv
), p
);
1272 * This is the entry point for "process-wide" signals.
1273 * They will go to an appropriate thread in the thread group.
1276 send_group_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*p
)
1279 read_lock(&tasklist_lock
);
1280 ret
= group_send_sig_info(sig
, info
, p
);
1281 read_unlock(&tasklist_lock
);
1286 force_sig(int sig
, struct task_struct
*p
)
1288 force_sig_info(sig
, SEND_SIG_PRIV
, p
);
1292 * When things go south during signal handling, we
1293 * will force a SIGSEGV. And if the signal that caused
1294 * the problem was already a SIGSEGV, we'll want to
1295 * make sure we don't even try to deliver the signal..
1298 force_sigsegv(int sig
, struct task_struct
*p
)
1300 if (sig
== SIGSEGV
) {
1301 unsigned long flags
;
1302 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1303 p
->sighand
->action
[sig
- 1].sa
.sa_handler
= SIG_DFL
;
1304 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
1306 force_sig(SIGSEGV
, p
);
1311 kill_pg(pid_t pgrp
, int sig
, int priv
)
1313 return kill_pg_info(sig
, __si_special(priv
), pgrp
);
1317 kill_proc(pid_t pid
, int sig
, int priv
)
1319 return kill_proc_info(sig
, __si_special(priv
), pid
);
1323 * These functions support sending signals using preallocated sigqueue
1324 * structures. This is needed "because realtime applications cannot
1325 * afford to lose notifications of asynchronous events, like timer
1326 * expirations or I/O completions". In the case of Posix Timers
1327 * we allocate the sigqueue structure from the timer_create. If this
1328 * allocation fails we are able to report the failure to the application
1329 * with an EAGAIN error.
1332 struct sigqueue
*sigqueue_alloc(void)
1336 if ((q
= __sigqueue_alloc(current
, GFP_KERNEL
, 0)))
1337 q
->flags
|= SIGQUEUE_PREALLOC
;
1341 void sigqueue_free(struct sigqueue
*q
)
1343 unsigned long flags
;
1344 BUG_ON(!(q
->flags
& SIGQUEUE_PREALLOC
));
1346 * If the signal is still pending remove it from the
1349 if (unlikely(!list_empty(&q
->list
))) {
1350 spinlock_t
*lock
= ¤t
->sighand
->siglock
;
1351 read_lock(&tasklist_lock
);
1352 spin_lock_irqsave(lock
, flags
);
1353 if (!list_empty(&q
->list
))
1354 list_del_init(&q
->list
);
1355 spin_unlock_irqrestore(lock
, flags
);
1356 read_unlock(&tasklist_lock
);
1358 q
->flags
&= ~SIGQUEUE_PREALLOC
;
1363 send_sigqueue(int sig
, struct sigqueue
*q
, struct task_struct
*p
)
1365 unsigned long flags
;
1368 BUG_ON(!(q
->flags
& SIGQUEUE_PREALLOC
));
1369 read_lock(&tasklist_lock
);
1371 if (unlikely(p
->flags
& PF_EXITING
)) {
1376 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1378 if (unlikely(!list_empty(&q
->list
))) {
1380 * If an SI_TIMER entry is already queue just increment
1381 * the overrun count.
1383 if (q
->info
.si_code
!= SI_TIMER
)
1385 q
->info
.si_overrun
++;
1388 /* Short-circuit ignored signals. */
1389 if (sig_ignored(p
, sig
)) {
1394 list_add_tail(&q
->list
, &p
->pending
.list
);
1395 sigaddset(&p
->pending
.signal
, sig
);
1396 if (!sigismember(&p
->blocked
, sig
))
1397 signal_wake_up(p
, sig
== SIGKILL
);
1400 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
1402 read_unlock(&tasklist_lock
);
1408 send_group_sigqueue(int sig
, struct sigqueue
*q
, struct task_struct
*p
)
1410 unsigned long flags
;
1413 BUG_ON(!(q
->flags
& SIGQUEUE_PREALLOC
));
1414 read_lock(&tasklist_lock
);
1415 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1416 handle_stop_signal(sig
, p
);
1418 /* Short-circuit ignored signals. */
1419 if (sig_ignored(p
, sig
)) {
1424 if (unlikely(!list_empty(&q
->list
))) {
1426 * If an SI_TIMER entry is already queue just increment
1427 * the overrun count. Other uses should not try to
1428 * send the signal multiple times.
1430 if (q
->info
.si_code
!= SI_TIMER
)
1432 q
->info
.si_overrun
++;
1437 * Put this signal on the shared-pending queue.
1438 * We always use the shared queue for process-wide signals,
1439 * to avoid several races.
1441 list_add_tail(&q
->list
, &p
->signal
->shared_pending
.list
);
1442 sigaddset(&p
->signal
->shared_pending
.signal
, sig
);
1444 __group_complete_signal(sig
, p
);
1446 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
1447 read_unlock(&tasklist_lock
);
1452 * Wake up any threads in the parent blocked in wait* syscalls.
1454 static inline void __wake_up_parent(struct task_struct
*p
,
1455 struct task_struct
*parent
)
1457 wake_up_interruptible_sync(&parent
->signal
->wait_chldexit
);
1461 * Let a parent know about the death of a child.
1462 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1465 void do_notify_parent(struct task_struct
*tsk
, int sig
)
1467 struct siginfo info
;
1468 unsigned long flags
;
1469 struct sighand_struct
*psig
;
1473 /* do_notify_parent_cldstop should have been called instead. */
1474 BUG_ON(tsk
->state
& (TASK_STOPPED
|TASK_TRACED
));
1476 BUG_ON(!tsk
->ptrace
&&
1477 (tsk
->group_leader
!= tsk
|| !thread_group_empty(tsk
)));
1479 info
.si_signo
= sig
;
1481 info
.si_pid
= tsk
->pid
;
1482 info
.si_uid
= tsk
->uid
;
1484 /* FIXME: find out whether or not this is supposed to be c*time. */
1485 info
.si_utime
= cputime_to_jiffies(cputime_add(tsk
->utime
,
1486 tsk
->signal
->utime
));
1487 info
.si_stime
= cputime_to_jiffies(cputime_add(tsk
->stime
,
1488 tsk
->signal
->stime
));
1490 info
.si_status
= tsk
->exit_code
& 0x7f;
1491 if (tsk
->exit_code
& 0x80)
1492 info
.si_code
= CLD_DUMPED
;
1493 else if (tsk
->exit_code
& 0x7f)
1494 info
.si_code
= CLD_KILLED
;
1496 info
.si_code
= CLD_EXITED
;
1497 info
.si_status
= tsk
->exit_code
>> 8;
1500 psig
= tsk
->parent
->sighand
;
1501 spin_lock_irqsave(&psig
->siglock
, flags
);
1502 if (sig
== SIGCHLD
&&
1503 (psig
->action
[SIGCHLD
-1].sa
.sa_handler
== SIG_IGN
||
1504 (psig
->action
[SIGCHLD
-1].sa
.sa_flags
& SA_NOCLDWAIT
))) {
1506 * We are exiting and our parent doesn't care. POSIX.1
1507 * defines special semantics for setting SIGCHLD to SIG_IGN
1508 * or setting the SA_NOCLDWAIT flag: we should be reaped
1509 * automatically and not left for our parent's wait4 call.
1510 * Rather than having the parent do it as a magic kind of
1511 * signal handler, we just set this to tell do_exit that we
1512 * can be cleaned up without becoming a zombie. Note that
1513 * we still call __wake_up_parent in this case, because a
1514 * blocked sys_wait4 might now return -ECHILD.
1516 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1517 * is implementation-defined: we do (if you don't want
1518 * it, just use SIG_IGN instead).
1520 tsk
->exit_signal
= -1;
1521 if (psig
->action
[SIGCHLD
-1].sa
.sa_handler
== SIG_IGN
)
1524 if (valid_signal(sig
) && sig
> 0)
1525 __group_send_sig_info(sig
, &info
, tsk
->parent
);
1526 __wake_up_parent(tsk
, tsk
->parent
);
1527 spin_unlock_irqrestore(&psig
->siglock
, flags
);
1530 static void do_notify_parent_cldstop(struct task_struct
*tsk
, int to_self
, int why
)
1532 struct siginfo info
;
1533 unsigned long flags
;
1534 struct task_struct
*parent
;
1535 struct sighand_struct
*sighand
;
1538 parent
= tsk
->parent
;
1540 tsk
= tsk
->group_leader
;
1541 parent
= tsk
->real_parent
;
1544 info
.si_signo
= SIGCHLD
;
1546 info
.si_pid
= tsk
->pid
;
1547 info
.si_uid
= tsk
->uid
;
1549 /* FIXME: find out whether or not this is supposed to be c*time. */
1550 info
.si_utime
= cputime_to_jiffies(tsk
->utime
);
1551 info
.si_stime
= cputime_to_jiffies(tsk
->stime
);
1556 info
.si_status
= SIGCONT
;
1559 info
.si_status
= tsk
->signal
->group_exit_code
& 0x7f;
1562 info
.si_status
= tsk
->exit_code
& 0x7f;
1568 sighand
= parent
->sighand
;
1569 spin_lock_irqsave(&sighand
->siglock
, flags
);
1570 if (sighand
->action
[SIGCHLD
-1].sa
.sa_handler
!= SIG_IGN
&&
1571 !(sighand
->action
[SIGCHLD
-1].sa
.sa_flags
& SA_NOCLDSTOP
))
1572 __group_send_sig_info(SIGCHLD
, &info
, parent
);
1574 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1576 __wake_up_parent(tsk
, parent
);
1577 spin_unlock_irqrestore(&sighand
->siglock
, flags
);
1581 * This must be called with current->sighand->siglock held.
1583 * This should be the path for all ptrace stops.
1584 * We always set current->last_siginfo while stopped here.
1585 * That makes it a way to test a stopped process for
1586 * being ptrace-stopped vs being job-control-stopped.
1588 * If we actually decide not to stop at all because the tracer is gone,
1589 * we leave nostop_code in current->exit_code.
1591 static void ptrace_stop(int exit_code
, int nostop_code
, siginfo_t
*info
)
1594 * If there is a group stop in progress,
1595 * we must participate in the bookkeeping.
1597 if (current
->signal
->group_stop_count
> 0)
1598 --current
->signal
->group_stop_count
;
1600 current
->last_siginfo
= info
;
1601 current
->exit_code
= exit_code
;
1603 /* Let the debugger run. */
1604 set_current_state(TASK_TRACED
);
1605 spin_unlock_irq(¤t
->sighand
->siglock
);
1606 read_lock(&tasklist_lock
);
1607 if (likely(current
->ptrace
& PT_PTRACED
) &&
1608 likely(current
->parent
!= current
->real_parent
||
1609 !(current
->ptrace
& PT_ATTACHED
)) &&
1610 (likely(current
->parent
->signal
!= current
->signal
) ||
1611 !unlikely(current
->signal
->flags
& SIGNAL_GROUP_EXIT
))) {
1612 do_notify_parent_cldstop(current
, 1, CLD_TRAPPED
);
1613 read_unlock(&tasklist_lock
);
1617 * By the time we got the lock, our tracer went away.
1620 read_unlock(&tasklist_lock
);
1621 set_current_state(TASK_RUNNING
);
1622 current
->exit_code
= nostop_code
;
1626 * We are back. Now reacquire the siglock before touching
1627 * last_siginfo, so that we are sure to have synchronized with
1628 * any signal-sending on another CPU that wants to examine it.
1630 spin_lock_irq(¤t
->sighand
->siglock
);
1631 current
->last_siginfo
= NULL
;
1634 * Queued signals ignored us while we were stopped for tracing.
1635 * So check for any that we should take before resuming user mode.
1637 recalc_sigpending();
1640 void ptrace_notify(int exit_code
)
1644 BUG_ON((exit_code
& (0x7f | ~0xffff)) != SIGTRAP
);
1646 memset(&info
, 0, sizeof info
);
1647 info
.si_signo
= SIGTRAP
;
1648 info
.si_code
= exit_code
;
1649 info
.si_pid
= current
->pid
;
1650 info
.si_uid
= current
->uid
;
1652 /* Let the debugger run. */
1653 spin_lock_irq(¤t
->sighand
->siglock
);
1654 ptrace_stop(exit_code
, 0, &info
);
1655 spin_unlock_irq(¤t
->sighand
->siglock
);
1659 finish_stop(int stop_count
)
1664 * If there are no other threads in the group, or if there is
1665 * a group stop in progress and we are the last to stop,
1666 * report to the parent. When ptraced, every thread reports itself.
1668 if (stop_count
< 0 || (current
->ptrace
& PT_PTRACED
))
1670 else if (stop_count
== 0)
1675 read_lock(&tasklist_lock
);
1676 do_notify_parent_cldstop(current
, to_self
, CLD_STOPPED
);
1677 read_unlock(&tasklist_lock
);
1682 * Now we don't run again until continued.
1684 current
->exit_code
= 0;
1688 * This performs the stopping for SIGSTOP and other stop signals.
1689 * We have to stop all threads in the thread group.
1690 * Returns nonzero if we've actually stopped and released the siglock.
1691 * Returns zero if we didn't stop and still hold the siglock.
1694 do_signal_stop(int signr
)
1696 struct signal_struct
*sig
= current
->signal
;
1697 struct sighand_struct
*sighand
= current
->sighand
;
1698 int stop_count
= -1;
1700 if (!likely(sig
->flags
& SIGNAL_STOP_DEQUEUED
))
1703 if (sig
->group_stop_count
> 0) {
1705 * There is a group stop in progress. We don't need to
1706 * start another one.
1708 signr
= sig
->group_exit_code
;
1709 stop_count
= --sig
->group_stop_count
;
1710 current
->exit_code
= signr
;
1711 set_current_state(TASK_STOPPED
);
1712 if (stop_count
== 0)
1713 sig
->flags
= SIGNAL_STOP_STOPPED
;
1714 spin_unlock_irq(&sighand
->siglock
);
1716 else if (thread_group_empty(current
)) {
1718 * Lock must be held through transition to stopped state.
1720 current
->exit_code
= current
->signal
->group_exit_code
= signr
;
1721 set_current_state(TASK_STOPPED
);
1722 sig
->flags
= SIGNAL_STOP_STOPPED
;
1723 spin_unlock_irq(&sighand
->siglock
);
1727 * There is no group stop already in progress.
1728 * We must initiate one now, but that requires
1729 * dropping siglock to get both the tasklist lock
1730 * and siglock again in the proper order. Note that
1731 * this allows an intervening SIGCONT to be posted.
1732 * We need to check for that and bail out if necessary.
1734 struct task_struct
*t
;
1736 spin_unlock_irq(&sighand
->siglock
);
1738 /* signals can be posted during this window */
1740 read_lock(&tasklist_lock
);
1741 spin_lock_irq(&sighand
->siglock
);
1743 if (!likely(sig
->flags
& SIGNAL_STOP_DEQUEUED
)) {
1745 * Another stop or continue happened while we
1746 * didn't have the lock. We can just swallow this
1747 * signal now. If we raced with a SIGCONT, that
1748 * should have just cleared it now. If we raced
1749 * with another processor delivering a stop signal,
1750 * then the SIGCONT that wakes us up should clear it.
1752 read_unlock(&tasklist_lock
);
1756 if (sig
->group_stop_count
== 0) {
1757 sig
->group_exit_code
= signr
;
1759 for (t
= next_thread(current
); t
!= current
;
1762 * Setting state to TASK_STOPPED for a group
1763 * stop is always done with the siglock held,
1764 * so this check has no races.
1766 if (!t
->exit_state
&&
1767 !(t
->state
& (TASK_STOPPED
|TASK_TRACED
))) {
1769 signal_wake_up(t
, 0);
1771 sig
->group_stop_count
= stop_count
;
1774 /* A race with another thread while unlocked. */
1775 signr
= sig
->group_exit_code
;
1776 stop_count
= --sig
->group_stop_count
;
1779 current
->exit_code
= signr
;
1780 set_current_state(TASK_STOPPED
);
1781 if (stop_count
== 0)
1782 sig
->flags
= SIGNAL_STOP_STOPPED
;
1784 spin_unlock_irq(&sighand
->siglock
);
1785 read_unlock(&tasklist_lock
);
1788 finish_stop(stop_count
);
1793 * Do appropriate magic when group_stop_count > 0.
1794 * We return nonzero if we stopped, after releasing the siglock.
1795 * We return zero if we still hold the siglock and should look
1796 * for another signal without checking group_stop_count again.
1798 static inline int handle_group_stop(void)
1802 if (current
->signal
->group_exit_task
== current
) {
1804 * Group stop is so we can do a core dump,
1805 * We are the initiating thread, so get on with it.
1807 current
->signal
->group_exit_task
= NULL
;
1811 if (current
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1813 * Group stop is so another thread can do a core dump,
1814 * or else we are racing against a death signal.
1815 * Just punt the stop so we can get the next signal.
1820 * There is a group stop in progress. We stop
1821 * without any associated signal being in our queue.
1823 stop_count
= --current
->signal
->group_stop_count
;
1824 if (stop_count
== 0)
1825 current
->signal
->flags
= SIGNAL_STOP_STOPPED
;
1826 current
->exit_code
= current
->signal
->group_exit_code
;
1827 set_current_state(TASK_STOPPED
);
1828 spin_unlock_irq(¤t
->sighand
->siglock
);
1829 finish_stop(stop_count
);
1833 int get_signal_to_deliver(siginfo_t
*info
, struct k_sigaction
*return_ka
,
1834 struct pt_regs
*regs
, void *cookie
)
1836 sigset_t
*mask
= ¤t
->blocked
;
1840 spin_lock_irq(¤t
->sighand
->siglock
);
1842 struct k_sigaction
*ka
;
1844 if (unlikely(current
->signal
->group_stop_count
> 0) &&
1845 handle_group_stop())
1848 signr
= dequeue_signal(current
, mask
, info
);
1851 break; /* will return 0 */
1853 if ((current
->ptrace
& PT_PTRACED
) && signr
!= SIGKILL
) {
1854 ptrace_signal_deliver(regs
, cookie
);
1856 /* Let the debugger run. */
1857 ptrace_stop(signr
, signr
, info
);
1859 /* We're back. Did the debugger cancel the sig or group_exit? */
1860 signr
= current
->exit_code
;
1861 if (signr
== 0 || current
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1864 current
->exit_code
= 0;
1866 /* Update the siginfo structure if the signal has
1867 changed. If the debugger wanted something
1868 specific in the siginfo structure then it should
1869 have updated *info via PTRACE_SETSIGINFO. */
1870 if (signr
!= info
->si_signo
) {
1871 info
->si_signo
= signr
;
1873 info
->si_code
= SI_USER
;
1874 info
->si_pid
= current
->parent
->pid
;
1875 info
->si_uid
= current
->parent
->uid
;
1878 /* If the (new) signal is now blocked, requeue it. */
1879 if (sigismember(¤t
->blocked
, signr
)) {
1880 specific_send_sig_info(signr
, info
, current
);
1885 ka
= ¤t
->sighand
->action
[signr
-1];
1886 if (ka
->sa
.sa_handler
== SIG_IGN
) /* Do nothing. */
1888 if (ka
->sa
.sa_handler
!= SIG_DFL
) {
1889 /* Run the handler. */
1892 if (ka
->sa
.sa_flags
& SA_ONESHOT
)
1893 ka
->sa
.sa_handler
= SIG_DFL
;
1895 break; /* will return non-zero "signr" value */
1899 * Now we are doing the default action for this signal.
1901 if (sig_kernel_ignore(signr
)) /* Default is nothing. */
1904 /* Init gets no signals it doesn't want. */
1905 if (current
->pid
== 1)
1908 if (sig_kernel_stop(signr
)) {
1910 * The default action is to stop all threads in
1911 * the thread group. The job control signals
1912 * do nothing in an orphaned pgrp, but SIGSTOP
1913 * always works. Note that siglock needs to be
1914 * dropped during the call to is_orphaned_pgrp()
1915 * because of lock ordering with tasklist_lock.
1916 * This allows an intervening SIGCONT to be posted.
1917 * We need to check for that and bail out if necessary.
1919 if (signr
!= SIGSTOP
) {
1920 spin_unlock_irq(¤t
->sighand
->siglock
);
1922 /* signals can be posted during this window */
1924 if (is_orphaned_pgrp(process_group(current
)))
1927 spin_lock_irq(¤t
->sighand
->siglock
);
1930 if (likely(do_signal_stop(signr
))) {
1931 /* It released the siglock. */
1936 * We didn't actually stop, due to a race
1937 * with SIGCONT or something like that.
1942 spin_unlock_irq(¤t
->sighand
->siglock
);
1945 * Anything else is fatal, maybe with a core dump.
1947 current
->flags
|= PF_SIGNALED
;
1948 if (sig_kernel_coredump(signr
)) {
1950 * If it was able to dump core, this kills all
1951 * other threads in the group and synchronizes with
1952 * their demise. If we lost the race with another
1953 * thread getting here, it set group_exit_code
1954 * first and our do_group_exit call below will use
1955 * that value and ignore the one we pass it.
1957 do_coredump((long)signr
, signr
, regs
);
1961 * Death signals, no core dump.
1963 do_group_exit(signr
);
1966 spin_unlock_irq(¤t
->sighand
->siglock
);
1970 EXPORT_SYMBOL(recalc_sigpending
);
1971 EXPORT_SYMBOL_GPL(dequeue_signal
);
1972 EXPORT_SYMBOL(flush_signals
);
1973 EXPORT_SYMBOL(force_sig
);
1974 EXPORT_SYMBOL(kill_pg
);
1975 EXPORT_SYMBOL(kill_proc
);
1976 EXPORT_SYMBOL(ptrace_notify
);
1977 EXPORT_SYMBOL(send_sig
);
1978 EXPORT_SYMBOL(send_sig_info
);
1979 EXPORT_SYMBOL(sigprocmask
);
1980 EXPORT_SYMBOL(block_all_signals
);
1981 EXPORT_SYMBOL(unblock_all_signals
);
1985 * System call entry points.
1988 asmlinkage
long sys_restart_syscall(void)
1990 struct restart_block
*restart
= ¤t_thread_info()->restart_block
;
1991 return restart
->fn(restart
);
1994 long do_no_restart_syscall(struct restart_block
*param
)
2000 * We don't need to get the kernel lock - this is all local to this
2001 * particular thread.. (and that's good, because this is _heavily_
2002 * used by various programs)
2006 * This is also useful for kernel threads that want to temporarily
2007 * (or permanently) block certain signals.
2009 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2010 * interface happily blocks "unblockable" signals like SIGKILL
2013 int sigprocmask(int how
, sigset_t
*set
, sigset_t
*oldset
)
2018 spin_lock_irq(¤t
->sighand
->siglock
);
2019 old_block
= current
->blocked
;
2023 sigorsets(¤t
->blocked
, ¤t
->blocked
, set
);
2026 signandsets(¤t
->blocked
, ¤t
->blocked
, set
);
2029 current
->blocked
= *set
;
2034 recalc_sigpending();
2035 spin_unlock_irq(¤t
->sighand
->siglock
);
2037 *oldset
= old_block
;
2042 sys_rt_sigprocmask(int how
, sigset_t __user
*set
, sigset_t __user
*oset
, size_t sigsetsize
)
2044 int error
= -EINVAL
;
2045 sigset_t old_set
, new_set
;
2047 /* XXX: Don't preclude handling different sized sigset_t's. */
2048 if (sigsetsize
!= sizeof(sigset_t
))
2053 if (copy_from_user(&new_set
, set
, sizeof(*set
)))
2055 sigdelsetmask(&new_set
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2057 error
= sigprocmask(how
, &new_set
, &old_set
);
2063 spin_lock_irq(¤t
->sighand
->siglock
);
2064 old_set
= current
->blocked
;
2065 spin_unlock_irq(¤t
->sighand
->siglock
);
2069 if (copy_to_user(oset
, &old_set
, sizeof(*oset
)))
2077 long do_sigpending(void __user
*set
, unsigned long sigsetsize
)
2079 long error
= -EINVAL
;
2082 if (sigsetsize
> sizeof(sigset_t
))
2085 spin_lock_irq(¤t
->sighand
->siglock
);
2086 sigorsets(&pending
, ¤t
->pending
.signal
,
2087 ¤t
->signal
->shared_pending
.signal
);
2088 spin_unlock_irq(¤t
->sighand
->siglock
);
2090 /* Outside the lock because only this thread touches it. */
2091 sigandsets(&pending
, ¤t
->blocked
, &pending
);
2094 if (!copy_to_user(set
, &pending
, sigsetsize
))
2102 sys_rt_sigpending(sigset_t __user
*set
, size_t sigsetsize
)
2104 return do_sigpending(set
, sigsetsize
);
2107 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2109 int copy_siginfo_to_user(siginfo_t __user
*to
, siginfo_t
*from
)
2113 if (!access_ok (VERIFY_WRITE
, to
, sizeof(siginfo_t
)))
2115 if (from
->si_code
< 0)
2116 return __copy_to_user(to
, from
, sizeof(siginfo_t
))
2119 * If you change siginfo_t structure, please be sure
2120 * this code is fixed accordingly.
2121 * It should never copy any pad contained in the structure
2122 * to avoid security leaks, but must copy the generic
2123 * 3 ints plus the relevant union member.
2125 err
= __put_user(from
->si_signo
, &to
->si_signo
);
2126 err
|= __put_user(from
->si_errno
, &to
->si_errno
);
2127 err
|= __put_user((short)from
->si_code
, &to
->si_code
);
2128 switch (from
->si_code
& __SI_MASK
) {
2130 err
|= __put_user(from
->si_pid
, &to
->si_pid
);
2131 err
|= __put_user(from
->si_uid
, &to
->si_uid
);
2134 err
|= __put_user(from
->si_tid
, &to
->si_tid
);
2135 err
|= __put_user(from
->si_overrun
, &to
->si_overrun
);
2136 err
|= __put_user(from
->si_ptr
, &to
->si_ptr
);
2139 err
|= __put_user(from
->si_band
, &to
->si_band
);
2140 err
|= __put_user(from
->si_fd
, &to
->si_fd
);
2143 err
|= __put_user(from
->si_addr
, &to
->si_addr
);
2144 #ifdef __ARCH_SI_TRAPNO
2145 err
|= __put_user(from
->si_trapno
, &to
->si_trapno
);
2149 err
|= __put_user(from
->si_pid
, &to
->si_pid
);
2150 err
|= __put_user(from
->si_uid
, &to
->si_uid
);
2151 err
|= __put_user(from
->si_status
, &to
->si_status
);
2152 err
|= __put_user(from
->si_utime
, &to
->si_utime
);
2153 err
|= __put_user(from
->si_stime
, &to
->si_stime
);
2155 case __SI_RT
: /* This is not generated by the kernel as of now. */
2156 case __SI_MESGQ
: /* But this is */
2157 err
|= __put_user(from
->si_pid
, &to
->si_pid
);
2158 err
|= __put_user(from
->si_uid
, &to
->si_uid
);
2159 err
|= __put_user(from
->si_ptr
, &to
->si_ptr
);
2161 default: /* this is just in case for now ... */
2162 err
|= __put_user(from
->si_pid
, &to
->si_pid
);
2163 err
|= __put_user(from
->si_uid
, &to
->si_uid
);
2172 sys_rt_sigtimedwait(const sigset_t __user
*uthese
,
2173 siginfo_t __user
*uinfo
,
2174 const struct timespec __user
*uts
,
2183 /* XXX: Don't preclude handling different sized sigset_t's. */
2184 if (sigsetsize
!= sizeof(sigset_t
))
2187 if (copy_from_user(&these
, uthese
, sizeof(these
)))
2191 * Invert the set of allowed signals to get those we
2194 sigdelsetmask(&these
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2198 if (copy_from_user(&ts
, uts
, sizeof(ts
)))
2200 if (ts
.tv_nsec
>= 1000000000L || ts
.tv_nsec
< 0
2205 spin_lock_irq(¤t
->sighand
->siglock
);
2206 sig
= dequeue_signal(current
, &these
, &info
);
2208 timeout
= MAX_SCHEDULE_TIMEOUT
;
2210 timeout
= (timespec_to_jiffies(&ts
)
2211 + (ts
.tv_sec
|| ts
.tv_nsec
));
2214 /* None ready -- temporarily unblock those we're
2215 * interested while we are sleeping in so that we'll
2216 * be awakened when they arrive. */
2217 current
->real_blocked
= current
->blocked
;
2218 sigandsets(¤t
->blocked
, ¤t
->blocked
, &these
);
2219 recalc_sigpending();
2220 spin_unlock_irq(¤t
->sighand
->siglock
);
2222 timeout
= schedule_timeout_interruptible(timeout
);
2225 spin_lock_irq(¤t
->sighand
->siglock
);
2226 sig
= dequeue_signal(current
, &these
, &info
);
2227 current
->blocked
= current
->real_blocked
;
2228 siginitset(¤t
->real_blocked
, 0);
2229 recalc_sigpending();
2232 spin_unlock_irq(¤t
->sighand
->siglock
);
2237 if (copy_siginfo_to_user(uinfo
, &info
))
2250 sys_kill(int pid
, int sig
)
2252 struct siginfo info
;
2254 info
.si_signo
= sig
;
2256 info
.si_code
= SI_USER
;
2257 info
.si_pid
= current
->tgid
;
2258 info
.si_uid
= current
->uid
;
2260 return kill_something_info(sig
, &info
, pid
);
2263 static int do_tkill(int tgid
, int pid
, int sig
)
2266 struct siginfo info
;
2267 struct task_struct
*p
;
2270 info
.si_signo
= sig
;
2272 info
.si_code
= SI_TKILL
;
2273 info
.si_pid
= current
->tgid
;
2274 info
.si_uid
= current
->uid
;
2276 read_lock(&tasklist_lock
);
2277 p
= find_task_by_pid(pid
);
2278 if (p
&& (tgid
<= 0 || p
->tgid
== tgid
)) {
2279 error
= check_kill_permission(sig
, &info
, p
);
2281 * The null signal is a permissions and process existence
2282 * probe. No signal is actually delivered.
2284 if (!error
&& sig
&& p
->sighand
) {
2285 spin_lock_irq(&p
->sighand
->siglock
);
2286 handle_stop_signal(sig
, p
);
2287 error
= specific_send_sig_info(sig
, &info
, p
);
2288 spin_unlock_irq(&p
->sighand
->siglock
);
2291 read_unlock(&tasklist_lock
);
2297 * sys_tgkill - send signal to one specific thread
2298 * @tgid: the thread group ID of the thread
2299 * @pid: the PID of the thread
2300 * @sig: signal to be sent
2302 * This syscall also checks the tgid and returns -ESRCH even if the PID
2303 * exists but it's not belonging to the target process anymore. This
2304 * method solves the problem of threads exiting and PIDs getting reused.
2306 asmlinkage
long sys_tgkill(int tgid
, int pid
, int sig
)
2308 /* This is only valid for single tasks */
2309 if (pid
<= 0 || tgid
<= 0)
2312 return do_tkill(tgid
, pid
, sig
);
2316 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2319 sys_tkill(int pid
, int sig
)
2321 /* This is only valid for single tasks */
2325 return do_tkill(0, pid
, sig
);
2329 sys_rt_sigqueueinfo(int pid
, int sig
, siginfo_t __user
*uinfo
)
2333 if (copy_from_user(&info
, uinfo
, sizeof(siginfo_t
)))
2336 /* Not even root can pretend to send signals from the kernel.
2337 Nor can they impersonate a kill(), which adds source info. */
2338 if (info
.si_code
>= 0)
2340 info
.si_signo
= sig
;
2342 /* POSIX.1b doesn't mention process groups. */
2343 return kill_proc_info(sig
, &info
, pid
);
2347 do_sigaction(int sig
, const struct k_sigaction
*act
, struct k_sigaction
*oact
)
2349 struct k_sigaction
*k
;
2351 if (!valid_signal(sig
) || sig
< 1 || (act
&& sig_kernel_only(sig
)))
2354 k
= ¤t
->sighand
->action
[sig
-1];
2356 spin_lock_irq(¤t
->sighand
->siglock
);
2357 if (signal_pending(current
)) {
2359 * If there might be a fatal signal pending on multiple
2360 * threads, make sure we take it before changing the action.
2362 spin_unlock_irq(¤t
->sighand
->siglock
);
2363 return -ERESTARTNOINTR
;
2372 * "Setting a signal action to SIG_IGN for a signal that is
2373 * pending shall cause the pending signal to be discarded,
2374 * whether or not it is blocked."
2376 * "Setting a signal action to SIG_DFL for a signal that is
2377 * pending and whose default action is to ignore the signal
2378 * (for example, SIGCHLD), shall cause the pending signal to
2379 * be discarded, whether or not it is blocked"
2381 if (act
->sa
.sa_handler
== SIG_IGN
||
2382 (act
->sa
.sa_handler
== SIG_DFL
&&
2383 sig_kernel_ignore(sig
))) {
2385 * This is a fairly rare case, so we only take the
2386 * tasklist_lock once we're sure we'll need it.
2387 * Now we must do this little unlock and relock
2388 * dance to maintain the lock hierarchy.
2390 struct task_struct
*t
= current
;
2391 spin_unlock_irq(&t
->sighand
->siglock
);
2392 read_lock(&tasklist_lock
);
2393 spin_lock_irq(&t
->sighand
->siglock
);
2395 sigdelsetmask(&k
->sa
.sa_mask
,
2396 sigmask(SIGKILL
) | sigmask(SIGSTOP
));
2397 rm_from_queue(sigmask(sig
), &t
->signal
->shared_pending
);
2399 rm_from_queue(sigmask(sig
), &t
->pending
);
2400 recalc_sigpending_tsk(t
);
2402 } while (t
!= current
);
2403 spin_unlock_irq(¤t
->sighand
->siglock
);
2404 read_unlock(&tasklist_lock
);
2409 sigdelsetmask(&k
->sa
.sa_mask
,
2410 sigmask(SIGKILL
) | sigmask(SIGSTOP
));
2413 spin_unlock_irq(¤t
->sighand
->siglock
);
2418 do_sigaltstack (const stack_t __user
*uss
, stack_t __user
*uoss
, unsigned long sp
)
2424 oss
.ss_sp
= (void __user
*) current
->sas_ss_sp
;
2425 oss
.ss_size
= current
->sas_ss_size
;
2426 oss
.ss_flags
= sas_ss_flags(sp
);
2435 if (!access_ok(VERIFY_READ
, uss
, sizeof(*uss
))
2436 || __get_user(ss_sp
, &uss
->ss_sp
)
2437 || __get_user(ss_flags
, &uss
->ss_flags
)
2438 || __get_user(ss_size
, &uss
->ss_size
))
2442 if (on_sig_stack(sp
))
2448 * Note - this code used to test ss_flags incorrectly
2449 * old code may have been written using ss_flags==0
2450 * to mean ss_flags==SS_ONSTACK (as this was the only
2451 * way that worked) - this fix preserves that older
2454 if (ss_flags
!= SS_DISABLE
&& ss_flags
!= SS_ONSTACK
&& ss_flags
!= 0)
2457 if (ss_flags
== SS_DISABLE
) {
2462 if (ss_size
< MINSIGSTKSZ
)
2466 current
->sas_ss_sp
= (unsigned long) ss_sp
;
2467 current
->sas_ss_size
= ss_size
;
2472 if (copy_to_user(uoss
, &oss
, sizeof(oss
)))
2481 #ifdef __ARCH_WANT_SYS_SIGPENDING
2484 sys_sigpending(old_sigset_t __user
*set
)
2486 return do_sigpending(set
, sizeof(*set
));
2491 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2492 /* Some platforms have their own version with special arguments others
2493 support only sys_rt_sigprocmask. */
2496 sys_sigprocmask(int how
, old_sigset_t __user
*set
, old_sigset_t __user
*oset
)
2499 old_sigset_t old_set
, new_set
;
2503 if (copy_from_user(&new_set
, set
, sizeof(*set
)))
2505 new_set
&= ~(sigmask(SIGKILL
) | sigmask(SIGSTOP
));
2507 spin_lock_irq(¤t
->sighand
->siglock
);
2508 old_set
= current
->blocked
.sig
[0];
2516 sigaddsetmask(¤t
->blocked
, new_set
);
2519 sigdelsetmask(¤t
->blocked
, new_set
);
2522 current
->blocked
.sig
[0] = new_set
;
2526 recalc_sigpending();
2527 spin_unlock_irq(¤t
->sighand
->siglock
);
2533 old_set
= current
->blocked
.sig
[0];
2536 if (copy_to_user(oset
, &old_set
, sizeof(*oset
)))
2543 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2545 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2547 sys_rt_sigaction(int sig
,
2548 const struct sigaction __user
*act
,
2549 struct sigaction __user
*oact
,
2552 struct k_sigaction new_sa
, old_sa
;
2555 /* XXX: Don't preclude handling different sized sigset_t's. */
2556 if (sigsetsize
!= sizeof(sigset_t
))
2560 if (copy_from_user(&new_sa
.sa
, act
, sizeof(new_sa
.sa
)))
2564 ret
= do_sigaction(sig
, act
? &new_sa
: NULL
, oact
? &old_sa
: NULL
);
2567 if (copy_to_user(oact
, &old_sa
.sa
, sizeof(old_sa
.sa
)))
2573 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2575 #ifdef __ARCH_WANT_SYS_SGETMASK
2578 * For backwards compatibility. Functionality superseded by sigprocmask.
2584 return current
->blocked
.sig
[0];
2588 sys_ssetmask(int newmask
)
2592 spin_lock_irq(¤t
->sighand
->siglock
);
2593 old
= current
->blocked
.sig
[0];
2595 siginitset(¤t
->blocked
, newmask
& ~(sigmask(SIGKILL
)|
2597 recalc_sigpending();
2598 spin_unlock_irq(¤t
->sighand
->siglock
);
2602 #endif /* __ARCH_WANT_SGETMASK */
2604 #ifdef __ARCH_WANT_SYS_SIGNAL
2606 * For backwards compatibility. Functionality superseded by sigaction.
2608 asmlinkage
unsigned long
2609 sys_signal(int sig
, __sighandler_t handler
)
2611 struct k_sigaction new_sa
, old_sa
;
2614 new_sa
.sa
.sa_handler
= handler
;
2615 new_sa
.sa
.sa_flags
= SA_ONESHOT
| SA_NOMASK
;
2617 ret
= do_sigaction(sig
, &new_sa
, &old_sa
);
2619 return ret
? ret
: (unsigned long)old_sa
.sa
.sa_handler
;
2621 #endif /* __ARCH_WANT_SYS_SIGNAL */
2623 #ifdef __ARCH_WANT_SYS_PAUSE
2628 current
->state
= TASK_INTERRUPTIBLE
;
2630 return -ERESTARTNOHAND
;
2635 void __init
signals_init(void)
2638 kmem_cache_create("sigqueue",
2639 sizeof(struct sigqueue
),
2640 __alignof__(struct sigqueue
),
2641 SLAB_PANIC
, NULL
, NULL
);