2 * sparse memory mappings.
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/compiler.h>
9 #include <linux/highmem.h>
10 #include <linux/export.h>
11 #include <linux/spinlock.h>
12 #include <linux/vmalloc.h>
16 #include <asm/pgalloc.h>
17 #include <asm/pgtable.h>
20 * Permanent SPARSEMEM data:
22 * 1) mem_section - memory sections, mem_map's for valid memory
24 #ifdef CONFIG_SPARSEMEM_EXTREME
25 struct mem_section
*mem_section
[NR_SECTION_ROOTS
]
26 ____cacheline_internodealigned_in_smp
;
28 struct mem_section mem_section
[NR_SECTION_ROOTS
][SECTIONS_PER_ROOT
]
29 ____cacheline_internodealigned_in_smp
;
31 EXPORT_SYMBOL(mem_section
);
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
35 * If we did not store the node number in the page then we have to
36 * do a lookup in the section_to_node_table in order to find which
37 * node the page belongs to.
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
42 static u16 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
45 int page_to_nid(const struct page
*page
)
47 return section_to_node_table
[page_to_section(page
)];
49 EXPORT_SYMBOL(page_to_nid
);
51 static void set_section_nid(unsigned long section_nr
, int nid
)
53 section_to_node_table
[section_nr
] = nid
;
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr
, int nid
)
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline
struct mem_section __ref
*sparse_index_alloc(int nid
)
64 struct mem_section
*section
= NULL
;
65 unsigned long array_size
= SECTIONS_PER_ROOT
*
66 sizeof(struct mem_section
);
68 if (slab_is_available()) {
69 if (node_state(nid
, N_HIGH_MEMORY
))
70 section
= kzalloc_node(array_size
, GFP_KERNEL
, nid
);
72 section
= kzalloc(array_size
, GFP_KERNEL
);
74 section
= memblock_virt_alloc_node(array_size
, nid
);
80 static int __meminit
sparse_index_init(unsigned long section_nr
, int nid
)
82 unsigned long root
= SECTION_NR_TO_ROOT(section_nr
);
83 struct mem_section
*section
;
85 if (mem_section
[root
])
88 section
= sparse_index_alloc(nid
);
92 mem_section
[root
] = section
;
96 #else /* !SPARSEMEM_EXTREME */
97 static inline int sparse_index_init(unsigned long section_nr
, int nid
)
103 #ifdef CONFIG_SPARSEMEM_EXTREME
104 int __section_nr(struct mem_section
* ms
)
106 unsigned long root_nr
;
107 struct mem_section
* root
;
109 for (root_nr
= 0; root_nr
< NR_SECTION_ROOTS
; root_nr
++) {
110 root
= __nr_to_section(root_nr
* SECTIONS_PER_ROOT
);
114 if ((ms
>= root
) && (ms
< (root
+ SECTIONS_PER_ROOT
)))
118 VM_BUG_ON(root_nr
== NR_SECTION_ROOTS
);
120 return (root_nr
* SECTIONS_PER_ROOT
) + (ms
- root
);
123 int __section_nr(struct mem_section
* ms
)
125 return (int)(ms
- mem_section
[0]);
130 * During early boot, before section_mem_map is used for an actual
131 * mem_map, we use section_mem_map to store the section's NUMA
132 * node. This keeps us from having to use another data structure. The
133 * node information is cleared just before we store the real mem_map.
135 static inline unsigned long sparse_encode_early_nid(int nid
)
137 return (nid
<< SECTION_NID_SHIFT
);
140 static inline int sparse_early_nid(struct mem_section
*section
)
142 return (section
->section_mem_map
>> SECTION_NID_SHIFT
);
145 /* Validate the physical addressing limitations of the model */
146 void __meminit
mminit_validate_memmodel_limits(unsigned long *start_pfn
,
147 unsigned long *end_pfn
)
149 unsigned long max_sparsemem_pfn
= 1UL << (MAX_PHYSMEM_BITS
-PAGE_SHIFT
);
152 * Sanity checks - do not allow an architecture to pass
153 * in larger pfns than the maximum scope of sparsemem:
155 if (*start_pfn
> max_sparsemem_pfn
) {
156 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
157 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
158 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
160 *start_pfn
= max_sparsemem_pfn
;
161 *end_pfn
= max_sparsemem_pfn
;
162 } else if (*end_pfn
> max_sparsemem_pfn
) {
163 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
164 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
165 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
167 *end_pfn
= max_sparsemem_pfn
;
171 /* Record a memory area against a node. */
172 void __init
memory_present(int nid
, unsigned long start
, unsigned long end
)
176 start
&= PAGE_SECTION_MASK
;
177 mminit_validate_memmodel_limits(&start
, &end
);
178 for (pfn
= start
; pfn
< end
; pfn
+= PAGES_PER_SECTION
) {
179 unsigned long section
= pfn_to_section_nr(pfn
);
180 struct mem_section
*ms
;
182 sparse_index_init(section
, nid
);
183 set_section_nid(section
, nid
);
185 ms
= __nr_to_section(section
);
186 if (!ms
->section_mem_map
)
187 ms
->section_mem_map
= sparse_encode_early_nid(nid
) |
188 SECTION_MARKED_PRESENT
;
193 * Only used by the i386 NUMA architecures, but relatively
196 unsigned long __init
node_memmap_size_bytes(int nid
, unsigned long start_pfn
,
197 unsigned long end_pfn
)
200 unsigned long nr_pages
= 0;
202 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
203 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
204 if (nid
!= early_pfn_to_nid(pfn
))
207 if (pfn_present(pfn
))
208 nr_pages
+= PAGES_PER_SECTION
;
211 return nr_pages
* sizeof(struct page
);
215 * Subtle, we encode the real pfn into the mem_map such that
216 * the identity pfn - section_mem_map will return the actual
217 * physical page frame number.
219 static unsigned long sparse_encode_mem_map(struct page
*mem_map
, unsigned long pnum
)
221 return (unsigned long)(mem_map
- (section_nr_to_pfn(pnum
)));
225 * Decode mem_map from the coded memmap
227 struct page
*sparse_decode_mem_map(unsigned long coded_mem_map
, unsigned long pnum
)
229 /* mask off the extra low bits of information */
230 coded_mem_map
&= SECTION_MAP_MASK
;
231 return ((struct page
*)coded_mem_map
) + section_nr_to_pfn(pnum
);
234 static int __meminit
sparse_init_one_section(struct mem_section
*ms
,
235 unsigned long pnum
, struct page
*mem_map
,
236 unsigned long *pageblock_bitmap
)
238 if (!present_section(ms
))
241 ms
->section_mem_map
&= ~SECTION_MAP_MASK
;
242 ms
->section_mem_map
|= sparse_encode_mem_map(mem_map
, pnum
) |
244 ms
->pageblock_flags
= pageblock_bitmap
;
249 unsigned long usemap_size(void)
251 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS
) * sizeof(unsigned long);
254 #ifdef CONFIG_MEMORY_HOTPLUG
255 static unsigned long *__kmalloc_section_usemap(void)
257 return kmalloc(usemap_size(), GFP_KERNEL
);
259 #endif /* CONFIG_MEMORY_HOTPLUG */
261 #ifdef CONFIG_MEMORY_HOTREMOVE
262 static unsigned long * __init
263 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data
*pgdat
,
266 unsigned long goal
, limit
;
270 * A page may contain usemaps for other sections preventing the
271 * page being freed and making a section unremovable while
272 * other sections referencing the usemap remain active. Similarly,
273 * a pgdat can prevent a section being removed. If section A
274 * contains a pgdat and section B contains the usemap, both
275 * sections become inter-dependent. This allocates usemaps
276 * from the same section as the pgdat where possible to avoid
279 goal
= __pa(pgdat
) & (PAGE_SECTION_MASK
<< PAGE_SHIFT
);
280 limit
= goal
+ (1UL << PA_SECTION_SHIFT
);
281 nid
= early_pfn_to_nid(goal
>> PAGE_SHIFT
);
283 p
= memblock_virt_alloc_try_nid_nopanic(size
,
284 SMP_CACHE_BYTES
, goal
, limit
,
293 static void __init
check_usemap_section_nr(int nid
, unsigned long *usemap
)
295 unsigned long usemap_snr
, pgdat_snr
;
296 static unsigned long old_usemap_snr
= NR_MEM_SECTIONS
;
297 static unsigned long old_pgdat_snr
= NR_MEM_SECTIONS
;
298 struct pglist_data
*pgdat
= NODE_DATA(nid
);
301 usemap_snr
= pfn_to_section_nr(__pa(usemap
) >> PAGE_SHIFT
);
302 pgdat_snr
= pfn_to_section_nr(__pa(pgdat
) >> PAGE_SHIFT
);
303 if (usemap_snr
== pgdat_snr
)
306 if (old_usemap_snr
== usemap_snr
&& old_pgdat_snr
== pgdat_snr
)
307 /* skip redundant message */
310 old_usemap_snr
= usemap_snr
;
311 old_pgdat_snr
= pgdat_snr
;
313 usemap_nid
= sparse_early_nid(__nr_to_section(usemap_snr
));
314 if (usemap_nid
!= nid
) {
315 pr_info("node %d must be removed before remove section %ld\n",
320 * There is a circular dependency.
321 * Some platforms allow un-removable section because they will just
322 * gather other removable sections for dynamic partitioning.
323 * Just notify un-removable section's number here.
325 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
326 usemap_snr
, pgdat_snr
, nid
);
329 static unsigned long * __init
330 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data
*pgdat
,
333 return memblock_virt_alloc_node_nopanic(size
, pgdat
->node_id
);
336 static void __init
check_usemap_section_nr(int nid
, unsigned long *usemap
)
339 #endif /* CONFIG_MEMORY_HOTREMOVE */
341 static void __init
sparse_early_usemaps_alloc_node(void *data
,
342 unsigned long pnum_begin
,
343 unsigned long pnum_end
,
344 unsigned long usemap_count
, int nodeid
)
348 unsigned long **usemap_map
= (unsigned long **)data
;
349 int size
= usemap_size();
351 usemap
= sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid
),
352 size
* usemap_count
);
354 pr_warn("%s: allocation failed\n", __func__
);
358 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
359 if (!present_section_nr(pnum
))
361 usemap_map
[pnum
] = usemap
;
363 check_usemap_section_nr(nodeid
, usemap_map
[pnum
]);
367 #ifndef CONFIG_SPARSEMEM_VMEMMAP
368 struct page __init
*sparse_mem_map_populate(unsigned long pnum
, int nid
)
373 map
= alloc_remap(nid
, sizeof(struct page
) * PAGES_PER_SECTION
);
377 size
= PAGE_ALIGN(sizeof(struct page
) * PAGES_PER_SECTION
);
378 map
= memblock_virt_alloc_try_nid(size
,
379 PAGE_SIZE
, __pa(MAX_DMA_ADDRESS
),
380 BOOTMEM_ALLOC_ACCESSIBLE
, nid
);
383 void __init
sparse_mem_maps_populate_node(struct page
**map_map
,
384 unsigned long pnum_begin
,
385 unsigned long pnum_end
,
386 unsigned long map_count
, int nodeid
)
390 unsigned long size
= sizeof(struct page
) * PAGES_PER_SECTION
;
392 map
= alloc_remap(nodeid
, size
* map_count
);
394 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
395 if (!present_section_nr(pnum
))
403 size
= PAGE_ALIGN(size
);
404 map
= memblock_virt_alloc_try_nid(size
* map_count
,
405 PAGE_SIZE
, __pa(MAX_DMA_ADDRESS
),
406 BOOTMEM_ALLOC_ACCESSIBLE
, nodeid
);
408 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
409 if (!present_section_nr(pnum
))
418 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
419 struct mem_section
*ms
;
421 if (!present_section_nr(pnum
))
423 map_map
[pnum
] = sparse_mem_map_populate(pnum
, nodeid
);
426 ms
= __nr_to_section(pnum
);
427 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
429 ms
->section_mem_map
= 0;
432 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
434 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
435 static void __init
sparse_early_mem_maps_alloc_node(void *data
,
436 unsigned long pnum_begin
,
437 unsigned long pnum_end
,
438 unsigned long map_count
, int nodeid
)
440 struct page
**map_map
= (struct page
**)data
;
441 sparse_mem_maps_populate_node(map_map
, pnum_begin
, pnum_end
,
445 static struct page __init
*sparse_early_mem_map_alloc(unsigned long pnum
)
448 struct mem_section
*ms
= __nr_to_section(pnum
);
449 int nid
= sparse_early_nid(ms
);
451 map
= sparse_mem_map_populate(pnum
, nid
);
455 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
457 ms
->section_mem_map
= 0;
462 void __weak __meminit
vmemmap_populate_print_last(void)
467 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
468 * @map: usemap_map for pageblock flags or mmap_map for vmemmap
470 static void __init
alloc_usemap_and_memmap(void (*alloc_func
)
471 (void *, unsigned long, unsigned long,
472 unsigned long, int), void *data
)
475 unsigned long map_count
;
476 int nodeid_begin
= 0;
477 unsigned long pnum_begin
= 0;
479 for (pnum
= 0; pnum
< NR_MEM_SECTIONS
; pnum
++) {
480 struct mem_section
*ms
;
482 if (!present_section_nr(pnum
))
484 ms
= __nr_to_section(pnum
);
485 nodeid_begin
= sparse_early_nid(ms
);
490 for (pnum
= pnum_begin
+ 1; pnum
< NR_MEM_SECTIONS
; pnum
++) {
491 struct mem_section
*ms
;
494 if (!present_section_nr(pnum
))
496 ms
= __nr_to_section(pnum
);
497 nodeid
= sparse_early_nid(ms
);
498 if (nodeid
== nodeid_begin
) {
502 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
503 alloc_func(data
, pnum_begin
, pnum
,
504 map_count
, nodeid_begin
);
505 /* new start, update count etc*/
506 nodeid_begin
= nodeid
;
511 alloc_func(data
, pnum_begin
, NR_MEM_SECTIONS
,
512 map_count
, nodeid_begin
);
516 * Allocate the accumulated non-linear sections, allocate a mem_map
517 * for each and record the physical to section mapping.
519 void __init
sparse_init(void)
523 unsigned long *usemap
;
524 unsigned long **usemap_map
;
526 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
528 struct page
**map_map
;
531 /* see include/linux/mmzone.h 'struct mem_section' definition */
532 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section
)));
534 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
535 set_pageblock_order();
538 * map is using big page (aka 2M in x86 64 bit)
539 * usemap is less one page (aka 24 bytes)
540 * so alloc 2M (with 2M align) and 24 bytes in turn will
541 * make next 2M slip to one more 2M later.
542 * then in big system, the memory will have a lot of holes...
543 * here try to allocate 2M pages continuously.
545 * powerpc need to call sparse_init_one_section right after each
546 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
548 size
= sizeof(unsigned long *) * NR_MEM_SECTIONS
;
549 usemap_map
= memblock_virt_alloc(size
, 0);
551 panic("can not allocate usemap_map\n");
552 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node
,
555 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
556 size2
= sizeof(struct page
*) * NR_MEM_SECTIONS
;
557 map_map
= memblock_virt_alloc(size2
, 0);
559 panic("can not allocate map_map\n");
560 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node
,
564 for (pnum
= 0; pnum
< NR_MEM_SECTIONS
; pnum
++) {
565 if (!present_section_nr(pnum
))
568 usemap
= usemap_map
[pnum
];
572 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
575 map
= sparse_early_mem_map_alloc(pnum
);
580 sparse_init_one_section(__nr_to_section(pnum
), pnum
, map
,
584 vmemmap_populate_print_last();
586 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
587 memblock_free_early(__pa(map_map
), size2
);
589 memblock_free_early(__pa(usemap_map
), size
);
592 #ifdef CONFIG_MEMORY_HOTPLUG
593 #ifdef CONFIG_SPARSEMEM_VMEMMAP
594 static inline struct page
*kmalloc_section_memmap(unsigned long pnum
, int nid
)
596 /* This will make the necessary allocations eventually. */
597 return sparse_mem_map_populate(pnum
, nid
);
599 static void __kfree_section_memmap(struct page
*memmap
)
601 unsigned long start
= (unsigned long)memmap
;
602 unsigned long end
= (unsigned long)(memmap
+ PAGES_PER_SECTION
);
604 vmemmap_free(start
, end
);
606 #ifdef CONFIG_MEMORY_HOTREMOVE
607 static void free_map_bootmem(struct page
*memmap
)
609 unsigned long start
= (unsigned long)memmap
;
610 unsigned long end
= (unsigned long)(memmap
+ PAGES_PER_SECTION
);
612 vmemmap_free(start
, end
);
614 #endif /* CONFIG_MEMORY_HOTREMOVE */
616 static struct page
*__kmalloc_section_memmap(void)
618 struct page
*page
, *ret
;
619 unsigned long memmap_size
= sizeof(struct page
) * PAGES_PER_SECTION
;
621 page
= alloc_pages(GFP_KERNEL
|__GFP_NOWARN
, get_order(memmap_size
));
625 ret
= vmalloc(memmap_size
);
631 ret
= (struct page
*)pfn_to_kaddr(page_to_pfn(page
));
637 static inline struct page
*kmalloc_section_memmap(unsigned long pnum
, int nid
)
639 return __kmalloc_section_memmap();
642 static void __kfree_section_memmap(struct page
*memmap
)
644 if (is_vmalloc_addr(memmap
))
647 free_pages((unsigned long)memmap
,
648 get_order(sizeof(struct page
) * PAGES_PER_SECTION
));
651 #ifdef CONFIG_MEMORY_HOTREMOVE
652 static void free_map_bootmem(struct page
*memmap
)
654 unsigned long maps_section_nr
, removing_section_nr
, i
;
655 unsigned long magic
, nr_pages
;
656 struct page
*page
= virt_to_page(memmap
);
658 nr_pages
= PAGE_ALIGN(PAGES_PER_SECTION
* sizeof(struct page
))
661 for (i
= 0; i
< nr_pages
; i
++, page
++) {
662 magic
= (unsigned long) page
->freelist
;
664 BUG_ON(magic
== NODE_INFO
);
666 maps_section_nr
= pfn_to_section_nr(page_to_pfn(page
));
667 removing_section_nr
= page_private(page
);
670 * When this function is called, the removing section is
671 * logical offlined state. This means all pages are isolated
672 * from page allocator. If removing section's memmap is placed
673 * on the same section, it must not be freed.
674 * If it is freed, page allocator may allocate it which will
675 * be removed physically soon.
677 if (maps_section_nr
!= removing_section_nr
)
678 put_page_bootmem(page
);
681 #endif /* CONFIG_MEMORY_HOTREMOVE */
682 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
685 * returns the number of sections whose mem_maps were properly
686 * set. If this is <=0, then that means that the passed-in
687 * map was not consumed and must be freed.
689 int __meminit
sparse_add_one_section(struct zone
*zone
, unsigned long start_pfn
)
691 unsigned long section_nr
= pfn_to_section_nr(start_pfn
);
692 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
693 struct mem_section
*ms
;
695 unsigned long *usemap
;
700 * no locking for this, because it does its own
701 * plus, it does a kmalloc
703 ret
= sparse_index_init(section_nr
, pgdat
->node_id
);
704 if (ret
< 0 && ret
!= -EEXIST
)
706 memmap
= kmalloc_section_memmap(section_nr
, pgdat
->node_id
);
709 usemap
= __kmalloc_section_usemap();
711 __kfree_section_memmap(memmap
);
715 pgdat_resize_lock(pgdat
, &flags
);
717 ms
= __pfn_to_section(start_pfn
);
718 if (ms
->section_mem_map
& SECTION_MARKED_PRESENT
) {
723 memset(memmap
, 0, sizeof(struct page
) * PAGES_PER_SECTION
);
725 ms
->section_mem_map
|= SECTION_MARKED_PRESENT
;
727 ret
= sparse_init_one_section(ms
, section_nr
, memmap
, usemap
);
730 pgdat_resize_unlock(pgdat
, &flags
);
733 __kfree_section_memmap(memmap
);
738 #ifdef CONFIG_MEMORY_HOTREMOVE
739 #ifdef CONFIG_MEMORY_FAILURE
740 static void clear_hwpoisoned_pages(struct page
*memmap
, int nr_pages
)
747 for (i
= 0; i
< nr_pages
; i
++) {
748 if (PageHWPoison(&memmap
[i
])) {
749 atomic_long_sub(1, &num_poisoned_pages
);
750 ClearPageHWPoison(&memmap
[i
]);
755 static inline void clear_hwpoisoned_pages(struct page
*memmap
, int nr_pages
)
760 static void free_section_usemap(struct page
*memmap
, unsigned long *usemap
)
762 struct page
*usemap_page
;
767 usemap_page
= virt_to_page(usemap
);
769 * Check to see if allocation came from hot-plug-add
771 if (PageSlab(usemap_page
) || PageCompound(usemap_page
)) {
774 __kfree_section_memmap(memmap
);
779 * The usemap came from bootmem. This is packed with other usemaps
780 * on the section which has pgdat at boot time. Just keep it as is now.
784 free_map_bootmem(memmap
);
787 void sparse_remove_one_section(struct zone
*zone
, struct mem_section
*ms
,
788 unsigned long map_offset
)
790 struct page
*memmap
= NULL
;
791 unsigned long *usemap
= NULL
, flags
;
792 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
794 pgdat_resize_lock(pgdat
, &flags
);
795 if (ms
->section_mem_map
) {
796 usemap
= ms
->pageblock_flags
;
797 memmap
= sparse_decode_mem_map(ms
->section_mem_map
,
799 ms
->section_mem_map
= 0;
800 ms
->pageblock_flags
= NULL
;
802 pgdat_resize_unlock(pgdat
, &flags
);
804 clear_hwpoisoned_pages(memmap
+ map_offset
,
805 PAGES_PER_SECTION
- map_offset
);
806 free_section_usemap(memmap
, usemap
);
808 #endif /* CONFIG_MEMORY_HOTREMOVE */
809 #endif /* CONFIG_MEMORY_HOTPLUG */