2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/trace_events.h>
58 #include <linux/suspend.h>
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
67 #define MODULE_PARAM_PREFIX "rcutree."
69 /* Data structures. */
72 * In order to export the rcu_state name to the tracing tools, it
73 * needs to be added in the __tracepoint_string section.
74 * This requires defining a separate variable tp_<sname>_varname
75 * that points to the string being used, and this will allow
76 * the tracing userspace tools to be able to decipher the string
77 * address to the matching string.
80 # define DEFINE_RCU_TPS(sname) \
81 static char sname##_varname[] = #sname; \
82 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
83 # define RCU_STATE_NAME(sname) sname##_varname
85 # define DEFINE_RCU_TPS(sname)
86 # define RCU_STATE_NAME(sname) __stringify(sname)
89 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
90 DEFINE_RCU_TPS(sname) \
91 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92 struct rcu_state sname##_state = { \
93 .level = { &sname##_state.node[0] }, \
94 .rda = &sname##_data, \
96 .gp_state = RCU_GP_IDLE, \
97 .gpnum = 0UL - 300UL, \
98 .completed = 0UL - 300UL, \
99 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
101 .orphan_donetail = &sname##_state.orphan_donelist, \
102 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103 .name = RCU_STATE_NAME(sname), \
107 RCU_STATE_INITIALIZER(rcu_sched
, 's', call_rcu_sched
);
108 RCU_STATE_INITIALIZER(rcu_bh
, 'b', call_rcu_bh
);
110 static struct rcu_state
*const rcu_state_p
;
111 static struct rcu_data __percpu
*const rcu_data_p
;
112 LIST_HEAD(rcu_struct_flavors
);
114 /* Dump rcu_node combining tree at boot to verify correct setup. */
115 static bool dump_tree
;
116 module_param(dump_tree
, bool, 0444);
117 /* Control rcu_node-tree auto-balancing at boot time. */
118 static bool rcu_fanout_exact
;
119 module_param(rcu_fanout_exact
, bool, 0444);
120 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
121 static int rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
122 module_param(rcu_fanout_leaf
, int, 0444);
123 int rcu_num_lvls __read_mostly
= RCU_NUM_LVLS
;
124 /* Number of rcu_nodes at specified level. */
125 static int num_rcu_lvl
[] = NUM_RCU_LVL_INIT
;
126 int rcu_num_nodes __read_mostly
= NUM_RCU_NODES
; /* Total # rcu_nodes in use. */
129 * The rcu_scheduler_active variable transitions from zero to one just
130 * before the first task is spawned. So when this variable is zero, RCU
131 * can assume that there is but one task, allowing RCU to (for example)
132 * optimize synchronize_sched() to a simple barrier(). When this variable
133 * is one, RCU must actually do all the hard work required to detect real
134 * grace periods. This variable is also used to suppress boot-time false
135 * positives from lockdep-RCU error checking.
137 int rcu_scheduler_active __read_mostly
;
138 EXPORT_SYMBOL_GPL(rcu_scheduler_active
);
141 * The rcu_scheduler_fully_active variable transitions from zero to one
142 * during the early_initcall() processing, which is after the scheduler
143 * is capable of creating new tasks. So RCU processing (for example,
144 * creating tasks for RCU priority boosting) must be delayed until after
145 * rcu_scheduler_fully_active transitions from zero to one. We also
146 * currently delay invocation of any RCU callbacks until after this point.
148 * It might later prove better for people registering RCU callbacks during
149 * early boot to take responsibility for these callbacks, but one step at
152 static int rcu_scheduler_fully_active __read_mostly
;
154 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
);
155 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
);
156 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
);
157 static void invoke_rcu_core(void);
158 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
);
159 static void rcu_report_exp_rdp(struct rcu_state
*rsp
,
160 struct rcu_data
*rdp
, bool wake
);
162 /* rcuc/rcub kthread realtime priority */
163 #ifdef CONFIG_RCU_KTHREAD_PRIO
164 static int kthread_prio
= CONFIG_RCU_KTHREAD_PRIO
;
165 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
166 static int kthread_prio
= IS_ENABLED(CONFIG_RCU_BOOST
) ? 1 : 0;
167 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
168 module_param(kthread_prio
, int, 0644);
170 /* Delay in jiffies for grace-period initialization delays, debug only. */
172 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
173 static int gp_preinit_delay
= CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY
;
174 module_param(gp_preinit_delay
, int, 0644);
175 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
176 static const int gp_preinit_delay
;
177 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
179 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
180 static int gp_init_delay
= CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY
;
181 module_param(gp_init_delay
, int, 0644);
182 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
183 static const int gp_init_delay
;
184 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
186 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
187 static int gp_cleanup_delay
= CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY
;
188 module_param(gp_cleanup_delay
, int, 0644);
189 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
190 static const int gp_cleanup_delay
;
191 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
194 * Number of grace periods between delays, normalized by the duration of
195 * the delay. The longer the the delay, the more the grace periods between
196 * each delay. The reason for this normalization is that it means that,
197 * for non-zero delays, the overall slowdown of grace periods is constant
198 * regardless of the duration of the delay. This arrangement balances
199 * the need for long delays to increase some race probabilities with the
200 * need for fast grace periods to increase other race probabilities.
202 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
205 * Track the rcutorture test sequence number and the update version
206 * number within a given test. The rcutorture_testseq is incremented
207 * on every rcutorture module load and unload, so has an odd value
208 * when a test is running. The rcutorture_vernum is set to zero
209 * when rcutorture starts and is incremented on each rcutorture update.
210 * These variables enable correlating rcutorture output with the
211 * RCU tracing information.
213 unsigned long rcutorture_testseq
;
214 unsigned long rcutorture_vernum
;
217 * Compute the mask of online CPUs for the specified rcu_node structure.
218 * This will not be stable unless the rcu_node structure's ->lock is
219 * held, but the bit corresponding to the current CPU will be stable
222 unsigned long rcu_rnp_online_cpus(struct rcu_node
*rnp
)
224 return READ_ONCE(rnp
->qsmaskinitnext
);
228 * Return true if an RCU grace period is in progress. The READ_ONCE()s
229 * permit this function to be invoked without holding the root rcu_node
230 * structure's ->lock, but of course results can be subject to change.
232 static int rcu_gp_in_progress(struct rcu_state
*rsp
)
234 return READ_ONCE(rsp
->completed
) != READ_ONCE(rsp
->gpnum
);
238 * Note a quiescent state. Because we do not need to know
239 * how many quiescent states passed, just if there was at least
240 * one since the start of the grace period, this just sets a flag.
241 * The caller must have disabled preemption.
243 void rcu_sched_qs(void)
245 if (!__this_cpu_read(rcu_sched_data
.cpu_no_qs
.s
))
247 trace_rcu_grace_period(TPS("rcu_sched"),
248 __this_cpu_read(rcu_sched_data
.gpnum
),
250 __this_cpu_write(rcu_sched_data
.cpu_no_qs
.b
.norm
, false);
251 if (!__this_cpu_read(rcu_sched_data
.cpu_no_qs
.b
.exp
))
253 __this_cpu_write(rcu_sched_data
.cpu_no_qs
.b
.exp
, false);
254 rcu_report_exp_rdp(&rcu_sched_state
,
255 this_cpu_ptr(&rcu_sched_data
), true);
260 if (__this_cpu_read(rcu_bh_data
.cpu_no_qs
.s
)) {
261 trace_rcu_grace_period(TPS("rcu_bh"),
262 __this_cpu_read(rcu_bh_data
.gpnum
),
264 __this_cpu_write(rcu_bh_data
.cpu_no_qs
.b
.norm
, false);
268 static DEFINE_PER_CPU(int, rcu_sched_qs_mask
);
270 static DEFINE_PER_CPU(struct rcu_dynticks
, rcu_dynticks
) = {
271 .dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
,
272 .dynticks
= ATOMIC_INIT(1),
273 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
274 .dynticks_idle_nesting
= DYNTICK_TASK_NEST_VALUE
,
275 .dynticks_idle
= ATOMIC_INIT(1),
276 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
279 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr
);
280 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr
);
283 * Let the RCU core know that this CPU has gone through the scheduler,
284 * which is a quiescent state. This is called when the need for a
285 * quiescent state is urgent, so we burn an atomic operation and full
286 * memory barriers to let the RCU core know about it, regardless of what
287 * this CPU might (or might not) do in the near future.
289 * We inform the RCU core by emulating a zero-duration dyntick-idle
290 * period, which we in turn do by incrementing the ->dynticks counter
293 * The caller must have disabled interrupts.
295 static void rcu_momentary_dyntick_idle(void)
297 struct rcu_data
*rdp
;
298 struct rcu_dynticks
*rdtp
;
300 struct rcu_state
*rsp
;
303 * Yes, we can lose flag-setting operations. This is OK, because
304 * the flag will be set again after some delay.
306 resched_mask
= raw_cpu_read(rcu_sched_qs_mask
);
307 raw_cpu_write(rcu_sched_qs_mask
, 0);
309 /* Find the flavor that needs a quiescent state. */
310 for_each_rcu_flavor(rsp
) {
311 rdp
= raw_cpu_ptr(rsp
->rda
);
312 if (!(resched_mask
& rsp
->flavor_mask
))
314 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
315 if (READ_ONCE(rdp
->mynode
->completed
) !=
316 READ_ONCE(rdp
->cond_resched_completed
))
320 * Pretend to be momentarily idle for the quiescent state.
321 * This allows the grace-period kthread to record the
322 * quiescent state, with no need for this CPU to do anything
325 rdtp
= this_cpu_ptr(&rcu_dynticks
);
326 smp_mb__before_atomic(); /* Earlier stuff before QS. */
327 atomic_add(2, &rdtp
->dynticks
); /* QS. */
328 smp_mb__after_atomic(); /* Later stuff after QS. */
334 * Note a context switch. This is a quiescent state for RCU-sched,
335 * and requires special handling for preemptible RCU.
336 * The caller must have disabled interrupts.
338 void rcu_note_context_switch(void)
340 barrier(); /* Avoid RCU read-side critical sections leaking down. */
341 trace_rcu_utilization(TPS("Start context switch"));
343 rcu_preempt_note_context_switch();
344 if (unlikely(raw_cpu_read(rcu_sched_qs_mask
)))
345 rcu_momentary_dyntick_idle();
346 trace_rcu_utilization(TPS("End context switch"));
347 barrier(); /* Avoid RCU read-side critical sections leaking up. */
349 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
352 * Register a quiescent state for all RCU flavors. If there is an
353 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
354 * dyntick-idle quiescent state visible to other CPUs (but only for those
355 * RCU flavors in desperate need of a quiescent state, which will normally
356 * be none of them). Either way, do a lightweight quiescent state for
359 * The barrier() calls are redundant in the common case when this is
360 * called externally, but just in case this is called from within this
364 void rcu_all_qs(void)
368 barrier(); /* Avoid RCU read-side critical sections leaking down. */
369 if (unlikely(raw_cpu_read(rcu_sched_qs_mask
))) {
370 local_irq_save(flags
);
371 rcu_momentary_dyntick_idle();
372 local_irq_restore(flags
);
374 this_cpu_inc(rcu_qs_ctr
);
375 barrier(); /* Avoid RCU read-side critical sections leaking up. */
377 EXPORT_SYMBOL_GPL(rcu_all_qs
);
379 static long blimit
= 10; /* Maximum callbacks per rcu_do_batch. */
380 static long qhimark
= 10000; /* If this many pending, ignore blimit. */
381 static long qlowmark
= 100; /* Once only this many pending, use blimit. */
383 module_param(blimit
, long, 0444);
384 module_param(qhimark
, long, 0444);
385 module_param(qlowmark
, long, 0444);
387 static ulong jiffies_till_first_fqs
= ULONG_MAX
;
388 static ulong jiffies_till_next_fqs
= ULONG_MAX
;
390 module_param(jiffies_till_first_fqs
, ulong
, 0644);
391 module_param(jiffies_till_next_fqs
, ulong
, 0644);
394 * How long the grace period must be before we start recruiting
395 * quiescent-state help from rcu_note_context_switch().
397 static ulong jiffies_till_sched_qs
= HZ
/ 20;
398 module_param(jiffies_till_sched_qs
, ulong
, 0644);
400 static bool rcu_start_gp_advanced(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
401 struct rcu_data
*rdp
);
402 static void force_qs_rnp(struct rcu_state
*rsp
,
403 int (*f
)(struct rcu_data
*rsp
, bool *isidle
,
404 unsigned long *maxj
),
405 bool *isidle
, unsigned long *maxj
);
406 static void force_quiescent_state(struct rcu_state
*rsp
);
407 static int rcu_pending(void);
410 * Return the number of RCU batches started thus far for debug & stats.
412 unsigned long rcu_batches_started(void)
414 return rcu_state_p
->gpnum
;
416 EXPORT_SYMBOL_GPL(rcu_batches_started
);
419 * Return the number of RCU-sched batches started thus far for debug & stats.
421 unsigned long rcu_batches_started_sched(void)
423 return rcu_sched_state
.gpnum
;
425 EXPORT_SYMBOL_GPL(rcu_batches_started_sched
);
428 * Return the number of RCU BH batches started thus far for debug & stats.
430 unsigned long rcu_batches_started_bh(void)
432 return rcu_bh_state
.gpnum
;
434 EXPORT_SYMBOL_GPL(rcu_batches_started_bh
);
437 * Return the number of RCU batches completed thus far for debug & stats.
439 unsigned long rcu_batches_completed(void)
441 return rcu_state_p
->completed
;
443 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
446 * Return the number of RCU-sched batches completed thus far for debug & stats.
448 unsigned long rcu_batches_completed_sched(void)
450 return rcu_sched_state
.completed
;
452 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched
);
455 * Return the number of RCU BH batches completed thus far for debug & stats.
457 unsigned long rcu_batches_completed_bh(void)
459 return rcu_bh_state
.completed
;
461 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh
);
464 * Force a quiescent state.
466 void rcu_force_quiescent_state(void)
468 force_quiescent_state(rcu_state_p
);
470 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
473 * Force a quiescent state for RCU BH.
475 void rcu_bh_force_quiescent_state(void)
477 force_quiescent_state(&rcu_bh_state
);
479 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state
);
482 * Force a quiescent state for RCU-sched.
484 void rcu_sched_force_quiescent_state(void)
486 force_quiescent_state(&rcu_sched_state
);
488 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state
);
491 * Show the state of the grace-period kthreads.
493 void show_rcu_gp_kthreads(void)
495 struct rcu_state
*rsp
;
497 for_each_rcu_flavor(rsp
) {
498 pr_info("%s: wait state: %d ->state: %#lx\n",
499 rsp
->name
, rsp
->gp_state
, rsp
->gp_kthread
->state
);
500 /* sched_show_task(rsp->gp_kthread); */
503 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads
);
506 * Record the number of times rcutorture tests have been initiated and
507 * terminated. This information allows the debugfs tracing stats to be
508 * correlated to the rcutorture messages, even when the rcutorture module
509 * is being repeatedly loaded and unloaded. In other words, we cannot
510 * store this state in rcutorture itself.
512 void rcutorture_record_test_transition(void)
514 rcutorture_testseq
++;
515 rcutorture_vernum
= 0;
517 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition
);
520 * Send along grace-period-related data for rcutorture diagnostics.
522 void rcutorture_get_gp_data(enum rcutorture_type test_type
, int *flags
,
523 unsigned long *gpnum
, unsigned long *completed
)
525 struct rcu_state
*rsp
= NULL
;
534 case RCU_SCHED_FLAVOR
:
535 rsp
= &rcu_sched_state
;
541 *flags
= READ_ONCE(rsp
->gp_flags
);
542 *gpnum
= READ_ONCE(rsp
->gpnum
);
543 *completed
= READ_ONCE(rsp
->completed
);
550 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data
);
553 * Record the number of writer passes through the current rcutorture test.
554 * This is also used to correlate debugfs tracing stats with the rcutorture
557 void rcutorture_record_progress(unsigned long vernum
)
561 EXPORT_SYMBOL_GPL(rcutorture_record_progress
);
564 * Does the CPU have callbacks ready to be invoked?
567 cpu_has_callbacks_ready_to_invoke(struct rcu_data
*rdp
)
569 return &rdp
->nxtlist
!= rdp
->nxttail
[RCU_DONE_TAIL
] &&
570 rdp
->nxttail
[RCU_DONE_TAIL
] != NULL
;
574 * Return the root node of the specified rcu_state structure.
576 static struct rcu_node
*rcu_get_root(struct rcu_state
*rsp
)
578 return &rsp
->node
[0];
582 * Is there any need for future grace periods?
583 * Interrupts must be disabled. If the caller does not hold the root
584 * rnp_node structure's ->lock, the results are advisory only.
586 static int rcu_future_needs_gp(struct rcu_state
*rsp
)
588 struct rcu_node
*rnp
= rcu_get_root(rsp
);
589 int idx
= (READ_ONCE(rnp
->completed
) + 1) & 0x1;
590 int *fp
= &rnp
->need_future_gp
[idx
];
592 return READ_ONCE(*fp
);
596 * Does the current CPU require a not-yet-started grace period?
597 * The caller must have disabled interrupts to prevent races with
598 * normal callback registry.
601 cpu_needs_another_gp(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
605 if (rcu_gp_in_progress(rsp
))
606 return false; /* No, a grace period is already in progress. */
607 if (rcu_future_needs_gp(rsp
))
608 return true; /* Yes, a no-CBs CPU needs one. */
609 if (!rdp
->nxttail
[RCU_NEXT_TAIL
])
610 return false; /* No, this is a no-CBs (or offline) CPU. */
611 if (*rdp
->nxttail
[RCU_NEXT_READY_TAIL
])
612 return true; /* Yes, CPU has newly registered callbacks. */
613 for (i
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++)
614 if (rdp
->nxttail
[i
- 1] != rdp
->nxttail
[i
] &&
615 ULONG_CMP_LT(READ_ONCE(rsp
->completed
),
616 rdp
->nxtcompleted
[i
]))
617 return true; /* Yes, CBs for future grace period. */
618 return false; /* No grace period needed. */
622 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
624 * If the new value of the ->dynticks_nesting counter now is zero,
625 * we really have entered idle, and must do the appropriate accounting.
626 * The caller must have disabled interrupts.
628 static void rcu_eqs_enter_common(long long oldval
, bool user
)
630 struct rcu_state
*rsp
;
631 struct rcu_data
*rdp
;
632 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
634 trace_rcu_dyntick(TPS("Start"), oldval
, rdtp
->dynticks_nesting
);
635 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
636 !user
&& !is_idle_task(current
)) {
637 struct task_struct
*idle __maybe_unused
=
638 idle_task(smp_processor_id());
640 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval
, 0);
641 ftrace_dump(DUMP_ORIG
);
642 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
643 current
->pid
, current
->comm
,
644 idle
->pid
, idle
->comm
); /* must be idle task! */
646 for_each_rcu_flavor(rsp
) {
647 rdp
= this_cpu_ptr(rsp
->rda
);
648 do_nocb_deferred_wakeup(rdp
);
650 rcu_prepare_for_idle();
651 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
652 smp_mb__before_atomic(); /* See above. */
653 atomic_inc(&rdtp
->dynticks
);
654 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
655 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
656 atomic_read(&rdtp
->dynticks
) & 0x1);
657 rcu_dynticks_task_enter();
660 * It is illegal to enter an extended quiescent state while
661 * in an RCU read-side critical section.
663 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map
),
664 "Illegal idle entry in RCU read-side critical section.");
665 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
),
666 "Illegal idle entry in RCU-bh read-side critical section.");
667 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map
),
668 "Illegal idle entry in RCU-sched read-side critical section.");
672 * Enter an RCU extended quiescent state, which can be either the
673 * idle loop or adaptive-tickless usermode execution.
675 static void rcu_eqs_enter(bool user
)
678 struct rcu_dynticks
*rdtp
;
680 rdtp
= this_cpu_ptr(&rcu_dynticks
);
681 oldval
= rdtp
->dynticks_nesting
;
682 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
683 (oldval
& DYNTICK_TASK_NEST_MASK
) == 0);
684 if ((oldval
& DYNTICK_TASK_NEST_MASK
) == DYNTICK_TASK_NEST_VALUE
) {
685 rdtp
->dynticks_nesting
= 0;
686 rcu_eqs_enter_common(oldval
, user
);
688 rdtp
->dynticks_nesting
-= DYNTICK_TASK_NEST_VALUE
;
693 * rcu_idle_enter - inform RCU that current CPU is entering idle
695 * Enter idle mode, in other words, -leave- the mode in which RCU
696 * read-side critical sections can occur. (Though RCU read-side
697 * critical sections can occur in irq handlers in idle, a possibility
698 * handled by irq_enter() and irq_exit().)
700 * We crowbar the ->dynticks_nesting field to zero to allow for
701 * the possibility of usermode upcalls having messed up our count
702 * of interrupt nesting level during the prior busy period.
704 void rcu_idle_enter(void)
708 local_irq_save(flags
);
709 rcu_eqs_enter(false);
710 rcu_sysidle_enter(0);
711 local_irq_restore(flags
);
713 EXPORT_SYMBOL_GPL(rcu_idle_enter
);
715 #ifdef CONFIG_NO_HZ_FULL
717 * rcu_user_enter - inform RCU that we are resuming userspace.
719 * Enter RCU idle mode right before resuming userspace. No use of RCU
720 * is permitted between this call and rcu_user_exit(). This way the
721 * CPU doesn't need to maintain the tick for RCU maintenance purposes
722 * when the CPU runs in userspace.
724 void rcu_user_enter(void)
728 #endif /* CONFIG_NO_HZ_FULL */
731 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
733 * Exit from an interrupt handler, which might possibly result in entering
734 * idle mode, in other words, leaving the mode in which read-side critical
735 * sections can occur. The caller must have disabled interrupts.
737 * This code assumes that the idle loop never does anything that might
738 * result in unbalanced calls to irq_enter() and irq_exit(). If your
739 * architecture violates this assumption, RCU will give you what you
740 * deserve, good and hard. But very infrequently and irreproducibly.
742 * Use things like work queues to work around this limitation.
744 * You have been warned.
746 void rcu_irq_exit(void)
749 struct rcu_dynticks
*rdtp
;
751 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
752 rdtp
= this_cpu_ptr(&rcu_dynticks
);
753 oldval
= rdtp
->dynticks_nesting
;
754 rdtp
->dynticks_nesting
--;
755 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
756 rdtp
->dynticks_nesting
< 0);
757 if (rdtp
->dynticks_nesting
)
758 trace_rcu_dyntick(TPS("--="), oldval
, rdtp
->dynticks_nesting
);
760 rcu_eqs_enter_common(oldval
, true);
761 rcu_sysidle_enter(1);
765 * Wrapper for rcu_irq_exit() where interrupts are enabled.
767 void rcu_irq_exit_irqson(void)
771 local_irq_save(flags
);
773 local_irq_restore(flags
);
777 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
779 * If the new value of the ->dynticks_nesting counter was previously zero,
780 * we really have exited idle, and must do the appropriate accounting.
781 * The caller must have disabled interrupts.
783 static void rcu_eqs_exit_common(long long oldval
, int user
)
785 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
787 rcu_dynticks_task_exit();
788 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
789 atomic_inc(&rdtp
->dynticks
);
790 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
791 smp_mb__after_atomic(); /* See above. */
792 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
793 !(atomic_read(&rdtp
->dynticks
) & 0x1));
794 rcu_cleanup_after_idle();
795 trace_rcu_dyntick(TPS("End"), oldval
, rdtp
->dynticks_nesting
);
796 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
797 !user
&& !is_idle_task(current
)) {
798 struct task_struct
*idle __maybe_unused
=
799 idle_task(smp_processor_id());
801 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
802 oldval
, rdtp
->dynticks_nesting
);
803 ftrace_dump(DUMP_ORIG
);
804 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
805 current
->pid
, current
->comm
,
806 idle
->pid
, idle
->comm
); /* must be idle task! */
811 * Exit an RCU extended quiescent state, which can be either the
812 * idle loop or adaptive-tickless usermode execution.
814 static void rcu_eqs_exit(bool user
)
816 struct rcu_dynticks
*rdtp
;
819 rdtp
= this_cpu_ptr(&rcu_dynticks
);
820 oldval
= rdtp
->dynticks_nesting
;
821 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) && oldval
< 0);
822 if (oldval
& DYNTICK_TASK_NEST_MASK
) {
823 rdtp
->dynticks_nesting
+= DYNTICK_TASK_NEST_VALUE
;
825 rdtp
->dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
;
826 rcu_eqs_exit_common(oldval
, user
);
831 * rcu_idle_exit - inform RCU that current CPU is leaving idle
833 * Exit idle mode, in other words, -enter- the mode in which RCU
834 * read-side critical sections can occur.
836 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
837 * allow for the possibility of usermode upcalls messing up our count
838 * of interrupt nesting level during the busy period that is just
841 void rcu_idle_exit(void)
845 local_irq_save(flags
);
848 local_irq_restore(flags
);
850 EXPORT_SYMBOL_GPL(rcu_idle_exit
);
852 #ifdef CONFIG_NO_HZ_FULL
854 * rcu_user_exit - inform RCU that we are exiting userspace.
856 * Exit RCU idle mode while entering the kernel because it can
857 * run a RCU read side critical section anytime.
859 void rcu_user_exit(void)
863 #endif /* CONFIG_NO_HZ_FULL */
866 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
868 * Enter an interrupt handler, which might possibly result in exiting
869 * idle mode, in other words, entering the mode in which read-side critical
870 * sections can occur. The caller must have disabled interrupts.
872 * Note that the Linux kernel is fully capable of entering an interrupt
873 * handler that it never exits, for example when doing upcalls to
874 * user mode! This code assumes that the idle loop never does upcalls to
875 * user mode. If your architecture does do upcalls from the idle loop (or
876 * does anything else that results in unbalanced calls to the irq_enter()
877 * and irq_exit() functions), RCU will give you what you deserve, good
878 * and hard. But very infrequently and irreproducibly.
880 * Use things like work queues to work around this limitation.
882 * You have been warned.
884 void rcu_irq_enter(void)
886 struct rcu_dynticks
*rdtp
;
889 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
890 rdtp
= this_cpu_ptr(&rcu_dynticks
);
891 oldval
= rdtp
->dynticks_nesting
;
892 rdtp
->dynticks_nesting
++;
893 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
894 rdtp
->dynticks_nesting
== 0);
896 trace_rcu_dyntick(TPS("++="), oldval
, rdtp
->dynticks_nesting
);
898 rcu_eqs_exit_common(oldval
, true);
903 * Wrapper for rcu_irq_enter() where interrupts are enabled.
905 void rcu_irq_enter_irqson(void)
909 local_irq_save(flags
);
911 local_irq_restore(flags
);
915 * rcu_nmi_enter - inform RCU of entry to NMI context
917 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
918 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
919 * that the CPU is active. This implementation permits nested NMIs, as
920 * long as the nesting level does not overflow an int. (You will probably
921 * run out of stack space first.)
923 void rcu_nmi_enter(void)
925 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
928 /* Complain about underflow. */
929 WARN_ON_ONCE(rdtp
->dynticks_nmi_nesting
< 0);
932 * If idle from RCU viewpoint, atomically increment ->dynticks
933 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
934 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
935 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
936 * to be in the outermost NMI handler that interrupted an RCU-idle
937 * period (observation due to Andy Lutomirski).
939 if (!(atomic_read(&rdtp
->dynticks
) & 0x1)) {
940 smp_mb__before_atomic(); /* Force delay from prior write. */
941 atomic_inc(&rdtp
->dynticks
);
942 /* atomic_inc() before later RCU read-side crit sects */
943 smp_mb__after_atomic(); /* See above. */
944 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
947 rdtp
->dynticks_nmi_nesting
+= incby
;
952 * rcu_nmi_exit - inform RCU of exit from NMI context
954 * If we are returning from the outermost NMI handler that interrupted an
955 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
956 * to let the RCU grace-period handling know that the CPU is back to
959 void rcu_nmi_exit(void)
961 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
964 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
965 * (We are exiting an NMI handler, so RCU better be paying attention
968 WARN_ON_ONCE(rdtp
->dynticks_nmi_nesting
<= 0);
969 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
972 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
973 * leave it in non-RCU-idle state.
975 if (rdtp
->dynticks_nmi_nesting
!= 1) {
976 rdtp
->dynticks_nmi_nesting
-= 2;
980 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
981 rdtp
->dynticks_nmi_nesting
= 0;
982 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
983 smp_mb__before_atomic(); /* See above. */
984 atomic_inc(&rdtp
->dynticks
);
985 smp_mb__after_atomic(); /* Force delay to next write. */
986 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks
) & 0x1);
990 * __rcu_is_watching - are RCU read-side critical sections safe?
992 * Return true if RCU is watching the running CPU, which means that
993 * this CPU can safely enter RCU read-side critical sections. Unlike
994 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
995 * least disabled preemption.
997 bool notrace
__rcu_is_watching(void)
999 return atomic_read(this_cpu_ptr(&rcu_dynticks
.dynticks
)) & 0x1;
1003 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1005 * If the current CPU is in its idle loop and is neither in an interrupt
1006 * or NMI handler, return true.
1008 bool notrace
rcu_is_watching(void)
1012 preempt_disable_notrace();
1013 ret
= __rcu_is_watching();
1014 preempt_enable_notrace();
1017 EXPORT_SYMBOL_GPL(rcu_is_watching
);
1019 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1022 * Is the current CPU online? Disable preemption to avoid false positives
1023 * that could otherwise happen due to the current CPU number being sampled,
1024 * this task being preempted, its old CPU being taken offline, resuming
1025 * on some other CPU, then determining that its old CPU is now offline.
1026 * It is OK to use RCU on an offline processor during initial boot, hence
1027 * the check for rcu_scheduler_fully_active. Note also that it is OK
1028 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1029 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1030 * offline to continue to use RCU for one jiffy after marking itself
1031 * offline in the cpu_online_mask. This leniency is necessary given the
1032 * non-atomic nature of the online and offline processing, for example,
1033 * the fact that a CPU enters the scheduler after completing the CPU_DYING
1036 * This is also why RCU internally marks CPUs online during the
1037 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1039 * Disable checking if in an NMI handler because we cannot safely report
1040 * errors from NMI handlers anyway.
1042 bool rcu_lockdep_current_cpu_online(void)
1044 struct rcu_data
*rdp
;
1045 struct rcu_node
*rnp
;
1051 rdp
= this_cpu_ptr(&rcu_sched_data
);
1053 ret
= (rdp
->grpmask
& rcu_rnp_online_cpus(rnp
)) ||
1054 !rcu_scheduler_fully_active
;
1058 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online
);
1060 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1063 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1065 * If the current CPU is idle or running at a first-level (not nested)
1066 * interrupt from idle, return true. The caller must have at least
1067 * disabled preemption.
1069 static int rcu_is_cpu_rrupt_from_idle(void)
1071 return __this_cpu_read(rcu_dynticks
.dynticks_nesting
) <= 1;
1075 * Snapshot the specified CPU's dynticks counter so that we can later
1076 * credit them with an implicit quiescent state. Return 1 if this CPU
1077 * is in dynticks idle mode, which is an extended quiescent state.
1079 static int dyntick_save_progress_counter(struct rcu_data
*rdp
,
1080 bool *isidle
, unsigned long *maxj
)
1082 rdp
->dynticks_snap
= atomic_add_return(0, &rdp
->dynticks
->dynticks
);
1083 rcu_sysidle_check_cpu(rdp
, isidle
, maxj
);
1084 if ((rdp
->dynticks_snap
& 0x1) == 0) {
1085 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("dti"));
1088 if (ULONG_CMP_LT(READ_ONCE(rdp
->gpnum
) + ULONG_MAX
/ 4,
1089 rdp
->mynode
->gpnum
))
1090 WRITE_ONCE(rdp
->gpwrap
, true);
1096 * Return true if the specified CPU has passed through a quiescent
1097 * state by virtue of being in or having passed through an dynticks
1098 * idle state since the last call to dyntick_save_progress_counter()
1099 * for this same CPU, or by virtue of having been offline.
1101 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
,
1102 bool *isidle
, unsigned long *maxj
)
1108 curr
= (unsigned int)atomic_add_return(0, &rdp
->dynticks
->dynticks
);
1109 snap
= (unsigned int)rdp
->dynticks_snap
;
1112 * If the CPU passed through or entered a dynticks idle phase with
1113 * no active irq/NMI handlers, then we can safely pretend that the CPU
1114 * already acknowledged the request to pass through a quiescent
1115 * state. Either way, that CPU cannot possibly be in an RCU
1116 * read-side critical section that started before the beginning
1117 * of the current RCU grace period.
1119 if ((curr
& 0x1) == 0 || UINT_CMP_GE(curr
, snap
+ 2)) {
1120 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("dti"));
1121 rdp
->dynticks_fqs
++;
1126 * Check for the CPU being offline, but only if the grace period
1127 * is old enough. We don't need to worry about the CPU changing
1128 * state: If we see it offline even once, it has been through a
1131 * The reason for insisting that the grace period be at least
1132 * one jiffy old is that CPUs that are not quite online and that
1133 * have just gone offline can still execute RCU read-side critical
1136 if (ULONG_CMP_GE(rdp
->rsp
->gp_start
+ 2, jiffies
))
1137 return 0; /* Grace period is not old enough. */
1139 if (cpu_is_offline(rdp
->cpu
)) {
1140 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("ofl"));
1146 * A CPU running for an extended time within the kernel can
1147 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1148 * even context-switching back and forth between a pair of
1149 * in-kernel CPU-bound tasks cannot advance grace periods.
1150 * So if the grace period is old enough, make the CPU pay attention.
1151 * Note that the unsynchronized assignments to the per-CPU
1152 * rcu_sched_qs_mask variable are safe. Yes, setting of
1153 * bits can be lost, but they will be set again on the next
1154 * force-quiescent-state pass. So lost bit sets do not result
1155 * in incorrect behavior, merely in a grace period lasting
1156 * a few jiffies longer than it might otherwise. Because
1157 * there are at most four threads involved, and because the
1158 * updates are only once every few jiffies, the probability of
1159 * lossage (and thus of slight grace-period extension) is
1162 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1163 * is set too high, we override with half of the RCU CPU stall
1166 rcrmp
= &per_cpu(rcu_sched_qs_mask
, rdp
->cpu
);
1167 if (ULONG_CMP_GE(jiffies
,
1168 rdp
->rsp
->gp_start
+ jiffies_till_sched_qs
) ||
1169 ULONG_CMP_GE(jiffies
, rdp
->rsp
->jiffies_resched
)) {
1170 if (!(READ_ONCE(*rcrmp
) & rdp
->rsp
->flavor_mask
)) {
1171 WRITE_ONCE(rdp
->cond_resched_completed
,
1172 READ_ONCE(rdp
->mynode
->completed
));
1173 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1175 READ_ONCE(*rcrmp
) + rdp
->rsp
->flavor_mask
);
1176 resched_cpu(rdp
->cpu
); /* Force CPU into scheduler. */
1177 rdp
->rsp
->jiffies_resched
+= 5; /* Enable beating. */
1178 } else if (ULONG_CMP_GE(jiffies
, rdp
->rsp
->jiffies_resched
)) {
1179 /* Time to beat on that CPU again! */
1180 resched_cpu(rdp
->cpu
); /* Force CPU into scheduler. */
1181 rdp
->rsp
->jiffies_resched
+= 5; /* Re-enable beating. */
1188 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
1190 unsigned long j
= jiffies
;
1194 smp_wmb(); /* Record start time before stall time. */
1195 j1
= rcu_jiffies_till_stall_check();
1196 WRITE_ONCE(rsp
->jiffies_stall
, j
+ j1
);
1197 rsp
->jiffies_resched
= j
+ j1
/ 2;
1198 rsp
->n_force_qs_gpstart
= READ_ONCE(rsp
->n_force_qs
);
1202 * Convert a ->gp_state value to a character string.
1204 static const char *gp_state_getname(short gs
)
1206 if (gs
< 0 || gs
>= ARRAY_SIZE(gp_state_names
))
1208 return gp_state_names
[gs
];
1212 * Complain about starvation of grace-period kthread.
1214 static void rcu_check_gp_kthread_starvation(struct rcu_state
*rsp
)
1220 gpa
= READ_ONCE(rsp
->gp_activity
);
1221 if (j
- gpa
> 2 * HZ
) {
1222 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1224 rsp
->gpnum
, rsp
->completed
,
1226 gp_state_getname(rsp
->gp_state
), rsp
->gp_state
,
1227 rsp
->gp_kthread
? rsp
->gp_kthread
->state
: ~0);
1228 if (rsp
->gp_kthread
)
1229 sched_show_task(rsp
->gp_kthread
);
1234 * Dump stacks of all tasks running on stalled CPUs.
1236 static void rcu_dump_cpu_stacks(struct rcu_state
*rsp
)
1239 unsigned long flags
;
1240 struct rcu_node
*rnp
;
1242 rcu_for_each_leaf_node(rsp
, rnp
) {
1243 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1244 if (rnp
->qsmask
!= 0) {
1245 for (cpu
= 0; cpu
<= rnp
->grphi
- rnp
->grplo
; cpu
++)
1246 if (rnp
->qsmask
& (1UL << cpu
))
1247 dump_cpu_task(rnp
->grplo
+ cpu
);
1249 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1253 static void print_other_cpu_stall(struct rcu_state
*rsp
, unsigned long gpnum
)
1257 unsigned long flags
;
1261 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1264 /* Only let one CPU complain about others per time interval. */
1266 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1267 delta
= jiffies
- READ_ONCE(rsp
->jiffies_stall
);
1268 if (delta
< RCU_STALL_RAT_DELAY
|| !rcu_gp_in_progress(rsp
)) {
1269 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1272 WRITE_ONCE(rsp
->jiffies_stall
,
1273 jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3);
1274 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1277 * OK, time to rat on our buddy...
1278 * See Documentation/RCU/stallwarn.txt for info on how to debug
1279 * RCU CPU stall warnings.
1281 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1283 print_cpu_stall_info_begin();
1284 rcu_for_each_leaf_node(rsp
, rnp
) {
1285 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1286 ndetected
+= rcu_print_task_stall(rnp
);
1287 if (rnp
->qsmask
!= 0) {
1288 for (cpu
= 0; cpu
<= rnp
->grphi
- rnp
->grplo
; cpu
++)
1289 if (rnp
->qsmask
& (1UL << cpu
)) {
1290 print_cpu_stall_info(rsp
,
1295 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1298 print_cpu_stall_info_end();
1299 for_each_possible_cpu(cpu
)
1300 totqlen
+= per_cpu_ptr(rsp
->rda
, cpu
)->qlen
;
1301 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1302 smp_processor_id(), (long)(jiffies
- rsp
->gp_start
),
1303 (long)rsp
->gpnum
, (long)rsp
->completed
, totqlen
);
1305 rcu_dump_cpu_stacks(rsp
);
1307 if (READ_ONCE(rsp
->gpnum
) != gpnum
||
1308 READ_ONCE(rsp
->completed
) == gpnum
) {
1309 pr_err("INFO: Stall ended before state dump start\n");
1312 gpa
= READ_ONCE(rsp
->gp_activity
);
1313 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1314 rsp
->name
, j
- gpa
, j
, gpa
,
1315 jiffies_till_next_fqs
,
1316 rcu_get_root(rsp
)->qsmask
);
1317 /* In this case, the current CPU might be at fault. */
1318 sched_show_task(current
);
1322 /* Complain about tasks blocking the grace period. */
1323 rcu_print_detail_task_stall(rsp
);
1325 rcu_check_gp_kthread_starvation(rsp
);
1327 force_quiescent_state(rsp
); /* Kick them all. */
1330 static void print_cpu_stall(struct rcu_state
*rsp
)
1333 unsigned long flags
;
1334 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1338 * OK, time to rat on ourselves...
1339 * See Documentation/RCU/stallwarn.txt for info on how to debug
1340 * RCU CPU stall warnings.
1342 pr_err("INFO: %s self-detected stall on CPU", rsp
->name
);
1343 print_cpu_stall_info_begin();
1344 print_cpu_stall_info(rsp
, smp_processor_id());
1345 print_cpu_stall_info_end();
1346 for_each_possible_cpu(cpu
)
1347 totqlen
+= per_cpu_ptr(rsp
->rda
, cpu
)->qlen
;
1348 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1349 jiffies
- rsp
->gp_start
,
1350 (long)rsp
->gpnum
, (long)rsp
->completed
, totqlen
);
1352 rcu_check_gp_kthread_starvation(rsp
);
1354 rcu_dump_cpu_stacks(rsp
);
1356 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1357 if (ULONG_CMP_GE(jiffies
, READ_ONCE(rsp
->jiffies_stall
)))
1358 WRITE_ONCE(rsp
->jiffies_stall
,
1359 jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3);
1360 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1363 * Attempt to revive the RCU machinery by forcing a context switch.
1365 * A context switch would normally allow the RCU state machine to make
1366 * progress and it could be we're stuck in kernel space without context
1367 * switches for an entirely unreasonable amount of time.
1369 resched_cpu(smp_processor_id());
1372 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1374 unsigned long completed
;
1375 unsigned long gpnum
;
1379 struct rcu_node
*rnp
;
1381 if (rcu_cpu_stall_suppress
|| !rcu_gp_in_progress(rsp
))
1386 * Lots of memory barriers to reject false positives.
1388 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1389 * then rsp->gp_start, and finally rsp->completed. These values
1390 * are updated in the opposite order with memory barriers (or
1391 * equivalent) during grace-period initialization and cleanup.
1392 * Now, a false positive can occur if we get an new value of
1393 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1394 * the memory barriers, the only way that this can happen is if one
1395 * grace period ends and another starts between these two fetches.
1396 * Detect this by comparing rsp->completed with the previous fetch
1399 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1400 * and rsp->gp_start suffice to forestall false positives.
1402 gpnum
= READ_ONCE(rsp
->gpnum
);
1403 smp_rmb(); /* Pick up ->gpnum first... */
1404 js
= READ_ONCE(rsp
->jiffies_stall
);
1405 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1406 gps
= READ_ONCE(rsp
->gp_start
);
1407 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1408 completed
= READ_ONCE(rsp
->completed
);
1409 if (ULONG_CMP_GE(completed
, gpnum
) ||
1410 ULONG_CMP_LT(j
, js
) ||
1411 ULONG_CMP_GE(gps
, js
))
1412 return; /* No stall or GP completed since entering function. */
1414 if (rcu_gp_in_progress(rsp
) &&
1415 (READ_ONCE(rnp
->qsmask
) & rdp
->grpmask
)) {
1417 /* We haven't checked in, so go dump stack. */
1418 print_cpu_stall(rsp
);
1420 } else if (rcu_gp_in_progress(rsp
) &&
1421 ULONG_CMP_GE(j
, js
+ RCU_STALL_RAT_DELAY
)) {
1423 /* They had a few time units to dump stack, so complain. */
1424 print_other_cpu_stall(rsp
, gpnum
);
1429 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1431 * Set the stall-warning timeout way off into the future, thus preventing
1432 * any RCU CPU stall-warning messages from appearing in the current set of
1433 * RCU grace periods.
1435 * The caller must disable hard irqs.
1437 void rcu_cpu_stall_reset(void)
1439 struct rcu_state
*rsp
;
1441 for_each_rcu_flavor(rsp
)
1442 WRITE_ONCE(rsp
->jiffies_stall
, jiffies
+ ULONG_MAX
/ 2);
1446 * Initialize the specified rcu_data structure's default callback list
1447 * to empty. The default callback list is the one that is not used by
1448 * no-callbacks CPUs.
1450 static void init_default_callback_list(struct rcu_data
*rdp
)
1454 rdp
->nxtlist
= NULL
;
1455 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
1456 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1460 * Initialize the specified rcu_data structure's callback list to empty.
1462 static void init_callback_list(struct rcu_data
*rdp
)
1464 if (init_nocb_callback_list(rdp
))
1466 init_default_callback_list(rdp
);
1470 * Determine the value that ->completed will have at the end of the
1471 * next subsequent grace period. This is used to tag callbacks so that
1472 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1473 * been dyntick-idle for an extended period with callbacks under the
1474 * influence of RCU_FAST_NO_HZ.
1476 * The caller must hold rnp->lock with interrupts disabled.
1478 static unsigned long rcu_cbs_completed(struct rcu_state
*rsp
,
1479 struct rcu_node
*rnp
)
1482 * If RCU is idle, we just wait for the next grace period.
1483 * But we can only be sure that RCU is idle if we are looking
1484 * at the root rcu_node structure -- otherwise, a new grace
1485 * period might have started, but just not yet gotten around
1486 * to initializing the current non-root rcu_node structure.
1488 if (rcu_get_root(rsp
) == rnp
&& rnp
->gpnum
== rnp
->completed
)
1489 return rnp
->completed
+ 1;
1492 * Otherwise, wait for a possible partial grace period and
1493 * then the subsequent full grace period.
1495 return rnp
->completed
+ 2;
1499 * Trace-event helper function for rcu_start_future_gp() and
1500 * rcu_nocb_wait_gp().
1502 static void trace_rcu_future_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
,
1503 unsigned long c
, const char *s
)
1505 trace_rcu_future_grace_period(rdp
->rsp
->name
, rnp
->gpnum
,
1506 rnp
->completed
, c
, rnp
->level
,
1507 rnp
->grplo
, rnp
->grphi
, s
);
1511 * Start some future grace period, as needed to handle newly arrived
1512 * callbacks. The required future grace periods are recorded in each
1513 * rcu_node structure's ->need_future_gp field. Returns true if there
1514 * is reason to awaken the grace-period kthread.
1516 * The caller must hold the specified rcu_node structure's ->lock.
1518 static bool __maybe_unused
1519 rcu_start_future_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
,
1520 unsigned long *c_out
)
1525 struct rcu_node
*rnp_root
= rcu_get_root(rdp
->rsp
);
1528 * Pick up grace-period number for new callbacks. If this
1529 * grace period is already marked as needed, return to the caller.
1531 c
= rcu_cbs_completed(rdp
->rsp
, rnp
);
1532 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startleaf"));
1533 if (rnp
->need_future_gp
[c
& 0x1]) {
1534 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Prestartleaf"));
1539 * If either this rcu_node structure or the root rcu_node structure
1540 * believe that a grace period is in progress, then we must wait
1541 * for the one following, which is in "c". Because our request
1542 * will be noticed at the end of the current grace period, we don't
1543 * need to explicitly start one. We only do the lockless check
1544 * of rnp_root's fields if the current rcu_node structure thinks
1545 * there is no grace period in flight, and because we hold rnp->lock,
1546 * the only possible change is when rnp_root's two fields are
1547 * equal, in which case rnp_root->gpnum might be concurrently
1548 * incremented. But that is OK, as it will just result in our
1549 * doing some extra useless work.
1551 if (rnp
->gpnum
!= rnp
->completed
||
1552 READ_ONCE(rnp_root
->gpnum
) != READ_ONCE(rnp_root
->completed
)) {
1553 rnp
->need_future_gp
[c
& 0x1]++;
1554 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedleaf"));
1559 * There might be no grace period in progress. If we don't already
1560 * hold it, acquire the root rcu_node structure's lock in order to
1561 * start one (if needed).
1563 if (rnp
!= rnp_root
)
1564 raw_spin_lock_rcu_node(rnp_root
);
1567 * Get a new grace-period number. If there really is no grace
1568 * period in progress, it will be smaller than the one we obtained
1569 * earlier. Adjust callbacks as needed. Note that even no-CBs
1570 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1572 c
= rcu_cbs_completed(rdp
->rsp
, rnp_root
);
1573 for (i
= RCU_DONE_TAIL
; i
< RCU_NEXT_TAIL
; i
++)
1574 if (ULONG_CMP_LT(c
, rdp
->nxtcompleted
[i
]))
1575 rdp
->nxtcompleted
[i
] = c
;
1578 * If the needed for the required grace period is already
1579 * recorded, trace and leave.
1581 if (rnp_root
->need_future_gp
[c
& 0x1]) {
1582 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Prestartedroot"));
1586 /* Record the need for the future grace period. */
1587 rnp_root
->need_future_gp
[c
& 0x1]++;
1589 /* If a grace period is not already in progress, start one. */
1590 if (rnp_root
->gpnum
!= rnp_root
->completed
) {
1591 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedleafroot"));
1593 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedroot"));
1594 ret
= rcu_start_gp_advanced(rdp
->rsp
, rnp_root
, rdp
);
1597 if (rnp
!= rnp_root
)
1598 raw_spin_unlock(&rnp_root
->lock
);
1606 * Clean up any old requests for the just-ended grace period. Also return
1607 * whether any additional grace periods have been requested. Also invoke
1608 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1609 * waiting for this grace period to complete.
1611 static int rcu_future_gp_cleanup(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
1613 int c
= rnp
->completed
;
1615 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1617 rcu_nocb_gp_cleanup(rsp
, rnp
);
1618 rnp
->need_future_gp
[c
& 0x1] = 0;
1619 needmore
= rnp
->need_future_gp
[(c
+ 1) & 0x1];
1620 trace_rcu_future_gp(rnp
, rdp
, c
,
1621 needmore
? TPS("CleanupMore") : TPS("Cleanup"));
1626 * Awaken the grace-period kthread for the specified flavor of RCU.
1627 * Don't do a self-awaken, and don't bother awakening when there is
1628 * nothing for the grace-period kthread to do (as in several CPUs
1629 * raced to awaken, and we lost), and finally don't try to awaken
1630 * a kthread that has not yet been created.
1632 static void rcu_gp_kthread_wake(struct rcu_state
*rsp
)
1634 if (current
== rsp
->gp_kthread
||
1635 !READ_ONCE(rsp
->gp_flags
) ||
1638 wake_up(&rsp
->gp_wq
);
1642 * If there is room, assign a ->completed number to any callbacks on
1643 * this CPU that have not already been assigned. Also accelerate any
1644 * callbacks that were previously assigned a ->completed number that has
1645 * since proven to be too conservative, which can happen if callbacks get
1646 * assigned a ->completed number while RCU is idle, but with reference to
1647 * a non-root rcu_node structure. This function is idempotent, so it does
1648 * not hurt to call it repeatedly. Returns an flag saying that we should
1649 * awaken the RCU grace-period kthread.
1651 * The caller must hold rnp->lock with interrupts disabled.
1653 static bool rcu_accelerate_cbs(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1654 struct rcu_data
*rdp
)
1660 /* If the CPU has no callbacks, nothing to do. */
1661 if (!rdp
->nxttail
[RCU_NEXT_TAIL
] || !*rdp
->nxttail
[RCU_DONE_TAIL
])
1665 * Starting from the sublist containing the callbacks most
1666 * recently assigned a ->completed number and working down, find the
1667 * first sublist that is not assignable to an upcoming grace period.
1668 * Such a sublist has something in it (first two tests) and has
1669 * a ->completed number assigned that will complete sooner than
1670 * the ->completed number for newly arrived callbacks (last test).
1672 * The key point is that any later sublist can be assigned the
1673 * same ->completed number as the newly arrived callbacks, which
1674 * means that the callbacks in any of these later sublist can be
1675 * grouped into a single sublist, whether or not they have already
1676 * been assigned a ->completed number.
1678 c
= rcu_cbs_completed(rsp
, rnp
);
1679 for (i
= RCU_NEXT_TAIL
- 1; i
> RCU_DONE_TAIL
; i
--)
1680 if (rdp
->nxttail
[i
] != rdp
->nxttail
[i
- 1] &&
1681 !ULONG_CMP_GE(rdp
->nxtcompleted
[i
], c
))
1685 * If there are no sublist for unassigned callbacks, leave.
1686 * At the same time, advance "i" one sublist, so that "i" will
1687 * index into the sublist where all the remaining callbacks should
1690 if (++i
>= RCU_NEXT_TAIL
)
1694 * Assign all subsequent callbacks' ->completed number to the next
1695 * full grace period and group them all in the sublist initially
1698 for (; i
<= RCU_NEXT_TAIL
; i
++) {
1699 rdp
->nxttail
[i
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1700 rdp
->nxtcompleted
[i
] = c
;
1702 /* Record any needed additional grace periods. */
1703 ret
= rcu_start_future_gp(rnp
, rdp
, NULL
);
1705 /* Trace depending on how much we were able to accelerate. */
1706 if (!*rdp
->nxttail
[RCU_WAIT_TAIL
])
1707 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("AccWaitCB"));
1709 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("AccReadyCB"));
1714 * Move any callbacks whose grace period has completed to the
1715 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1716 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1717 * sublist. This function is idempotent, so it does not hurt to
1718 * invoke it repeatedly. As long as it is not invoked -too- often...
1719 * Returns true if the RCU grace-period kthread needs to be awakened.
1721 * The caller must hold rnp->lock with interrupts disabled.
1723 static bool rcu_advance_cbs(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1724 struct rcu_data
*rdp
)
1728 /* If the CPU has no callbacks, nothing to do. */
1729 if (!rdp
->nxttail
[RCU_NEXT_TAIL
] || !*rdp
->nxttail
[RCU_DONE_TAIL
])
1733 * Find all callbacks whose ->completed numbers indicate that they
1734 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1736 for (i
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++) {
1737 if (ULONG_CMP_LT(rnp
->completed
, rdp
->nxtcompleted
[i
]))
1739 rdp
->nxttail
[RCU_DONE_TAIL
] = rdp
->nxttail
[i
];
1741 /* Clean up any sublist tail pointers that were misordered above. */
1742 for (j
= RCU_WAIT_TAIL
; j
< i
; j
++)
1743 rdp
->nxttail
[j
] = rdp
->nxttail
[RCU_DONE_TAIL
];
1745 /* Copy down callbacks to fill in empty sublists. */
1746 for (j
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++, j
++) {
1747 if (rdp
->nxttail
[j
] == rdp
->nxttail
[RCU_NEXT_TAIL
])
1749 rdp
->nxttail
[j
] = rdp
->nxttail
[i
];
1750 rdp
->nxtcompleted
[j
] = rdp
->nxtcompleted
[i
];
1753 /* Classify any remaining callbacks. */
1754 return rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1758 * Update CPU-local rcu_data state to record the beginnings and ends of
1759 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1760 * structure corresponding to the current CPU, and must have irqs disabled.
1761 * Returns true if the grace-period kthread needs to be awakened.
1763 static bool __note_gp_changes(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1764 struct rcu_data
*rdp
)
1768 /* Handle the ends of any preceding grace periods first. */
1769 if (rdp
->completed
== rnp
->completed
&&
1770 !unlikely(READ_ONCE(rdp
->gpwrap
))) {
1772 /* No grace period end, so just accelerate recent callbacks. */
1773 ret
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1777 /* Advance callbacks. */
1778 ret
= rcu_advance_cbs(rsp
, rnp
, rdp
);
1780 /* Remember that we saw this grace-period completion. */
1781 rdp
->completed
= rnp
->completed
;
1782 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpuend"));
1785 if (rdp
->gpnum
!= rnp
->gpnum
|| unlikely(READ_ONCE(rdp
->gpwrap
))) {
1787 * If the current grace period is waiting for this CPU,
1788 * set up to detect a quiescent state, otherwise don't
1789 * go looking for one.
1791 rdp
->gpnum
= rnp
->gpnum
;
1792 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpustart"));
1793 rdp
->cpu_no_qs
.b
.norm
= true;
1794 rdp
->rcu_qs_ctr_snap
= __this_cpu_read(rcu_qs_ctr
);
1795 rdp
->core_needs_qs
= !!(rnp
->qsmask
& rdp
->grpmask
);
1796 zero_cpu_stall_ticks(rdp
);
1797 WRITE_ONCE(rdp
->gpwrap
, false);
1802 static void note_gp_changes(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1804 unsigned long flags
;
1806 struct rcu_node
*rnp
;
1808 local_irq_save(flags
);
1810 if ((rdp
->gpnum
== READ_ONCE(rnp
->gpnum
) &&
1811 rdp
->completed
== READ_ONCE(rnp
->completed
) &&
1812 !unlikely(READ_ONCE(rdp
->gpwrap
))) || /* w/out lock. */
1813 !raw_spin_trylock_rcu_node(rnp
)) { /* irqs already off, so later. */
1814 local_irq_restore(flags
);
1817 needwake
= __note_gp_changes(rsp
, rnp
, rdp
);
1818 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1820 rcu_gp_kthread_wake(rsp
);
1823 static void rcu_gp_slow(struct rcu_state
*rsp
, int delay
)
1826 !(rsp
->gpnum
% (rcu_num_nodes
* PER_RCU_NODE_PERIOD
* delay
)))
1827 schedule_timeout_uninterruptible(delay
);
1831 * Initialize a new grace period. Return false if no grace period required.
1833 static bool rcu_gp_init(struct rcu_state
*rsp
)
1835 unsigned long oldmask
;
1836 struct rcu_data
*rdp
;
1837 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1839 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
1840 raw_spin_lock_irq_rcu_node(rnp
);
1841 if (!READ_ONCE(rsp
->gp_flags
)) {
1842 /* Spurious wakeup, tell caller to go back to sleep. */
1843 raw_spin_unlock_irq(&rnp
->lock
);
1846 WRITE_ONCE(rsp
->gp_flags
, 0); /* Clear all flags: New grace period. */
1848 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp
))) {
1850 * Grace period already in progress, don't start another.
1851 * Not supposed to be able to happen.
1853 raw_spin_unlock_irq(&rnp
->lock
);
1857 /* Advance to a new grace period and initialize state. */
1858 record_gp_stall_check_time(rsp
);
1859 /* Record GP times before starting GP, hence smp_store_release(). */
1860 smp_store_release(&rsp
->gpnum
, rsp
->gpnum
+ 1);
1861 trace_rcu_grace_period(rsp
->name
, rsp
->gpnum
, TPS("start"));
1862 raw_spin_unlock_irq(&rnp
->lock
);
1865 * Apply per-leaf buffered online and offline operations to the
1866 * rcu_node tree. Note that this new grace period need not wait
1867 * for subsequent online CPUs, and that quiescent-state forcing
1868 * will handle subsequent offline CPUs.
1870 rcu_for_each_leaf_node(rsp
, rnp
) {
1871 rcu_gp_slow(rsp
, gp_preinit_delay
);
1872 raw_spin_lock_irq_rcu_node(rnp
);
1873 if (rnp
->qsmaskinit
== rnp
->qsmaskinitnext
&&
1874 !rnp
->wait_blkd_tasks
) {
1875 /* Nothing to do on this leaf rcu_node structure. */
1876 raw_spin_unlock_irq(&rnp
->lock
);
1880 /* Record old state, apply changes to ->qsmaskinit field. */
1881 oldmask
= rnp
->qsmaskinit
;
1882 rnp
->qsmaskinit
= rnp
->qsmaskinitnext
;
1884 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1885 if (!oldmask
!= !rnp
->qsmaskinit
) {
1886 if (!oldmask
) /* First online CPU for this rcu_node. */
1887 rcu_init_new_rnp(rnp
);
1888 else if (rcu_preempt_has_tasks(rnp
)) /* blocked tasks */
1889 rnp
->wait_blkd_tasks
= true;
1890 else /* Last offline CPU and can propagate. */
1891 rcu_cleanup_dead_rnp(rnp
);
1895 * If all waited-on tasks from prior grace period are
1896 * done, and if all this rcu_node structure's CPUs are
1897 * still offline, propagate up the rcu_node tree and
1898 * clear ->wait_blkd_tasks. Otherwise, if one of this
1899 * rcu_node structure's CPUs has since come back online,
1900 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1901 * checks for this, so just call it unconditionally).
1903 if (rnp
->wait_blkd_tasks
&&
1904 (!rcu_preempt_has_tasks(rnp
) ||
1906 rnp
->wait_blkd_tasks
= false;
1907 rcu_cleanup_dead_rnp(rnp
);
1910 raw_spin_unlock_irq(&rnp
->lock
);
1914 * Set the quiescent-state-needed bits in all the rcu_node
1915 * structures for all currently online CPUs in breadth-first order,
1916 * starting from the root rcu_node structure, relying on the layout
1917 * of the tree within the rsp->node[] array. Note that other CPUs
1918 * will access only the leaves of the hierarchy, thus seeing that no
1919 * grace period is in progress, at least until the corresponding
1920 * leaf node has been initialized. In addition, we have excluded
1921 * CPU-hotplug operations.
1923 * The grace period cannot complete until the initialization
1924 * process finishes, because this kthread handles both.
1926 rcu_for_each_node_breadth_first(rsp
, rnp
) {
1927 rcu_gp_slow(rsp
, gp_init_delay
);
1928 raw_spin_lock_irq_rcu_node(rnp
);
1929 rdp
= this_cpu_ptr(rsp
->rda
);
1930 rcu_preempt_check_blocked_tasks(rnp
);
1931 rnp
->qsmask
= rnp
->qsmaskinit
;
1932 WRITE_ONCE(rnp
->gpnum
, rsp
->gpnum
);
1933 if (WARN_ON_ONCE(rnp
->completed
!= rsp
->completed
))
1934 WRITE_ONCE(rnp
->completed
, rsp
->completed
);
1935 if (rnp
== rdp
->mynode
)
1936 (void)__note_gp_changes(rsp
, rnp
, rdp
);
1937 rcu_preempt_boost_start_gp(rnp
);
1938 trace_rcu_grace_period_init(rsp
->name
, rnp
->gpnum
,
1939 rnp
->level
, rnp
->grplo
,
1940 rnp
->grphi
, rnp
->qsmask
);
1941 raw_spin_unlock_irq(&rnp
->lock
);
1942 cond_resched_rcu_qs();
1943 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
1950 * Helper function for wait_event_interruptible_timeout() wakeup
1951 * at force-quiescent-state time.
1953 static bool rcu_gp_fqs_check_wake(struct rcu_state
*rsp
, int *gfp
)
1955 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1957 /* Someone like call_rcu() requested a force-quiescent-state scan. */
1958 *gfp
= READ_ONCE(rsp
->gp_flags
);
1959 if (*gfp
& RCU_GP_FLAG_FQS
)
1962 /* The current grace period has completed. */
1963 if (!READ_ONCE(rnp
->qsmask
) && !rcu_preempt_blocked_readers_cgp(rnp
))
1970 * Do one round of quiescent-state forcing.
1972 static void rcu_gp_fqs(struct rcu_state
*rsp
, bool first_time
)
1974 bool isidle
= false;
1976 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1978 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
1981 /* Collect dyntick-idle snapshots. */
1982 if (is_sysidle_rcu_state(rsp
)) {
1984 maxj
= jiffies
- ULONG_MAX
/ 4;
1986 force_qs_rnp(rsp
, dyntick_save_progress_counter
,
1988 rcu_sysidle_report_gp(rsp
, isidle
, maxj
);
1990 /* Handle dyntick-idle and offline CPUs. */
1992 force_qs_rnp(rsp
, rcu_implicit_dynticks_qs
, &isidle
, &maxj
);
1994 /* Clear flag to prevent immediate re-entry. */
1995 if (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) {
1996 raw_spin_lock_irq_rcu_node(rnp
);
1997 WRITE_ONCE(rsp
->gp_flags
,
1998 READ_ONCE(rsp
->gp_flags
) & ~RCU_GP_FLAG_FQS
);
1999 raw_spin_unlock_irq(&rnp
->lock
);
2004 * Clean up after the old grace period.
2006 static void rcu_gp_cleanup(struct rcu_state
*rsp
)
2008 unsigned long gp_duration
;
2009 bool needgp
= false;
2011 struct rcu_data
*rdp
;
2012 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2014 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2015 raw_spin_lock_irq_rcu_node(rnp
);
2016 gp_duration
= jiffies
- rsp
->gp_start
;
2017 if (gp_duration
> rsp
->gp_max
)
2018 rsp
->gp_max
= gp_duration
;
2021 * We know the grace period is complete, but to everyone else
2022 * it appears to still be ongoing. But it is also the case
2023 * that to everyone else it looks like there is nothing that
2024 * they can do to advance the grace period. It is therefore
2025 * safe for us to drop the lock in order to mark the grace
2026 * period as completed in all of the rcu_node structures.
2028 raw_spin_unlock_irq(&rnp
->lock
);
2031 * Propagate new ->completed value to rcu_node structures so
2032 * that other CPUs don't have to wait until the start of the next
2033 * grace period to process their callbacks. This also avoids
2034 * some nasty RCU grace-period initialization races by forcing
2035 * the end of the current grace period to be completely recorded in
2036 * all of the rcu_node structures before the beginning of the next
2037 * grace period is recorded in any of the rcu_node structures.
2039 rcu_for_each_node_breadth_first(rsp
, rnp
) {
2040 raw_spin_lock_irq_rcu_node(rnp
);
2041 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
));
2042 WARN_ON_ONCE(rnp
->qsmask
);
2043 WRITE_ONCE(rnp
->completed
, rsp
->gpnum
);
2044 rdp
= this_cpu_ptr(rsp
->rda
);
2045 if (rnp
== rdp
->mynode
)
2046 needgp
= __note_gp_changes(rsp
, rnp
, rdp
) || needgp
;
2047 /* smp_mb() provided by prior unlock-lock pair. */
2048 nocb
+= rcu_future_gp_cleanup(rsp
, rnp
);
2049 raw_spin_unlock_irq(&rnp
->lock
);
2050 cond_resched_rcu_qs();
2051 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2052 rcu_gp_slow(rsp
, gp_cleanup_delay
);
2054 rnp
= rcu_get_root(rsp
);
2055 raw_spin_lock_irq_rcu_node(rnp
); /* Order GP before ->completed update. */
2056 rcu_nocb_gp_set(rnp
, nocb
);
2058 /* Declare grace period done. */
2059 WRITE_ONCE(rsp
->completed
, rsp
->gpnum
);
2060 trace_rcu_grace_period(rsp
->name
, rsp
->completed
, TPS("end"));
2061 rsp
->gp_state
= RCU_GP_IDLE
;
2062 rdp
= this_cpu_ptr(rsp
->rda
);
2063 /* Advance CBs to reduce false positives below. */
2064 needgp
= rcu_advance_cbs(rsp
, rnp
, rdp
) || needgp
;
2065 if (needgp
|| cpu_needs_another_gp(rsp
, rdp
)) {
2066 WRITE_ONCE(rsp
->gp_flags
, RCU_GP_FLAG_INIT
);
2067 trace_rcu_grace_period(rsp
->name
,
2068 READ_ONCE(rsp
->gpnum
),
2071 raw_spin_unlock_irq(&rnp
->lock
);
2075 * Body of kthread that handles grace periods.
2077 static int __noreturn
rcu_gp_kthread(void *arg
)
2083 struct rcu_state
*rsp
= arg
;
2084 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2086 rcu_bind_gp_kthread();
2089 /* Handle grace-period start. */
2091 trace_rcu_grace_period(rsp
->name
,
2092 READ_ONCE(rsp
->gpnum
),
2094 rsp
->gp_state
= RCU_GP_WAIT_GPS
;
2095 wait_event_interruptible(rsp
->gp_wq
,
2096 READ_ONCE(rsp
->gp_flags
) &
2098 rsp
->gp_state
= RCU_GP_DONE_GPS
;
2099 /* Locking provides needed memory barrier. */
2100 if (rcu_gp_init(rsp
))
2102 cond_resched_rcu_qs();
2103 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2104 WARN_ON(signal_pending(current
));
2105 trace_rcu_grace_period(rsp
->name
,
2106 READ_ONCE(rsp
->gpnum
),
2110 /* Handle quiescent-state forcing. */
2111 first_gp_fqs
= true;
2112 j
= jiffies_till_first_fqs
;
2115 jiffies_till_first_fqs
= HZ
;
2120 rsp
->jiffies_force_qs
= jiffies
+ j
;
2121 trace_rcu_grace_period(rsp
->name
,
2122 READ_ONCE(rsp
->gpnum
),
2124 rsp
->gp_state
= RCU_GP_WAIT_FQS
;
2125 ret
= wait_event_interruptible_timeout(rsp
->gp_wq
,
2126 rcu_gp_fqs_check_wake(rsp
, &gf
), j
);
2127 rsp
->gp_state
= RCU_GP_DOING_FQS
;
2128 /* Locking provides needed memory barriers. */
2129 /* If grace period done, leave loop. */
2130 if (!READ_ONCE(rnp
->qsmask
) &&
2131 !rcu_preempt_blocked_readers_cgp(rnp
))
2133 /* If time for quiescent-state forcing, do it. */
2134 if (ULONG_CMP_GE(jiffies
, rsp
->jiffies_force_qs
) ||
2135 (gf
& RCU_GP_FLAG_FQS
)) {
2136 trace_rcu_grace_period(rsp
->name
,
2137 READ_ONCE(rsp
->gpnum
),
2139 rcu_gp_fqs(rsp
, first_gp_fqs
);
2140 first_gp_fqs
= false;
2141 trace_rcu_grace_period(rsp
->name
,
2142 READ_ONCE(rsp
->gpnum
),
2144 cond_resched_rcu_qs();
2145 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2147 /* Deal with stray signal. */
2148 cond_resched_rcu_qs();
2149 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2150 WARN_ON(signal_pending(current
));
2151 trace_rcu_grace_period(rsp
->name
,
2152 READ_ONCE(rsp
->gpnum
),
2155 j
= jiffies_till_next_fqs
;
2158 jiffies_till_next_fqs
= HZ
;
2161 jiffies_till_next_fqs
= 1;
2165 /* Handle grace-period end. */
2166 rsp
->gp_state
= RCU_GP_CLEANUP
;
2167 rcu_gp_cleanup(rsp
);
2168 rsp
->gp_state
= RCU_GP_CLEANED
;
2173 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2174 * in preparation for detecting the next grace period. The caller must hold
2175 * the root node's ->lock and hard irqs must be disabled.
2177 * Note that it is legal for a dying CPU (which is marked as offline) to
2178 * invoke this function. This can happen when the dying CPU reports its
2181 * Returns true if the grace-period kthread must be awakened.
2184 rcu_start_gp_advanced(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
2185 struct rcu_data
*rdp
)
2187 if (!rsp
->gp_kthread
|| !cpu_needs_another_gp(rsp
, rdp
)) {
2189 * Either we have not yet spawned the grace-period
2190 * task, this CPU does not need another grace period,
2191 * or a grace period is already in progress.
2192 * Either way, don't start a new grace period.
2196 WRITE_ONCE(rsp
->gp_flags
, RCU_GP_FLAG_INIT
);
2197 trace_rcu_grace_period(rsp
->name
, READ_ONCE(rsp
->gpnum
),
2201 * We can't do wakeups while holding the rnp->lock, as that
2202 * could cause possible deadlocks with the rq->lock. Defer
2203 * the wakeup to our caller.
2209 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2210 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2211 * is invoked indirectly from rcu_advance_cbs(), which would result in
2212 * endless recursion -- or would do so if it wasn't for the self-deadlock
2213 * that is encountered beforehand.
2215 * Returns true if the grace-period kthread needs to be awakened.
2217 static bool rcu_start_gp(struct rcu_state
*rsp
)
2219 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
2220 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2224 * If there is no grace period in progress right now, any
2225 * callbacks we have up to this point will be satisfied by the
2226 * next grace period. Also, advancing the callbacks reduces the
2227 * probability of false positives from cpu_needs_another_gp()
2228 * resulting in pointless grace periods. So, advance callbacks
2229 * then start the grace period!
2231 ret
= rcu_advance_cbs(rsp
, rnp
, rdp
) || ret
;
2232 ret
= rcu_start_gp_advanced(rsp
, rnp
, rdp
) || ret
;
2237 * Report a full set of quiescent states to the specified rcu_state
2238 * data structure. This involves cleaning up after the prior grace
2239 * period and letting rcu_start_gp() start up the next grace period
2240 * if one is needed. Note that the caller must hold rnp->lock, which
2241 * is released before return.
2243 static void rcu_report_qs_rsp(struct rcu_state
*rsp
, unsigned long flags
)
2244 __releases(rcu_get_root(rsp
)->lock
)
2246 WARN_ON_ONCE(!rcu_gp_in_progress(rsp
));
2247 WRITE_ONCE(rsp
->gp_flags
, READ_ONCE(rsp
->gp_flags
) | RCU_GP_FLAG_FQS
);
2248 raw_spin_unlock_irqrestore(&rcu_get_root(rsp
)->lock
, flags
);
2249 rcu_gp_kthread_wake(rsp
);
2253 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2254 * Allows quiescent states for a group of CPUs to be reported at one go
2255 * to the specified rcu_node structure, though all the CPUs in the group
2256 * must be represented by the same rcu_node structure (which need not be a
2257 * leaf rcu_node structure, though it often will be). The gps parameter
2258 * is the grace-period snapshot, which means that the quiescent states
2259 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2260 * must be held upon entry, and it is released before return.
2263 rcu_report_qs_rnp(unsigned long mask
, struct rcu_state
*rsp
,
2264 struct rcu_node
*rnp
, unsigned long gps
, unsigned long flags
)
2265 __releases(rnp
->lock
)
2267 unsigned long oldmask
= 0;
2268 struct rcu_node
*rnp_c
;
2270 /* Walk up the rcu_node hierarchy. */
2272 if (!(rnp
->qsmask
& mask
) || rnp
->gpnum
!= gps
) {
2275 * Our bit has already been cleared, or the
2276 * relevant grace period is already over, so done.
2278 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2281 WARN_ON_ONCE(oldmask
); /* Any child must be all zeroed! */
2282 rnp
->qsmask
&= ~mask
;
2283 trace_rcu_quiescent_state_report(rsp
->name
, rnp
->gpnum
,
2284 mask
, rnp
->qsmask
, rnp
->level
,
2285 rnp
->grplo
, rnp
->grphi
,
2287 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
2289 /* Other bits still set at this level, so done. */
2290 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2293 mask
= rnp
->grpmask
;
2294 if (rnp
->parent
== NULL
) {
2296 /* No more levels. Exit loop holding root lock. */
2300 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2303 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2304 oldmask
= rnp_c
->qsmask
;
2308 * Get here if we are the last CPU to pass through a quiescent
2309 * state for this grace period. Invoke rcu_report_qs_rsp()
2310 * to clean up and start the next grace period if one is needed.
2312 rcu_report_qs_rsp(rsp
, flags
); /* releases rnp->lock. */
2316 * Record a quiescent state for all tasks that were previously queued
2317 * on the specified rcu_node structure and that were blocking the current
2318 * RCU grace period. The caller must hold the specified rnp->lock with
2319 * irqs disabled, and this lock is released upon return, but irqs remain
2322 static void rcu_report_unblock_qs_rnp(struct rcu_state
*rsp
,
2323 struct rcu_node
*rnp
, unsigned long flags
)
2324 __releases(rnp
->lock
)
2328 struct rcu_node
*rnp_p
;
2330 if (rcu_state_p
== &rcu_sched_state
|| rsp
!= rcu_state_p
||
2331 rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
2332 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2333 return; /* Still need more quiescent states! */
2336 rnp_p
= rnp
->parent
;
2337 if (rnp_p
== NULL
) {
2339 * Only one rcu_node structure in the tree, so don't
2340 * try to report up to its nonexistent parent!
2342 rcu_report_qs_rsp(rsp
, flags
);
2346 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2348 mask
= rnp
->grpmask
;
2349 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
2350 raw_spin_lock_rcu_node(rnp_p
); /* irqs already disabled. */
2351 rcu_report_qs_rnp(mask
, rsp
, rnp_p
, gps
, flags
);
2355 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2356 * structure. This must be either called from the specified CPU, or
2357 * called when the specified CPU is known to be offline (and when it is
2358 * also known that no other CPU is concurrently trying to help the offline
2359 * CPU). The lastcomp argument is used to make sure we are still in the
2360 * grace period of interest. We don't want to end the current grace period
2361 * based on quiescent states detected in an earlier grace period!
2364 rcu_report_qs_rdp(int cpu
, struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2366 unsigned long flags
;
2369 struct rcu_node
*rnp
;
2372 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2373 if ((rdp
->cpu_no_qs
.b
.norm
&&
2374 rdp
->rcu_qs_ctr_snap
== __this_cpu_read(rcu_qs_ctr
)) ||
2375 rdp
->gpnum
!= rnp
->gpnum
|| rnp
->completed
== rnp
->gpnum
||
2379 * The grace period in which this quiescent state was
2380 * recorded has ended, so don't report it upwards.
2381 * We will instead need a new quiescent state that lies
2382 * within the current grace period.
2384 rdp
->cpu_no_qs
.b
.norm
= true; /* need qs for new gp. */
2385 rdp
->rcu_qs_ctr_snap
= __this_cpu_read(rcu_qs_ctr
);
2386 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2389 mask
= rdp
->grpmask
;
2390 if ((rnp
->qsmask
& mask
) == 0) {
2391 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2393 rdp
->core_needs_qs
= 0;
2396 * This GP can't end until cpu checks in, so all of our
2397 * callbacks can be processed during the next GP.
2399 needwake
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
2401 rcu_report_qs_rnp(mask
, rsp
, rnp
, rnp
->gpnum
, flags
);
2402 /* ^^^ Released rnp->lock */
2404 rcu_gp_kthread_wake(rsp
);
2409 * Check to see if there is a new grace period of which this CPU
2410 * is not yet aware, and if so, set up local rcu_data state for it.
2411 * Otherwise, see if this CPU has just passed through its first
2412 * quiescent state for this grace period, and record that fact if so.
2415 rcu_check_quiescent_state(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2417 /* Check for grace-period ends and beginnings. */
2418 note_gp_changes(rsp
, rdp
);
2421 * Does this CPU still need to do its part for current grace period?
2422 * If no, return and let the other CPUs do their part as well.
2424 if (!rdp
->core_needs_qs
)
2428 * Was there a quiescent state since the beginning of the grace
2429 * period? If no, then exit and wait for the next call.
2431 if (rdp
->cpu_no_qs
.b
.norm
&&
2432 rdp
->rcu_qs_ctr_snap
== __this_cpu_read(rcu_qs_ctr
))
2436 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2439 rcu_report_qs_rdp(rdp
->cpu
, rsp
, rdp
);
2443 * Send the specified CPU's RCU callbacks to the orphanage. The
2444 * specified CPU must be offline, and the caller must hold the
2448 rcu_send_cbs_to_orphanage(int cpu
, struct rcu_state
*rsp
,
2449 struct rcu_node
*rnp
, struct rcu_data
*rdp
)
2451 /* No-CBs CPUs do not have orphanable callbacks. */
2452 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) || rcu_is_nocb_cpu(rdp
->cpu
))
2456 * Orphan the callbacks. First adjust the counts. This is safe
2457 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2458 * cannot be running now. Thus no memory barrier is required.
2460 if (rdp
->nxtlist
!= NULL
) {
2461 rsp
->qlen_lazy
+= rdp
->qlen_lazy
;
2462 rsp
->qlen
+= rdp
->qlen
;
2463 rdp
->n_cbs_orphaned
+= rdp
->qlen
;
2465 WRITE_ONCE(rdp
->qlen
, 0);
2469 * Next, move those callbacks still needing a grace period to
2470 * the orphanage, where some other CPU will pick them up.
2471 * Some of the callbacks might have gone partway through a grace
2472 * period, but that is too bad. They get to start over because we
2473 * cannot assume that grace periods are synchronized across CPUs.
2474 * We don't bother updating the ->nxttail[] array yet, instead
2475 * we just reset the whole thing later on.
2477 if (*rdp
->nxttail
[RCU_DONE_TAIL
] != NULL
) {
2478 *rsp
->orphan_nxttail
= *rdp
->nxttail
[RCU_DONE_TAIL
];
2479 rsp
->orphan_nxttail
= rdp
->nxttail
[RCU_NEXT_TAIL
];
2480 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
2484 * Then move the ready-to-invoke callbacks to the orphanage,
2485 * where some other CPU will pick them up. These will not be
2486 * required to pass though another grace period: They are done.
2488 if (rdp
->nxtlist
!= NULL
) {
2489 *rsp
->orphan_donetail
= rdp
->nxtlist
;
2490 rsp
->orphan_donetail
= rdp
->nxttail
[RCU_DONE_TAIL
];
2494 * Finally, initialize the rcu_data structure's list to empty and
2495 * disallow further callbacks on this CPU.
2497 init_callback_list(rdp
);
2498 rdp
->nxttail
[RCU_NEXT_TAIL
] = NULL
;
2502 * Adopt the RCU callbacks from the specified rcu_state structure's
2503 * orphanage. The caller must hold the ->orphan_lock.
2505 static void rcu_adopt_orphan_cbs(struct rcu_state
*rsp
, unsigned long flags
)
2508 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
2510 /* No-CBs CPUs are handled specially. */
2511 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) ||
2512 rcu_nocb_adopt_orphan_cbs(rsp
, rdp
, flags
))
2515 /* Do the accounting first. */
2516 rdp
->qlen_lazy
+= rsp
->qlen_lazy
;
2517 rdp
->qlen
+= rsp
->qlen
;
2518 rdp
->n_cbs_adopted
+= rsp
->qlen
;
2519 if (rsp
->qlen_lazy
!= rsp
->qlen
)
2520 rcu_idle_count_callbacks_posted();
2525 * We do not need a memory barrier here because the only way we
2526 * can get here if there is an rcu_barrier() in flight is if
2527 * we are the task doing the rcu_barrier().
2530 /* First adopt the ready-to-invoke callbacks. */
2531 if (rsp
->orphan_donelist
!= NULL
) {
2532 *rsp
->orphan_donetail
= *rdp
->nxttail
[RCU_DONE_TAIL
];
2533 *rdp
->nxttail
[RCU_DONE_TAIL
] = rsp
->orphan_donelist
;
2534 for (i
= RCU_NEXT_SIZE
- 1; i
>= RCU_DONE_TAIL
; i
--)
2535 if (rdp
->nxttail
[i
] == rdp
->nxttail
[RCU_DONE_TAIL
])
2536 rdp
->nxttail
[i
] = rsp
->orphan_donetail
;
2537 rsp
->orphan_donelist
= NULL
;
2538 rsp
->orphan_donetail
= &rsp
->orphan_donelist
;
2541 /* And then adopt the callbacks that still need a grace period. */
2542 if (rsp
->orphan_nxtlist
!= NULL
) {
2543 *rdp
->nxttail
[RCU_NEXT_TAIL
] = rsp
->orphan_nxtlist
;
2544 rdp
->nxttail
[RCU_NEXT_TAIL
] = rsp
->orphan_nxttail
;
2545 rsp
->orphan_nxtlist
= NULL
;
2546 rsp
->orphan_nxttail
= &rsp
->orphan_nxtlist
;
2551 * Trace the fact that this CPU is going offline.
2553 static void rcu_cleanup_dying_cpu(struct rcu_state
*rsp
)
2555 RCU_TRACE(unsigned long mask
);
2556 RCU_TRACE(struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
));
2557 RCU_TRACE(struct rcu_node
*rnp
= rdp
->mynode
);
2559 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2562 RCU_TRACE(mask
= rdp
->grpmask
);
2563 trace_rcu_grace_period(rsp
->name
,
2564 rnp
->gpnum
+ 1 - !!(rnp
->qsmask
& mask
),
2569 * All CPUs for the specified rcu_node structure have gone offline,
2570 * and all tasks that were preempted within an RCU read-side critical
2571 * section while running on one of those CPUs have since exited their RCU
2572 * read-side critical section. Some other CPU is reporting this fact with
2573 * the specified rcu_node structure's ->lock held and interrupts disabled.
2574 * This function therefore goes up the tree of rcu_node structures,
2575 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2576 * the leaf rcu_node structure's ->qsmaskinit field has already been
2579 * This function does check that the specified rcu_node structure has
2580 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2581 * prematurely. That said, invoking it after the fact will cost you
2582 * a needless lock acquisition. So once it has done its work, don't
2585 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
)
2588 struct rcu_node
*rnp
= rnp_leaf
;
2590 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) ||
2591 rnp
->qsmaskinit
|| rcu_preempt_has_tasks(rnp
))
2594 mask
= rnp
->grpmask
;
2598 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
2599 rnp
->qsmaskinit
&= ~mask
;
2600 rnp
->qsmask
&= ~mask
;
2601 if (rnp
->qsmaskinit
) {
2602 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
2605 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
2610 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
2611 * function. We now remove it from the rcu_node tree's ->qsmaskinit
2614 static void rcu_cleanup_dying_idle_cpu(int cpu
, struct rcu_state
*rsp
)
2616 unsigned long flags
;
2618 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2619 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
2621 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2624 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2625 mask
= rdp
->grpmask
;
2626 raw_spin_lock_irqsave_rcu_node(rnp
, flags
); /* Enforce GP memory-order guarantee. */
2627 rnp
->qsmaskinitnext
&= ~mask
;
2628 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2632 * The CPU has been completely removed, and some other CPU is reporting
2633 * this fact from process context. Do the remainder of the cleanup,
2634 * including orphaning the outgoing CPU's RCU callbacks, and also
2635 * adopting them. There can only be one CPU hotplug operation at a time,
2636 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2638 static void rcu_cleanup_dead_cpu(int cpu
, struct rcu_state
*rsp
)
2640 unsigned long flags
;
2641 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2642 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
2644 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2647 /* Adjust any no-longer-needed kthreads. */
2648 rcu_boost_kthread_setaffinity(rnp
, -1);
2650 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2651 raw_spin_lock_irqsave(&rsp
->orphan_lock
, flags
);
2652 rcu_send_cbs_to_orphanage(cpu
, rsp
, rnp
, rdp
);
2653 rcu_adopt_orphan_cbs(rsp
, flags
);
2654 raw_spin_unlock_irqrestore(&rsp
->orphan_lock
, flags
);
2656 WARN_ONCE(rdp
->qlen
!= 0 || rdp
->nxtlist
!= NULL
,
2657 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2658 cpu
, rdp
->qlen
, rdp
->nxtlist
);
2662 * Invoke any RCU callbacks that have made it to the end of their grace
2663 * period. Thottle as specified by rdp->blimit.
2665 static void rcu_do_batch(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2667 unsigned long flags
;
2668 struct rcu_head
*next
, *list
, **tail
;
2669 long bl
, count
, count_lazy
;
2672 /* If no callbacks are ready, just return. */
2673 if (!cpu_has_callbacks_ready_to_invoke(rdp
)) {
2674 trace_rcu_batch_start(rsp
->name
, rdp
->qlen_lazy
, rdp
->qlen
, 0);
2675 trace_rcu_batch_end(rsp
->name
, 0, !!READ_ONCE(rdp
->nxtlist
),
2676 need_resched(), is_idle_task(current
),
2677 rcu_is_callbacks_kthread());
2682 * Extract the list of ready callbacks, disabling to prevent
2683 * races with call_rcu() from interrupt handlers.
2685 local_irq_save(flags
);
2686 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2688 trace_rcu_batch_start(rsp
->name
, rdp
->qlen_lazy
, rdp
->qlen
, bl
);
2689 list
= rdp
->nxtlist
;
2690 rdp
->nxtlist
= *rdp
->nxttail
[RCU_DONE_TAIL
];
2691 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
2692 tail
= rdp
->nxttail
[RCU_DONE_TAIL
];
2693 for (i
= RCU_NEXT_SIZE
- 1; i
>= 0; i
--)
2694 if (rdp
->nxttail
[i
] == rdp
->nxttail
[RCU_DONE_TAIL
])
2695 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
2696 local_irq_restore(flags
);
2698 /* Invoke callbacks. */
2699 count
= count_lazy
= 0;
2703 debug_rcu_head_unqueue(list
);
2704 if (__rcu_reclaim(rsp
->name
, list
))
2707 /* Stop only if limit reached and CPU has something to do. */
2708 if (++count
>= bl
&&
2710 (!is_idle_task(current
) && !rcu_is_callbacks_kthread())))
2714 local_irq_save(flags
);
2715 trace_rcu_batch_end(rsp
->name
, count
, !!list
, need_resched(),
2716 is_idle_task(current
),
2717 rcu_is_callbacks_kthread());
2719 /* Update count, and requeue any remaining callbacks. */
2721 *tail
= rdp
->nxtlist
;
2722 rdp
->nxtlist
= list
;
2723 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
2724 if (&rdp
->nxtlist
== rdp
->nxttail
[i
])
2725 rdp
->nxttail
[i
] = tail
;
2729 smp_mb(); /* List handling before counting for rcu_barrier(). */
2730 rdp
->qlen_lazy
-= count_lazy
;
2731 WRITE_ONCE(rdp
->qlen
, rdp
->qlen
- count
);
2732 rdp
->n_cbs_invoked
+= count
;
2734 /* Reinstate batch limit if we have worked down the excess. */
2735 if (rdp
->blimit
== LONG_MAX
&& rdp
->qlen
<= qlowmark
)
2736 rdp
->blimit
= blimit
;
2738 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2739 if (rdp
->qlen
== 0 && rdp
->qlen_last_fqs_check
!= 0) {
2740 rdp
->qlen_last_fqs_check
= 0;
2741 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
2742 } else if (rdp
->qlen
< rdp
->qlen_last_fqs_check
- qhimark
)
2743 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
2744 WARN_ON_ONCE((rdp
->nxtlist
== NULL
) != (rdp
->qlen
== 0));
2746 local_irq_restore(flags
);
2748 /* Re-invoke RCU core processing if there are callbacks remaining. */
2749 if (cpu_has_callbacks_ready_to_invoke(rdp
))
2754 * Check to see if this CPU is in a non-context-switch quiescent state
2755 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2756 * Also schedule RCU core processing.
2758 * This function must be called from hardirq context. It is normally
2759 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2760 * false, there is no point in invoking rcu_check_callbacks().
2762 void rcu_check_callbacks(int user
)
2764 trace_rcu_utilization(TPS("Start scheduler-tick"));
2765 increment_cpu_stall_ticks();
2766 if (user
|| rcu_is_cpu_rrupt_from_idle()) {
2769 * Get here if this CPU took its interrupt from user
2770 * mode or from the idle loop, and if this is not a
2771 * nested interrupt. In this case, the CPU is in
2772 * a quiescent state, so note it.
2774 * No memory barrier is required here because both
2775 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2776 * variables that other CPUs neither access nor modify,
2777 * at least not while the corresponding CPU is online.
2783 } else if (!in_softirq()) {
2786 * Get here if this CPU did not take its interrupt from
2787 * softirq, in other words, if it is not interrupting
2788 * a rcu_bh read-side critical section. This is an _bh
2789 * critical section, so note it.
2794 rcu_preempt_check_callbacks();
2798 rcu_note_voluntary_context_switch(current
);
2799 trace_rcu_utilization(TPS("End scheduler-tick"));
2803 * Scan the leaf rcu_node structures, processing dyntick state for any that
2804 * have not yet encountered a quiescent state, using the function specified.
2805 * Also initiate boosting for any threads blocked on the root rcu_node.
2807 * The caller must have suppressed start of new grace periods.
2809 static void force_qs_rnp(struct rcu_state
*rsp
,
2810 int (*f
)(struct rcu_data
*rsp
, bool *isidle
,
2811 unsigned long *maxj
),
2812 bool *isidle
, unsigned long *maxj
)
2816 unsigned long flags
;
2818 struct rcu_node
*rnp
;
2820 rcu_for_each_leaf_node(rsp
, rnp
) {
2821 cond_resched_rcu_qs();
2823 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2824 if (rnp
->qsmask
== 0) {
2825 if (rcu_state_p
== &rcu_sched_state
||
2826 rsp
!= rcu_state_p
||
2827 rcu_preempt_blocked_readers_cgp(rnp
)) {
2829 * No point in scanning bits because they
2830 * are all zero. But we might need to
2831 * priority-boost blocked readers.
2833 rcu_initiate_boost(rnp
, flags
);
2834 /* rcu_initiate_boost() releases rnp->lock */
2838 (rnp
->parent
->qsmask
& rnp
->grpmask
)) {
2840 * Race between grace-period
2841 * initialization and task exiting RCU
2842 * read-side critical section: Report.
2844 rcu_report_unblock_qs_rnp(rsp
, rnp
, flags
);
2845 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2851 for (; cpu
<= rnp
->grphi
; cpu
++, bit
<<= 1) {
2852 if ((rnp
->qsmask
& bit
) != 0) {
2853 if (f(per_cpu_ptr(rsp
->rda
, cpu
), isidle
, maxj
))
2858 /* Idle/offline CPUs, report (releases rnp->lock. */
2859 rcu_report_qs_rnp(mask
, rsp
, rnp
, rnp
->gpnum
, flags
);
2861 /* Nothing to do here, so just drop the lock. */
2862 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2868 * Force quiescent states on reluctant CPUs, and also detect which
2869 * CPUs are in dyntick-idle mode.
2871 static void force_quiescent_state(struct rcu_state
*rsp
)
2873 unsigned long flags
;
2875 struct rcu_node
*rnp
;
2876 struct rcu_node
*rnp_old
= NULL
;
2878 /* Funnel through hierarchy to reduce memory contention. */
2879 rnp
= __this_cpu_read(rsp
->rda
->mynode
);
2880 for (; rnp
!= NULL
; rnp
= rnp
->parent
) {
2881 ret
= (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) ||
2882 !raw_spin_trylock(&rnp
->fqslock
);
2883 if (rnp_old
!= NULL
)
2884 raw_spin_unlock(&rnp_old
->fqslock
);
2886 rsp
->n_force_qs_lh
++;
2891 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2893 /* Reached the root of the rcu_node tree, acquire lock. */
2894 raw_spin_lock_irqsave_rcu_node(rnp_old
, flags
);
2895 raw_spin_unlock(&rnp_old
->fqslock
);
2896 if (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) {
2897 rsp
->n_force_qs_lh
++;
2898 raw_spin_unlock_irqrestore(&rnp_old
->lock
, flags
);
2899 return; /* Someone beat us to it. */
2901 WRITE_ONCE(rsp
->gp_flags
, READ_ONCE(rsp
->gp_flags
) | RCU_GP_FLAG_FQS
);
2902 raw_spin_unlock_irqrestore(&rnp_old
->lock
, flags
);
2903 rcu_gp_kthread_wake(rsp
);
2907 * This does the RCU core processing work for the specified rcu_state
2908 * and rcu_data structures. This may be called only from the CPU to
2909 * whom the rdp belongs.
2912 __rcu_process_callbacks(struct rcu_state
*rsp
)
2914 unsigned long flags
;
2916 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
2918 WARN_ON_ONCE(rdp
->beenonline
== 0);
2920 /* Update RCU state based on any recent quiescent states. */
2921 rcu_check_quiescent_state(rsp
, rdp
);
2923 /* Does this CPU require a not-yet-started grace period? */
2924 local_irq_save(flags
);
2925 if (cpu_needs_another_gp(rsp
, rdp
)) {
2926 raw_spin_lock_rcu_node(rcu_get_root(rsp
)); /* irqs disabled. */
2927 needwake
= rcu_start_gp(rsp
);
2928 raw_spin_unlock_irqrestore(&rcu_get_root(rsp
)->lock
, flags
);
2930 rcu_gp_kthread_wake(rsp
);
2932 local_irq_restore(flags
);
2935 /* If there are callbacks ready, invoke them. */
2936 if (cpu_has_callbacks_ready_to_invoke(rdp
))
2937 invoke_rcu_callbacks(rsp
, rdp
);
2939 /* Do any needed deferred wakeups of rcuo kthreads. */
2940 do_nocb_deferred_wakeup(rdp
);
2944 * Do RCU core processing for the current CPU.
2946 static void rcu_process_callbacks(struct softirq_action
*unused
)
2948 struct rcu_state
*rsp
;
2950 if (cpu_is_offline(smp_processor_id()))
2952 trace_rcu_utilization(TPS("Start RCU core"));
2953 for_each_rcu_flavor(rsp
)
2954 __rcu_process_callbacks(rsp
);
2955 trace_rcu_utilization(TPS("End RCU core"));
2959 * Schedule RCU callback invocation. If the specified type of RCU
2960 * does not support RCU priority boosting, just do a direct call,
2961 * otherwise wake up the per-CPU kernel kthread. Note that because we
2962 * are running on the current CPU with softirqs disabled, the
2963 * rcu_cpu_kthread_task cannot disappear out from under us.
2965 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2967 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active
)))
2969 if (likely(!rsp
->boost
)) {
2970 rcu_do_batch(rsp
, rdp
);
2973 invoke_rcu_callbacks_kthread();
2976 static void invoke_rcu_core(void)
2978 if (cpu_online(smp_processor_id()))
2979 raise_softirq(RCU_SOFTIRQ
);
2983 * Handle any core-RCU processing required by a call_rcu() invocation.
2985 static void __call_rcu_core(struct rcu_state
*rsp
, struct rcu_data
*rdp
,
2986 struct rcu_head
*head
, unsigned long flags
)
2991 * If called from an extended quiescent state, invoke the RCU
2992 * core in order to force a re-evaluation of RCU's idleness.
2994 if (!rcu_is_watching())
2997 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2998 if (irqs_disabled_flags(flags
) || cpu_is_offline(smp_processor_id()))
3002 * Force the grace period if too many callbacks or too long waiting.
3003 * Enforce hysteresis, and don't invoke force_quiescent_state()
3004 * if some other CPU has recently done so. Also, don't bother
3005 * invoking force_quiescent_state() if the newly enqueued callback
3006 * is the only one waiting for a grace period to complete.
3008 if (unlikely(rdp
->qlen
> rdp
->qlen_last_fqs_check
+ qhimark
)) {
3010 /* Are we ignoring a completed grace period? */
3011 note_gp_changes(rsp
, rdp
);
3013 /* Start a new grace period if one not already started. */
3014 if (!rcu_gp_in_progress(rsp
)) {
3015 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
3017 raw_spin_lock_rcu_node(rnp_root
);
3018 needwake
= rcu_start_gp(rsp
);
3019 raw_spin_unlock(&rnp_root
->lock
);
3021 rcu_gp_kthread_wake(rsp
);
3023 /* Give the grace period a kick. */
3024 rdp
->blimit
= LONG_MAX
;
3025 if (rsp
->n_force_qs
== rdp
->n_force_qs_snap
&&
3026 *rdp
->nxttail
[RCU_DONE_TAIL
] != head
)
3027 force_quiescent_state(rsp
);
3028 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
3029 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
3035 * RCU callback function to leak a callback.
3037 static void rcu_leak_callback(struct rcu_head
*rhp
)
3042 * Helper function for call_rcu() and friends. The cpu argument will
3043 * normally be -1, indicating "currently running CPU". It may specify
3044 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3045 * is expected to specify a CPU.
3048 __call_rcu(struct rcu_head
*head
, rcu_callback_t func
,
3049 struct rcu_state
*rsp
, int cpu
, bool lazy
)
3051 unsigned long flags
;
3052 struct rcu_data
*rdp
;
3054 WARN_ON_ONCE((unsigned long)head
& 0x1); /* Misaligned rcu_head! */
3055 if (debug_rcu_head_queue(head
)) {
3056 /* Probable double call_rcu(), so leak the callback. */
3057 WRITE_ONCE(head
->func
, rcu_leak_callback
);
3058 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3065 * Opportunistically note grace-period endings and beginnings.
3066 * Note that we might see a beginning right after we see an
3067 * end, but never vice versa, since this CPU has to pass through
3068 * a quiescent state betweentimes.
3070 local_irq_save(flags
);
3071 rdp
= this_cpu_ptr(rsp
->rda
);
3073 /* Add the callback to our list. */
3074 if (unlikely(rdp
->nxttail
[RCU_NEXT_TAIL
] == NULL
) || cpu
!= -1) {
3078 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3079 if (likely(rdp
->mynode
)) {
3080 /* Post-boot, so this should be for a no-CBs CPU. */
3081 offline
= !__call_rcu_nocb(rdp
, head
, lazy
, flags
);
3082 WARN_ON_ONCE(offline
);
3083 /* Offline CPU, _call_rcu() illegal, leak callback. */
3084 local_irq_restore(flags
);
3088 * Very early boot, before rcu_init(). Initialize if needed
3089 * and then drop through to queue the callback.
3092 WARN_ON_ONCE(!rcu_is_watching());
3093 if (!likely(rdp
->nxtlist
))
3094 init_default_callback_list(rdp
);
3096 WRITE_ONCE(rdp
->qlen
, rdp
->qlen
+ 1);
3100 rcu_idle_count_callbacks_posted();
3101 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3102 *rdp
->nxttail
[RCU_NEXT_TAIL
] = head
;
3103 rdp
->nxttail
[RCU_NEXT_TAIL
] = &head
->next
;
3105 if (__is_kfree_rcu_offset((unsigned long)func
))
3106 trace_rcu_kfree_callback(rsp
->name
, head
, (unsigned long)func
,
3107 rdp
->qlen_lazy
, rdp
->qlen
);
3109 trace_rcu_callback(rsp
->name
, head
, rdp
->qlen_lazy
, rdp
->qlen
);
3111 /* Go handle any RCU core processing required. */
3112 __call_rcu_core(rsp
, rdp
, head
, flags
);
3113 local_irq_restore(flags
);
3117 * Queue an RCU-sched callback for invocation after a grace period.
3119 void call_rcu_sched(struct rcu_head
*head
, rcu_callback_t func
)
3121 __call_rcu(head
, func
, &rcu_sched_state
, -1, 0);
3123 EXPORT_SYMBOL_GPL(call_rcu_sched
);
3126 * Queue an RCU callback for invocation after a quicker grace period.
3128 void call_rcu_bh(struct rcu_head
*head
, rcu_callback_t func
)
3130 __call_rcu(head
, func
, &rcu_bh_state
, -1, 0);
3132 EXPORT_SYMBOL_GPL(call_rcu_bh
);
3135 * Queue an RCU callback for lazy invocation after a grace period.
3136 * This will likely be later named something like "call_rcu_lazy()",
3137 * but this change will require some way of tagging the lazy RCU
3138 * callbacks in the list of pending callbacks. Until then, this
3139 * function may only be called from __kfree_rcu().
3141 void kfree_call_rcu(struct rcu_head
*head
,
3142 rcu_callback_t func
)
3144 __call_rcu(head
, func
, rcu_state_p
, -1, 1);
3146 EXPORT_SYMBOL_GPL(kfree_call_rcu
);
3149 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3150 * any blocking grace-period wait automatically implies a grace period
3151 * if there is only one CPU online at any point time during execution
3152 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3153 * occasionally incorrectly indicate that there are multiple CPUs online
3154 * when there was in fact only one the whole time, as this just adds
3155 * some overhead: RCU still operates correctly.
3157 static inline int rcu_blocking_is_gp(void)
3161 might_sleep(); /* Check for RCU read-side critical section. */
3163 ret
= num_online_cpus() <= 1;
3169 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3171 * Control will return to the caller some time after a full rcu-sched
3172 * grace period has elapsed, in other words after all currently executing
3173 * rcu-sched read-side critical sections have completed. These read-side
3174 * critical sections are delimited by rcu_read_lock_sched() and
3175 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3176 * local_irq_disable(), and so on may be used in place of
3177 * rcu_read_lock_sched().
3179 * This means that all preempt_disable code sequences, including NMI and
3180 * non-threaded hardware-interrupt handlers, in progress on entry will
3181 * have completed before this primitive returns. However, this does not
3182 * guarantee that softirq handlers will have completed, since in some
3183 * kernels, these handlers can run in process context, and can block.
3185 * Note that this guarantee implies further memory-ordering guarantees.
3186 * On systems with more than one CPU, when synchronize_sched() returns,
3187 * each CPU is guaranteed to have executed a full memory barrier since the
3188 * end of its last RCU-sched read-side critical section whose beginning
3189 * preceded the call to synchronize_sched(). In addition, each CPU having
3190 * an RCU read-side critical section that extends beyond the return from
3191 * synchronize_sched() is guaranteed to have executed a full memory barrier
3192 * after the beginning of synchronize_sched() and before the beginning of
3193 * that RCU read-side critical section. Note that these guarantees include
3194 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3195 * that are executing in the kernel.
3197 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3198 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3199 * to have executed a full memory barrier during the execution of
3200 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3201 * again only if the system has more than one CPU).
3203 * This primitive provides the guarantees made by the (now removed)
3204 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3205 * guarantees that rcu_read_lock() sections will have completed.
3206 * In "classic RCU", these two guarantees happen to be one and
3207 * the same, but can differ in realtime RCU implementations.
3209 void synchronize_sched(void)
3211 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
3212 lock_is_held(&rcu_lock_map
) ||
3213 lock_is_held(&rcu_sched_lock_map
),
3214 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3215 if (rcu_blocking_is_gp())
3217 if (rcu_gp_is_expedited())
3218 synchronize_sched_expedited();
3220 wait_rcu_gp(call_rcu_sched
);
3222 EXPORT_SYMBOL_GPL(synchronize_sched
);
3225 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3227 * Control will return to the caller some time after a full rcu_bh grace
3228 * period has elapsed, in other words after all currently executing rcu_bh
3229 * read-side critical sections have completed. RCU read-side critical
3230 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3231 * and may be nested.
3233 * See the description of synchronize_sched() for more detailed information
3234 * on memory ordering guarantees.
3236 void synchronize_rcu_bh(void)
3238 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
3239 lock_is_held(&rcu_lock_map
) ||
3240 lock_is_held(&rcu_sched_lock_map
),
3241 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3242 if (rcu_blocking_is_gp())
3244 if (rcu_gp_is_expedited())
3245 synchronize_rcu_bh_expedited();
3247 wait_rcu_gp(call_rcu_bh
);
3249 EXPORT_SYMBOL_GPL(synchronize_rcu_bh
);
3252 * get_state_synchronize_rcu - Snapshot current RCU state
3254 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3255 * to determine whether or not a full grace period has elapsed in the
3258 unsigned long get_state_synchronize_rcu(void)
3261 * Any prior manipulation of RCU-protected data must happen
3262 * before the load from ->gpnum.
3267 * Make sure this load happens before the purportedly
3268 * time-consuming work between get_state_synchronize_rcu()
3269 * and cond_synchronize_rcu().
3271 return smp_load_acquire(&rcu_state_p
->gpnum
);
3273 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu
);
3276 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3278 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3280 * If a full RCU grace period has elapsed since the earlier call to
3281 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3282 * synchronize_rcu() to wait for a full grace period.
3284 * Yes, this function does not take counter wrap into account. But
3285 * counter wrap is harmless. If the counter wraps, we have waited for
3286 * more than 2 billion grace periods (and way more on a 64-bit system!),
3287 * so waiting for one additional grace period should be just fine.
3289 void cond_synchronize_rcu(unsigned long oldstate
)
3291 unsigned long newstate
;
3294 * Ensure that this load happens before any RCU-destructive
3295 * actions the caller might carry out after we return.
3297 newstate
= smp_load_acquire(&rcu_state_p
->completed
);
3298 if (ULONG_CMP_GE(oldstate
, newstate
))
3301 EXPORT_SYMBOL_GPL(cond_synchronize_rcu
);
3304 * get_state_synchronize_sched - Snapshot current RCU-sched state
3306 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3307 * to determine whether or not a full grace period has elapsed in the
3310 unsigned long get_state_synchronize_sched(void)
3313 * Any prior manipulation of RCU-protected data must happen
3314 * before the load from ->gpnum.
3319 * Make sure this load happens before the purportedly
3320 * time-consuming work between get_state_synchronize_sched()
3321 * and cond_synchronize_sched().
3323 return smp_load_acquire(&rcu_sched_state
.gpnum
);
3325 EXPORT_SYMBOL_GPL(get_state_synchronize_sched
);
3328 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3330 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3332 * If a full RCU-sched grace period has elapsed since the earlier call to
3333 * get_state_synchronize_sched(), just return. Otherwise, invoke
3334 * synchronize_sched() to wait for a full grace period.
3336 * Yes, this function does not take counter wrap into account. But
3337 * counter wrap is harmless. If the counter wraps, we have waited for
3338 * more than 2 billion grace periods (and way more on a 64-bit system!),
3339 * so waiting for one additional grace period should be just fine.
3341 void cond_synchronize_sched(unsigned long oldstate
)
3343 unsigned long newstate
;
3346 * Ensure that this load happens before any RCU-destructive
3347 * actions the caller might carry out after we return.
3349 newstate
= smp_load_acquire(&rcu_sched_state
.completed
);
3350 if (ULONG_CMP_GE(oldstate
, newstate
))
3351 synchronize_sched();
3353 EXPORT_SYMBOL_GPL(cond_synchronize_sched
);
3355 /* Adjust sequence number for start of update-side operation. */
3356 static void rcu_seq_start(unsigned long *sp
)
3358 WRITE_ONCE(*sp
, *sp
+ 1);
3359 smp_mb(); /* Ensure update-side operation after counter increment. */
3360 WARN_ON_ONCE(!(*sp
& 0x1));
3363 /* Adjust sequence number for end of update-side operation. */
3364 static void rcu_seq_end(unsigned long *sp
)
3366 smp_mb(); /* Ensure update-side operation before counter increment. */
3367 WRITE_ONCE(*sp
, *sp
+ 1);
3368 WARN_ON_ONCE(*sp
& 0x1);
3371 /* Take a snapshot of the update side's sequence number. */
3372 static unsigned long rcu_seq_snap(unsigned long *sp
)
3376 s
= (READ_ONCE(*sp
) + 3) & ~0x1;
3377 smp_mb(); /* Above access must not bleed into critical section. */
3382 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3383 * full update-side operation has occurred.
3385 static bool rcu_seq_done(unsigned long *sp
, unsigned long s
)
3387 return ULONG_CMP_GE(READ_ONCE(*sp
), s
);
3390 /* Wrapper functions for expedited grace periods. */
3391 static void rcu_exp_gp_seq_start(struct rcu_state
*rsp
)
3393 rcu_seq_start(&rsp
->expedited_sequence
);
3395 static void rcu_exp_gp_seq_end(struct rcu_state
*rsp
)
3397 rcu_seq_end(&rsp
->expedited_sequence
);
3398 smp_mb(); /* Ensure that consecutive grace periods serialize. */
3400 static unsigned long rcu_exp_gp_seq_snap(struct rcu_state
*rsp
)
3402 smp_mb(); /* Caller's modifications seen first by other CPUs. */
3403 return rcu_seq_snap(&rsp
->expedited_sequence
);
3405 static bool rcu_exp_gp_seq_done(struct rcu_state
*rsp
, unsigned long s
)
3407 return rcu_seq_done(&rsp
->expedited_sequence
, s
);
3411 * Reset the ->expmaskinit values in the rcu_node tree to reflect any
3412 * recent CPU-online activity. Note that these masks are not cleared
3413 * when CPUs go offline, so they reflect the union of all CPUs that have
3414 * ever been online. This means that this function normally takes its
3415 * no-work-to-do fastpath.
3417 static void sync_exp_reset_tree_hotplug(struct rcu_state
*rsp
)
3420 unsigned long flags
;
3422 unsigned long oldmask
;
3423 int ncpus
= READ_ONCE(rsp
->ncpus
);
3424 struct rcu_node
*rnp
;
3425 struct rcu_node
*rnp_up
;
3427 /* If no new CPUs onlined since last time, nothing to do. */
3428 if (likely(ncpus
== rsp
->ncpus_snap
))
3430 rsp
->ncpus_snap
= ncpus
;
3433 * Each pass through the following loop propagates newly onlined
3434 * CPUs for the current rcu_node structure up the rcu_node tree.
3436 rcu_for_each_leaf_node(rsp
, rnp
) {
3437 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3438 if (rnp
->expmaskinit
== rnp
->expmaskinitnext
) {
3439 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
3440 continue; /* No new CPUs, nothing to do. */
3443 /* Update this node's mask, track old value for propagation. */
3444 oldmask
= rnp
->expmaskinit
;
3445 rnp
->expmaskinit
= rnp
->expmaskinitnext
;
3446 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
3448 /* If was already nonzero, nothing to propagate. */
3452 /* Propagate the new CPU up the tree. */
3453 mask
= rnp
->grpmask
;
3454 rnp_up
= rnp
->parent
;
3457 raw_spin_lock_irqsave_rcu_node(rnp_up
, flags
);
3458 if (rnp_up
->expmaskinit
)
3460 rnp_up
->expmaskinit
|= mask
;
3461 raw_spin_unlock_irqrestore(&rnp_up
->lock
, flags
);
3464 mask
= rnp_up
->grpmask
;
3465 rnp_up
= rnp_up
->parent
;
3471 * Reset the ->expmask values in the rcu_node tree in preparation for
3472 * a new expedited grace period.
3474 static void __maybe_unused
sync_exp_reset_tree(struct rcu_state
*rsp
)
3476 unsigned long flags
;
3477 struct rcu_node
*rnp
;
3479 sync_exp_reset_tree_hotplug(rsp
);
3480 rcu_for_each_node_breadth_first(rsp
, rnp
) {
3481 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3482 WARN_ON_ONCE(rnp
->expmask
);
3483 rnp
->expmask
= rnp
->expmaskinit
;
3484 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
3489 * Return non-zero if there is no RCU expedited grace period in progress
3490 * for the specified rcu_node structure, in other words, if all CPUs and
3491 * tasks covered by the specified rcu_node structure have done their bit
3492 * for the current expedited grace period. Works only for preemptible
3493 * RCU -- other RCU implementation use other means.
3495 * Caller must hold the root rcu_node's exp_funnel_mutex.
3497 static int sync_rcu_preempt_exp_done(struct rcu_node
*rnp
)
3499 return rnp
->exp_tasks
== NULL
&&
3500 READ_ONCE(rnp
->expmask
) == 0;
3504 * Report the exit from RCU read-side critical section for the last task
3505 * that queued itself during or before the current expedited preemptible-RCU
3506 * grace period. This event is reported either to the rcu_node structure on
3507 * which the task was queued or to one of that rcu_node structure's ancestors,
3508 * recursively up the tree. (Calm down, calm down, we do the recursion
3511 * Caller must hold the root rcu_node's exp_funnel_mutex and the
3512 * specified rcu_node structure's ->lock.
3514 static void __rcu_report_exp_rnp(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
3515 bool wake
, unsigned long flags
)
3516 __releases(rnp
->lock
)
3521 if (!sync_rcu_preempt_exp_done(rnp
)) {
3523 rcu_initiate_boost(rnp
, flags
);
3525 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
3528 if (rnp
->parent
== NULL
) {
3529 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
3531 smp_mb(); /* EGP done before wake_up(). */
3532 wake_up(&rsp
->expedited_wq
);
3536 mask
= rnp
->grpmask
;
3537 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
3539 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled */
3540 WARN_ON_ONCE(!(rnp
->expmask
& mask
));
3541 rnp
->expmask
&= ~mask
;
3546 * Report expedited quiescent state for specified node. This is a
3547 * lock-acquisition wrapper function for __rcu_report_exp_rnp().
3549 * Caller must hold the root rcu_node's exp_funnel_mutex.
3551 static void __maybe_unused
rcu_report_exp_rnp(struct rcu_state
*rsp
,
3552 struct rcu_node
*rnp
, bool wake
)
3554 unsigned long flags
;
3556 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3557 __rcu_report_exp_rnp(rsp
, rnp
, wake
, flags
);
3561 * Report expedited quiescent state for multiple CPUs, all covered by the
3562 * specified leaf rcu_node structure. Caller must hold the root
3563 * rcu_node's exp_funnel_mutex.
3565 static void rcu_report_exp_cpu_mult(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
3566 unsigned long mask
, bool wake
)
3568 unsigned long flags
;
3570 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3571 if (!(rnp
->expmask
& mask
)) {
3572 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
3575 rnp
->expmask
&= ~mask
;
3576 __rcu_report_exp_rnp(rsp
, rnp
, wake
, flags
); /* Releases rnp->lock. */
3580 * Report expedited quiescent state for specified rcu_data (CPU).
3581 * Caller must hold the root rcu_node's exp_funnel_mutex.
3583 static void rcu_report_exp_rdp(struct rcu_state
*rsp
, struct rcu_data
*rdp
,
3586 rcu_report_exp_cpu_mult(rsp
, rdp
->mynode
, rdp
->grpmask
, wake
);
3589 /* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
3590 static bool sync_exp_work_done(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
3591 struct rcu_data
*rdp
,
3592 atomic_long_t
*stat
, unsigned long s
)
3594 if (rcu_exp_gp_seq_done(rsp
, s
)) {
3596 mutex_unlock(&rnp
->exp_funnel_mutex
);
3598 mutex_unlock(&rdp
->exp_funnel_mutex
);
3599 /* Ensure test happens before caller kfree(). */
3600 smp_mb__before_atomic(); /* ^^^ */
3601 atomic_long_inc(stat
);
3608 * Funnel-lock acquisition for expedited grace periods. Returns a
3609 * pointer to the root rcu_node structure, or NULL if some other
3610 * task did the expedited grace period for us.
3612 static struct rcu_node
*exp_funnel_lock(struct rcu_state
*rsp
, unsigned long s
)
3614 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, raw_smp_processor_id());
3615 struct rcu_node
*rnp0
;
3616 struct rcu_node
*rnp1
= NULL
;
3619 * First try directly acquiring the root lock in order to reduce
3620 * latency in the common case where expedited grace periods are
3621 * rare. We check mutex_is_locked() to avoid pathological levels of
3622 * memory contention on ->exp_funnel_mutex in the heavy-load case.
3624 rnp0
= rcu_get_root(rsp
);
3625 if (!mutex_is_locked(&rnp0
->exp_funnel_mutex
)) {
3626 if (mutex_trylock(&rnp0
->exp_funnel_mutex
)) {
3627 if (sync_exp_work_done(rsp
, rnp0
, NULL
,
3628 &rdp
->expedited_workdone0
, s
))
3635 * Each pass through the following loop works its way
3636 * up the rcu_node tree, returning if others have done the
3637 * work or otherwise falls through holding the root rnp's
3638 * ->exp_funnel_mutex. The mapping from CPU to rcu_node structure
3639 * can be inexact, as it is just promoting locality and is not
3640 * strictly needed for correctness.
3642 if (sync_exp_work_done(rsp
, NULL
, NULL
, &rdp
->expedited_workdone1
, s
))
3644 mutex_lock(&rdp
->exp_funnel_mutex
);
3646 for (; rnp0
!= NULL
; rnp0
= rnp0
->parent
) {
3647 if (sync_exp_work_done(rsp
, rnp1
, rdp
,
3648 &rdp
->expedited_workdone2
, s
))
3650 mutex_lock(&rnp0
->exp_funnel_mutex
);
3652 mutex_unlock(&rnp1
->exp_funnel_mutex
);
3654 mutex_unlock(&rdp
->exp_funnel_mutex
);
3657 if (sync_exp_work_done(rsp
, rnp1
, rdp
,
3658 &rdp
->expedited_workdone3
, s
))
3663 /* Invoked on each online non-idle CPU for expedited quiescent state. */
3664 static void sync_sched_exp_handler(void *data
)
3666 struct rcu_data
*rdp
;
3667 struct rcu_node
*rnp
;
3668 struct rcu_state
*rsp
= data
;
3670 rdp
= this_cpu_ptr(rsp
->rda
);
3672 if (!(READ_ONCE(rnp
->expmask
) & rdp
->grpmask
) ||
3673 __this_cpu_read(rcu_sched_data
.cpu_no_qs
.b
.exp
))
3675 __this_cpu_write(rcu_sched_data
.cpu_no_qs
.b
.exp
, true);
3676 resched_cpu(smp_processor_id());
3679 /* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
3680 static void sync_sched_exp_online_cleanup(int cpu
)
3682 struct rcu_data
*rdp
;
3684 struct rcu_node
*rnp
;
3685 struct rcu_state
*rsp
= &rcu_sched_state
;
3687 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3689 if (!(READ_ONCE(rnp
->expmask
) & rdp
->grpmask
))
3691 ret
= smp_call_function_single(cpu
, sync_sched_exp_handler
, rsp
, 0);
3696 * Select the nodes that the upcoming expedited grace period needs
3699 static void sync_rcu_exp_select_cpus(struct rcu_state
*rsp
,
3700 smp_call_func_t func
)
3703 unsigned long flags
;
3705 unsigned long mask_ofl_test
;
3706 unsigned long mask_ofl_ipi
;
3708 struct rcu_node
*rnp
;
3710 sync_exp_reset_tree(rsp
);
3711 rcu_for_each_leaf_node(rsp
, rnp
) {
3712 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3714 /* Each pass checks a CPU for identity, offline, and idle. */
3716 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++) {
3717 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3718 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
3720 if (raw_smp_processor_id() == cpu
||
3721 !(atomic_add_return(0, &rdtp
->dynticks
) & 0x1))
3722 mask_ofl_test
|= rdp
->grpmask
;
3724 mask_ofl_ipi
= rnp
->expmask
& ~mask_ofl_test
;
3727 * Need to wait for any blocked tasks as well. Note that
3728 * additional blocking tasks will also block the expedited
3729 * GP until such time as the ->expmask bits are cleared.
3731 if (rcu_preempt_has_tasks(rnp
))
3732 rnp
->exp_tasks
= rnp
->blkd_tasks
.next
;
3733 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
3735 /* IPI the remaining CPUs for expedited quiescent state. */
3737 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++, mask
<<= 1) {
3738 if (!(mask_ofl_ipi
& mask
))
3741 ret
= smp_call_function_single(cpu
, func
, rsp
, 0);
3743 mask_ofl_ipi
&= ~mask
;
3746 /* Failed, raced with offline. */
3747 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3748 if (cpu_online(cpu
) &&
3749 (rnp
->expmask
& mask
)) {
3750 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
3751 schedule_timeout_uninterruptible(1);
3752 if (cpu_online(cpu
) &&
3753 (rnp
->expmask
& mask
))
3755 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3757 if (!(rnp
->expmask
& mask
))
3758 mask_ofl_ipi
&= ~mask
;
3759 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
3761 /* Report quiescent states for those that went offline. */
3762 mask_ofl_test
|= mask_ofl_ipi
;
3764 rcu_report_exp_cpu_mult(rsp
, rnp
, mask_ofl_test
, false);
3768 static void synchronize_sched_expedited_wait(struct rcu_state
*rsp
)
3771 unsigned long jiffies_stall
;
3772 unsigned long jiffies_start
;
3775 struct rcu_node
*rnp
;
3776 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
3779 jiffies_stall
= rcu_jiffies_till_stall_check();
3780 jiffies_start
= jiffies
;
3783 ret
= wait_event_interruptible_timeout(
3785 sync_rcu_preempt_exp_done(rnp_root
),
3787 if (ret
> 0 || sync_rcu_preempt_exp_done(rnp_root
))
3790 /* Hit a signal, disable CPU stall warnings. */
3791 wait_event(rsp
->expedited_wq
,
3792 sync_rcu_preempt_exp_done(rnp_root
));
3795 pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
3798 rcu_for_each_leaf_node(rsp
, rnp
) {
3799 ndetected
= rcu_print_task_exp_stall(rnp
);
3801 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++, mask
<<= 1) {
3802 struct rcu_data
*rdp
;
3804 if (!(rnp
->expmask
& mask
))
3807 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3808 pr_cont(" %d-%c%c%c", cpu
,
3809 "O."[cpu_online(cpu
)],
3810 "o."[!!(rdp
->grpmask
& rnp
->expmaskinit
)],
3811 "N."[!!(rdp
->grpmask
& rnp
->expmaskinitnext
)]);
3815 pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n",
3816 jiffies
- jiffies_start
, rsp
->expedited_sequence
,
3817 rnp_root
->expmask
, ".T"[!!rnp_root
->exp_tasks
]);
3819 pr_err("blocking rcu_node structures:");
3820 rcu_for_each_node_breadth_first(rsp
, rnp
) {
3821 if (rnp
== rnp_root
)
3822 continue; /* printed unconditionally */
3823 if (sync_rcu_preempt_exp_done(rnp
))
3825 pr_cont(" l=%u:%d-%d:%#lx/%c",
3826 rnp
->level
, rnp
->grplo
, rnp
->grphi
,
3828 ".T"[!!rnp
->exp_tasks
]);
3832 rcu_for_each_leaf_node(rsp
, rnp
) {
3834 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++, mask
<<= 1) {
3835 if (!(rnp
->expmask
& mask
))
3840 jiffies_stall
= 3 * rcu_jiffies_till_stall_check() + 3;
3845 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3847 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3848 * approach to force the grace period to end quickly. This consumes
3849 * significant time on all CPUs and is unfriendly to real-time workloads,
3850 * so is thus not recommended for any sort of common-case code. In fact,
3851 * if you are using synchronize_sched_expedited() in a loop, please
3852 * restructure your code to batch your updates, and then use a single
3853 * synchronize_sched() instead.
3855 * This implementation can be thought of as an application of sequence
3856 * locking to expedited grace periods, but using the sequence counter to
3857 * determine when someone else has already done the work instead of for
3860 void synchronize_sched_expedited(void)
3863 struct rcu_node
*rnp
;
3864 struct rcu_state
*rsp
= &rcu_sched_state
;
3866 /* If only one CPU, this is automatically a grace period. */
3867 if (rcu_blocking_is_gp())
3870 /* If expedited grace periods are prohibited, fall back to normal. */
3871 if (rcu_gp_is_normal()) {
3872 wait_rcu_gp(call_rcu_sched
);
3876 /* Take a snapshot of the sequence number. */
3877 s
= rcu_exp_gp_seq_snap(rsp
);
3879 rnp
= exp_funnel_lock(rsp
, s
);
3881 return; /* Someone else did our work for us. */
3883 rcu_exp_gp_seq_start(rsp
);
3884 sync_rcu_exp_select_cpus(rsp
, sync_sched_exp_handler
);
3885 synchronize_sched_expedited_wait(rsp
);
3887 rcu_exp_gp_seq_end(rsp
);
3888 mutex_unlock(&rnp
->exp_funnel_mutex
);
3890 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
3893 * Check to see if there is any immediate RCU-related work to be done
3894 * by the current CPU, for the specified type of RCU, returning 1 if so.
3895 * The checks are in order of increasing expense: checks that can be
3896 * carried out against CPU-local state are performed first. However,
3897 * we must check for CPU stalls first, else we might not get a chance.
3899 static int __rcu_pending(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
3901 struct rcu_node
*rnp
= rdp
->mynode
;
3903 rdp
->n_rcu_pending
++;
3905 /* Check for CPU stalls, if enabled. */
3906 check_cpu_stall(rsp
, rdp
);
3908 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3909 if (rcu_nohz_full_cpu(rsp
))
3912 /* Is the RCU core waiting for a quiescent state from this CPU? */
3913 if (rcu_scheduler_fully_active
&&
3914 rdp
->core_needs_qs
&& rdp
->cpu_no_qs
.b
.norm
&&
3915 rdp
->rcu_qs_ctr_snap
== __this_cpu_read(rcu_qs_ctr
)) {
3916 rdp
->n_rp_core_needs_qs
++;
3917 } else if (rdp
->core_needs_qs
&&
3918 (!rdp
->cpu_no_qs
.b
.norm
||
3919 rdp
->rcu_qs_ctr_snap
!= __this_cpu_read(rcu_qs_ctr
))) {
3920 rdp
->n_rp_report_qs
++;
3924 /* Does this CPU have callbacks ready to invoke? */
3925 if (cpu_has_callbacks_ready_to_invoke(rdp
)) {
3926 rdp
->n_rp_cb_ready
++;
3930 /* Has RCU gone idle with this CPU needing another grace period? */
3931 if (cpu_needs_another_gp(rsp
, rdp
)) {
3932 rdp
->n_rp_cpu_needs_gp
++;
3936 /* Has another RCU grace period completed? */
3937 if (READ_ONCE(rnp
->completed
) != rdp
->completed
) { /* outside lock */
3938 rdp
->n_rp_gp_completed
++;
3942 /* Has a new RCU grace period started? */
3943 if (READ_ONCE(rnp
->gpnum
) != rdp
->gpnum
||
3944 unlikely(READ_ONCE(rdp
->gpwrap
))) { /* outside lock */
3945 rdp
->n_rp_gp_started
++;
3949 /* Does this CPU need a deferred NOCB wakeup? */
3950 if (rcu_nocb_need_deferred_wakeup(rdp
)) {
3951 rdp
->n_rp_nocb_defer_wakeup
++;
3956 rdp
->n_rp_need_nothing
++;
3961 * Check to see if there is any immediate RCU-related work to be done
3962 * by the current CPU, returning 1 if so. This function is part of the
3963 * RCU implementation; it is -not- an exported member of the RCU API.
3965 static int rcu_pending(void)
3967 struct rcu_state
*rsp
;
3969 for_each_rcu_flavor(rsp
)
3970 if (__rcu_pending(rsp
, this_cpu_ptr(rsp
->rda
)))
3976 * Return true if the specified CPU has any callback. If all_lazy is
3977 * non-NULL, store an indication of whether all callbacks are lazy.
3978 * (If there are no callbacks, all of them are deemed to be lazy.)
3980 static bool __maybe_unused
rcu_cpu_has_callbacks(bool *all_lazy
)
3984 struct rcu_data
*rdp
;
3985 struct rcu_state
*rsp
;
3987 for_each_rcu_flavor(rsp
) {
3988 rdp
= this_cpu_ptr(rsp
->rda
);
3992 if (rdp
->qlen
!= rdp
->qlen_lazy
|| !all_lazy
) {
4003 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
4004 * the compiler is expected to optimize this away.
4006 static void _rcu_barrier_trace(struct rcu_state
*rsp
, const char *s
,
4007 int cpu
, unsigned long done
)
4009 trace_rcu_barrier(rsp
->name
, s
, cpu
,
4010 atomic_read(&rsp
->barrier_cpu_count
), done
);
4014 * RCU callback function for _rcu_barrier(). If we are last, wake
4015 * up the task executing _rcu_barrier().
4017 static void rcu_barrier_callback(struct rcu_head
*rhp
)
4019 struct rcu_data
*rdp
= container_of(rhp
, struct rcu_data
, barrier_head
);
4020 struct rcu_state
*rsp
= rdp
->rsp
;
4022 if (atomic_dec_and_test(&rsp
->barrier_cpu_count
)) {
4023 _rcu_barrier_trace(rsp
, "LastCB", -1, rsp
->barrier_sequence
);
4024 complete(&rsp
->barrier_completion
);
4026 _rcu_barrier_trace(rsp
, "CB", -1, rsp
->barrier_sequence
);
4031 * Called with preemption disabled, and from cross-cpu IRQ context.
4033 static void rcu_barrier_func(void *type
)
4035 struct rcu_state
*rsp
= type
;
4036 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
4038 _rcu_barrier_trace(rsp
, "IRQ", -1, rsp
->barrier_sequence
);
4039 atomic_inc(&rsp
->barrier_cpu_count
);
4040 rsp
->call(&rdp
->barrier_head
, rcu_barrier_callback
);
4044 * Orchestrate the specified type of RCU barrier, waiting for all
4045 * RCU callbacks of the specified type to complete.
4047 static void _rcu_barrier(struct rcu_state
*rsp
)
4050 struct rcu_data
*rdp
;
4051 unsigned long s
= rcu_seq_snap(&rsp
->barrier_sequence
);
4053 _rcu_barrier_trace(rsp
, "Begin", -1, s
);
4055 /* Take mutex to serialize concurrent rcu_barrier() requests. */
4056 mutex_lock(&rsp
->barrier_mutex
);
4058 /* Did someone else do our work for us? */
4059 if (rcu_seq_done(&rsp
->barrier_sequence
, s
)) {
4060 _rcu_barrier_trace(rsp
, "EarlyExit", -1, rsp
->barrier_sequence
);
4061 smp_mb(); /* caller's subsequent code after above check. */
4062 mutex_unlock(&rsp
->barrier_mutex
);
4066 /* Mark the start of the barrier operation. */
4067 rcu_seq_start(&rsp
->barrier_sequence
);
4068 _rcu_barrier_trace(rsp
, "Inc1", -1, rsp
->barrier_sequence
);
4071 * Initialize the count to one rather than to zero in order to
4072 * avoid a too-soon return to zero in case of a short grace period
4073 * (or preemption of this task). Exclude CPU-hotplug operations
4074 * to ensure that no offline CPU has callbacks queued.
4076 init_completion(&rsp
->barrier_completion
);
4077 atomic_set(&rsp
->barrier_cpu_count
, 1);
4081 * Force each CPU with callbacks to register a new callback.
4082 * When that callback is invoked, we will know that all of the
4083 * corresponding CPU's preceding callbacks have been invoked.
4085 for_each_possible_cpu(cpu
) {
4086 if (!cpu_online(cpu
) && !rcu_is_nocb_cpu(cpu
))
4088 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
4089 if (rcu_is_nocb_cpu(cpu
)) {
4090 if (!rcu_nocb_cpu_needs_barrier(rsp
, cpu
)) {
4091 _rcu_barrier_trace(rsp
, "OfflineNoCB", cpu
,
4092 rsp
->barrier_sequence
);
4094 _rcu_barrier_trace(rsp
, "OnlineNoCB", cpu
,
4095 rsp
->barrier_sequence
);
4096 smp_mb__before_atomic();
4097 atomic_inc(&rsp
->barrier_cpu_count
);
4098 __call_rcu(&rdp
->barrier_head
,
4099 rcu_barrier_callback
, rsp
, cpu
, 0);
4101 } else if (READ_ONCE(rdp
->qlen
)) {
4102 _rcu_barrier_trace(rsp
, "OnlineQ", cpu
,
4103 rsp
->barrier_sequence
);
4104 smp_call_function_single(cpu
, rcu_barrier_func
, rsp
, 1);
4106 _rcu_barrier_trace(rsp
, "OnlineNQ", cpu
,
4107 rsp
->barrier_sequence
);
4113 * Now that we have an rcu_barrier_callback() callback on each
4114 * CPU, and thus each counted, remove the initial count.
4116 if (atomic_dec_and_test(&rsp
->barrier_cpu_count
))
4117 complete(&rsp
->barrier_completion
);
4119 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4120 wait_for_completion(&rsp
->barrier_completion
);
4122 /* Mark the end of the barrier operation. */
4123 _rcu_barrier_trace(rsp
, "Inc2", -1, rsp
->barrier_sequence
);
4124 rcu_seq_end(&rsp
->barrier_sequence
);
4126 /* Other rcu_barrier() invocations can now safely proceed. */
4127 mutex_unlock(&rsp
->barrier_mutex
);
4131 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
4133 void rcu_barrier_bh(void)
4135 _rcu_barrier(&rcu_bh_state
);
4137 EXPORT_SYMBOL_GPL(rcu_barrier_bh
);
4140 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
4142 void rcu_barrier_sched(void)
4144 _rcu_barrier(&rcu_sched_state
);
4146 EXPORT_SYMBOL_GPL(rcu_barrier_sched
);
4149 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4150 * first CPU in a given leaf rcu_node structure coming online. The caller
4151 * must hold the corresponding leaf rcu_node ->lock with interrrupts
4154 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
)
4157 struct rcu_node
*rnp
= rnp_leaf
;
4160 mask
= rnp
->grpmask
;
4164 raw_spin_lock_rcu_node(rnp
); /* Interrupts already disabled. */
4165 rnp
->qsmaskinit
|= mask
;
4166 raw_spin_unlock(&rnp
->lock
); /* Interrupts remain disabled. */
4171 * Do boot-time initialization of a CPU's per-CPU RCU data.
4174 rcu_boot_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
4176 unsigned long flags
;
4177 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
4178 struct rcu_node
*rnp
= rcu_get_root(rsp
);
4180 /* Set up local state, ensuring consistent view of global state. */
4181 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
4182 rdp
->grpmask
= 1UL << (cpu
- rdp
->mynode
->grplo
);
4183 rdp
->dynticks
= &per_cpu(rcu_dynticks
, cpu
);
4184 WARN_ON_ONCE(rdp
->dynticks
->dynticks_nesting
!= DYNTICK_TASK_EXIT_IDLE
);
4185 WARN_ON_ONCE(atomic_read(&rdp
->dynticks
->dynticks
) != 1);
4188 mutex_init(&rdp
->exp_funnel_mutex
);
4189 rcu_boot_init_nocb_percpu_data(rdp
);
4190 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
4194 * Initialize a CPU's per-CPU RCU data. Note that only one online or
4195 * offline event can be happening at a given time. Note also that we
4196 * can accept some slop in the rsp->completed access due to the fact
4197 * that this CPU cannot possibly have any RCU callbacks in flight yet.
4200 rcu_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
4202 unsigned long flags
;
4204 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
4205 struct rcu_node
*rnp
= rcu_get_root(rsp
);
4207 /* Set up local state, ensuring consistent view of global state. */
4208 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
4209 rdp
->qlen_last_fqs_check
= 0;
4210 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
4211 rdp
->blimit
= blimit
;
4213 init_callback_list(rdp
); /* Re-enable callbacks on this CPU. */
4214 rdp
->dynticks
->dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
;
4215 rcu_sysidle_init_percpu_data(rdp
->dynticks
);
4216 atomic_set(&rdp
->dynticks
->dynticks
,
4217 (atomic_read(&rdp
->dynticks
->dynticks
) & ~0x1) + 1);
4218 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
4221 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4222 * propagation up the rcu_node tree will happen at the beginning
4223 * of the next grace period.
4226 mask
= rdp
->grpmask
;
4227 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
4228 rnp
->qsmaskinitnext
|= mask
;
4229 rnp
->expmaskinitnext
|= mask
;
4230 if (!rdp
->beenonline
)
4231 WRITE_ONCE(rsp
->ncpus
, READ_ONCE(rsp
->ncpus
) + 1);
4232 rdp
->beenonline
= true; /* We have now been online. */
4233 rdp
->gpnum
= rnp
->completed
; /* Make CPU later note any new GP. */
4234 rdp
->completed
= rnp
->completed
;
4235 rdp
->cpu_no_qs
.b
.norm
= true;
4236 rdp
->rcu_qs_ctr_snap
= per_cpu(rcu_qs_ctr
, cpu
);
4237 rdp
->core_needs_qs
= false;
4238 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpuonl"));
4239 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
4242 static void rcu_prepare_cpu(int cpu
)
4244 struct rcu_state
*rsp
;
4246 for_each_rcu_flavor(rsp
)
4247 rcu_init_percpu_data(cpu
, rsp
);
4251 * Handle CPU online/offline notification events.
4253 int rcu_cpu_notify(struct notifier_block
*self
,
4254 unsigned long action
, void *hcpu
)
4256 long cpu
= (long)hcpu
;
4257 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state_p
->rda
, cpu
);
4258 struct rcu_node
*rnp
= rdp
->mynode
;
4259 struct rcu_state
*rsp
;
4262 case CPU_UP_PREPARE
:
4263 case CPU_UP_PREPARE_FROZEN
:
4264 rcu_prepare_cpu(cpu
);
4265 rcu_prepare_kthreads(cpu
);
4266 rcu_spawn_all_nocb_kthreads(cpu
);
4269 case CPU_DOWN_FAILED
:
4270 sync_sched_exp_online_cleanup(cpu
);
4271 rcu_boost_kthread_setaffinity(rnp
, -1);
4273 case CPU_DOWN_PREPARE
:
4274 rcu_boost_kthread_setaffinity(rnp
, cpu
);
4277 case CPU_DYING_FROZEN
:
4278 for_each_rcu_flavor(rsp
)
4279 rcu_cleanup_dying_cpu(rsp
);
4281 case CPU_DYING_IDLE
:
4282 /* QS for any half-done expedited RCU-sched GP. */
4284 rcu_report_exp_rdp(&rcu_sched_state
,
4285 this_cpu_ptr(rcu_sched_state
.rda
), true);
4288 for_each_rcu_flavor(rsp
) {
4289 rcu_cleanup_dying_idle_cpu(cpu
, rsp
);
4293 case CPU_DEAD_FROZEN
:
4294 case CPU_UP_CANCELED
:
4295 case CPU_UP_CANCELED_FROZEN
:
4296 for_each_rcu_flavor(rsp
) {
4297 rcu_cleanup_dead_cpu(cpu
, rsp
);
4298 do_nocb_deferred_wakeup(per_cpu_ptr(rsp
->rda
, cpu
));
4307 static int rcu_pm_notify(struct notifier_block
*self
,
4308 unsigned long action
, void *hcpu
)
4311 case PM_HIBERNATION_PREPARE
:
4312 case PM_SUSPEND_PREPARE
:
4313 if (nr_cpu_ids
<= 256) /* Expediting bad for large systems. */
4316 case PM_POST_HIBERNATION
:
4317 case PM_POST_SUSPEND
:
4318 if (nr_cpu_ids
<= 256) /* Expediting bad for large systems. */
4319 rcu_unexpedite_gp();
4328 * Spawn the kthreads that handle each RCU flavor's grace periods.
4330 static int __init
rcu_spawn_gp_kthread(void)
4332 unsigned long flags
;
4333 int kthread_prio_in
= kthread_prio
;
4334 struct rcu_node
*rnp
;
4335 struct rcu_state
*rsp
;
4336 struct sched_param sp
;
4337 struct task_struct
*t
;
4339 /* Force priority into range. */
4340 if (IS_ENABLED(CONFIG_RCU_BOOST
) && kthread_prio
< 1)
4342 else if (kthread_prio
< 0)
4344 else if (kthread_prio
> 99)
4346 if (kthread_prio
!= kthread_prio_in
)
4347 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4348 kthread_prio
, kthread_prio_in
);
4350 rcu_scheduler_fully_active
= 1;
4351 for_each_rcu_flavor(rsp
) {
4352 t
= kthread_create(rcu_gp_kthread
, rsp
, "%s", rsp
->name
);
4354 rnp
= rcu_get_root(rsp
);
4355 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
4356 rsp
->gp_kthread
= t
;
4358 sp
.sched_priority
= kthread_prio
;
4359 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
4361 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
4364 rcu_spawn_nocb_kthreads();
4365 rcu_spawn_boost_kthreads();
4368 early_initcall(rcu_spawn_gp_kthread
);
4371 * This function is invoked towards the end of the scheduler's initialization
4372 * process. Before this is called, the idle task might contain
4373 * RCU read-side critical sections (during which time, this idle
4374 * task is booting the system). After this function is called, the
4375 * idle tasks are prohibited from containing RCU read-side critical
4376 * sections. This function also enables RCU lockdep checking.
4378 void rcu_scheduler_starting(void)
4380 WARN_ON(num_online_cpus() != 1);
4381 WARN_ON(nr_context_switches() > 0);
4382 rcu_scheduler_active
= 1;
4386 * Compute the per-level fanout, either using the exact fanout specified
4387 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4389 static void __init
rcu_init_levelspread(int *levelspread
, const int *levelcnt
)
4393 if (rcu_fanout_exact
) {
4394 levelspread
[rcu_num_lvls
- 1] = rcu_fanout_leaf
;
4395 for (i
= rcu_num_lvls
- 2; i
>= 0; i
--)
4396 levelspread
[i
] = RCU_FANOUT
;
4402 for (i
= rcu_num_lvls
- 1; i
>= 0; i
--) {
4404 levelspread
[i
] = (cprv
+ ccur
- 1) / ccur
;
4411 * Helper function for rcu_init() that initializes one rcu_state structure.
4413 static void __init
rcu_init_one(struct rcu_state
*rsp
)
4415 static const char * const buf
[] = RCU_NODE_NAME_INIT
;
4416 static const char * const fqs
[] = RCU_FQS_NAME_INIT
;
4417 static const char * const exp
[] = RCU_EXP_NAME_INIT
;
4418 static struct lock_class_key rcu_node_class
[RCU_NUM_LVLS
];
4419 static struct lock_class_key rcu_fqs_class
[RCU_NUM_LVLS
];
4420 static struct lock_class_key rcu_exp_class
[RCU_NUM_LVLS
];
4421 static u8 fl_mask
= 0x1;
4423 int levelcnt
[RCU_NUM_LVLS
]; /* # nodes in each level. */
4424 int levelspread
[RCU_NUM_LVLS
]; /* kids/node in each level. */
4428 struct rcu_node
*rnp
;
4430 BUILD_BUG_ON(RCU_NUM_LVLS
> ARRAY_SIZE(buf
)); /* Fix buf[] init! */
4432 /* Silence gcc 4.8 false positive about array index out of range. */
4433 if (rcu_num_lvls
<= 0 || rcu_num_lvls
> RCU_NUM_LVLS
)
4434 panic("rcu_init_one: rcu_num_lvls out of range");
4436 /* Initialize the level-tracking arrays. */
4438 for (i
= 0; i
< rcu_num_lvls
; i
++)
4439 levelcnt
[i
] = num_rcu_lvl
[i
];
4440 for (i
= 1; i
< rcu_num_lvls
; i
++)
4441 rsp
->level
[i
] = rsp
->level
[i
- 1] + levelcnt
[i
- 1];
4442 rcu_init_levelspread(levelspread
, levelcnt
);
4443 rsp
->flavor_mask
= fl_mask
;
4446 /* Initialize the elements themselves, starting from the leaves. */
4448 for (i
= rcu_num_lvls
- 1; i
>= 0; i
--) {
4449 cpustride
*= levelspread
[i
];
4450 rnp
= rsp
->level
[i
];
4451 for (j
= 0; j
< levelcnt
[i
]; j
++, rnp
++) {
4452 raw_spin_lock_init(&rnp
->lock
);
4453 lockdep_set_class_and_name(&rnp
->lock
,
4454 &rcu_node_class
[i
], buf
[i
]);
4455 raw_spin_lock_init(&rnp
->fqslock
);
4456 lockdep_set_class_and_name(&rnp
->fqslock
,
4457 &rcu_fqs_class
[i
], fqs
[i
]);
4458 rnp
->gpnum
= rsp
->gpnum
;
4459 rnp
->completed
= rsp
->completed
;
4461 rnp
->qsmaskinit
= 0;
4462 rnp
->grplo
= j
* cpustride
;
4463 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
4464 if (rnp
->grphi
>= nr_cpu_ids
)
4465 rnp
->grphi
= nr_cpu_ids
- 1;
4471 rnp
->grpnum
= j
% levelspread
[i
- 1];
4472 rnp
->grpmask
= 1UL << rnp
->grpnum
;
4473 rnp
->parent
= rsp
->level
[i
- 1] +
4474 j
/ levelspread
[i
- 1];
4477 INIT_LIST_HEAD(&rnp
->blkd_tasks
);
4478 rcu_init_one_nocb(rnp
);
4479 mutex_init(&rnp
->exp_funnel_mutex
);
4480 lockdep_set_class_and_name(&rnp
->exp_funnel_mutex
,
4481 &rcu_exp_class
[i
], exp
[i
]);
4485 init_waitqueue_head(&rsp
->gp_wq
);
4486 init_waitqueue_head(&rsp
->expedited_wq
);
4487 rnp
= rsp
->level
[rcu_num_lvls
- 1];
4488 for_each_possible_cpu(i
) {
4489 while (i
> rnp
->grphi
)
4491 per_cpu_ptr(rsp
->rda
, i
)->mynode
= rnp
;
4492 rcu_boot_init_percpu_data(i
, rsp
);
4494 list_add(&rsp
->flavors
, &rcu_struct_flavors
);
4498 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4499 * replace the definitions in tree.h because those are needed to size
4500 * the ->node array in the rcu_state structure.
4502 static void __init
rcu_init_geometry(void)
4506 int rcu_capacity
[RCU_NUM_LVLS
];
4509 * Initialize any unspecified boot parameters.
4510 * The default values of jiffies_till_first_fqs and
4511 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4512 * value, which is a function of HZ, then adding one for each
4513 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4515 d
= RCU_JIFFIES_TILL_FORCE_QS
+ nr_cpu_ids
/ RCU_JIFFIES_FQS_DIV
;
4516 if (jiffies_till_first_fqs
== ULONG_MAX
)
4517 jiffies_till_first_fqs
= d
;
4518 if (jiffies_till_next_fqs
== ULONG_MAX
)
4519 jiffies_till_next_fqs
= d
;
4521 /* If the compile-time values are accurate, just leave. */
4522 if (rcu_fanout_leaf
== RCU_FANOUT_LEAF
&&
4523 nr_cpu_ids
== NR_CPUS
)
4525 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4526 rcu_fanout_leaf
, nr_cpu_ids
);
4529 * The boot-time rcu_fanout_leaf parameter must be at least two
4530 * and cannot exceed the number of bits in the rcu_node masks.
4531 * Complain and fall back to the compile-time values if this
4532 * limit is exceeded.
4534 if (rcu_fanout_leaf
< 2 ||
4535 rcu_fanout_leaf
> sizeof(unsigned long) * 8) {
4536 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
4542 * Compute number of nodes that can be handled an rcu_node tree
4543 * with the given number of levels.
4545 rcu_capacity
[0] = rcu_fanout_leaf
;
4546 for (i
= 1; i
< RCU_NUM_LVLS
; i
++)
4547 rcu_capacity
[i
] = rcu_capacity
[i
- 1] * RCU_FANOUT
;
4550 * The tree must be able to accommodate the configured number of CPUs.
4551 * If this limit is exceeded, fall back to the compile-time values.
4553 if (nr_cpu_ids
> rcu_capacity
[RCU_NUM_LVLS
- 1]) {
4554 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
4559 /* Calculate the number of levels in the tree. */
4560 for (i
= 0; nr_cpu_ids
> rcu_capacity
[i
]; i
++) {
4562 rcu_num_lvls
= i
+ 1;
4564 /* Calculate the number of rcu_nodes at each level of the tree. */
4565 for (i
= 0; i
< rcu_num_lvls
; i
++) {
4566 int cap
= rcu_capacity
[(rcu_num_lvls
- 1) - i
];
4567 num_rcu_lvl
[i
] = DIV_ROUND_UP(nr_cpu_ids
, cap
);
4570 /* Calculate the total number of rcu_node structures. */
4572 for (i
= 0; i
< rcu_num_lvls
; i
++)
4573 rcu_num_nodes
+= num_rcu_lvl
[i
];
4577 * Dump out the structure of the rcu_node combining tree associated
4578 * with the rcu_state structure referenced by rsp.
4580 static void __init
rcu_dump_rcu_node_tree(struct rcu_state
*rsp
)
4583 struct rcu_node
*rnp
;
4585 pr_info("rcu_node tree layout dump\n");
4587 rcu_for_each_node_breadth_first(rsp
, rnp
) {
4588 if (rnp
->level
!= level
) {
4593 pr_cont("%d:%d ^%d ", rnp
->grplo
, rnp
->grphi
, rnp
->grpnum
);
4598 void __init
rcu_init(void)
4602 rcu_early_boot_tests();
4604 rcu_bootup_announce();
4605 rcu_init_geometry();
4606 rcu_init_one(&rcu_bh_state
);
4607 rcu_init_one(&rcu_sched_state
);
4609 rcu_dump_rcu_node_tree(&rcu_sched_state
);
4610 __rcu_init_preempt();
4611 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
4614 * We don't need protection against CPU-hotplug here because
4615 * this is called early in boot, before either interrupts
4616 * or the scheduler are operational.
4618 cpu_notifier(rcu_cpu_notify
, 0);
4619 pm_notifier(rcu_pm_notify
, 0);
4620 for_each_online_cpu(cpu
)
4621 rcu_cpu_notify(NULL
, CPU_UP_PREPARE
, (void *)(long)cpu
);
4624 #include "tree_plugin.h"