1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
13 * There are no locks covering percpu hardirq/softirq time.
14 * They are only modified in vtime_account, on corresponding CPU
15 * with interrupts disabled. So, writes are safe.
16 * They are read and saved off onto struct rq in update_rq_clock().
17 * This may result in other CPU reading this CPU's irq time and can
18 * race with irq/vtime_account on this CPU. We would either get old
19 * or new value with a side effect of accounting a slice of irq time to wrong
20 * task when irq is in progress while we read rq->clock. That is a worthy
21 * compromise in place of having locks on each irq in account_system_time.
23 DEFINE_PER_CPU(u64
, cpu_hardirq_time
);
24 DEFINE_PER_CPU(u64
, cpu_softirq_time
);
26 static DEFINE_PER_CPU(u64
, irq_start_time
);
27 static int sched_clock_irqtime
;
29 void enable_sched_clock_irqtime(void)
31 sched_clock_irqtime
= 1;
34 void disable_sched_clock_irqtime(void)
36 sched_clock_irqtime
= 0;
40 DEFINE_PER_CPU(seqcount_t
, irq_time_seq
);
41 #endif /* CONFIG_64BIT */
44 * Called before incrementing preempt_count on {soft,}irq_enter
45 * and before decrementing preempt_count on {soft,}irq_exit.
47 void irqtime_account_irq(struct task_struct
*curr
)
53 if (!sched_clock_irqtime
)
56 local_irq_save(flags
);
58 cpu
= smp_processor_id();
59 delta
= sched_clock_cpu(cpu
) - __this_cpu_read(irq_start_time
);
60 __this_cpu_add(irq_start_time
, delta
);
62 irq_time_write_begin();
64 * We do not account for softirq time from ksoftirqd here.
65 * We want to continue accounting softirq time to ksoftirqd thread
66 * in that case, so as not to confuse scheduler with a special task
67 * that do not consume any time, but still wants to run.
70 __this_cpu_add(cpu_hardirq_time
, delta
);
71 else if (in_serving_softirq() && curr
!= this_cpu_ksoftirqd())
72 __this_cpu_add(cpu_softirq_time
, delta
);
75 local_irq_restore(flags
);
77 EXPORT_SYMBOL_GPL(irqtime_account_irq
);
79 static int irqtime_account_hi_update(void)
81 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
86 local_irq_save(flags
);
87 latest_ns
= this_cpu_read(cpu_hardirq_time
);
88 if (nsecs_to_cputime64(latest_ns
) > cpustat
[CPUTIME_IRQ
])
90 local_irq_restore(flags
);
94 static int irqtime_account_si_update(void)
96 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
101 local_irq_save(flags
);
102 latest_ns
= this_cpu_read(cpu_softirq_time
);
103 if (nsecs_to_cputime64(latest_ns
) > cpustat
[CPUTIME_SOFTIRQ
])
105 local_irq_restore(flags
);
109 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
111 #define sched_clock_irqtime (0)
113 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
115 static inline void task_group_account_field(struct task_struct
*p
, int index
,
119 * Since all updates are sure to touch the root cgroup, we
120 * get ourselves ahead and touch it first. If the root cgroup
121 * is the only cgroup, then nothing else should be necessary.
124 __this_cpu_add(kernel_cpustat
.cpustat
[index
], tmp
);
126 cpuacct_account_field(p
, index
, tmp
);
130 * Account user cpu time to a process.
131 * @p: the process that the cpu time gets accounted to
132 * @cputime: the cpu time spent in user space since the last update
133 * @cputime_scaled: cputime scaled by cpu frequency
135 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
136 cputime_t cputime_scaled
)
140 /* Add user time to process. */
142 p
->utimescaled
+= cputime_scaled
;
143 account_group_user_time(p
, cputime
);
145 index
= (task_nice(p
) > 0) ? CPUTIME_NICE
: CPUTIME_USER
;
147 /* Add user time to cpustat. */
148 task_group_account_field(p
, index
, (__force u64
) cputime
);
150 /* Account for user time used */
151 acct_account_cputime(p
);
155 * Account guest cpu time to a process.
156 * @p: the process that the cpu time gets accounted to
157 * @cputime: the cpu time spent in virtual machine since the last update
158 * @cputime_scaled: cputime scaled by cpu frequency
160 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
161 cputime_t cputime_scaled
)
163 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
165 /* Add guest time to process. */
167 p
->utimescaled
+= cputime_scaled
;
168 account_group_user_time(p
, cputime
);
171 /* Add guest time to cpustat. */
172 if (task_nice(p
) > 0) {
173 cpustat
[CPUTIME_NICE
] += (__force u64
) cputime
;
174 cpustat
[CPUTIME_GUEST_NICE
] += (__force u64
) cputime
;
176 cpustat
[CPUTIME_USER
] += (__force u64
) cputime
;
177 cpustat
[CPUTIME_GUEST
] += (__force u64
) cputime
;
182 * Account system cpu time to a process and desired cpustat field
183 * @p: the process that the cpu time gets accounted to
184 * @cputime: the cpu time spent in kernel space since the last update
185 * @cputime_scaled: cputime scaled by cpu frequency
186 * @target_cputime64: pointer to cpustat field that has to be updated
189 void __account_system_time(struct task_struct
*p
, cputime_t cputime
,
190 cputime_t cputime_scaled
, int index
)
192 /* Add system time to process. */
194 p
->stimescaled
+= cputime_scaled
;
195 account_group_system_time(p
, cputime
);
197 /* Add system time to cpustat. */
198 task_group_account_field(p
, index
, (__force u64
) cputime
);
200 /* Account for system time used */
201 acct_account_cputime(p
);
205 * Account system cpu time to a process.
206 * @p: the process that the cpu time gets accounted to
207 * @hardirq_offset: the offset to subtract from hardirq_count()
208 * @cputime: the cpu time spent in kernel space since the last update
209 * @cputime_scaled: cputime scaled by cpu frequency
211 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
212 cputime_t cputime
, cputime_t cputime_scaled
)
216 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
217 account_guest_time(p
, cputime
, cputime_scaled
);
221 if (hardirq_count() - hardirq_offset
)
223 else if (in_serving_softirq())
224 index
= CPUTIME_SOFTIRQ
;
226 index
= CPUTIME_SYSTEM
;
228 __account_system_time(p
, cputime
, cputime_scaled
, index
);
232 * Account for involuntary wait time.
233 * @cputime: the cpu time spent in involuntary wait
235 void account_steal_time(cputime_t cputime
)
237 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
239 cpustat
[CPUTIME_STEAL
] += (__force u64
) cputime
;
243 * Account for idle time.
244 * @cputime: the cpu time spent in idle wait
246 void account_idle_time(cputime_t cputime
)
248 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
249 struct rq
*rq
= this_rq();
251 if (atomic_read(&rq
->nr_iowait
) > 0)
252 cpustat
[CPUTIME_IOWAIT
] += (__force u64
) cputime
;
254 cpustat
[CPUTIME_IDLE
] += (__force u64
) cputime
;
257 static __always_inline
bool steal_account_process_tick(void)
259 #ifdef CONFIG_PARAVIRT
260 if (static_key_false(¶virt_steal_enabled
)) {
264 steal
= paravirt_steal_clock(smp_processor_id());
265 steal
-= this_rq()->prev_steal_time
;
268 * cputime_t may be less precise than nsecs (eg: if it's
269 * based on jiffies). Lets cast the result to cputime
270 * granularity and account the rest on the next rounds.
272 steal_ct
= nsecs_to_cputime(steal
);
273 this_rq()->prev_steal_time
+= cputime_to_nsecs(steal_ct
);
275 account_steal_time(steal_ct
);
283 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
284 * tasks (sum on group iteration) belonging to @tsk's group.
286 void thread_group_cputime(struct task_struct
*tsk
, struct task_cputime
*times
)
288 struct signal_struct
*sig
= tsk
->signal
;
289 cputime_t utime
, stime
;
290 struct task_struct
*t
;
291 unsigned int seq
, nextseq
;
295 /* Attempt a lockless read on the first round. */
299 flags
= read_seqbegin_or_lock_irqsave(&sig
->stats_lock
, &seq
);
300 times
->utime
= sig
->utime
;
301 times
->stime
= sig
->stime
;
302 times
->sum_exec_runtime
= sig
->sum_sched_runtime
;
304 for_each_thread(tsk
, t
) {
305 task_cputime(t
, &utime
, &stime
);
306 times
->utime
+= utime
;
307 times
->stime
+= stime
;
308 times
->sum_exec_runtime
+= task_sched_runtime(t
);
310 /* If lockless access failed, take the lock. */
312 } while (need_seqretry(&sig
->stats_lock
, seq
));
313 done_seqretry_irqrestore(&sig
->stats_lock
, seq
, flags
);
317 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
319 * Account a tick to a process and cpustat
320 * @p: the process that the cpu time gets accounted to
321 * @user_tick: is the tick from userspace
322 * @rq: the pointer to rq
324 * Tick demultiplexing follows the order
325 * - pending hardirq update
326 * - pending softirq update
330 * - check for guest_time
331 * - else account as system_time
333 * Check for hardirq is done both for system and user time as there is
334 * no timer going off while we are on hardirq and hence we may never get an
335 * opportunity to update it solely in system time.
336 * p->stime and friends are only updated on system time and not on irq
337 * softirq as those do not count in task exec_runtime any more.
339 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
340 struct rq
*rq
, int ticks
)
342 cputime_t scaled
= cputime_to_scaled(cputime_one_jiffy
);
343 u64 cputime
= (__force u64
) cputime_one_jiffy
;
344 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
346 if (steal_account_process_tick())
352 if (irqtime_account_hi_update()) {
353 cpustat
[CPUTIME_IRQ
] += cputime
;
354 } else if (irqtime_account_si_update()) {
355 cpustat
[CPUTIME_SOFTIRQ
] += cputime
;
356 } else if (this_cpu_ksoftirqd() == p
) {
358 * ksoftirqd time do not get accounted in cpu_softirq_time.
359 * So, we have to handle it separately here.
360 * Also, p->stime needs to be updated for ksoftirqd.
362 __account_system_time(p
, cputime
, scaled
, CPUTIME_SOFTIRQ
);
363 } else if (user_tick
) {
364 account_user_time(p
, cputime
, scaled
);
365 } else if (p
== rq
->idle
) {
366 account_idle_time(cputime
);
367 } else if (p
->flags
& PF_VCPU
) { /* System time or guest time */
368 account_guest_time(p
, cputime
, scaled
);
370 __account_system_time(p
, cputime
, scaled
, CPUTIME_SYSTEM
);
374 static void irqtime_account_idle_ticks(int ticks
)
376 struct rq
*rq
= this_rq();
378 irqtime_account_process_tick(current
, 0, rq
, ticks
);
380 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
381 static inline void irqtime_account_idle_ticks(int ticks
) {}
382 static inline void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
383 struct rq
*rq
, int nr_ticks
) {}
384 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
387 * Use precise platform statistics if available:
389 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
391 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
392 void vtime_common_task_switch(struct task_struct
*prev
)
394 if (is_idle_task(prev
))
395 vtime_account_idle(prev
);
397 vtime_account_system(prev
);
399 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
400 vtime_account_user(prev
);
402 arch_vtime_task_switch(prev
);
407 * Archs that account the whole time spent in the idle task
408 * (outside irq) as idle time can rely on this and just implement
409 * vtime_account_system() and vtime_account_idle(). Archs that
410 * have other meaning of the idle time (s390 only includes the
411 * time spent by the CPU when it's in low power mode) must override
414 #ifndef __ARCH_HAS_VTIME_ACCOUNT
415 void vtime_common_account_irq_enter(struct task_struct
*tsk
)
417 if (!in_interrupt()) {
419 * If we interrupted user, context_tracking_in_user()
420 * is 1 because the context tracking don't hook
421 * on irq entry/exit. This way we know if
422 * we need to flush user time on kernel entry.
424 if (context_tracking_in_user()) {
425 vtime_account_user(tsk
);
429 if (is_idle_task(tsk
)) {
430 vtime_account_idle(tsk
);
434 vtime_account_system(tsk
);
436 EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter
);
437 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
438 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
441 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
442 void task_cputime_adjusted(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
447 EXPORT_SYMBOL_GPL(task_cputime_adjusted
);
449 void thread_group_cputime_adjusted(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
451 struct task_cputime cputime
;
453 thread_group_cputime(p
, &cputime
);
458 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
460 * Account a single tick of cpu time.
461 * @p: the process that the cpu time gets accounted to
462 * @user_tick: indicates if the tick is a user or a system tick
464 void account_process_tick(struct task_struct
*p
, int user_tick
)
466 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
467 struct rq
*rq
= this_rq();
469 if (vtime_accounting_cpu_enabled())
472 if (sched_clock_irqtime
) {
473 irqtime_account_process_tick(p
, user_tick
, rq
, 1);
477 if (steal_account_process_tick())
481 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
482 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
483 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
486 account_idle_time(cputime_one_jiffy
);
490 * Account multiple ticks of steal time.
491 * @p: the process from which the cpu time has been stolen
492 * @ticks: number of stolen ticks
494 void account_steal_ticks(unsigned long ticks
)
496 account_steal_time(jiffies_to_cputime(ticks
));
500 * Account multiple ticks of idle time.
501 * @ticks: number of stolen ticks
503 void account_idle_ticks(unsigned long ticks
)
506 if (sched_clock_irqtime
) {
507 irqtime_account_idle_ticks(ticks
);
511 account_idle_time(jiffies_to_cputime(ticks
));
515 * Perform (stime * rtime) / total, but avoid multiplication overflow by
516 * loosing precision when the numbers are big.
518 static cputime_t
scale_stime(u64 stime
, u64 rtime
, u64 total
)
523 /* Make sure "rtime" is the bigger of stime/rtime */
527 /* Make sure 'total' fits in 32 bits */
531 /* Does rtime (and thus stime) fit in 32 bits? */
535 /* Can we just balance rtime/stime rather than dropping bits? */
539 /* We can grow stime and shrink rtime and try to make them both fit */
545 /* We drop from rtime, it has more bits than stime */
551 * Make sure gcc understands that this is a 32x32->64 multiply,
552 * followed by a 64/32->64 divide.
554 scaled
= div_u64((u64
) (u32
) stime
* (u64
) (u32
) rtime
, (u32
)total
);
555 return (__force cputime_t
) scaled
;
559 * Adjust tick based cputime random precision against scheduler runtime
562 * Tick based cputime accounting depend on random scheduling timeslices of a
563 * task to be interrupted or not by the timer. Depending on these
564 * circumstances, the number of these interrupts may be over or
565 * under-optimistic, matching the real user and system cputime with a variable
568 * Fix this by scaling these tick based values against the total runtime
569 * accounted by the CFS scheduler.
571 * This code provides the following guarantees:
573 * stime + utime == rtime
574 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
576 * Assuming that rtime_i+1 >= rtime_i.
578 static void cputime_adjust(struct task_cputime
*curr
,
579 struct prev_cputime
*prev
,
580 cputime_t
*ut
, cputime_t
*st
)
582 cputime_t rtime
, stime
, utime
;
585 /* Serialize concurrent callers such that we can honour our guarantees */
586 raw_spin_lock_irqsave(&prev
->lock
, flags
);
587 rtime
= nsecs_to_cputime(curr
->sum_exec_runtime
);
590 * This is possible under two circumstances:
591 * - rtime isn't monotonic after all (a bug);
592 * - we got reordered by the lock.
594 * In both cases this acts as a filter such that the rest of the code
595 * can assume it is monotonic regardless of anything else.
597 if (prev
->stime
+ prev
->utime
>= rtime
)
613 stime
= scale_stime((__force u64
)stime
, (__force u64
)rtime
,
614 (__force u64
)(stime
+ utime
));
617 * Make sure stime doesn't go backwards; this preserves monotonicity
618 * for utime because rtime is monotonic.
620 * utime_i+1 = rtime_i+1 - stime_i
621 * = rtime_i+1 - (rtime_i - utime_i)
622 * = (rtime_i+1 - rtime_i) + utime_i
625 if (stime
< prev
->stime
)
627 utime
= rtime
- stime
;
630 * Make sure utime doesn't go backwards; this still preserves
631 * monotonicity for stime, analogous argument to above.
633 if (utime
< prev
->utime
) {
635 stime
= rtime
- utime
;
644 raw_spin_unlock_irqrestore(&prev
->lock
, flags
);
647 void task_cputime_adjusted(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
649 struct task_cputime cputime
= {
650 .sum_exec_runtime
= p
->se
.sum_exec_runtime
,
653 task_cputime(p
, &cputime
.utime
, &cputime
.stime
);
654 cputime_adjust(&cputime
, &p
->prev_cputime
, ut
, st
);
656 EXPORT_SYMBOL_GPL(task_cputime_adjusted
);
658 void thread_group_cputime_adjusted(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
660 struct task_cputime cputime
;
662 thread_group_cputime(p
, &cputime
);
663 cputime_adjust(&cputime
, &p
->signal
->prev_cputime
, ut
, st
);
665 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
667 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
668 static unsigned long long vtime_delta(struct task_struct
*tsk
)
670 unsigned long long clock
;
672 clock
= local_clock();
673 if (clock
< tsk
->vtime_snap
)
676 return clock
- tsk
->vtime_snap
;
679 static cputime_t
get_vtime_delta(struct task_struct
*tsk
)
681 unsigned long long delta
= vtime_delta(tsk
);
683 WARN_ON_ONCE(tsk
->vtime_snap_whence
== VTIME_INACTIVE
);
684 tsk
->vtime_snap
+= delta
;
686 /* CHECKME: always safe to convert nsecs to cputime? */
687 return nsecs_to_cputime(delta
);
690 static void __vtime_account_system(struct task_struct
*tsk
)
692 cputime_t delta_cpu
= get_vtime_delta(tsk
);
694 account_system_time(tsk
, irq_count(), delta_cpu
, cputime_to_scaled(delta_cpu
));
697 void vtime_account_system(struct task_struct
*tsk
)
699 write_seqcount_begin(&tsk
->vtime_seqcount
);
700 __vtime_account_system(tsk
);
701 write_seqcount_end(&tsk
->vtime_seqcount
);
704 void vtime_gen_account_irq_exit(struct task_struct
*tsk
)
706 write_seqcount_begin(&tsk
->vtime_seqcount
);
707 __vtime_account_system(tsk
);
708 if (context_tracking_in_user())
709 tsk
->vtime_snap_whence
= VTIME_USER
;
710 write_seqcount_end(&tsk
->vtime_seqcount
);
713 void vtime_account_user(struct task_struct
*tsk
)
717 write_seqcount_begin(&tsk
->vtime_seqcount
);
718 delta_cpu
= get_vtime_delta(tsk
);
719 tsk
->vtime_snap_whence
= VTIME_SYS
;
720 account_user_time(tsk
, delta_cpu
, cputime_to_scaled(delta_cpu
));
721 write_seqcount_end(&tsk
->vtime_seqcount
);
724 void vtime_user_enter(struct task_struct
*tsk
)
726 write_seqcount_begin(&tsk
->vtime_seqcount
);
727 __vtime_account_system(tsk
);
728 tsk
->vtime_snap_whence
= VTIME_USER
;
729 write_seqcount_end(&tsk
->vtime_seqcount
);
732 void vtime_guest_enter(struct task_struct
*tsk
)
735 * The flags must be updated under the lock with
736 * the vtime_snap flush and update.
737 * That enforces a right ordering and update sequence
738 * synchronization against the reader (task_gtime())
739 * that can thus safely catch up with a tickless delta.
741 write_seqcount_begin(&tsk
->vtime_seqcount
);
742 __vtime_account_system(tsk
);
743 current
->flags
|= PF_VCPU
;
744 write_seqcount_end(&tsk
->vtime_seqcount
);
746 EXPORT_SYMBOL_GPL(vtime_guest_enter
);
748 void vtime_guest_exit(struct task_struct
*tsk
)
750 write_seqcount_begin(&tsk
->vtime_seqcount
);
751 __vtime_account_system(tsk
);
752 current
->flags
&= ~PF_VCPU
;
753 write_seqcount_end(&tsk
->vtime_seqcount
);
755 EXPORT_SYMBOL_GPL(vtime_guest_exit
);
757 void vtime_account_idle(struct task_struct
*tsk
)
759 cputime_t delta_cpu
= get_vtime_delta(tsk
);
761 account_idle_time(delta_cpu
);
764 void arch_vtime_task_switch(struct task_struct
*prev
)
766 write_seqcount_begin(&prev
->vtime_seqcount
);
767 prev
->vtime_snap_whence
= VTIME_INACTIVE
;
768 write_seqcount_end(&prev
->vtime_seqcount
);
770 write_seqcount_begin(¤t
->vtime_seqcount
);
771 current
->vtime_snap_whence
= VTIME_SYS
;
772 current
->vtime_snap
= sched_clock_cpu(smp_processor_id());
773 write_seqcount_end(¤t
->vtime_seqcount
);
776 void vtime_init_idle(struct task_struct
*t
, int cpu
)
780 local_irq_save(flags
);
781 write_seqcount_begin(&t
->vtime_seqcount
);
782 t
->vtime_snap_whence
= VTIME_SYS
;
783 t
->vtime_snap
= sched_clock_cpu(cpu
);
784 write_seqcount_end(&t
->vtime_seqcount
);
785 local_irq_restore(flags
);
788 cputime_t
task_gtime(struct task_struct
*t
)
793 if (!vtime_accounting_enabled())
797 seq
= read_seqcount_begin(&t
->vtime_seqcount
);
800 if (t
->vtime_snap_whence
== VTIME_SYS
&& t
->flags
& PF_VCPU
)
801 gtime
+= vtime_delta(t
);
803 } while (read_seqcount_retry(&t
->vtime_seqcount
, seq
));
809 * Fetch cputime raw values from fields of task_struct and
810 * add up the pending nohz execution time since the last
814 fetch_task_cputime(struct task_struct
*t
,
815 cputime_t
*u_dst
, cputime_t
*s_dst
,
816 cputime_t
*u_src
, cputime_t
*s_src
,
817 cputime_t
*udelta
, cputime_t
*sdelta
)
820 unsigned long long delta
;
826 seq
= read_seqcount_begin(&t
->vtime_seqcount
);
833 /* Task is sleeping, nothing to add */
834 if (t
->vtime_snap_whence
== VTIME_INACTIVE
||
838 delta
= vtime_delta(t
);
841 * Task runs either in user or kernel space, add pending nohz time to
844 if (t
->vtime_snap_whence
== VTIME_USER
|| t
->flags
& PF_VCPU
) {
847 if (t
->vtime_snap_whence
== VTIME_SYS
)
850 } while (read_seqcount_retry(&t
->vtime_seqcount
, seq
));
854 void task_cputime(struct task_struct
*t
, cputime_t
*utime
, cputime_t
*stime
)
856 cputime_t udelta
, sdelta
;
858 if (!vtime_accounting_enabled()) {
866 fetch_task_cputime(t
, utime
, stime
, &t
->utime
,
867 &t
->stime
, &udelta
, &sdelta
);
874 void task_cputime_scaled(struct task_struct
*t
,
875 cputime_t
*utimescaled
, cputime_t
*stimescaled
)
877 cputime_t udelta
, sdelta
;
879 if (!vtime_accounting_enabled()) {
881 *utimescaled
= t
->utimescaled
;
883 *stimescaled
= t
->stimescaled
;
887 fetch_task_cputime(t
, utimescaled
, stimescaled
,
888 &t
->utimescaled
, &t
->stimescaled
, &udelta
, &sdelta
);
890 *utimescaled
+= cputime_to_scaled(udelta
);
892 *stimescaled
+= cputime_to_scaled(sdelta
);
894 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */