2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/pci-ats.h>
23 #include <linux/bitmap.h>
24 #include <linux/slab.h>
25 #include <linux/debugfs.h>
26 #include <linux/scatterlist.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/iommu-helper.h>
29 #include <linux/iommu.h>
30 #include <linux/delay.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/export.h>
34 #include <linux/irq.h>
35 #include <linux/msi.h>
36 #include <asm/irq_remapping.h>
37 #include <asm/io_apic.h>
39 #include <asm/hw_irq.h>
40 #include <asm/msidef.h>
41 #include <asm/proto.h>
42 #include <asm/iommu.h>
46 #include "amd_iommu_proto.h"
47 #include "amd_iommu_types.h"
48 #include "irq_remapping.h"
50 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
52 #define LOOP_TIMEOUT 100000
55 * This bitmap is used to advertise the page sizes our hardware support
56 * to the IOMMU core, which will then use this information to split
57 * physically contiguous memory regions it is mapping into page sizes
60 * 512GB Pages are not supported due to a hardware bug
62 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
64 static DEFINE_RWLOCK(amd_iommu_devtable_lock
);
66 /* A list of preallocated protection domains */
67 static LIST_HEAD(iommu_pd_list
);
68 static DEFINE_SPINLOCK(iommu_pd_list_lock
);
70 /* List of all available dev_data structures */
71 static LIST_HEAD(dev_data_list
);
72 static DEFINE_SPINLOCK(dev_data_list_lock
);
74 LIST_HEAD(ioapic_map
);
78 * Domain for untranslated devices - only allocated
79 * if iommu=pt passed on kernel cmd line.
81 static struct protection_domain
*pt_domain
;
83 static const struct iommu_ops amd_iommu_ops
;
85 static ATOMIC_NOTIFIER_HEAD(ppr_notifier
);
86 int amd_iommu_max_glx_val
= -1;
88 static struct dma_map_ops amd_iommu_dma_ops
;
91 * This struct contains device specific data for the IOMMU
93 struct iommu_dev_data
{
94 struct list_head list
; /* For domain->dev_list */
95 struct list_head dev_data_list
; /* For global dev_data_list */
96 struct list_head alias_list
; /* Link alias-groups together */
97 struct iommu_dev_data
*alias_data
;/* The alias dev_data */
98 struct protection_domain
*domain
; /* Domain the device is bound to */
99 u16 devid
; /* PCI Device ID */
100 bool iommu_v2
; /* Device can make use of IOMMUv2 */
101 bool passthrough
; /* Default for device is pt_domain */
105 } ats
; /* ATS state */
106 bool pri_tlp
; /* PASID TLB required for
108 u32 errata
; /* Bitmap for errata to apply */
112 * general struct to manage commands send to an IOMMU
118 struct kmem_cache
*amd_iommu_irq_cache
;
120 static void update_domain(struct protection_domain
*domain
);
121 static int __init
alloc_passthrough_domain(void);
123 /****************************************************************************
127 ****************************************************************************/
129 static struct iommu_dev_data
*alloc_dev_data(u16 devid
)
131 struct iommu_dev_data
*dev_data
;
134 dev_data
= kzalloc(sizeof(*dev_data
), GFP_KERNEL
);
138 INIT_LIST_HEAD(&dev_data
->alias_list
);
140 dev_data
->devid
= devid
;
142 spin_lock_irqsave(&dev_data_list_lock
, flags
);
143 list_add_tail(&dev_data
->dev_data_list
, &dev_data_list
);
144 spin_unlock_irqrestore(&dev_data_list_lock
, flags
);
149 static void free_dev_data(struct iommu_dev_data
*dev_data
)
153 spin_lock_irqsave(&dev_data_list_lock
, flags
);
154 list_del(&dev_data
->dev_data_list
);
155 spin_unlock_irqrestore(&dev_data_list_lock
, flags
);
160 static struct iommu_dev_data
*search_dev_data(u16 devid
)
162 struct iommu_dev_data
*dev_data
;
165 spin_lock_irqsave(&dev_data_list_lock
, flags
);
166 list_for_each_entry(dev_data
, &dev_data_list
, dev_data_list
) {
167 if (dev_data
->devid
== devid
)
174 spin_unlock_irqrestore(&dev_data_list_lock
, flags
);
179 static struct iommu_dev_data
*find_dev_data(u16 devid
)
181 struct iommu_dev_data
*dev_data
;
183 dev_data
= search_dev_data(devid
);
185 if (dev_data
== NULL
)
186 dev_data
= alloc_dev_data(devid
);
191 static inline u16
get_device_id(struct device
*dev
)
193 struct pci_dev
*pdev
= to_pci_dev(dev
);
195 return PCI_DEVID(pdev
->bus
->number
, pdev
->devfn
);
198 static struct iommu_dev_data
*get_dev_data(struct device
*dev
)
200 return dev
->archdata
.iommu
;
203 static bool pci_iommuv2_capable(struct pci_dev
*pdev
)
205 static const int caps
[] = {
208 PCI_EXT_CAP_ID_PASID
,
212 for (i
= 0; i
< 3; ++i
) {
213 pos
= pci_find_ext_capability(pdev
, caps
[i
]);
221 static bool pdev_pri_erratum(struct pci_dev
*pdev
, u32 erratum
)
223 struct iommu_dev_data
*dev_data
;
225 dev_data
= get_dev_data(&pdev
->dev
);
227 return dev_data
->errata
& (1 << erratum
) ? true : false;
231 * In this function the list of preallocated protection domains is traversed to
232 * find the domain for a specific device
234 static struct dma_ops_domain
*find_protection_domain(u16 devid
)
236 struct dma_ops_domain
*entry
, *ret
= NULL
;
238 u16 alias
= amd_iommu_alias_table
[devid
];
240 if (list_empty(&iommu_pd_list
))
243 spin_lock_irqsave(&iommu_pd_list_lock
, flags
);
245 list_for_each_entry(entry
, &iommu_pd_list
, list
) {
246 if (entry
->target_dev
== devid
||
247 entry
->target_dev
== alias
) {
253 spin_unlock_irqrestore(&iommu_pd_list_lock
, flags
);
259 * This function checks if the driver got a valid device from the caller to
260 * avoid dereferencing invalid pointers.
262 static bool check_device(struct device
*dev
)
266 if (!dev
|| !dev
->dma_mask
)
270 if (!dev_is_pci(dev
))
273 devid
= get_device_id(dev
);
275 /* Out of our scope? */
276 if (devid
> amd_iommu_last_bdf
)
279 if (amd_iommu_rlookup_table
[devid
] == NULL
)
285 static void init_iommu_group(struct device
*dev
)
287 struct iommu_group
*group
;
289 group
= iommu_group_get_for_dev(dev
);
291 iommu_group_put(group
);
294 static int __last_alias(struct pci_dev
*pdev
, u16 alias
, void *data
)
296 *(u16
*)data
= alias
;
300 static u16
get_alias(struct device
*dev
)
302 struct pci_dev
*pdev
= to_pci_dev(dev
);
303 u16 devid
, ivrs_alias
, pci_alias
;
305 devid
= get_device_id(dev
);
306 ivrs_alias
= amd_iommu_alias_table
[devid
];
307 pci_for_each_dma_alias(pdev
, __last_alias
, &pci_alias
);
309 if (ivrs_alias
== pci_alias
)
315 * The IVRS is fairly reliable in telling us about aliases, but it
316 * can't know about every screwy device. If we don't have an IVRS
317 * reported alias, use the PCI reported alias. In that case we may
318 * still need to initialize the rlookup and dev_table entries if the
319 * alias is to a non-existent device.
321 if (ivrs_alias
== devid
) {
322 if (!amd_iommu_rlookup_table
[pci_alias
]) {
323 amd_iommu_rlookup_table
[pci_alias
] =
324 amd_iommu_rlookup_table
[devid
];
325 memcpy(amd_iommu_dev_table
[pci_alias
].data
,
326 amd_iommu_dev_table
[devid
].data
,
327 sizeof(amd_iommu_dev_table
[pci_alias
].data
));
333 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
334 "for device %s[%04x:%04x], kernel reported alias "
335 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias
), PCI_SLOT(ivrs_alias
),
336 PCI_FUNC(ivrs_alias
), dev_name(dev
), pdev
->vendor
, pdev
->device
,
337 PCI_BUS_NUM(pci_alias
), PCI_SLOT(pci_alias
),
338 PCI_FUNC(pci_alias
));
341 * If we don't have a PCI DMA alias and the IVRS alias is on the same
342 * bus, then the IVRS table may know about a quirk that we don't.
344 if (pci_alias
== devid
&&
345 PCI_BUS_NUM(ivrs_alias
) == pdev
->bus
->number
) {
346 pdev
->dev_flags
|= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN
;
347 pdev
->dma_alias_devfn
= ivrs_alias
& 0xff;
348 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
349 PCI_SLOT(ivrs_alias
), PCI_FUNC(ivrs_alias
),
356 static int iommu_init_device(struct device
*dev
)
358 struct pci_dev
*pdev
= to_pci_dev(dev
);
359 struct iommu_dev_data
*dev_data
;
362 if (dev
->archdata
.iommu
)
365 dev_data
= find_dev_data(get_device_id(dev
));
369 alias
= get_alias(dev
);
371 if (alias
!= dev_data
->devid
) {
372 struct iommu_dev_data
*alias_data
;
374 alias_data
= find_dev_data(alias
);
375 if (alias_data
== NULL
) {
376 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
378 free_dev_data(dev_data
);
381 dev_data
->alias_data
= alias_data
;
383 /* Add device to the alias_list */
384 list_add(&dev_data
->alias_list
, &alias_data
->alias_list
);
387 if (pci_iommuv2_capable(pdev
)) {
388 struct amd_iommu
*iommu
;
390 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
391 dev_data
->iommu_v2
= iommu
->is_iommu_v2
;
394 dev
->archdata
.iommu
= dev_data
;
396 iommu_device_link(amd_iommu_rlookup_table
[dev_data
->devid
]->iommu_dev
,
402 static void iommu_ignore_device(struct device
*dev
)
406 devid
= get_device_id(dev
);
407 alias
= amd_iommu_alias_table
[devid
];
409 memset(&amd_iommu_dev_table
[devid
], 0, sizeof(struct dev_table_entry
));
410 memset(&amd_iommu_dev_table
[alias
], 0, sizeof(struct dev_table_entry
));
412 amd_iommu_rlookup_table
[devid
] = NULL
;
413 amd_iommu_rlookup_table
[alias
] = NULL
;
416 static void iommu_uninit_device(struct device
*dev
)
418 struct iommu_dev_data
*dev_data
= search_dev_data(get_device_id(dev
));
423 iommu_device_unlink(amd_iommu_rlookup_table
[dev_data
->devid
]->iommu_dev
,
426 iommu_group_remove_device(dev
);
428 /* Unlink from alias, it may change if another device is re-plugged */
429 dev_data
->alias_data
= NULL
;
432 * We keep dev_data around for unplugged devices and reuse it when the
433 * device is re-plugged - not doing so would introduce a ton of races.
437 void __init
amd_iommu_uninit_devices(void)
439 struct iommu_dev_data
*dev_data
, *n
;
440 struct pci_dev
*pdev
= NULL
;
442 for_each_pci_dev(pdev
) {
444 if (!check_device(&pdev
->dev
))
447 iommu_uninit_device(&pdev
->dev
);
450 /* Free all of our dev_data structures */
451 list_for_each_entry_safe(dev_data
, n
, &dev_data_list
, dev_data_list
)
452 free_dev_data(dev_data
);
455 int __init
amd_iommu_init_devices(void)
457 struct pci_dev
*pdev
= NULL
;
460 for_each_pci_dev(pdev
) {
462 if (!check_device(&pdev
->dev
))
465 ret
= iommu_init_device(&pdev
->dev
);
466 if (ret
== -ENOTSUPP
)
467 iommu_ignore_device(&pdev
->dev
);
473 * Initialize IOMMU groups only after iommu_init_device() has
474 * had a chance to populate any IVRS defined aliases.
476 for_each_pci_dev(pdev
) {
477 if (check_device(&pdev
->dev
))
478 init_iommu_group(&pdev
->dev
);
485 amd_iommu_uninit_devices();
489 #ifdef CONFIG_AMD_IOMMU_STATS
492 * Initialization code for statistics collection
495 DECLARE_STATS_COUNTER(compl_wait
);
496 DECLARE_STATS_COUNTER(cnt_map_single
);
497 DECLARE_STATS_COUNTER(cnt_unmap_single
);
498 DECLARE_STATS_COUNTER(cnt_map_sg
);
499 DECLARE_STATS_COUNTER(cnt_unmap_sg
);
500 DECLARE_STATS_COUNTER(cnt_alloc_coherent
);
501 DECLARE_STATS_COUNTER(cnt_free_coherent
);
502 DECLARE_STATS_COUNTER(cross_page
);
503 DECLARE_STATS_COUNTER(domain_flush_single
);
504 DECLARE_STATS_COUNTER(domain_flush_all
);
505 DECLARE_STATS_COUNTER(alloced_io_mem
);
506 DECLARE_STATS_COUNTER(total_map_requests
);
507 DECLARE_STATS_COUNTER(complete_ppr
);
508 DECLARE_STATS_COUNTER(invalidate_iotlb
);
509 DECLARE_STATS_COUNTER(invalidate_iotlb_all
);
510 DECLARE_STATS_COUNTER(pri_requests
);
512 static struct dentry
*stats_dir
;
513 static struct dentry
*de_fflush
;
515 static void amd_iommu_stats_add(struct __iommu_counter
*cnt
)
517 if (stats_dir
== NULL
)
520 cnt
->dent
= debugfs_create_u64(cnt
->name
, 0444, stats_dir
,
524 static void amd_iommu_stats_init(void)
526 stats_dir
= debugfs_create_dir("amd-iommu", NULL
);
527 if (stats_dir
== NULL
)
530 de_fflush
= debugfs_create_bool("fullflush", 0444, stats_dir
,
531 &amd_iommu_unmap_flush
);
533 amd_iommu_stats_add(&compl_wait
);
534 amd_iommu_stats_add(&cnt_map_single
);
535 amd_iommu_stats_add(&cnt_unmap_single
);
536 amd_iommu_stats_add(&cnt_map_sg
);
537 amd_iommu_stats_add(&cnt_unmap_sg
);
538 amd_iommu_stats_add(&cnt_alloc_coherent
);
539 amd_iommu_stats_add(&cnt_free_coherent
);
540 amd_iommu_stats_add(&cross_page
);
541 amd_iommu_stats_add(&domain_flush_single
);
542 amd_iommu_stats_add(&domain_flush_all
);
543 amd_iommu_stats_add(&alloced_io_mem
);
544 amd_iommu_stats_add(&total_map_requests
);
545 amd_iommu_stats_add(&complete_ppr
);
546 amd_iommu_stats_add(&invalidate_iotlb
);
547 amd_iommu_stats_add(&invalidate_iotlb_all
);
548 amd_iommu_stats_add(&pri_requests
);
553 /****************************************************************************
555 * Interrupt handling functions
557 ****************************************************************************/
559 static void dump_dte_entry(u16 devid
)
563 for (i
= 0; i
< 4; ++i
)
564 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i
,
565 amd_iommu_dev_table
[devid
].data
[i
]);
568 static void dump_command(unsigned long phys_addr
)
570 struct iommu_cmd
*cmd
= phys_to_virt(phys_addr
);
573 for (i
= 0; i
< 4; ++i
)
574 pr_err("AMD-Vi: CMD[%d]: %08x\n", i
, cmd
->data
[i
]);
577 static void iommu_print_event(struct amd_iommu
*iommu
, void *__evt
)
579 int type
, devid
, domid
, flags
;
580 volatile u32
*event
= __evt
;
585 type
= (event
[1] >> EVENT_TYPE_SHIFT
) & EVENT_TYPE_MASK
;
586 devid
= (event
[0] >> EVENT_DEVID_SHIFT
) & EVENT_DEVID_MASK
;
587 domid
= (event
[1] >> EVENT_DOMID_SHIFT
) & EVENT_DOMID_MASK
;
588 flags
= (event
[1] >> EVENT_FLAGS_SHIFT
) & EVENT_FLAGS_MASK
;
589 address
= (u64
)(((u64
)event
[3]) << 32) | event
[2];
592 /* Did we hit the erratum? */
593 if (++count
== LOOP_TIMEOUT
) {
594 pr_err("AMD-Vi: No event written to event log\n");
601 printk(KERN_ERR
"AMD-Vi: Event logged [");
604 case EVENT_TYPE_ILL_DEV
:
605 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
606 "address=0x%016llx flags=0x%04x]\n",
607 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
609 dump_dte_entry(devid
);
611 case EVENT_TYPE_IO_FAULT
:
612 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
613 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
614 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
615 domid
, address
, flags
);
617 case EVENT_TYPE_DEV_TAB_ERR
:
618 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
619 "address=0x%016llx flags=0x%04x]\n",
620 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
623 case EVENT_TYPE_PAGE_TAB_ERR
:
624 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
625 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
626 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
627 domid
, address
, flags
);
629 case EVENT_TYPE_ILL_CMD
:
630 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address
);
631 dump_command(address
);
633 case EVENT_TYPE_CMD_HARD_ERR
:
634 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
635 "flags=0x%04x]\n", address
, flags
);
637 case EVENT_TYPE_IOTLB_INV_TO
:
638 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
639 "address=0x%016llx]\n",
640 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
643 case EVENT_TYPE_INV_DEV_REQ
:
644 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
645 "address=0x%016llx flags=0x%04x]\n",
646 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
650 printk(KERN_ERR
"UNKNOWN type=0x%02x]\n", type
);
653 memset(__evt
, 0, 4 * sizeof(u32
));
656 static void iommu_poll_events(struct amd_iommu
*iommu
)
660 head
= readl(iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
661 tail
= readl(iommu
->mmio_base
+ MMIO_EVT_TAIL_OFFSET
);
663 while (head
!= tail
) {
664 iommu_print_event(iommu
, iommu
->evt_buf
+ head
);
665 head
= (head
+ EVENT_ENTRY_SIZE
) % iommu
->evt_buf_size
;
668 writel(head
, iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
671 static void iommu_handle_ppr_entry(struct amd_iommu
*iommu
, u64
*raw
)
673 struct amd_iommu_fault fault
;
675 INC_STATS_COUNTER(pri_requests
);
677 if (PPR_REQ_TYPE(raw
[0]) != PPR_REQ_FAULT
) {
678 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
682 fault
.address
= raw
[1];
683 fault
.pasid
= PPR_PASID(raw
[0]);
684 fault
.device_id
= PPR_DEVID(raw
[0]);
685 fault
.tag
= PPR_TAG(raw
[0]);
686 fault
.flags
= PPR_FLAGS(raw
[0]);
688 atomic_notifier_call_chain(&ppr_notifier
, 0, &fault
);
691 static void iommu_poll_ppr_log(struct amd_iommu
*iommu
)
695 if (iommu
->ppr_log
== NULL
)
698 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
699 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
701 while (head
!= tail
) {
706 raw
= (u64
*)(iommu
->ppr_log
+ head
);
709 * Hardware bug: Interrupt may arrive before the entry is
710 * written to memory. If this happens we need to wait for the
713 for (i
= 0; i
< LOOP_TIMEOUT
; ++i
) {
714 if (PPR_REQ_TYPE(raw
[0]) != 0)
719 /* Avoid memcpy function-call overhead */
724 * To detect the hardware bug we need to clear the entry
727 raw
[0] = raw
[1] = 0UL;
729 /* Update head pointer of hardware ring-buffer */
730 head
= (head
+ PPR_ENTRY_SIZE
) % PPR_LOG_SIZE
;
731 writel(head
, iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
733 /* Handle PPR entry */
734 iommu_handle_ppr_entry(iommu
, entry
);
736 /* Refresh ring-buffer information */
737 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
738 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
742 irqreturn_t
amd_iommu_int_thread(int irq
, void *data
)
744 struct amd_iommu
*iommu
= (struct amd_iommu
*) data
;
745 u32 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
747 while (status
& (MMIO_STATUS_EVT_INT_MASK
| MMIO_STATUS_PPR_INT_MASK
)) {
748 /* Enable EVT and PPR interrupts again */
749 writel((MMIO_STATUS_EVT_INT_MASK
| MMIO_STATUS_PPR_INT_MASK
),
750 iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
752 if (status
& MMIO_STATUS_EVT_INT_MASK
) {
753 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
754 iommu_poll_events(iommu
);
757 if (status
& MMIO_STATUS_PPR_INT_MASK
) {
758 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
759 iommu_poll_ppr_log(iommu
);
763 * Hardware bug: ERBT1312
764 * When re-enabling interrupt (by writing 1
765 * to clear the bit), the hardware might also try to set
766 * the interrupt bit in the event status register.
767 * In this scenario, the bit will be set, and disable
768 * subsequent interrupts.
770 * Workaround: The IOMMU driver should read back the
771 * status register and check if the interrupt bits are cleared.
772 * If not, driver will need to go through the interrupt handler
773 * again and re-clear the bits
775 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
780 irqreturn_t
amd_iommu_int_handler(int irq
, void *data
)
782 return IRQ_WAKE_THREAD
;
785 /****************************************************************************
787 * IOMMU command queuing functions
789 ****************************************************************************/
791 static int wait_on_sem(volatile u64
*sem
)
795 while (*sem
== 0 && i
< LOOP_TIMEOUT
) {
800 if (i
== LOOP_TIMEOUT
) {
801 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
808 static void copy_cmd_to_buffer(struct amd_iommu
*iommu
,
809 struct iommu_cmd
*cmd
,
814 target
= iommu
->cmd_buf
+ tail
;
815 tail
= (tail
+ sizeof(*cmd
)) % iommu
->cmd_buf_size
;
817 /* Copy command to buffer */
818 memcpy(target
, cmd
, sizeof(*cmd
));
820 /* Tell the IOMMU about it */
821 writel(tail
, iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
824 static void build_completion_wait(struct iommu_cmd
*cmd
, u64 address
)
826 WARN_ON(address
& 0x7ULL
);
828 memset(cmd
, 0, sizeof(*cmd
));
829 cmd
->data
[0] = lower_32_bits(__pa(address
)) | CMD_COMPL_WAIT_STORE_MASK
;
830 cmd
->data
[1] = upper_32_bits(__pa(address
));
832 CMD_SET_TYPE(cmd
, CMD_COMPL_WAIT
);
835 static void build_inv_dte(struct iommu_cmd
*cmd
, u16 devid
)
837 memset(cmd
, 0, sizeof(*cmd
));
838 cmd
->data
[0] = devid
;
839 CMD_SET_TYPE(cmd
, CMD_INV_DEV_ENTRY
);
842 static void build_inv_iommu_pages(struct iommu_cmd
*cmd
, u64 address
,
843 size_t size
, u16 domid
, int pde
)
848 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
853 * If we have to flush more than one page, flush all
854 * TLB entries for this domain
856 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
860 address
&= PAGE_MASK
;
862 memset(cmd
, 0, sizeof(*cmd
));
863 cmd
->data
[1] |= domid
;
864 cmd
->data
[2] = lower_32_bits(address
);
865 cmd
->data
[3] = upper_32_bits(address
);
866 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
867 if (s
) /* size bit - we flush more than one 4kb page */
868 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
869 if (pde
) /* PDE bit - we want to flush everything, not only the PTEs */
870 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
873 static void build_inv_iotlb_pages(struct iommu_cmd
*cmd
, u16 devid
, int qdep
,
874 u64 address
, size_t size
)
879 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
884 * If we have to flush more than one page, flush all
885 * TLB entries for this domain
887 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
891 address
&= PAGE_MASK
;
893 memset(cmd
, 0, sizeof(*cmd
));
894 cmd
->data
[0] = devid
;
895 cmd
->data
[0] |= (qdep
& 0xff) << 24;
896 cmd
->data
[1] = devid
;
897 cmd
->data
[2] = lower_32_bits(address
);
898 cmd
->data
[3] = upper_32_bits(address
);
899 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
901 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
904 static void build_inv_iommu_pasid(struct iommu_cmd
*cmd
, u16 domid
, int pasid
,
905 u64 address
, bool size
)
907 memset(cmd
, 0, sizeof(*cmd
));
909 address
&= ~(0xfffULL
);
911 cmd
->data
[0] = pasid
;
912 cmd
->data
[1] = domid
;
913 cmd
->data
[2] = lower_32_bits(address
);
914 cmd
->data
[3] = upper_32_bits(address
);
915 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
916 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
918 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
919 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
922 static void build_inv_iotlb_pasid(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
923 int qdep
, u64 address
, bool size
)
925 memset(cmd
, 0, sizeof(*cmd
));
927 address
&= ~(0xfffULL
);
929 cmd
->data
[0] = devid
;
930 cmd
->data
[0] |= ((pasid
>> 8) & 0xff) << 16;
931 cmd
->data
[0] |= (qdep
& 0xff) << 24;
932 cmd
->data
[1] = devid
;
933 cmd
->data
[1] |= (pasid
& 0xff) << 16;
934 cmd
->data
[2] = lower_32_bits(address
);
935 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
936 cmd
->data
[3] = upper_32_bits(address
);
938 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
939 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
942 static void build_complete_ppr(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
943 int status
, int tag
, bool gn
)
945 memset(cmd
, 0, sizeof(*cmd
));
947 cmd
->data
[0] = devid
;
949 cmd
->data
[1] = pasid
;
950 cmd
->data
[2] = CMD_INV_IOMMU_PAGES_GN_MASK
;
952 cmd
->data
[3] = tag
& 0x1ff;
953 cmd
->data
[3] |= (status
& PPR_STATUS_MASK
) << PPR_STATUS_SHIFT
;
955 CMD_SET_TYPE(cmd
, CMD_COMPLETE_PPR
);
958 static void build_inv_all(struct iommu_cmd
*cmd
)
960 memset(cmd
, 0, sizeof(*cmd
));
961 CMD_SET_TYPE(cmd
, CMD_INV_ALL
);
964 static void build_inv_irt(struct iommu_cmd
*cmd
, u16 devid
)
966 memset(cmd
, 0, sizeof(*cmd
));
967 cmd
->data
[0] = devid
;
968 CMD_SET_TYPE(cmd
, CMD_INV_IRT
);
972 * Writes the command to the IOMMUs command buffer and informs the
973 * hardware about the new command.
975 static int iommu_queue_command_sync(struct amd_iommu
*iommu
,
976 struct iommu_cmd
*cmd
,
979 u32 left
, tail
, head
, next_tail
;
982 WARN_ON(iommu
->cmd_buf_size
& CMD_BUFFER_UNINITIALIZED
);
985 spin_lock_irqsave(&iommu
->lock
, flags
);
987 head
= readl(iommu
->mmio_base
+ MMIO_CMD_HEAD_OFFSET
);
988 tail
= readl(iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
989 next_tail
= (tail
+ sizeof(*cmd
)) % iommu
->cmd_buf_size
;
990 left
= (head
- next_tail
) % iommu
->cmd_buf_size
;
993 struct iommu_cmd sync_cmd
;
994 volatile u64 sem
= 0;
997 build_completion_wait(&sync_cmd
, (u64
)&sem
);
998 copy_cmd_to_buffer(iommu
, &sync_cmd
, tail
);
1000 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1002 if ((ret
= wait_on_sem(&sem
)) != 0)
1008 copy_cmd_to_buffer(iommu
, cmd
, tail
);
1010 /* We need to sync now to make sure all commands are processed */
1011 iommu
->need_sync
= sync
;
1013 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1018 static int iommu_queue_command(struct amd_iommu
*iommu
, struct iommu_cmd
*cmd
)
1020 return iommu_queue_command_sync(iommu
, cmd
, true);
1024 * This function queues a completion wait command into the command
1025 * buffer of an IOMMU
1027 static int iommu_completion_wait(struct amd_iommu
*iommu
)
1029 struct iommu_cmd cmd
;
1030 volatile u64 sem
= 0;
1033 if (!iommu
->need_sync
)
1036 build_completion_wait(&cmd
, (u64
)&sem
);
1038 ret
= iommu_queue_command_sync(iommu
, &cmd
, false);
1042 return wait_on_sem(&sem
);
1045 static int iommu_flush_dte(struct amd_iommu
*iommu
, u16 devid
)
1047 struct iommu_cmd cmd
;
1049 build_inv_dte(&cmd
, devid
);
1051 return iommu_queue_command(iommu
, &cmd
);
1054 static void iommu_flush_dte_all(struct amd_iommu
*iommu
)
1058 for (devid
= 0; devid
<= 0xffff; ++devid
)
1059 iommu_flush_dte(iommu
, devid
);
1061 iommu_completion_wait(iommu
);
1065 * This function uses heavy locking and may disable irqs for some time. But
1066 * this is no issue because it is only called during resume.
1068 static void iommu_flush_tlb_all(struct amd_iommu
*iommu
)
1072 for (dom_id
= 0; dom_id
<= 0xffff; ++dom_id
) {
1073 struct iommu_cmd cmd
;
1074 build_inv_iommu_pages(&cmd
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
1076 iommu_queue_command(iommu
, &cmd
);
1079 iommu_completion_wait(iommu
);
1082 static void iommu_flush_all(struct amd_iommu
*iommu
)
1084 struct iommu_cmd cmd
;
1086 build_inv_all(&cmd
);
1088 iommu_queue_command(iommu
, &cmd
);
1089 iommu_completion_wait(iommu
);
1092 static void iommu_flush_irt(struct amd_iommu
*iommu
, u16 devid
)
1094 struct iommu_cmd cmd
;
1096 build_inv_irt(&cmd
, devid
);
1098 iommu_queue_command(iommu
, &cmd
);
1101 static void iommu_flush_irt_all(struct amd_iommu
*iommu
)
1105 for (devid
= 0; devid
<= MAX_DEV_TABLE_ENTRIES
; devid
++)
1106 iommu_flush_irt(iommu
, devid
);
1108 iommu_completion_wait(iommu
);
1111 void iommu_flush_all_caches(struct amd_iommu
*iommu
)
1113 if (iommu_feature(iommu
, FEATURE_IA
)) {
1114 iommu_flush_all(iommu
);
1116 iommu_flush_dte_all(iommu
);
1117 iommu_flush_irt_all(iommu
);
1118 iommu_flush_tlb_all(iommu
);
1123 * Command send function for flushing on-device TLB
1125 static int device_flush_iotlb(struct iommu_dev_data
*dev_data
,
1126 u64 address
, size_t size
)
1128 struct amd_iommu
*iommu
;
1129 struct iommu_cmd cmd
;
1132 qdep
= dev_data
->ats
.qdep
;
1133 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1135 build_inv_iotlb_pages(&cmd
, dev_data
->devid
, qdep
, address
, size
);
1137 return iommu_queue_command(iommu
, &cmd
);
1141 * Command send function for invalidating a device table entry
1143 static int device_flush_dte(struct iommu_dev_data
*dev_data
)
1145 struct amd_iommu
*iommu
;
1148 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1150 ret
= iommu_flush_dte(iommu
, dev_data
->devid
);
1154 if (dev_data
->ats
.enabled
)
1155 ret
= device_flush_iotlb(dev_data
, 0, ~0UL);
1161 * TLB invalidation function which is called from the mapping functions.
1162 * It invalidates a single PTE if the range to flush is within a single
1163 * page. Otherwise it flushes the whole TLB of the IOMMU.
1165 static void __domain_flush_pages(struct protection_domain
*domain
,
1166 u64 address
, size_t size
, int pde
)
1168 struct iommu_dev_data
*dev_data
;
1169 struct iommu_cmd cmd
;
1172 build_inv_iommu_pages(&cmd
, address
, size
, domain
->id
, pde
);
1174 for (i
= 0; i
< amd_iommus_present
; ++i
) {
1175 if (!domain
->dev_iommu
[i
])
1179 * Devices of this domain are behind this IOMMU
1180 * We need a TLB flush
1182 ret
|= iommu_queue_command(amd_iommus
[i
], &cmd
);
1185 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
1187 if (!dev_data
->ats
.enabled
)
1190 ret
|= device_flush_iotlb(dev_data
, address
, size
);
1196 static void domain_flush_pages(struct protection_domain
*domain
,
1197 u64 address
, size_t size
)
1199 __domain_flush_pages(domain
, address
, size
, 0);
1202 /* Flush the whole IO/TLB for a given protection domain */
1203 static void domain_flush_tlb(struct protection_domain
*domain
)
1205 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 0);
1208 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1209 static void domain_flush_tlb_pde(struct protection_domain
*domain
)
1211 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 1);
1214 static void domain_flush_complete(struct protection_domain
*domain
)
1218 for (i
= 0; i
< amd_iommus_present
; ++i
) {
1219 if (!domain
->dev_iommu
[i
])
1223 * Devices of this domain are behind this IOMMU
1224 * We need to wait for completion of all commands.
1226 iommu_completion_wait(amd_iommus
[i
]);
1232 * This function flushes the DTEs for all devices in domain
1234 static void domain_flush_devices(struct protection_domain
*domain
)
1236 struct iommu_dev_data
*dev_data
;
1238 list_for_each_entry(dev_data
, &domain
->dev_list
, list
)
1239 device_flush_dte(dev_data
);
1242 /****************************************************************************
1244 * The functions below are used the create the page table mappings for
1245 * unity mapped regions.
1247 ****************************************************************************/
1250 * This function is used to add another level to an IO page table. Adding
1251 * another level increases the size of the address space by 9 bits to a size up
1254 static bool increase_address_space(struct protection_domain
*domain
,
1259 if (domain
->mode
== PAGE_MODE_6_LEVEL
)
1260 /* address space already 64 bit large */
1263 pte
= (void *)get_zeroed_page(gfp
);
1267 *pte
= PM_LEVEL_PDE(domain
->mode
,
1268 virt_to_phys(domain
->pt_root
));
1269 domain
->pt_root
= pte
;
1271 domain
->updated
= true;
1276 static u64
*alloc_pte(struct protection_domain
*domain
,
1277 unsigned long address
,
1278 unsigned long page_size
,
1285 BUG_ON(!is_power_of_2(page_size
));
1287 while (address
> PM_LEVEL_SIZE(domain
->mode
))
1288 increase_address_space(domain
, gfp
);
1290 level
= domain
->mode
- 1;
1291 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1292 address
= PAGE_SIZE_ALIGN(address
, page_size
);
1293 end_lvl
= PAGE_SIZE_LEVEL(page_size
);
1295 while (level
> end_lvl
) {
1296 if (!IOMMU_PTE_PRESENT(*pte
)) {
1297 page
= (u64
*)get_zeroed_page(gfp
);
1300 *pte
= PM_LEVEL_PDE(level
, virt_to_phys(page
));
1303 /* No level skipping support yet */
1304 if (PM_PTE_LEVEL(*pte
) != level
)
1309 pte
= IOMMU_PTE_PAGE(*pte
);
1311 if (pte_page
&& level
== end_lvl
)
1314 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1321 * This function checks if there is a PTE for a given dma address. If
1322 * there is one, it returns the pointer to it.
1324 static u64
*fetch_pte(struct protection_domain
*domain
, unsigned long address
)
1329 if (address
> PM_LEVEL_SIZE(domain
->mode
))
1332 level
= domain
->mode
- 1;
1333 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1338 if (!IOMMU_PTE_PRESENT(*pte
))
1342 if (PM_PTE_LEVEL(*pte
) == 0x07) {
1343 unsigned long pte_mask
, __pte
;
1346 * If we have a series of large PTEs, make
1347 * sure to return a pointer to the first one.
1349 pte_mask
= PTE_PAGE_SIZE(*pte
);
1350 pte_mask
= ~((PAGE_SIZE_PTE_COUNT(pte_mask
) << 3) - 1);
1351 __pte
= ((unsigned long)pte
) & pte_mask
;
1353 return (u64
*)__pte
;
1356 /* No level skipping support yet */
1357 if (PM_PTE_LEVEL(*pte
) != level
)
1362 /* Walk to the next level */
1363 pte
= IOMMU_PTE_PAGE(*pte
);
1364 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1371 * Generic mapping functions. It maps a physical address into a DMA
1372 * address space. It allocates the page table pages if necessary.
1373 * In the future it can be extended to a generic mapping function
1374 * supporting all features of AMD IOMMU page tables like level skipping
1375 * and full 64 bit address spaces.
1377 static int iommu_map_page(struct protection_domain
*dom
,
1378 unsigned long bus_addr
,
1379 unsigned long phys_addr
,
1381 unsigned long page_size
)
1386 if (!(prot
& IOMMU_PROT_MASK
))
1389 bus_addr
= PAGE_ALIGN(bus_addr
);
1390 phys_addr
= PAGE_ALIGN(phys_addr
);
1391 count
= PAGE_SIZE_PTE_COUNT(page_size
);
1392 pte
= alloc_pte(dom
, bus_addr
, page_size
, NULL
, GFP_KERNEL
);
1397 for (i
= 0; i
< count
; ++i
)
1398 if (IOMMU_PTE_PRESENT(pte
[i
]))
1401 if (page_size
> PAGE_SIZE
) {
1402 __pte
= PAGE_SIZE_PTE(phys_addr
, page_size
);
1403 __pte
|= PM_LEVEL_ENC(7) | IOMMU_PTE_P
| IOMMU_PTE_FC
;
1405 __pte
= phys_addr
| IOMMU_PTE_P
| IOMMU_PTE_FC
;
1407 if (prot
& IOMMU_PROT_IR
)
1408 __pte
|= IOMMU_PTE_IR
;
1409 if (prot
& IOMMU_PROT_IW
)
1410 __pte
|= IOMMU_PTE_IW
;
1412 for (i
= 0; i
< count
; ++i
)
1420 static unsigned long iommu_unmap_page(struct protection_domain
*dom
,
1421 unsigned long bus_addr
,
1422 unsigned long page_size
)
1424 unsigned long long unmap_size
, unmapped
;
1427 BUG_ON(!is_power_of_2(page_size
));
1431 while (unmapped
< page_size
) {
1433 pte
= fetch_pte(dom
, bus_addr
);
1437 * No PTE for this address
1438 * move forward in 4kb steps
1440 unmap_size
= PAGE_SIZE
;
1441 } else if (PM_PTE_LEVEL(*pte
) == 0) {
1442 /* 4kb PTE found for this address */
1443 unmap_size
= PAGE_SIZE
;
1448 /* Large PTE found which maps this address */
1449 unmap_size
= PTE_PAGE_SIZE(*pte
);
1451 /* Only unmap from the first pte in the page */
1452 if ((unmap_size
- 1) & bus_addr
)
1454 count
= PAGE_SIZE_PTE_COUNT(unmap_size
);
1455 for (i
= 0; i
< count
; i
++)
1459 bus_addr
= (bus_addr
& ~(unmap_size
- 1)) + unmap_size
;
1460 unmapped
+= unmap_size
;
1463 BUG_ON(unmapped
&& !is_power_of_2(unmapped
));
1469 * This function checks if a specific unity mapping entry is needed for
1470 * this specific IOMMU.
1472 static int iommu_for_unity_map(struct amd_iommu
*iommu
,
1473 struct unity_map_entry
*entry
)
1477 for (i
= entry
->devid_start
; i
<= entry
->devid_end
; ++i
) {
1478 bdf
= amd_iommu_alias_table
[i
];
1479 if (amd_iommu_rlookup_table
[bdf
] == iommu
)
1487 * This function actually applies the mapping to the page table of the
1490 static int dma_ops_unity_map(struct dma_ops_domain
*dma_dom
,
1491 struct unity_map_entry
*e
)
1496 for (addr
= e
->address_start
; addr
< e
->address_end
;
1497 addr
+= PAGE_SIZE
) {
1498 ret
= iommu_map_page(&dma_dom
->domain
, addr
, addr
, e
->prot
,
1503 * if unity mapping is in aperture range mark the page
1504 * as allocated in the aperture
1506 if (addr
< dma_dom
->aperture_size
)
1507 __set_bit(addr
>> PAGE_SHIFT
,
1508 dma_dom
->aperture
[0]->bitmap
);
1515 * Init the unity mappings for a specific IOMMU in the system
1517 * Basically iterates over all unity mapping entries and applies them to
1518 * the default domain DMA of that IOMMU if necessary.
1520 static int iommu_init_unity_mappings(struct amd_iommu
*iommu
)
1522 struct unity_map_entry
*entry
;
1525 list_for_each_entry(entry
, &amd_iommu_unity_map
, list
) {
1526 if (!iommu_for_unity_map(iommu
, entry
))
1528 ret
= dma_ops_unity_map(iommu
->default_dom
, entry
);
1537 * Inits the unity mappings required for a specific device
1539 static int init_unity_mappings_for_device(struct dma_ops_domain
*dma_dom
,
1542 struct unity_map_entry
*e
;
1545 list_for_each_entry(e
, &amd_iommu_unity_map
, list
) {
1546 if (!(devid
>= e
->devid_start
&& devid
<= e
->devid_end
))
1548 ret
= dma_ops_unity_map(dma_dom
, e
);
1556 /****************************************************************************
1558 * The next functions belong to the address allocator for the dma_ops
1559 * interface functions. They work like the allocators in the other IOMMU
1560 * drivers. Its basically a bitmap which marks the allocated pages in
1561 * the aperture. Maybe it could be enhanced in the future to a more
1562 * efficient allocator.
1564 ****************************************************************************/
1567 * The address allocator core functions.
1569 * called with domain->lock held
1573 * Used to reserve address ranges in the aperture (e.g. for exclusion
1576 static void dma_ops_reserve_addresses(struct dma_ops_domain
*dom
,
1577 unsigned long start_page
,
1580 unsigned int i
, last_page
= dom
->aperture_size
>> PAGE_SHIFT
;
1582 if (start_page
+ pages
> last_page
)
1583 pages
= last_page
- start_page
;
1585 for (i
= start_page
; i
< start_page
+ pages
; ++i
) {
1586 int index
= i
/ APERTURE_RANGE_PAGES
;
1587 int page
= i
% APERTURE_RANGE_PAGES
;
1588 __set_bit(page
, dom
->aperture
[index
]->bitmap
);
1593 * This function is used to add a new aperture range to an existing
1594 * aperture in case of dma_ops domain allocation or address allocation
1597 static int alloc_new_range(struct dma_ops_domain
*dma_dom
,
1598 bool populate
, gfp_t gfp
)
1600 int index
= dma_dom
->aperture_size
>> APERTURE_RANGE_SHIFT
;
1601 struct amd_iommu
*iommu
;
1602 unsigned long i
, old_size
;
1604 #ifdef CONFIG_IOMMU_STRESS
1608 if (index
>= APERTURE_MAX_RANGES
)
1611 dma_dom
->aperture
[index
] = kzalloc(sizeof(struct aperture_range
), gfp
);
1612 if (!dma_dom
->aperture
[index
])
1615 dma_dom
->aperture
[index
]->bitmap
= (void *)get_zeroed_page(gfp
);
1616 if (!dma_dom
->aperture
[index
]->bitmap
)
1619 dma_dom
->aperture
[index
]->offset
= dma_dom
->aperture_size
;
1622 unsigned long address
= dma_dom
->aperture_size
;
1623 int i
, num_ptes
= APERTURE_RANGE_PAGES
/ 512;
1624 u64
*pte
, *pte_page
;
1626 for (i
= 0; i
< num_ptes
; ++i
) {
1627 pte
= alloc_pte(&dma_dom
->domain
, address
, PAGE_SIZE
,
1632 dma_dom
->aperture
[index
]->pte_pages
[i
] = pte_page
;
1634 address
+= APERTURE_RANGE_SIZE
/ 64;
1638 old_size
= dma_dom
->aperture_size
;
1639 dma_dom
->aperture_size
+= APERTURE_RANGE_SIZE
;
1641 /* Reserve address range used for MSI messages */
1642 if (old_size
< MSI_ADDR_BASE_LO
&&
1643 dma_dom
->aperture_size
> MSI_ADDR_BASE_LO
) {
1644 unsigned long spage
;
1647 pages
= iommu_num_pages(MSI_ADDR_BASE_LO
, 0x10000, PAGE_SIZE
);
1648 spage
= MSI_ADDR_BASE_LO
>> PAGE_SHIFT
;
1650 dma_ops_reserve_addresses(dma_dom
, spage
, pages
);
1653 /* Initialize the exclusion range if necessary */
1654 for_each_iommu(iommu
) {
1655 if (iommu
->exclusion_start
&&
1656 iommu
->exclusion_start
>= dma_dom
->aperture
[index
]->offset
1657 && iommu
->exclusion_start
< dma_dom
->aperture_size
) {
1658 unsigned long startpage
;
1659 int pages
= iommu_num_pages(iommu
->exclusion_start
,
1660 iommu
->exclusion_length
,
1662 startpage
= iommu
->exclusion_start
>> PAGE_SHIFT
;
1663 dma_ops_reserve_addresses(dma_dom
, startpage
, pages
);
1668 * Check for areas already mapped as present in the new aperture
1669 * range and mark those pages as reserved in the allocator. Such
1670 * mappings may already exist as a result of requested unity
1671 * mappings for devices.
1673 for (i
= dma_dom
->aperture
[index
]->offset
;
1674 i
< dma_dom
->aperture_size
;
1676 u64
*pte
= fetch_pte(&dma_dom
->domain
, i
);
1677 if (!pte
|| !IOMMU_PTE_PRESENT(*pte
))
1680 dma_ops_reserve_addresses(dma_dom
, i
>> PAGE_SHIFT
, 1);
1683 update_domain(&dma_dom
->domain
);
1688 update_domain(&dma_dom
->domain
);
1690 free_page((unsigned long)dma_dom
->aperture
[index
]->bitmap
);
1692 kfree(dma_dom
->aperture
[index
]);
1693 dma_dom
->aperture
[index
] = NULL
;
1698 static unsigned long dma_ops_area_alloc(struct device
*dev
,
1699 struct dma_ops_domain
*dom
,
1701 unsigned long align_mask
,
1703 unsigned long start
)
1705 unsigned long next_bit
= dom
->next_address
% APERTURE_RANGE_SIZE
;
1706 int max_index
= dom
->aperture_size
>> APERTURE_RANGE_SHIFT
;
1707 int i
= start
>> APERTURE_RANGE_SHIFT
;
1708 unsigned long boundary_size
;
1709 unsigned long address
= -1;
1710 unsigned long limit
;
1712 next_bit
>>= PAGE_SHIFT
;
1714 boundary_size
= ALIGN(dma_get_seg_boundary(dev
) + 1,
1715 PAGE_SIZE
) >> PAGE_SHIFT
;
1717 for (;i
< max_index
; ++i
) {
1718 unsigned long offset
= dom
->aperture
[i
]->offset
>> PAGE_SHIFT
;
1720 if (dom
->aperture
[i
]->offset
>= dma_mask
)
1723 limit
= iommu_device_max_index(APERTURE_RANGE_PAGES
, offset
,
1724 dma_mask
>> PAGE_SHIFT
);
1726 address
= iommu_area_alloc(dom
->aperture
[i
]->bitmap
,
1727 limit
, next_bit
, pages
, 0,
1728 boundary_size
, align_mask
);
1729 if (address
!= -1) {
1730 address
= dom
->aperture
[i
]->offset
+
1731 (address
<< PAGE_SHIFT
);
1732 dom
->next_address
= address
+ (pages
<< PAGE_SHIFT
);
1742 static unsigned long dma_ops_alloc_addresses(struct device
*dev
,
1743 struct dma_ops_domain
*dom
,
1745 unsigned long align_mask
,
1748 unsigned long address
;
1750 #ifdef CONFIG_IOMMU_STRESS
1751 dom
->next_address
= 0;
1752 dom
->need_flush
= true;
1755 address
= dma_ops_area_alloc(dev
, dom
, pages
, align_mask
,
1756 dma_mask
, dom
->next_address
);
1758 if (address
== -1) {
1759 dom
->next_address
= 0;
1760 address
= dma_ops_area_alloc(dev
, dom
, pages
, align_mask
,
1762 dom
->need_flush
= true;
1765 if (unlikely(address
== -1))
1766 address
= DMA_ERROR_CODE
;
1768 WARN_ON((address
+ (PAGE_SIZE
*pages
)) > dom
->aperture_size
);
1774 * The address free function.
1776 * called with domain->lock held
1778 static void dma_ops_free_addresses(struct dma_ops_domain
*dom
,
1779 unsigned long address
,
1782 unsigned i
= address
>> APERTURE_RANGE_SHIFT
;
1783 struct aperture_range
*range
= dom
->aperture
[i
];
1785 BUG_ON(i
>= APERTURE_MAX_RANGES
|| range
== NULL
);
1787 #ifdef CONFIG_IOMMU_STRESS
1792 if (address
>= dom
->next_address
)
1793 dom
->need_flush
= true;
1795 address
= (address
% APERTURE_RANGE_SIZE
) >> PAGE_SHIFT
;
1797 bitmap_clear(range
->bitmap
, address
, pages
);
1801 /****************************************************************************
1803 * The next functions belong to the domain allocation. A domain is
1804 * allocated for every IOMMU as the default domain. If device isolation
1805 * is enabled, every device get its own domain. The most important thing
1806 * about domains is the page table mapping the DMA address space they
1809 ****************************************************************************/
1812 * This function adds a protection domain to the global protection domain list
1814 static void add_domain_to_list(struct protection_domain
*domain
)
1816 unsigned long flags
;
1818 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1819 list_add(&domain
->list
, &amd_iommu_pd_list
);
1820 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1824 * This function removes a protection domain to the global
1825 * protection domain list
1827 static void del_domain_from_list(struct protection_domain
*domain
)
1829 unsigned long flags
;
1831 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1832 list_del(&domain
->list
);
1833 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1836 static u16
domain_id_alloc(void)
1838 unsigned long flags
;
1841 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1842 id
= find_first_zero_bit(amd_iommu_pd_alloc_bitmap
, MAX_DOMAIN_ID
);
1844 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1845 __set_bit(id
, amd_iommu_pd_alloc_bitmap
);
1848 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1853 static void domain_id_free(int id
)
1855 unsigned long flags
;
1857 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1858 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1859 __clear_bit(id
, amd_iommu_pd_alloc_bitmap
);
1860 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1863 #define DEFINE_FREE_PT_FN(LVL, FN) \
1864 static void free_pt_##LVL (unsigned long __pt) \
1872 for (i = 0; i < 512; ++i) { \
1873 if (!IOMMU_PTE_PRESENT(pt[i])) \
1876 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1879 free_page((unsigned long)pt); \
1882 DEFINE_FREE_PT_FN(l2
, free_page
)
1883 DEFINE_FREE_PT_FN(l3
, free_pt_l2
)
1884 DEFINE_FREE_PT_FN(l4
, free_pt_l3
)
1885 DEFINE_FREE_PT_FN(l5
, free_pt_l4
)
1886 DEFINE_FREE_PT_FN(l6
, free_pt_l5
)
1888 static void free_pagetable(struct protection_domain
*domain
)
1890 unsigned long root
= (unsigned long)domain
->pt_root
;
1892 switch (domain
->mode
) {
1893 case PAGE_MODE_NONE
:
1895 case PAGE_MODE_1_LEVEL
:
1898 case PAGE_MODE_2_LEVEL
:
1901 case PAGE_MODE_3_LEVEL
:
1904 case PAGE_MODE_4_LEVEL
:
1907 case PAGE_MODE_5_LEVEL
:
1910 case PAGE_MODE_6_LEVEL
:
1918 static void free_gcr3_tbl_level1(u64
*tbl
)
1923 for (i
= 0; i
< 512; ++i
) {
1924 if (!(tbl
[i
] & GCR3_VALID
))
1927 ptr
= __va(tbl
[i
] & PAGE_MASK
);
1929 free_page((unsigned long)ptr
);
1933 static void free_gcr3_tbl_level2(u64
*tbl
)
1938 for (i
= 0; i
< 512; ++i
) {
1939 if (!(tbl
[i
] & GCR3_VALID
))
1942 ptr
= __va(tbl
[i
] & PAGE_MASK
);
1944 free_gcr3_tbl_level1(ptr
);
1948 static void free_gcr3_table(struct protection_domain
*domain
)
1950 if (domain
->glx
== 2)
1951 free_gcr3_tbl_level2(domain
->gcr3_tbl
);
1952 else if (domain
->glx
== 1)
1953 free_gcr3_tbl_level1(domain
->gcr3_tbl
);
1954 else if (domain
->glx
!= 0)
1957 free_page((unsigned long)domain
->gcr3_tbl
);
1961 * Free a domain, only used if something went wrong in the
1962 * allocation path and we need to free an already allocated page table
1964 static void dma_ops_domain_free(struct dma_ops_domain
*dom
)
1971 del_domain_from_list(&dom
->domain
);
1973 free_pagetable(&dom
->domain
);
1975 for (i
= 0; i
< APERTURE_MAX_RANGES
; ++i
) {
1976 if (!dom
->aperture
[i
])
1978 free_page((unsigned long)dom
->aperture
[i
]->bitmap
);
1979 kfree(dom
->aperture
[i
]);
1986 * Allocates a new protection domain usable for the dma_ops functions.
1987 * It also initializes the page table and the address allocator data
1988 * structures required for the dma_ops interface
1990 static struct dma_ops_domain
*dma_ops_domain_alloc(void)
1992 struct dma_ops_domain
*dma_dom
;
1994 dma_dom
= kzalloc(sizeof(struct dma_ops_domain
), GFP_KERNEL
);
1998 spin_lock_init(&dma_dom
->domain
.lock
);
2000 dma_dom
->domain
.id
= domain_id_alloc();
2001 if (dma_dom
->domain
.id
== 0)
2003 INIT_LIST_HEAD(&dma_dom
->domain
.dev_list
);
2004 dma_dom
->domain
.mode
= PAGE_MODE_2_LEVEL
;
2005 dma_dom
->domain
.pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
2006 dma_dom
->domain
.flags
= PD_DMA_OPS_MASK
;
2007 dma_dom
->domain
.priv
= dma_dom
;
2008 if (!dma_dom
->domain
.pt_root
)
2011 dma_dom
->need_flush
= false;
2012 dma_dom
->target_dev
= 0xffff;
2014 add_domain_to_list(&dma_dom
->domain
);
2016 if (alloc_new_range(dma_dom
, true, GFP_KERNEL
))
2020 * mark the first page as allocated so we never return 0 as
2021 * a valid dma-address. So we can use 0 as error value
2023 dma_dom
->aperture
[0]->bitmap
[0] = 1;
2024 dma_dom
->next_address
= 0;
2030 dma_ops_domain_free(dma_dom
);
2036 * little helper function to check whether a given protection domain is a
2039 static bool dma_ops_domain(struct protection_domain
*domain
)
2041 return domain
->flags
& PD_DMA_OPS_MASK
;
2044 static void set_dte_entry(u16 devid
, struct protection_domain
*domain
, bool ats
)
2049 if (domain
->mode
!= PAGE_MODE_NONE
)
2050 pte_root
= virt_to_phys(domain
->pt_root
);
2052 pte_root
|= (domain
->mode
& DEV_ENTRY_MODE_MASK
)
2053 << DEV_ENTRY_MODE_SHIFT
;
2054 pte_root
|= IOMMU_PTE_IR
| IOMMU_PTE_IW
| IOMMU_PTE_P
| IOMMU_PTE_TV
;
2056 flags
= amd_iommu_dev_table
[devid
].data
[1];
2059 flags
|= DTE_FLAG_IOTLB
;
2061 if (domain
->flags
& PD_IOMMUV2_MASK
) {
2062 u64 gcr3
= __pa(domain
->gcr3_tbl
);
2063 u64 glx
= domain
->glx
;
2066 pte_root
|= DTE_FLAG_GV
;
2067 pte_root
|= (glx
& DTE_GLX_MASK
) << DTE_GLX_SHIFT
;
2069 /* First mask out possible old values for GCR3 table */
2070 tmp
= DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B
;
2073 tmp
= DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C
;
2076 /* Encode GCR3 table into DTE */
2077 tmp
= DTE_GCR3_VAL_A(gcr3
) << DTE_GCR3_SHIFT_A
;
2080 tmp
= DTE_GCR3_VAL_B(gcr3
) << DTE_GCR3_SHIFT_B
;
2083 tmp
= DTE_GCR3_VAL_C(gcr3
) << DTE_GCR3_SHIFT_C
;
2087 flags
&= ~(0xffffUL
);
2088 flags
|= domain
->id
;
2090 amd_iommu_dev_table
[devid
].data
[1] = flags
;
2091 amd_iommu_dev_table
[devid
].data
[0] = pte_root
;
2094 static void clear_dte_entry(u16 devid
)
2096 /* remove entry from the device table seen by the hardware */
2097 amd_iommu_dev_table
[devid
].data
[0] = IOMMU_PTE_P
| IOMMU_PTE_TV
;
2098 amd_iommu_dev_table
[devid
].data
[1] = 0;
2100 amd_iommu_apply_erratum_63(devid
);
2103 static void do_attach(struct iommu_dev_data
*dev_data
,
2104 struct protection_domain
*domain
)
2106 struct amd_iommu
*iommu
;
2109 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
2110 ats
= dev_data
->ats
.enabled
;
2112 /* Update data structures */
2113 dev_data
->domain
= domain
;
2114 list_add(&dev_data
->list
, &domain
->dev_list
);
2115 set_dte_entry(dev_data
->devid
, domain
, ats
);
2117 /* Do reference counting */
2118 domain
->dev_iommu
[iommu
->index
] += 1;
2119 domain
->dev_cnt
+= 1;
2121 /* Flush the DTE entry */
2122 device_flush_dte(dev_data
);
2125 static void do_detach(struct iommu_dev_data
*dev_data
)
2127 struct amd_iommu
*iommu
;
2129 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
2131 /* decrease reference counters */
2132 dev_data
->domain
->dev_iommu
[iommu
->index
] -= 1;
2133 dev_data
->domain
->dev_cnt
-= 1;
2135 /* Update data structures */
2136 dev_data
->domain
= NULL
;
2137 list_del(&dev_data
->list
);
2138 clear_dte_entry(dev_data
->devid
);
2140 /* Flush the DTE entry */
2141 device_flush_dte(dev_data
);
2145 * If a device is not yet associated with a domain, this function does
2146 * assigns it visible for the hardware
2148 static int __attach_device(struct iommu_dev_data
*dev_data
,
2149 struct protection_domain
*domain
)
2151 struct iommu_dev_data
*head
, *entry
;
2155 spin_lock(&domain
->lock
);
2159 if (head
->alias_data
!= NULL
)
2160 head
= head
->alias_data
;
2162 /* Now we have the root of the alias group, if any */
2165 if (head
->domain
!= NULL
)
2168 /* Attach alias group root */
2169 do_attach(head
, domain
);
2171 /* Attach other devices in the alias group */
2172 list_for_each_entry(entry
, &head
->alias_list
, alias_list
)
2173 do_attach(entry
, domain
);
2180 spin_unlock(&domain
->lock
);
2186 static void pdev_iommuv2_disable(struct pci_dev
*pdev
)
2188 pci_disable_ats(pdev
);
2189 pci_disable_pri(pdev
);
2190 pci_disable_pasid(pdev
);
2193 /* FIXME: Change generic reset-function to do the same */
2194 static int pri_reset_while_enabled(struct pci_dev
*pdev
)
2199 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
2203 pci_read_config_word(pdev
, pos
+ PCI_PRI_CTRL
, &control
);
2204 control
|= PCI_PRI_CTRL_RESET
;
2205 pci_write_config_word(pdev
, pos
+ PCI_PRI_CTRL
, control
);
2210 static int pdev_iommuv2_enable(struct pci_dev
*pdev
)
2215 /* FIXME: Hardcode number of outstanding requests for now */
2217 if (pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE
))
2219 reset_enable
= pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_ENABLE_RESET
);
2221 /* Only allow access to user-accessible pages */
2222 ret
= pci_enable_pasid(pdev
, 0);
2226 /* First reset the PRI state of the device */
2227 ret
= pci_reset_pri(pdev
);
2232 ret
= pci_enable_pri(pdev
, reqs
);
2237 ret
= pri_reset_while_enabled(pdev
);
2242 ret
= pci_enable_ats(pdev
, PAGE_SHIFT
);
2249 pci_disable_pri(pdev
);
2250 pci_disable_pasid(pdev
);
2255 /* FIXME: Move this to PCI code */
2256 #define PCI_PRI_TLP_OFF (1 << 15)
2258 static bool pci_pri_tlp_required(struct pci_dev
*pdev
)
2263 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
2267 pci_read_config_word(pdev
, pos
+ PCI_PRI_STATUS
, &status
);
2269 return (status
& PCI_PRI_TLP_OFF
) ? true : false;
2273 * If a device is not yet associated with a domain, this function
2274 * assigns it visible for the hardware
2276 static int attach_device(struct device
*dev
,
2277 struct protection_domain
*domain
)
2279 struct pci_dev
*pdev
= to_pci_dev(dev
);
2280 struct iommu_dev_data
*dev_data
;
2281 unsigned long flags
;
2284 dev_data
= get_dev_data(dev
);
2286 if (domain
->flags
& PD_IOMMUV2_MASK
) {
2287 if (!dev_data
->iommu_v2
|| !dev_data
->passthrough
)
2290 if (pdev_iommuv2_enable(pdev
) != 0)
2293 dev_data
->ats
.enabled
= true;
2294 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2295 dev_data
->pri_tlp
= pci_pri_tlp_required(pdev
);
2296 } else if (amd_iommu_iotlb_sup
&&
2297 pci_enable_ats(pdev
, PAGE_SHIFT
) == 0) {
2298 dev_data
->ats
.enabled
= true;
2299 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2302 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2303 ret
= __attach_device(dev_data
, domain
);
2304 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2307 * We might boot into a crash-kernel here. The crashed kernel
2308 * left the caches in the IOMMU dirty. So we have to flush
2309 * here to evict all dirty stuff.
2311 domain_flush_tlb_pde(domain
);
2317 * Removes a device from a protection domain (unlocked)
2319 static void __detach_device(struct iommu_dev_data
*dev_data
)
2321 struct iommu_dev_data
*head
, *entry
;
2322 struct protection_domain
*domain
;
2323 unsigned long flags
;
2325 BUG_ON(!dev_data
->domain
);
2327 domain
= dev_data
->domain
;
2329 spin_lock_irqsave(&domain
->lock
, flags
);
2332 if (head
->alias_data
!= NULL
)
2333 head
= head
->alias_data
;
2335 list_for_each_entry(entry
, &head
->alias_list
, alias_list
)
2340 spin_unlock_irqrestore(&domain
->lock
, flags
);
2343 * If we run in passthrough mode the device must be assigned to the
2344 * passthrough domain if it is detached from any other domain.
2345 * Make sure we can deassign from the pt_domain itself.
2347 if (dev_data
->passthrough
&&
2348 (dev_data
->domain
== NULL
&& domain
!= pt_domain
))
2349 __attach_device(dev_data
, pt_domain
);
2353 * Removes a device from a protection domain (with devtable_lock held)
2355 static void detach_device(struct device
*dev
)
2357 struct protection_domain
*domain
;
2358 struct iommu_dev_data
*dev_data
;
2359 unsigned long flags
;
2361 dev_data
= get_dev_data(dev
);
2362 domain
= dev_data
->domain
;
2364 /* lock device table */
2365 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2366 __detach_device(dev_data
);
2367 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2369 if (domain
->flags
& PD_IOMMUV2_MASK
)
2370 pdev_iommuv2_disable(to_pci_dev(dev
));
2371 else if (dev_data
->ats
.enabled
)
2372 pci_disable_ats(to_pci_dev(dev
));
2374 dev_data
->ats
.enabled
= false;
2378 * Find out the protection domain structure for a given PCI device. This
2379 * will give us the pointer to the page table root for example.
2381 static struct protection_domain
*domain_for_device(struct device
*dev
)
2383 struct iommu_dev_data
*dev_data
;
2384 struct protection_domain
*dom
= NULL
;
2385 unsigned long flags
;
2387 dev_data
= get_dev_data(dev
);
2389 if (dev_data
->domain
)
2390 return dev_data
->domain
;
2392 if (dev_data
->alias_data
!= NULL
) {
2393 struct iommu_dev_data
*alias_data
= dev_data
->alias_data
;
2395 read_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2396 if (alias_data
->domain
!= NULL
) {
2397 __attach_device(dev_data
, alias_data
->domain
);
2398 dom
= alias_data
->domain
;
2400 read_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2406 static int device_change_notifier(struct notifier_block
*nb
,
2407 unsigned long action
, void *data
)
2409 struct dma_ops_domain
*dma_domain
;
2410 struct protection_domain
*domain
;
2411 struct iommu_dev_data
*dev_data
;
2412 struct device
*dev
= data
;
2413 struct amd_iommu
*iommu
;
2414 unsigned long flags
;
2417 if (!check_device(dev
))
2420 devid
= get_device_id(dev
);
2421 iommu
= amd_iommu_rlookup_table
[devid
];
2422 dev_data
= get_dev_data(dev
);
2425 case BUS_NOTIFY_UNBOUND_DRIVER
:
2427 domain
= domain_for_device(dev
);
2431 if (dev_data
->passthrough
)
2435 case BUS_NOTIFY_ADD_DEVICE
:
2437 iommu_init_device(dev
);
2438 init_iommu_group(dev
);
2441 * dev_data is still NULL and
2442 * got initialized in iommu_init_device
2444 dev_data
= get_dev_data(dev
);
2446 if (iommu_pass_through
|| dev_data
->iommu_v2
) {
2447 dev_data
->passthrough
= true;
2448 attach_device(dev
, pt_domain
);
2452 domain
= domain_for_device(dev
);
2454 /* allocate a protection domain if a device is added */
2455 dma_domain
= find_protection_domain(devid
);
2457 dma_domain
= dma_ops_domain_alloc();
2460 dma_domain
->target_dev
= devid
;
2462 spin_lock_irqsave(&iommu_pd_list_lock
, flags
);
2463 list_add_tail(&dma_domain
->list
, &iommu_pd_list
);
2464 spin_unlock_irqrestore(&iommu_pd_list_lock
, flags
);
2467 dev
->archdata
.dma_ops
= &amd_iommu_dma_ops
;
2470 case BUS_NOTIFY_DEL_DEVICE
:
2472 iommu_uninit_device(dev
);
2478 iommu_completion_wait(iommu
);
2484 static struct notifier_block device_nb
= {
2485 .notifier_call
= device_change_notifier
,
2488 void amd_iommu_init_notifier(void)
2490 bus_register_notifier(&pci_bus_type
, &device_nb
);
2493 /*****************************************************************************
2495 * The next functions belong to the dma_ops mapping/unmapping code.
2497 *****************************************************************************/
2500 * In the dma_ops path we only have the struct device. This function
2501 * finds the corresponding IOMMU, the protection domain and the
2502 * requestor id for a given device.
2503 * If the device is not yet associated with a domain this is also done
2506 static struct protection_domain
*get_domain(struct device
*dev
)
2508 struct protection_domain
*domain
;
2509 struct dma_ops_domain
*dma_dom
;
2510 u16 devid
= get_device_id(dev
);
2512 if (!check_device(dev
))
2513 return ERR_PTR(-EINVAL
);
2515 domain
= domain_for_device(dev
);
2516 if (domain
!= NULL
&& !dma_ops_domain(domain
))
2517 return ERR_PTR(-EBUSY
);
2522 /* Device not bound yet - bind it */
2523 dma_dom
= find_protection_domain(devid
);
2525 dma_dom
= amd_iommu_rlookup_table
[devid
]->default_dom
;
2526 attach_device(dev
, &dma_dom
->domain
);
2527 DUMP_printk("Using protection domain %d for device %s\n",
2528 dma_dom
->domain
.id
, dev_name(dev
));
2530 return &dma_dom
->domain
;
2533 static void update_device_table(struct protection_domain
*domain
)
2535 struct iommu_dev_data
*dev_data
;
2537 list_for_each_entry(dev_data
, &domain
->dev_list
, list
)
2538 set_dte_entry(dev_data
->devid
, domain
, dev_data
->ats
.enabled
);
2541 static void update_domain(struct protection_domain
*domain
)
2543 if (!domain
->updated
)
2546 update_device_table(domain
);
2548 domain_flush_devices(domain
);
2549 domain_flush_tlb_pde(domain
);
2551 domain
->updated
= false;
2555 * This function fetches the PTE for a given address in the aperture
2557 static u64
* dma_ops_get_pte(struct dma_ops_domain
*dom
,
2558 unsigned long address
)
2560 struct aperture_range
*aperture
;
2561 u64
*pte
, *pte_page
;
2563 aperture
= dom
->aperture
[APERTURE_RANGE_INDEX(address
)];
2567 pte
= aperture
->pte_pages
[APERTURE_PAGE_INDEX(address
)];
2569 pte
= alloc_pte(&dom
->domain
, address
, PAGE_SIZE
, &pte_page
,
2571 aperture
->pte_pages
[APERTURE_PAGE_INDEX(address
)] = pte_page
;
2573 pte
+= PM_LEVEL_INDEX(0, address
);
2575 update_domain(&dom
->domain
);
2581 * This is the generic map function. It maps one 4kb page at paddr to
2582 * the given address in the DMA address space for the domain.
2584 static dma_addr_t
dma_ops_domain_map(struct dma_ops_domain
*dom
,
2585 unsigned long address
,
2591 WARN_ON(address
> dom
->aperture_size
);
2595 pte
= dma_ops_get_pte(dom
, address
);
2597 return DMA_ERROR_CODE
;
2599 __pte
= paddr
| IOMMU_PTE_P
| IOMMU_PTE_FC
;
2601 if (direction
== DMA_TO_DEVICE
)
2602 __pte
|= IOMMU_PTE_IR
;
2603 else if (direction
== DMA_FROM_DEVICE
)
2604 __pte
|= IOMMU_PTE_IW
;
2605 else if (direction
== DMA_BIDIRECTIONAL
)
2606 __pte
|= IOMMU_PTE_IR
| IOMMU_PTE_IW
;
2612 return (dma_addr_t
)address
;
2616 * The generic unmapping function for on page in the DMA address space.
2618 static void dma_ops_domain_unmap(struct dma_ops_domain
*dom
,
2619 unsigned long address
)
2621 struct aperture_range
*aperture
;
2624 if (address
>= dom
->aperture_size
)
2627 aperture
= dom
->aperture
[APERTURE_RANGE_INDEX(address
)];
2631 pte
= aperture
->pte_pages
[APERTURE_PAGE_INDEX(address
)];
2635 pte
+= PM_LEVEL_INDEX(0, address
);
2643 * This function contains common code for mapping of a physically
2644 * contiguous memory region into DMA address space. It is used by all
2645 * mapping functions provided with this IOMMU driver.
2646 * Must be called with the domain lock held.
2648 static dma_addr_t
__map_single(struct device
*dev
,
2649 struct dma_ops_domain
*dma_dom
,
2656 dma_addr_t offset
= paddr
& ~PAGE_MASK
;
2657 dma_addr_t address
, start
, ret
;
2659 unsigned long align_mask
= 0;
2662 pages
= iommu_num_pages(paddr
, size
, PAGE_SIZE
);
2665 INC_STATS_COUNTER(total_map_requests
);
2668 INC_STATS_COUNTER(cross_page
);
2671 align_mask
= (1UL << get_order(size
)) - 1;
2674 address
= dma_ops_alloc_addresses(dev
, dma_dom
, pages
, align_mask
,
2676 if (unlikely(address
== DMA_ERROR_CODE
)) {
2678 * setting next_address here will let the address
2679 * allocator only scan the new allocated range in the
2680 * first run. This is a small optimization.
2682 dma_dom
->next_address
= dma_dom
->aperture_size
;
2684 if (alloc_new_range(dma_dom
, false, GFP_ATOMIC
))
2688 * aperture was successfully enlarged by 128 MB, try
2695 for (i
= 0; i
< pages
; ++i
) {
2696 ret
= dma_ops_domain_map(dma_dom
, start
, paddr
, dir
);
2697 if (ret
== DMA_ERROR_CODE
)
2705 ADD_STATS_COUNTER(alloced_io_mem
, size
);
2707 if (unlikely(dma_dom
->need_flush
&& !amd_iommu_unmap_flush
)) {
2708 domain_flush_tlb(&dma_dom
->domain
);
2709 dma_dom
->need_flush
= false;
2710 } else if (unlikely(amd_iommu_np_cache
))
2711 domain_flush_pages(&dma_dom
->domain
, address
, size
);
2718 for (--i
; i
>= 0; --i
) {
2720 dma_ops_domain_unmap(dma_dom
, start
);
2723 dma_ops_free_addresses(dma_dom
, address
, pages
);
2725 return DMA_ERROR_CODE
;
2729 * Does the reverse of the __map_single function. Must be called with
2730 * the domain lock held too
2732 static void __unmap_single(struct dma_ops_domain
*dma_dom
,
2733 dma_addr_t dma_addr
,
2737 dma_addr_t flush_addr
;
2738 dma_addr_t i
, start
;
2741 if ((dma_addr
== DMA_ERROR_CODE
) ||
2742 (dma_addr
+ size
> dma_dom
->aperture_size
))
2745 flush_addr
= dma_addr
;
2746 pages
= iommu_num_pages(dma_addr
, size
, PAGE_SIZE
);
2747 dma_addr
&= PAGE_MASK
;
2750 for (i
= 0; i
< pages
; ++i
) {
2751 dma_ops_domain_unmap(dma_dom
, start
);
2755 SUB_STATS_COUNTER(alloced_io_mem
, size
);
2757 dma_ops_free_addresses(dma_dom
, dma_addr
, pages
);
2759 if (amd_iommu_unmap_flush
|| dma_dom
->need_flush
) {
2760 domain_flush_pages(&dma_dom
->domain
, flush_addr
, size
);
2761 dma_dom
->need_flush
= false;
2766 * The exported map_single function for dma_ops.
2768 static dma_addr_t
map_page(struct device
*dev
, struct page
*page
,
2769 unsigned long offset
, size_t size
,
2770 enum dma_data_direction dir
,
2771 struct dma_attrs
*attrs
)
2773 unsigned long flags
;
2774 struct protection_domain
*domain
;
2777 phys_addr_t paddr
= page_to_phys(page
) + offset
;
2779 INC_STATS_COUNTER(cnt_map_single
);
2781 domain
= get_domain(dev
);
2782 if (PTR_ERR(domain
) == -EINVAL
)
2783 return (dma_addr_t
)paddr
;
2784 else if (IS_ERR(domain
))
2785 return DMA_ERROR_CODE
;
2787 dma_mask
= *dev
->dma_mask
;
2789 spin_lock_irqsave(&domain
->lock
, flags
);
2791 addr
= __map_single(dev
, domain
->priv
, paddr
, size
, dir
, false,
2793 if (addr
== DMA_ERROR_CODE
)
2796 domain_flush_complete(domain
);
2799 spin_unlock_irqrestore(&domain
->lock
, flags
);
2805 * The exported unmap_single function for dma_ops.
2807 static void unmap_page(struct device
*dev
, dma_addr_t dma_addr
, size_t size
,
2808 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
2810 unsigned long flags
;
2811 struct protection_domain
*domain
;
2813 INC_STATS_COUNTER(cnt_unmap_single
);
2815 domain
= get_domain(dev
);
2819 spin_lock_irqsave(&domain
->lock
, flags
);
2821 __unmap_single(domain
->priv
, dma_addr
, size
, dir
);
2823 domain_flush_complete(domain
);
2825 spin_unlock_irqrestore(&domain
->lock
, flags
);
2829 * The exported map_sg function for dma_ops (handles scatter-gather
2832 static int map_sg(struct device
*dev
, struct scatterlist
*sglist
,
2833 int nelems
, enum dma_data_direction dir
,
2834 struct dma_attrs
*attrs
)
2836 unsigned long flags
;
2837 struct protection_domain
*domain
;
2839 struct scatterlist
*s
;
2841 int mapped_elems
= 0;
2844 INC_STATS_COUNTER(cnt_map_sg
);
2846 domain
= get_domain(dev
);
2850 dma_mask
= *dev
->dma_mask
;
2852 spin_lock_irqsave(&domain
->lock
, flags
);
2854 for_each_sg(sglist
, s
, nelems
, i
) {
2857 s
->dma_address
= __map_single(dev
, domain
->priv
,
2858 paddr
, s
->length
, dir
, false,
2861 if (s
->dma_address
) {
2862 s
->dma_length
= s
->length
;
2868 domain_flush_complete(domain
);
2871 spin_unlock_irqrestore(&domain
->lock
, flags
);
2873 return mapped_elems
;
2875 for_each_sg(sglist
, s
, mapped_elems
, i
) {
2877 __unmap_single(domain
->priv
, s
->dma_address
,
2878 s
->dma_length
, dir
);
2879 s
->dma_address
= s
->dma_length
= 0;
2888 * The exported map_sg function for dma_ops (handles scatter-gather
2891 static void unmap_sg(struct device
*dev
, struct scatterlist
*sglist
,
2892 int nelems
, enum dma_data_direction dir
,
2893 struct dma_attrs
*attrs
)
2895 unsigned long flags
;
2896 struct protection_domain
*domain
;
2897 struct scatterlist
*s
;
2900 INC_STATS_COUNTER(cnt_unmap_sg
);
2902 domain
= get_domain(dev
);
2906 spin_lock_irqsave(&domain
->lock
, flags
);
2908 for_each_sg(sglist
, s
, nelems
, i
) {
2909 __unmap_single(domain
->priv
, s
->dma_address
,
2910 s
->dma_length
, dir
);
2911 s
->dma_address
= s
->dma_length
= 0;
2914 domain_flush_complete(domain
);
2916 spin_unlock_irqrestore(&domain
->lock
, flags
);
2920 * The exported alloc_coherent function for dma_ops.
2922 static void *alloc_coherent(struct device
*dev
, size_t size
,
2923 dma_addr_t
*dma_addr
, gfp_t flag
,
2924 struct dma_attrs
*attrs
)
2926 unsigned long flags
;
2928 struct protection_domain
*domain
;
2930 u64 dma_mask
= dev
->coherent_dma_mask
;
2932 INC_STATS_COUNTER(cnt_alloc_coherent
);
2934 domain
= get_domain(dev
);
2935 if (PTR_ERR(domain
) == -EINVAL
) {
2936 virt_addr
= (void *)__get_free_pages(flag
, get_order(size
));
2937 *dma_addr
= __pa(virt_addr
);
2939 } else if (IS_ERR(domain
))
2942 dma_mask
= dev
->coherent_dma_mask
;
2943 flag
&= ~(__GFP_DMA
| __GFP_HIGHMEM
| __GFP_DMA32
);
2946 virt_addr
= (void *)__get_free_pages(flag
, get_order(size
));
2950 paddr
= virt_to_phys(virt_addr
);
2953 dma_mask
= *dev
->dma_mask
;
2955 spin_lock_irqsave(&domain
->lock
, flags
);
2957 *dma_addr
= __map_single(dev
, domain
->priv
, paddr
,
2958 size
, DMA_BIDIRECTIONAL
, true, dma_mask
);
2960 if (*dma_addr
== DMA_ERROR_CODE
) {
2961 spin_unlock_irqrestore(&domain
->lock
, flags
);
2965 domain_flush_complete(domain
);
2967 spin_unlock_irqrestore(&domain
->lock
, flags
);
2973 free_pages((unsigned long)virt_addr
, get_order(size
));
2979 * The exported free_coherent function for dma_ops.
2981 static void free_coherent(struct device
*dev
, size_t size
,
2982 void *virt_addr
, dma_addr_t dma_addr
,
2983 struct dma_attrs
*attrs
)
2985 unsigned long flags
;
2986 struct protection_domain
*domain
;
2988 INC_STATS_COUNTER(cnt_free_coherent
);
2990 domain
= get_domain(dev
);
2994 spin_lock_irqsave(&domain
->lock
, flags
);
2996 __unmap_single(domain
->priv
, dma_addr
, size
, DMA_BIDIRECTIONAL
);
2998 domain_flush_complete(domain
);
3000 spin_unlock_irqrestore(&domain
->lock
, flags
);
3003 free_pages((unsigned long)virt_addr
, get_order(size
));
3007 * This function is called by the DMA layer to find out if we can handle a
3008 * particular device. It is part of the dma_ops.
3010 static int amd_iommu_dma_supported(struct device
*dev
, u64 mask
)
3012 return check_device(dev
);
3016 * The function for pre-allocating protection domains.
3018 * If the driver core informs the DMA layer if a driver grabs a device
3019 * we don't need to preallocate the protection domains anymore.
3020 * For now we have to.
3022 static void __init
prealloc_protection_domains(void)
3024 struct iommu_dev_data
*dev_data
;
3025 struct dma_ops_domain
*dma_dom
;
3026 struct pci_dev
*dev
= NULL
;
3029 for_each_pci_dev(dev
) {
3031 /* Do we handle this device? */
3032 if (!check_device(&dev
->dev
))
3035 dev_data
= get_dev_data(&dev
->dev
);
3036 if (!amd_iommu_force_isolation
&& dev_data
->iommu_v2
) {
3037 /* Make sure passthrough domain is allocated */
3038 alloc_passthrough_domain();
3039 dev_data
->passthrough
= true;
3040 attach_device(&dev
->dev
, pt_domain
);
3041 pr_info("AMD-Vi: Using passthrough domain for device %s\n",
3042 dev_name(&dev
->dev
));
3045 /* Is there already any domain for it? */
3046 if (domain_for_device(&dev
->dev
))
3049 devid
= get_device_id(&dev
->dev
);
3051 dma_dom
= dma_ops_domain_alloc();
3054 init_unity_mappings_for_device(dma_dom
, devid
);
3055 dma_dom
->target_dev
= devid
;
3057 attach_device(&dev
->dev
, &dma_dom
->domain
);
3059 list_add_tail(&dma_dom
->list
, &iommu_pd_list
);
3063 static struct dma_map_ops amd_iommu_dma_ops
= {
3064 .alloc
= alloc_coherent
,
3065 .free
= free_coherent
,
3066 .map_page
= map_page
,
3067 .unmap_page
= unmap_page
,
3069 .unmap_sg
= unmap_sg
,
3070 .dma_supported
= amd_iommu_dma_supported
,
3073 static unsigned device_dma_ops_init(void)
3075 struct iommu_dev_data
*dev_data
;
3076 struct pci_dev
*pdev
= NULL
;
3077 unsigned unhandled
= 0;
3079 for_each_pci_dev(pdev
) {
3080 if (!check_device(&pdev
->dev
)) {
3082 iommu_ignore_device(&pdev
->dev
);
3088 dev_data
= get_dev_data(&pdev
->dev
);
3090 if (!dev_data
->passthrough
)
3091 pdev
->dev
.archdata
.dma_ops
= &amd_iommu_dma_ops
;
3093 pdev
->dev
.archdata
.dma_ops
= &nommu_dma_ops
;
3100 * The function which clues the AMD IOMMU driver into dma_ops.
3103 void __init
amd_iommu_init_api(void)
3105 bus_set_iommu(&pci_bus_type
, &amd_iommu_ops
);
3108 int __init
amd_iommu_init_dma_ops(void)
3110 struct amd_iommu
*iommu
;
3114 * first allocate a default protection domain for every IOMMU we
3115 * found in the system. Devices not assigned to any other
3116 * protection domain will be assigned to the default one.
3118 for_each_iommu(iommu
) {
3119 iommu
->default_dom
= dma_ops_domain_alloc();
3120 if (iommu
->default_dom
== NULL
)
3122 iommu
->default_dom
->domain
.flags
|= PD_DEFAULT_MASK
;
3123 ret
= iommu_init_unity_mappings(iommu
);
3129 * Pre-allocate the protection domains for each device.
3131 prealloc_protection_domains();
3136 /* Make the driver finally visible to the drivers */
3137 unhandled
= device_dma_ops_init();
3138 if (unhandled
&& max_pfn
> MAX_DMA32_PFN
) {
3139 /* There are unhandled devices - initialize swiotlb for them */
3143 amd_iommu_stats_init();
3145 if (amd_iommu_unmap_flush
)
3146 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3148 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3154 for_each_iommu(iommu
) {
3155 dma_ops_domain_free(iommu
->default_dom
);
3161 /*****************************************************************************
3163 * The following functions belong to the exported interface of AMD IOMMU
3165 * This interface allows access to lower level functions of the IOMMU
3166 * like protection domain handling and assignement of devices to domains
3167 * which is not possible with the dma_ops interface.
3169 *****************************************************************************/
3171 static void cleanup_domain(struct protection_domain
*domain
)
3173 struct iommu_dev_data
*entry
;
3174 unsigned long flags
;
3176 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
3178 while (!list_empty(&domain
->dev_list
)) {
3179 entry
= list_first_entry(&domain
->dev_list
,
3180 struct iommu_dev_data
, list
);
3181 __detach_device(entry
);
3184 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
3187 static void protection_domain_free(struct protection_domain
*domain
)
3192 del_domain_from_list(domain
);
3195 domain_id_free(domain
->id
);
3200 static struct protection_domain
*protection_domain_alloc(void)
3202 struct protection_domain
*domain
;
3204 domain
= kzalloc(sizeof(*domain
), GFP_KERNEL
);
3208 spin_lock_init(&domain
->lock
);
3209 mutex_init(&domain
->api_lock
);
3210 domain
->id
= domain_id_alloc();
3213 INIT_LIST_HEAD(&domain
->dev_list
);
3215 add_domain_to_list(domain
);
3225 static int __init
alloc_passthrough_domain(void)
3227 if (pt_domain
!= NULL
)
3230 /* allocate passthrough domain */
3231 pt_domain
= protection_domain_alloc();
3235 pt_domain
->mode
= PAGE_MODE_NONE
;
3239 static int amd_iommu_domain_init(struct iommu_domain
*dom
)
3241 struct protection_domain
*domain
;
3243 domain
= protection_domain_alloc();
3247 domain
->mode
= PAGE_MODE_3_LEVEL
;
3248 domain
->pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
3249 if (!domain
->pt_root
)
3252 domain
->iommu_domain
= dom
;
3256 dom
->geometry
.aperture_start
= 0;
3257 dom
->geometry
.aperture_end
= ~0ULL;
3258 dom
->geometry
.force_aperture
= true;
3263 protection_domain_free(domain
);
3268 static void amd_iommu_domain_destroy(struct iommu_domain
*dom
)
3270 struct protection_domain
*domain
= dom
->priv
;
3275 if (domain
->dev_cnt
> 0)
3276 cleanup_domain(domain
);
3278 BUG_ON(domain
->dev_cnt
!= 0);
3280 if (domain
->mode
!= PAGE_MODE_NONE
)
3281 free_pagetable(domain
);
3283 if (domain
->flags
& PD_IOMMUV2_MASK
)
3284 free_gcr3_table(domain
);
3286 protection_domain_free(domain
);
3291 static void amd_iommu_detach_device(struct iommu_domain
*dom
,
3294 struct iommu_dev_data
*dev_data
= dev
->archdata
.iommu
;
3295 struct amd_iommu
*iommu
;
3298 if (!check_device(dev
))
3301 devid
= get_device_id(dev
);
3303 if (dev_data
->domain
!= NULL
)
3306 iommu
= amd_iommu_rlookup_table
[devid
];
3310 iommu_completion_wait(iommu
);
3313 static int amd_iommu_attach_device(struct iommu_domain
*dom
,
3316 struct protection_domain
*domain
= dom
->priv
;
3317 struct iommu_dev_data
*dev_data
;
3318 struct amd_iommu
*iommu
;
3321 if (!check_device(dev
))
3324 dev_data
= dev
->archdata
.iommu
;
3326 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3330 if (dev_data
->domain
)
3333 ret
= attach_device(dev
, domain
);
3335 iommu_completion_wait(iommu
);
3340 static int amd_iommu_map(struct iommu_domain
*dom
, unsigned long iova
,
3341 phys_addr_t paddr
, size_t page_size
, int iommu_prot
)
3343 struct protection_domain
*domain
= dom
->priv
;
3347 if (domain
->mode
== PAGE_MODE_NONE
)
3350 if (iommu_prot
& IOMMU_READ
)
3351 prot
|= IOMMU_PROT_IR
;
3352 if (iommu_prot
& IOMMU_WRITE
)
3353 prot
|= IOMMU_PROT_IW
;
3355 mutex_lock(&domain
->api_lock
);
3356 ret
= iommu_map_page(domain
, iova
, paddr
, prot
, page_size
);
3357 mutex_unlock(&domain
->api_lock
);
3362 static size_t amd_iommu_unmap(struct iommu_domain
*dom
, unsigned long iova
,
3365 struct protection_domain
*domain
= dom
->priv
;
3368 if (domain
->mode
== PAGE_MODE_NONE
)
3371 mutex_lock(&domain
->api_lock
);
3372 unmap_size
= iommu_unmap_page(domain
, iova
, page_size
);
3373 mutex_unlock(&domain
->api_lock
);
3375 domain_flush_tlb_pde(domain
);
3380 static phys_addr_t
amd_iommu_iova_to_phys(struct iommu_domain
*dom
,
3383 struct protection_domain
*domain
= dom
->priv
;
3384 unsigned long offset_mask
;
3388 if (domain
->mode
== PAGE_MODE_NONE
)
3391 pte
= fetch_pte(domain
, iova
);
3393 if (!pte
|| !IOMMU_PTE_PRESENT(*pte
))
3396 if (PM_PTE_LEVEL(*pte
) == 0)
3397 offset_mask
= PAGE_SIZE
- 1;
3399 offset_mask
= PTE_PAGE_SIZE(*pte
) - 1;
3401 __pte
= *pte
& PM_ADDR_MASK
;
3402 paddr
= (__pte
& ~offset_mask
) | (iova
& offset_mask
);
3407 static bool amd_iommu_capable(enum iommu_cap cap
)
3410 case IOMMU_CAP_CACHE_COHERENCY
:
3412 case IOMMU_CAP_INTR_REMAP
:
3413 return (irq_remapping_enabled
== 1);
3419 static const struct iommu_ops amd_iommu_ops
= {
3420 .capable
= amd_iommu_capable
,
3421 .domain_init
= amd_iommu_domain_init
,
3422 .domain_destroy
= amd_iommu_domain_destroy
,
3423 .attach_dev
= amd_iommu_attach_device
,
3424 .detach_dev
= amd_iommu_detach_device
,
3425 .map
= amd_iommu_map
,
3426 .unmap
= amd_iommu_unmap
,
3427 .iova_to_phys
= amd_iommu_iova_to_phys
,
3428 .pgsize_bitmap
= AMD_IOMMU_PGSIZES
,
3431 /*****************************************************************************
3433 * The next functions do a basic initialization of IOMMU for pass through
3436 * In passthrough mode the IOMMU is initialized and enabled but not used for
3437 * DMA-API translation.
3439 *****************************************************************************/
3441 int __init
amd_iommu_init_passthrough(void)
3443 struct iommu_dev_data
*dev_data
;
3444 struct pci_dev
*dev
= NULL
;
3447 ret
= alloc_passthrough_domain();
3451 for_each_pci_dev(dev
) {
3452 if (!check_device(&dev
->dev
))
3455 dev_data
= get_dev_data(&dev
->dev
);
3456 dev_data
->passthrough
= true;
3458 attach_device(&dev
->dev
, pt_domain
);
3461 amd_iommu_stats_init();
3463 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3468 /* IOMMUv2 specific functions */
3469 int amd_iommu_register_ppr_notifier(struct notifier_block
*nb
)
3471 return atomic_notifier_chain_register(&ppr_notifier
, nb
);
3473 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier
);
3475 int amd_iommu_unregister_ppr_notifier(struct notifier_block
*nb
)
3477 return atomic_notifier_chain_unregister(&ppr_notifier
, nb
);
3479 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier
);
3481 void amd_iommu_domain_direct_map(struct iommu_domain
*dom
)
3483 struct protection_domain
*domain
= dom
->priv
;
3484 unsigned long flags
;
3486 spin_lock_irqsave(&domain
->lock
, flags
);
3488 /* Update data structure */
3489 domain
->mode
= PAGE_MODE_NONE
;
3490 domain
->updated
= true;
3492 /* Make changes visible to IOMMUs */
3493 update_domain(domain
);
3495 /* Page-table is not visible to IOMMU anymore, so free it */
3496 free_pagetable(domain
);
3498 spin_unlock_irqrestore(&domain
->lock
, flags
);
3500 EXPORT_SYMBOL(amd_iommu_domain_direct_map
);
3502 int amd_iommu_domain_enable_v2(struct iommu_domain
*dom
, int pasids
)
3504 struct protection_domain
*domain
= dom
->priv
;
3505 unsigned long flags
;
3508 if (pasids
<= 0 || pasids
> (PASID_MASK
+ 1))
3511 /* Number of GCR3 table levels required */
3512 for (levels
= 0; (pasids
- 1) & ~0x1ff; pasids
>>= 9)
3515 if (levels
> amd_iommu_max_glx_val
)
3518 spin_lock_irqsave(&domain
->lock
, flags
);
3521 * Save us all sanity checks whether devices already in the
3522 * domain support IOMMUv2. Just force that the domain has no
3523 * devices attached when it is switched into IOMMUv2 mode.
3526 if (domain
->dev_cnt
> 0 || domain
->flags
& PD_IOMMUV2_MASK
)
3530 domain
->gcr3_tbl
= (void *)get_zeroed_page(GFP_ATOMIC
);
3531 if (domain
->gcr3_tbl
== NULL
)
3534 domain
->glx
= levels
;
3535 domain
->flags
|= PD_IOMMUV2_MASK
;
3536 domain
->updated
= true;
3538 update_domain(domain
);
3543 spin_unlock_irqrestore(&domain
->lock
, flags
);
3547 EXPORT_SYMBOL(amd_iommu_domain_enable_v2
);
3549 static int __flush_pasid(struct protection_domain
*domain
, int pasid
,
3550 u64 address
, bool size
)
3552 struct iommu_dev_data
*dev_data
;
3553 struct iommu_cmd cmd
;
3556 if (!(domain
->flags
& PD_IOMMUV2_MASK
))
3559 build_inv_iommu_pasid(&cmd
, domain
->id
, pasid
, address
, size
);
3562 * IOMMU TLB needs to be flushed before Device TLB to
3563 * prevent device TLB refill from IOMMU TLB
3565 for (i
= 0; i
< amd_iommus_present
; ++i
) {
3566 if (domain
->dev_iommu
[i
] == 0)
3569 ret
= iommu_queue_command(amd_iommus
[i
], &cmd
);
3574 /* Wait until IOMMU TLB flushes are complete */
3575 domain_flush_complete(domain
);
3577 /* Now flush device TLBs */
3578 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
3579 struct amd_iommu
*iommu
;
3582 BUG_ON(!dev_data
->ats
.enabled
);
3584 qdep
= dev_data
->ats
.qdep
;
3585 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3587 build_inv_iotlb_pasid(&cmd
, dev_data
->devid
, pasid
,
3588 qdep
, address
, size
);
3590 ret
= iommu_queue_command(iommu
, &cmd
);
3595 /* Wait until all device TLBs are flushed */
3596 domain_flush_complete(domain
);
3605 static int __amd_iommu_flush_page(struct protection_domain
*domain
, int pasid
,
3608 INC_STATS_COUNTER(invalidate_iotlb
);
3610 return __flush_pasid(domain
, pasid
, address
, false);
3613 int amd_iommu_flush_page(struct iommu_domain
*dom
, int pasid
,
3616 struct protection_domain
*domain
= dom
->priv
;
3617 unsigned long flags
;
3620 spin_lock_irqsave(&domain
->lock
, flags
);
3621 ret
= __amd_iommu_flush_page(domain
, pasid
, address
);
3622 spin_unlock_irqrestore(&domain
->lock
, flags
);
3626 EXPORT_SYMBOL(amd_iommu_flush_page
);
3628 static int __amd_iommu_flush_tlb(struct protection_domain
*domain
, int pasid
)
3630 INC_STATS_COUNTER(invalidate_iotlb_all
);
3632 return __flush_pasid(domain
, pasid
, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
3636 int amd_iommu_flush_tlb(struct iommu_domain
*dom
, int pasid
)
3638 struct protection_domain
*domain
= dom
->priv
;
3639 unsigned long flags
;
3642 spin_lock_irqsave(&domain
->lock
, flags
);
3643 ret
= __amd_iommu_flush_tlb(domain
, pasid
);
3644 spin_unlock_irqrestore(&domain
->lock
, flags
);
3648 EXPORT_SYMBOL(amd_iommu_flush_tlb
);
3650 static u64
*__get_gcr3_pte(u64
*root
, int level
, int pasid
, bool alloc
)
3657 index
= (pasid
>> (9 * level
)) & 0x1ff;
3663 if (!(*pte
& GCR3_VALID
)) {
3667 root
= (void *)get_zeroed_page(GFP_ATOMIC
);
3671 *pte
= __pa(root
) | GCR3_VALID
;
3674 root
= __va(*pte
& PAGE_MASK
);
3682 static int __set_gcr3(struct protection_domain
*domain
, int pasid
,
3687 if (domain
->mode
!= PAGE_MODE_NONE
)
3690 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, true);
3694 *pte
= (cr3
& PAGE_MASK
) | GCR3_VALID
;
3696 return __amd_iommu_flush_tlb(domain
, pasid
);
3699 static int __clear_gcr3(struct protection_domain
*domain
, int pasid
)
3703 if (domain
->mode
!= PAGE_MODE_NONE
)
3706 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, false);
3712 return __amd_iommu_flush_tlb(domain
, pasid
);
3715 int amd_iommu_domain_set_gcr3(struct iommu_domain
*dom
, int pasid
,
3718 struct protection_domain
*domain
= dom
->priv
;
3719 unsigned long flags
;
3722 spin_lock_irqsave(&domain
->lock
, flags
);
3723 ret
= __set_gcr3(domain
, pasid
, cr3
);
3724 spin_unlock_irqrestore(&domain
->lock
, flags
);
3728 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3
);
3730 int amd_iommu_domain_clear_gcr3(struct iommu_domain
*dom
, int pasid
)
3732 struct protection_domain
*domain
= dom
->priv
;
3733 unsigned long flags
;
3736 spin_lock_irqsave(&domain
->lock
, flags
);
3737 ret
= __clear_gcr3(domain
, pasid
);
3738 spin_unlock_irqrestore(&domain
->lock
, flags
);
3742 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3
);
3744 int amd_iommu_complete_ppr(struct pci_dev
*pdev
, int pasid
,
3745 int status
, int tag
)
3747 struct iommu_dev_data
*dev_data
;
3748 struct amd_iommu
*iommu
;
3749 struct iommu_cmd cmd
;
3751 INC_STATS_COUNTER(complete_ppr
);
3753 dev_data
= get_dev_data(&pdev
->dev
);
3754 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3756 build_complete_ppr(&cmd
, dev_data
->devid
, pasid
, status
,
3757 tag
, dev_data
->pri_tlp
);
3759 return iommu_queue_command(iommu
, &cmd
);
3761 EXPORT_SYMBOL(amd_iommu_complete_ppr
);
3763 struct iommu_domain
*amd_iommu_get_v2_domain(struct pci_dev
*pdev
)
3765 struct protection_domain
*domain
;
3767 domain
= get_domain(&pdev
->dev
);
3771 /* Only return IOMMUv2 domains */
3772 if (!(domain
->flags
& PD_IOMMUV2_MASK
))
3775 return domain
->iommu_domain
;
3777 EXPORT_SYMBOL(amd_iommu_get_v2_domain
);
3779 void amd_iommu_enable_device_erratum(struct pci_dev
*pdev
, u32 erratum
)
3781 struct iommu_dev_data
*dev_data
;
3783 if (!amd_iommu_v2_supported())
3786 dev_data
= get_dev_data(&pdev
->dev
);
3787 dev_data
->errata
|= (1 << erratum
);
3789 EXPORT_SYMBOL(amd_iommu_enable_device_erratum
);
3791 int amd_iommu_device_info(struct pci_dev
*pdev
,
3792 struct amd_iommu_device_info
*info
)
3797 if (pdev
== NULL
|| info
== NULL
)
3800 if (!amd_iommu_v2_supported())
3803 memset(info
, 0, sizeof(*info
));
3805 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ATS
);
3807 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_ATS_SUP
;
3809 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
3811 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRI_SUP
;
3813 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PASID
);
3817 max_pasids
= 1 << (9 * (amd_iommu_max_glx_val
+ 1));
3818 max_pasids
= min(max_pasids
, (1 << 20));
3820 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PASID_SUP
;
3821 info
->max_pasids
= min(pci_max_pasids(pdev
), max_pasids
);
3823 features
= pci_pasid_features(pdev
);
3824 if (features
& PCI_PASID_CAP_EXEC
)
3825 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP
;
3826 if (features
& PCI_PASID_CAP_PRIV
)
3827 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP
;
3832 EXPORT_SYMBOL(amd_iommu_device_info
);
3834 #ifdef CONFIG_IRQ_REMAP
3836 /*****************************************************************************
3838 * Interrupt Remapping Implementation
3840 *****************************************************************************/
3857 #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3858 #define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3859 #define DTE_IRQ_TABLE_LEN (8ULL << 1)
3860 #define DTE_IRQ_REMAP_ENABLE 1ULL
3862 static void set_dte_irq_entry(u16 devid
, struct irq_remap_table
*table
)
3866 dte
= amd_iommu_dev_table
[devid
].data
[2];
3867 dte
&= ~DTE_IRQ_PHYS_ADDR_MASK
;
3868 dte
|= virt_to_phys(table
->table
);
3869 dte
|= DTE_IRQ_REMAP_INTCTL
;
3870 dte
|= DTE_IRQ_TABLE_LEN
;
3871 dte
|= DTE_IRQ_REMAP_ENABLE
;
3873 amd_iommu_dev_table
[devid
].data
[2] = dte
;
3876 #define IRTE_ALLOCATED (~1U)
3878 static struct irq_remap_table
*get_irq_table(u16 devid
, bool ioapic
)
3880 struct irq_remap_table
*table
= NULL
;
3881 struct amd_iommu
*iommu
;
3882 unsigned long flags
;
3885 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
3887 iommu
= amd_iommu_rlookup_table
[devid
];
3891 table
= irq_lookup_table
[devid
];
3895 alias
= amd_iommu_alias_table
[devid
];
3896 table
= irq_lookup_table
[alias
];
3898 irq_lookup_table
[devid
] = table
;
3899 set_dte_irq_entry(devid
, table
);
3900 iommu_flush_dte(iommu
, devid
);
3904 /* Nothing there yet, allocate new irq remapping table */
3905 table
= kzalloc(sizeof(*table
), GFP_ATOMIC
);
3909 /* Initialize table spin-lock */
3910 spin_lock_init(&table
->lock
);
3913 /* Keep the first 32 indexes free for IOAPIC interrupts */
3914 table
->min_index
= 32;
3916 table
->table
= kmem_cache_alloc(amd_iommu_irq_cache
, GFP_ATOMIC
);
3917 if (!table
->table
) {
3923 memset(table
->table
, 0, MAX_IRQS_PER_TABLE
* sizeof(u32
));
3928 for (i
= 0; i
< 32; ++i
)
3929 table
->table
[i
] = IRTE_ALLOCATED
;
3932 irq_lookup_table
[devid
] = table
;
3933 set_dte_irq_entry(devid
, table
);
3934 iommu_flush_dte(iommu
, devid
);
3935 if (devid
!= alias
) {
3936 irq_lookup_table
[alias
] = table
;
3937 set_dte_irq_entry(alias
, table
);
3938 iommu_flush_dte(iommu
, alias
);
3942 iommu_completion_wait(iommu
);
3945 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
3950 static int alloc_irq_index(struct irq_cfg
*cfg
, u16 devid
, int count
)
3952 struct irq_remap_table
*table
;
3953 unsigned long flags
;
3956 table
= get_irq_table(devid
, false);
3960 spin_lock_irqsave(&table
->lock
, flags
);
3962 /* Scan table for free entries */
3963 for (c
= 0, index
= table
->min_index
;
3964 index
< MAX_IRQS_PER_TABLE
;
3966 if (table
->table
[index
] == 0)
3972 struct irq_2_irte
*irte_info
;
3975 table
->table
[index
- c
+ 1] = IRTE_ALLOCATED
;
3980 irte_info
= &cfg
->irq_2_irte
;
3981 irte_info
->devid
= devid
;
3982 irte_info
->index
= index
;
3991 spin_unlock_irqrestore(&table
->lock
, flags
);
3996 static int get_irte(u16 devid
, int index
, union irte
*irte
)
3998 struct irq_remap_table
*table
;
3999 unsigned long flags
;
4001 table
= get_irq_table(devid
, false);
4005 spin_lock_irqsave(&table
->lock
, flags
);
4006 irte
->val
= table
->table
[index
];
4007 spin_unlock_irqrestore(&table
->lock
, flags
);
4012 static int modify_irte(u16 devid
, int index
, union irte irte
)
4014 struct irq_remap_table
*table
;
4015 struct amd_iommu
*iommu
;
4016 unsigned long flags
;
4018 iommu
= amd_iommu_rlookup_table
[devid
];
4022 table
= get_irq_table(devid
, false);
4026 spin_lock_irqsave(&table
->lock
, flags
);
4027 table
->table
[index
] = irte
.val
;
4028 spin_unlock_irqrestore(&table
->lock
, flags
);
4030 iommu_flush_irt(iommu
, devid
);
4031 iommu_completion_wait(iommu
);
4036 static void free_irte(u16 devid
, int index
)
4038 struct irq_remap_table
*table
;
4039 struct amd_iommu
*iommu
;
4040 unsigned long flags
;
4042 iommu
= amd_iommu_rlookup_table
[devid
];
4046 table
= get_irq_table(devid
, false);
4050 spin_lock_irqsave(&table
->lock
, flags
);
4051 table
->table
[index
] = 0;
4052 spin_unlock_irqrestore(&table
->lock
, flags
);
4054 iommu_flush_irt(iommu
, devid
);
4055 iommu_completion_wait(iommu
);
4058 static int setup_ioapic_entry(int irq
, struct IO_APIC_route_entry
*entry
,
4059 unsigned int destination
, int vector
,
4060 struct io_apic_irq_attr
*attr
)
4062 struct irq_remap_table
*table
;
4063 struct irq_2_irte
*irte_info
;
4064 struct irq_cfg
*cfg
;
4071 cfg
= irq_get_chip_data(irq
);
4075 irte_info
= &cfg
->irq_2_irte
;
4076 ioapic_id
= mpc_ioapic_id(attr
->ioapic
);
4077 devid
= get_ioapic_devid(ioapic_id
);
4082 table
= get_irq_table(devid
, true);
4086 index
= attr
->ioapic_pin
;
4088 /* Setup IRQ remapping info */
4090 irte_info
->devid
= devid
;
4091 irte_info
->index
= index
;
4093 /* Setup IRTE for IOMMU */
4095 irte
.fields
.vector
= vector
;
4096 irte
.fields
.int_type
= apic
->irq_delivery_mode
;
4097 irte
.fields
.destination
= destination
;
4098 irte
.fields
.dm
= apic
->irq_dest_mode
;
4099 irte
.fields
.valid
= 1;
4101 ret
= modify_irte(devid
, index
, irte
);
4105 /* Setup IOAPIC entry */
4106 memset(entry
, 0, sizeof(*entry
));
4108 entry
->vector
= index
;
4110 entry
->trigger
= attr
->trigger
;
4111 entry
->polarity
= attr
->polarity
;
4114 * Mask level triggered irqs.
4122 static int set_affinity(struct irq_data
*data
, const struct cpumask
*mask
,
4125 struct irq_2_irte
*irte_info
;
4126 unsigned int dest
, irq
;
4127 struct irq_cfg
*cfg
;
4131 if (!config_enabled(CONFIG_SMP
))
4134 cfg
= data
->chip_data
;
4136 irte_info
= &cfg
->irq_2_irte
;
4138 if (!cpumask_intersects(mask
, cpu_online_mask
))
4141 if (get_irte(irte_info
->devid
, irte_info
->index
, &irte
))
4144 if (assign_irq_vector(irq
, cfg
, mask
))
4147 err
= apic
->cpu_mask_to_apicid_and(cfg
->domain
, mask
, &dest
);
4149 if (assign_irq_vector(irq
, cfg
, data
->affinity
))
4150 pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq
);
4154 irte
.fields
.vector
= cfg
->vector
;
4155 irte
.fields
.destination
= dest
;
4157 modify_irte(irte_info
->devid
, irte_info
->index
, irte
);
4159 if (cfg
->move_in_progress
)
4160 send_cleanup_vector(cfg
);
4162 cpumask_copy(data
->affinity
, mask
);
4167 static int free_irq(int irq
)
4169 struct irq_2_irte
*irte_info
;
4170 struct irq_cfg
*cfg
;
4172 cfg
= irq_get_chip_data(irq
);
4176 irte_info
= &cfg
->irq_2_irte
;
4178 free_irte(irte_info
->devid
, irte_info
->index
);
4183 static void compose_msi_msg(struct pci_dev
*pdev
,
4184 unsigned int irq
, unsigned int dest
,
4185 struct msi_msg
*msg
, u8 hpet_id
)
4187 struct irq_2_irte
*irte_info
;
4188 struct irq_cfg
*cfg
;
4191 cfg
= irq_get_chip_data(irq
);
4195 irte_info
= &cfg
->irq_2_irte
;
4198 irte
.fields
.vector
= cfg
->vector
;
4199 irte
.fields
.int_type
= apic
->irq_delivery_mode
;
4200 irte
.fields
.destination
= dest
;
4201 irte
.fields
.dm
= apic
->irq_dest_mode
;
4202 irte
.fields
.valid
= 1;
4204 modify_irte(irte_info
->devid
, irte_info
->index
, irte
);
4206 msg
->address_hi
= MSI_ADDR_BASE_HI
;
4207 msg
->address_lo
= MSI_ADDR_BASE_LO
;
4208 msg
->data
= irte_info
->index
;
4211 static int msi_alloc_irq(struct pci_dev
*pdev
, int irq
, int nvec
)
4213 struct irq_cfg
*cfg
;
4220 cfg
= irq_get_chip_data(irq
);
4224 devid
= get_device_id(&pdev
->dev
);
4225 index
= alloc_irq_index(cfg
, devid
, nvec
);
4227 return index
< 0 ? MAX_IRQS_PER_TABLE
: index
;
4230 static int msi_setup_irq(struct pci_dev
*pdev
, unsigned int irq
,
4231 int index
, int offset
)
4233 struct irq_2_irte
*irte_info
;
4234 struct irq_cfg
*cfg
;
4240 cfg
= irq_get_chip_data(irq
);
4244 if (index
>= MAX_IRQS_PER_TABLE
)
4247 devid
= get_device_id(&pdev
->dev
);
4248 irte_info
= &cfg
->irq_2_irte
;
4251 irte_info
->devid
= devid
;
4252 irte_info
->index
= index
+ offset
;
4257 static int alloc_hpet_msi(unsigned int irq
, unsigned int id
)
4259 struct irq_2_irte
*irte_info
;
4260 struct irq_cfg
*cfg
;
4263 cfg
= irq_get_chip_data(irq
);
4267 irte_info
= &cfg
->irq_2_irte
;
4268 devid
= get_hpet_devid(id
);
4272 index
= alloc_irq_index(cfg
, devid
, 1);
4277 irte_info
->devid
= devid
;
4278 irte_info
->index
= index
;
4283 struct irq_remap_ops amd_iommu_irq_ops
= {
4284 .supported
= amd_iommu_supported
,
4285 .prepare
= amd_iommu_prepare
,
4286 .enable
= amd_iommu_enable
,
4287 .disable
= amd_iommu_disable
,
4288 .reenable
= amd_iommu_reenable
,
4289 .enable_faulting
= amd_iommu_enable_faulting
,
4290 .setup_ioapic_entry
= setup_ioapic_entry
,
4291 .set_affinity
= set_affinity
,
4292 .free_irq
= free_irq
,
4293 .compose_msi_msg
= compose_msi_msg
,
4294 .msi_alloc_irq
= msi_alloc_irq
,
4295 .msi_setup_irq
= msi_setup_irq
,
4296 .alloc_hpet_msi
= alloc_hpet_msi
,