Linux 5.6.13
[linux/fpc-iii.git] / arch / arm / mach-omap2 / vc.c
blob86f1ac4c24125ae24306d985ebaeb08e9add2630
1 /*
2 * OMAP Voltage Controller (VC) interface
4 * Copyright (C) 2011 Texas Instruments, Inc.
6 * This file is licensed under the terms of the GNU General Public
7 * License version 2. This program is licensed "as is" without any
8 * warranty of any kind, whether express or implied.
9 */
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/bug.h>
14 #include <linux/io.h>
16 #include <asm/div64.h>
18 #include "iomap.h"
19 #include "soc.h"
20 #include "voltage.h"
21 #include "vc.h"
22 #include "prm-regbits-34xx.h"
23 #include "prm-regbits-44xx.h"
24 #include "prm44xx.h"
25 #include "pm.h"
26 #include "scrm44xx.h"
27 #include "control.h"
29 #define OMAP4430_VDD_IVA_I2C_DISABLE BIT(14)
30 #define OMAP4430_VDD_MPU_I2C_DISABLE BIT(13)
31 #define OMAP4430_VDD_CORE_I2C_DISABLE BIT(12)
32 #define OMAP4430_VDD_IVA_PRESENCE BIT(9)
33 #define OMAP4430_VDD_MPU_PRESENCE BIT(8)
34 #define OMAP4430_AUTO_CTRL_VDD_IVA(x) ((x) << 4)
35 #define OMAP4430_AUTO_CTRL_VDD_MPU(x) ((x) << 2)
36 #define OMAP4430_AUTO_CTRL_VDD_CORE(x) ((x) << 0)
37 #define OMAP4430_AUTO_CTRL_VDD_RET 2
39 #define OMAP4430_VDD_I2C_DISABLE_MASK \
40 (OMAP4430_VDD_IVA_I2C_DISABLE | \
41 OMAP4430_VDD_MPU_I2C_DISABLE | \
42 OMAP4430_VDD_CORE_I2C_DISABLE)
44 #define OMAP4_VDD_DEFAULT_VAL \
45 (OMAP4430_VDD_I2C_DISABLE_MASK | \
46 OMAP4430_VDD_IVA_PRESENCE | OMAP4430_VDD_MPU_PRESENCE | \
47 OMAP4430_AUTO_CTRL_VDD_IVA(OMAP4430_AUTO_CTRL_VDD_RET) | \
48 OMAP4430_AUTO_CTRL_VDD_MPU(OMAP4430_AUTO_CTRL_VDD_RET) | \
49 OMAP4430_AUTO_CTRL_VDD_CORE(OMAP4430_AUTO_CTRL_VDD_RET))
51 #define OMAP4_VDD_RET_VAL \
52 (OMAP4_VDD_DEFAULT_VAL & ~OMAP4430_VDD_I2C_DISABLE_MASK)
54 /**
55 * struct omap_vc_channel_cfg - describe the cfg_channel bitfield
56 * @sa: bit for slave address
57 * @rav: bit for voltage configuration register
58 * @rac: bit for command configuration register
59 * @racen: enable bit for RAC
60 * @cmd: bit for command value set selection
62 * Channel configuration bits, common for OMAP3+
63 * OMAP3 register: PRM_VC_CH_CONF
64 * OMAP4 register: PRM_VC_CFG_CHANNEL
65 * OMAP5 register: PRM_VC_SMPS_<voltdm>_CONFIG
67 struct omap_vc_channel_cfg {
68 u8 sa;
69 u8 rav;
70 u8 rac;
71 u8 racen;
72 u8 cmd;
75 static struct omap_vc_channel_cfg vc_default_channel_cfg = {
76 .sa = BIT(0),
77 .rav = BIT(1),
78 .rac = BIT(2),
79 .racen = BIT(3),
80 .cmd = BIT(4),
84 * On OMAP3+, all VC channels have the above default bitfield
85 * configuration, except the OMAP4 MPU channel. This appears
86 * to be a freak accident as every other VC channel has the
87 * default configuration, thus creating a mutant channel config.
89 static struct omap_vc_channel_cfg vc_mutant_channel_cfg = {
90 .sa = BIT(0),
91 .rav = BIT(2),
92 .rac = BIT(3),
93 .racen = BIT(4),
94 .cmd = BIT(1),
97 static struct omap_vc_channel_cfg *vc_cfg_bits;
99 /* Default I2C trace length on pcb, 6.3cm. Used for capacitance calculations. */
100 static u32 sr_i2c_pcb_length = 63;
101 #define CFG_CHANNEL_MASK 0x1f
104 * omap_vc_config_channel - configure VC channel to PMIC mappings
105 * @voltdm: pointer to voltagdomain defining the desired VC channel
107 * Configures the VC channel to PMIC mappings for the following
108 * PMIC settings
109 * - i2c slave address (SA)
110 * - voltage configuration address (RAV)
111 * - command configuration address (RAC) and enable bit (RACEN)
112 * - command values for ON, ONLP, RET and OFF (CMD)
114 * This function currently only allows flexible configuration of the
115 * non-default channel. Starting with OMAP4, there are more than 2
116 * channels, with one defined as the default (on OMAP4, it's MPU.)
117 * Only the non-default channel can be configured.
119 static int omap_vc_config_channel(struct voltagedomain *voltdm)
121 struct omap_vc_channel *vc = voltdm->vc;
124 * For default channel, the only configurable bit is RACEN.
125 * All others must stay at zero (see function comment above.)
127 if (vc->flags & OMAP_VC_CHANNEL_DEFAULT)
128 vc->cfg_channel &= vc_cfg_bits->racen;
130 voltdm->rmw(CFG_CHANNEL_MASK << vc->cfg_channel_sa_shift,
131 vc->cfg_channel << vc->cfg_channel_sa_shift,
132 vc->cfg_channel_reg);
134 return 0;
137 /* Voltage scale and accessory APIs */
138 int omap_vc_pre_scale(struct voltagedomain *voltdm,
139 unsigned long target_volt,
140 u8 *target_vsel, u8 *current_vsel)
142 struct omap_vc_channel *vc = voltdm->vc;
143 u32 vc_cmdval;
145 /* Check if sufficient pmic info is available for this vdd */
146 if (!voltdm->pmic) {
147 pr_err("%s: Insufficient pmic info to scale the vdd_%s\n",
148 __func__, voltdm->name);
149 return -EINVAL;
152 if (!voltdm->pmic->uv_to_vsel) {
153 pr_err("%s: PMIC function to convert voltage in uV to vsel not registered. Hence unable to scale voltage for vdd_%s\n",
154 __func__, voltdm->name);
155 return -ENODATA;
158 if (!voltdm->read || !voltdm->write) {
159 pr_err("%s: No read/write API for accessing vdd_%s regs\n",
160 __func__, voltdm->name);
161 return -EINVAL;
164 *target_vsel = voltdm->pmic->uv_to_vsel(target_volt);
165 *current_vsel = voltdm->pmic->uv_to_vsel(voltdm->nominal_volt);
167 /* Setting the ON voltage to the new target voltage */
168 vc_cmdval = voltdm->read(vc->cmdval_reg);
169 vc_cmdval &= ~vc->common->cmd_on_mask;
170 vc_cmdval |= (*target_vsel << vc->common->cmd_on_shift);
171 voltdm->write(vc_cmdval, vc->cmdval_reg);
173 voltdm->vc_param->on = target_volt;
175 omap_vp_update_errorgain(voltdm, target_volt);
177 return 0;
180 void omap_vc_post_scale(struct voltagedomain *voltdm,
181 unsigned long target_volt,
182 u8 target_vsel, u8 current_vsel)
184 u32 smps_steps = 0, smps_delay = 0;
186 smps_steps = abs(target_vsel - current_vsel);
187 /* SMPS slew rate / step size. 2us added as buffer. */
188 smps_delay = ((smps_steps * voltdm->pmic->step_size) /
189 voltdm->pmic->slew_rate) + 2;
190 udelay(smps_delay);
193 /* vc_bypass_scale - VC bypass method of voltage scaling */
194 int omap_vc_bypass_scale(struct voltagedomain *voltdm,
195 unsigned long target_volt)
197 struct omap_vc_channel *vc = voltdm->vc;
198 u32 loop_cnt = 0, retries_cnt = 0;
199 u32 vc_valid, vc_bypass_val_reg, vc_bypass_value;
200 u8 target_vsel, current_vsel;
201 int ret;
203 ret = omap_vc_pre_scale(voltdm, target_volt, &target_vsel, &current_vsel);
204 if (ret)
205 return ret;
207 vc_valid = vc->common->valid;
208 vc_bypass_val_reg = vc->common->bypass_val_reg;
209 vc_bypass_value = (target_vsel << vc->common->data_shift) |
210 (vc->volt_reg_addr << vc->common->regaddr_shift) |
211 (vc->i2c_slave_addr << vc->common->slaveaddr_shift);
213 voltdm->write(vc_bypass_value, vc_bypass_val_reg);
214 voltdm->write(vc_bypass_value | vc_valid, vc_bypass_val_reg);
216 vc_bypass_value = voltdm->read(vc_bypass_val_reg);
218 * Loop till the bypass command is acknowledged from the SMPS.
219 * NOTE: This is legacy code. The loop count and retry count needs
220 * to be revisited.
222 while (!(vc_bypass_value & vc_valid)) {
223 loop_cnt++;
225 if (retries_cnt > 10) {
226 pr_warn("%s: Retry count exceeded\n", __func__);
227 return -ETIMEDOUT;
230 if (loop_cnt > 50) {
231 retries_cnt++;
232 loop_cnt = 0;
233 udelay(10);
235 vc_bypass_value = voltdm->read(vc_bypass_val_reg);
238 omap_vc_post_scale(voltdm, target_volt, target_vsel, current_vsel);
239 return 0;
242 /* Convert microsecond value to number of 32kHz clock cycles */
243 static inline u32 omap_usec_to_32k(u32 usec)
245 return DIV_ROUND_UP_ULL(32768ULL * (u64)usec, 1000000ULL);
248 struct omap3_vc_timings {
249 u32 voltsetup1;
250 u32 voltsetup2;
253 struct omap3_vc {
254 struct voltagedomain *vd;
255 u32 voltctrl;
256 u32 voltsetup1;
257 u32 voltsetup2;
258 struct omap3_vc_timings timings[2];
260 static struct omap3_vc vc;
262 void omap3_vc_set_pmic_signaling(int core_next_state)
264 struct voltagedomain *vd = vc.vd;
265 struct omap3_vc_timings *c = vc.timings;
266 u32 voltctrl, voltsetup1, voltsetup2;
268 voltctrl = vc.voltctrl;
269 voltsetup1 = vc.voltsetup1;
270 voltsetup2 = vc.voltsetup2;
272 switch (core_next_state) {
273 case PWRDM_POWER_OFF:
274 voltctrl &= ~(OMAP3430_PRM_VOLTCTRL_AUTO_RET |
275 OMAP3430_PRM_VOLTCTRL_AUTO_SLEEP);
276 voltctrl |= OMAP3430_PRM_VOLTCTRL_AUTO_OFF;
277 if (voltctrl & OMAP3430_PRM_VOLTCTRL_SEL_OFF)
278 voltsetup2 = c->voltsetup2;
279 else
280 voltsetup1 = c->voltsetup1;
281 break;
282 case PWRDM_POWER_RET:
283 default:
284 c++;
285 voltctrl &= ~(OMAP3430_PRM_VOLTCTRL_AUTO_OFF |
286 OMAP3430_PRM_VOLTCTRL_AUTO_SLEEP);
287 voltctrl |= OMAP3430_PRM_VOLTCTRL_AUTO_RET;
288 voltsetup1 = c->voltsetup1;
289 break;
292 if (voltctrl != vc.voltctrl) {
293 vd->write(voltctrl, OMAP3_PRM_VOLTCTRL_OFFSET);
294 vc.voltctrl = voltctrl;
296 if (voltsetup1 != vc.voltsetup1) {
297 vd->write(c->voltsetup1,
298 OMAP3_PRM_VOLTSETUP1_OFFSET);
299 vc.voltsetup1 = voltsetup1;
301 if (voltsetup2 != vc.voltsetup2) {
302 vd->write(c->voltsetup2,
303 OMAP3_PRM_VOLTSETUP2_OFFSET);
304 vc.voltsetup2 = voltsetup2;
308 void omap4_vc_set_pmic_signaling(int core_next_state)
310 struct voltagedomain *vd = vc.vd;
311 u32 val;
313 if (!vd)
314 return;
316 switch (core_next_state) {
317 case PWRDM_POWER_RET:
318 val = OMAP4_VDD_RET_VAL;
319 break;
320 default:
321 val = OMAP4_VDD_DEFAULT_VAL;
322 break;
325 vd->write(val, OMAP4_PRM_VOLTCTRL_OFFSET);
329 * Configure signal polarity for sys_clkreq and sys_off_mode pins
330 * as the default values are wrong and can cause the system to hang
331 * if any twl4030 scripts are loaded.
333 static void __init omap3_vc_init_pmic_signaling(struct voltagedomain *voltdm)
335 u32 val;
337 if (vc.vd)
338 return;
340 vc.vd = voltdm;
342 val = voltdm->read(OMAP3_PRM_POLCTRL_OFFSET);
343 if (!(val & OMAP3430_PRM_POLCTRL_CLKREQ_POL) ||
344 (val & OMAP3430_PRM_POLCTRL_OFFMODE_POL)) {
345 val |= OMAP3430_PRM_POLCTRL_CLKREQ_POL;
346 val &= ~OMAP3430_PRM_POLCTRL_OFFMODE_POL;
347 pr_debug("PM: fixing sys_clkreq and sys_off_mode polarity to 0x%x\n",
348 val);
349 voltdm->write(val, OMAP3_PRM_POLCTRL_OFFSET);
353 * By default let's use I2C4 signaling for retention idle
354 * and sys_off_mode pin signaling for off idle. This way we
355 * have sys_clk_req pin go down for retention and both
356 * sys_clk_req and sys_off_mode pins will go down for off
357 * idle. And we can also scale voltages to zero for off-idle.
358 * Note that no actual voltage scaling during off-idle will
359 * happen unless the board specific twl4030 PMIC scripts are
360 * loaded. See also omap_vc_i2c_init for comments regarding
361 * erratum i531.
363 val = voltdm->read(OMAP3_PRM_VOLTCTRL_OFFSET);
364 if (!(val & OMAP3430_PRM_VOLTCTRL_SEL_OFF)) {
365 val |= OMAP3430_PRM_VOLTCTRL_SEL_OFF;
366 pr_debug("PM: setting voltctrl sys_off_mode signaling to 0x%x\n",
367 val);
368 voltdm->write(val, OMAP3_PRM_VOLTCTRL_OFFSET);
370 vc.voltctrl = val;
372 omap3_vc_set_pmic_signaling(PWRDM_POWER_ON);
375 static void omap3_init_voltsetup1(struct voltagedomain *voltdm,
376 struct omap3_vc_timings *c, u32 idle)
378 unsigned long val;
380 val = (voltdm->vc_param->on - idle) / voltdm->pmic->slew_rate;
381 val *= voltdm->sys_clk.rate / 8 / 1000000 + 1;
382 val <<= __ffs(voltdm->vfsm->voltsetup_mask);
383 c->voltsetup1 &= ~voltdm->vfsm->voltsetup_mask;
384 c->voltsetup1 |= val;
388 * omap3_set_i2c_timings - sets i2c sleep timings for a channel
389 * @voltdm: channel to configure
390 * @off_mode: select whether retention or off mode values used
392 * Calculates and sets up voltage controller to use I2C based
393 * voltage scaling for sleep modes. This can be used for either off mode
394 * or retention. Off mode has additionally an option to use sys_off_mode
395 * pad, which uses a global signal to program the whole power IC to
396 * off-mode.
398 * Note that pmic is not controlling the voltage scaling during
399 * retention signaled over I2C4, so we can keep voltsetup2 as 0.
400 * And the oscillator is not shut off over I2C4, so no need to
401 * set clksetup.
403 static void omap3_set_i2c_timings(struct voltagedomain *voltdm)
405 struct omap3_vc_timings *c = vc.timings;
407 /* Configure PRWDM_POWER_OFF over I2C4 */
408 omap3_init_voltsetup1(voltdm, c, voltdm->vc_param->off);
409 c++;
410 /* Configure PRWDM_POWER_RET over I2C4 */
411 omap3_init_voltsetup1(voltdm, c, voltdm->vc_param->ret);
415 * omap3_set_off_timings - sets off-mode timings for a channel
416 * @voltdm: channel to configure
418 * Calculates and sets up off-mode timings for a channel. Off-mode
419 * can use either I2C based voltage scaling, or alternatively
420 * sys_off_mode pad can be used to send a global command to power IC.n,
421 * sys_off_mode has the additional benefit that voltages can be
422 * scaled to zero volt level with TWL4030 / TWL5030, I2C can only
423 * scale to 600mV.
425 * Note that omap is not controlling the voltage scaling during
426 * off idle signaled by sys_off_mode, so we can keep voltsetup1
427 * as 0.
429 static void omap3_set_off_timings(struct voltagedomain *voltdm)
431 struct omap3_vc_timings *c = vc.timings;
432 u32 tstart, tshut, clksetup, voltoffset;
434 if (c->voltsetup2)
435 return;
437 omap_pm_get_oscillator(&tstart, &tshut);
438 if (tstart == ULONG_MAX) {
439 pr_debug("PM: oscillator start-up time not initialized, using 10ms\n");
440 clksetup = omap_usec_to_32k(10000);
441 } else {
442 clksetup = omap_usec_to_32k(tstart);
446 * For twl4030 errata 27, we need to allow minimum ~488.32 us wait to
447 * switch from HFCLKIN to internal oscillator. That means timings
448 * have voltoffset fixed to 0xa in rounded up 32 KiHz cycles. And
449 * that means we can calculate the value based on the oscillator
450 * start-up time since voltoffset2 = clksetup - voltoffset.
452 voltoffset = omap_usec_to_32k(488);
453 c->voltsetup2 = clksetup - voltoffset;
454 voltdm->write(clksetup, OMAP3_PRM_CLKSETUP_OFFSET);
455 voltdm->write(voltoffset, OMAP3_PRM_VOLTOFFSET_OFFSET);
458 static void __init omap3_vc_init_channel(struct voltagedomain *voltdm)
460 omap3_vc_init_pmic_signaling(voltdm);
461 omap3_set_off_timings(voltdm);
462 omap3_set_i2c_timings(voltdm);
466 * omap4_calc_volt_ramp - calculates voltage ramping delays on omap4
467 * @voltdm: channel to calculate values for
468 * @voltage_diff: voltage difference in microvolts
470 * Calculates voltage ramp prescaler + counter values for a voltage
471 * difference on omap4. Returns a field value suitable for writing to
472 * VOLTSETUP register for a channel in following format:
473 * bits[8:9] prescaler ... bits[0:5] counter. See OMAP4 TRM for reference.
475 static u32 omap4_calc_volt_ramp(struct voltagedomain *voltdm, u32 voltage_diff)
477 u32 prescaler;
478 u32 cycles;
479 u32 time;
481 time = voltage_diff / voltdm->pmic->slew_rate;
483 cycles = voltdm->sys_clk.rate / 1000 * time / 1000;
485 cycles /= 64;
486 prescaler = 0;
488 /* shift to next prescaler until no overflow */
490 /* scale for div 256 = 64 * 4 */
491 if (cycles > 63) {
492 cycles /= 4;
493 prescaler++;
496 /* scale for div 512 = 256 * 2 */
497 if (cycles > 63) {
498 cycles /= 2;
499 prescaler++;
502 /* scale for div 2048 = 512 * 4 */
503 if (cycles > 63) {
504 cycles /= 4;
505 prescaler++;
508 /* check for overflow => invalid ramp time */
509 if (cycles > 63) {
510 pr_warn("%s: invalid setuptime for vdd_%s\n", __func__,
511 voltdm->name);
512 return 0;
515 cycles++;
517 return (prescaler << OMAP4430_RAMP_UP_PRESCAL_SHIFT) |
518 (cycles << OMAP4430_RAMP_UP_COUNT_SHIFT);
522 * omap4_usec_to_val_scrm - convert microsecond value to SCRM module bitfield
523 * @usec: microseconds
524 * @shift: number of bits to shift left
525 * @mask: bitfield mask
527 * Converts microsecond value to OMAP4 SCRM bitfield. Bitfield is
528 * shifted to requested position, and checked agains the mask value.
529 * If larger, forced to the max value of the field (i.e. the mask itself.)
530 * Returns the SCRM bitfield value.
532 static u32 omap4_usec_to_val_scrm(u32 usec, int shift, u32 mask)
534 u32 val;
536 val = omap_usec_to_32k(usec) << shift;
538 /* Check for overflow, if yes, force to max value */
539 if (val > mask)
540 val = mask;
542 return val;
546 * omap4_set_timings - set voltage ramp timings for a channel
547 * @voltdm: channel to configure
548 * @off_mode: whether off-mode values are used
550 * Calculates and sets the voltage ramp up / down values for a channel.
552 static void omap4_set_timings(struct voltagedomain *voltdm, bool off_mode)
554 u32 val;
555 u32 ramp;
556 int offset;
557 u32 tstart, tshut;
559 if (off_mode) {
560 ramp = omap4_calc_volt_ramp(voltdm,
561 voltdm->vc_param->on - voltdm->vc_param->off);
562 offset = voltdm->vfsm->voltsetup_off_reg;
563 } else {
564 ramp = omap4_calc_volt_ramp(voltdm,
565 voltdm->vc_param->on - voltdm->vc_param->ret);
566 offset = voltdm->vfsm->voltsetup_reg;
569 if (!ramp)
570 return;
572 val = voltdm->read(offset);
574 val |= ramp << OMAP4430_RAMP_DOWN_COUNT_SHIFT;
576 val |= ramp << OMAP4430_RAMP_UP_COUNT_SHIFT;
578 voltdm->write(val, offset);
580 omap_pm_get_oscillator(&tstart, &tshut);
582 val = omap4_usec_to_val_scrm(tstart, OMAP4_SETUPTIME_SHIFT,
583 OMAP4_SETUPTIME_MASK);
584 val |= omap4_usec_to_val_scrm(tshut, OMAP4_DOWNTIME_SHIFT,
585 OMAP4_DOWNTIME_MASK);
587 writel_relaxed(val, OMAP4_SCRM_CLKSETUPTIME);
590 static void __init omap4_vc_init_pmic_signaling(struct voltagedomain *voltdm)
592 if (vc.vd)
593 return;
595 vc.vd = voltdm;
596 voltdm->write(OMAP4_VDD_DEFAULT_VAL, OMAP4_PRM_VOLTCTRL_OFFSET);
599 /* OMAP4 specific voltage init functions */
600 static void __init omap4_vc_init_channel(struct voltagedomain *voltdm)
602 omap4_vc_init_pmic_signaling(voltdm);
603 omap4_set_timings(voltdm, true);
604 omap4_set_timings(voltdm, false);
607 struct i2c_init_data {
608 u8 loadbits;
609 u8 load;
610 u8 hsscll_38_4;
611 u8 hsscll_26;
612 u8 hsscll_19_2;
613 u8 hsscll_16_8;
614 u8 hsscll_12;
617 static const struct i2c_init_data omap4_i2c_timing_data[] __initconst = {
619 .load = 50,
620 .loadbits = 0x3,
621 .hsscll_38_4 = 13,
622 .hsscll_26 = 11,
623 .hsscll_19_2 = 9,
624 .hsscll_16_8 = 9,
625 .hsscll_12 = 8,
628 .load = 25,
629 .loadbits = 0x2,
630 .hsscll_38_4 = 13,
631 .hsscll_26 = 11,
632 .hsscll_19_2 = 9,
633 .hsscll_16_8 = 9,
634 .hsscll_12 = 8,
637 .load = 12,
638 .loadbits = 0x1,
639 .hsscll_38_4 = 11,
640 .hsscll_26 = 10,
641 .hsscll_19_2 = 9,
642 .hsscll_16_8 = 9,
643 .hsscll_12 = 8,
646 .load = 0,
647 .loadbits = 0x0,
648 .hsscll_38_4 = 12,
649 .hsscll_26 = 10,
650 .hsscll_19_2 = 9,
651 .hsscll_16_8 = 8,
652 .hsscll_12 = 8,
657 * omap4_vc_i2c_timing_init - sets up board I2C timing parameters
658 * @voltdm: voltagedomain pointer to get data from
660 * Use PMIC + board supplied settings for calculating the total I2C
661 * channel capacitance and set the timing parameters based on this.
662 * Pre-calculated values are provided in data tables, as it is not
663 * too straightforward to calculate these runtime.
665 static void __init omap4_vc_i2c_timing_init(struct voltagedomain *voltdm)
667 u32 capacitance;
668 u32 val;
669 u16 hsscll;
670 const struct i2c_init_data *i2c_data;
672 if (!voltdm->pmic->i2c_high_speed) {
673 pr_info("%s: using bootloader low-speed timings\n", __func__);
674 return;
677 /* PCB trace capacitance, 0.125pF / mm => mm / 8 */
678 capacitance = DIV_ROUND_UP(sr_i2c_pcb_length, 8);
680 /* OMAP pad capacitance */
681 capacitance += 4;
683 /* PMIC pad capacitance */
684 capacitance += voltdm->pmic->i2c_pad_load;
686 /* Search for capacitance match in the table */
687 i2c_data = omap4_i2c_timing_data;
689 while (i2c_data->load > capacitance)
690 i2c_data++;
692 /* Select proper values based on sysclk frequency */
693 switch (voltdm->sys_clk.rate) {
694 case 38400000:
695 hsscll = i2c_data->hsscll_38_4;
696 break;
697 case 26000000:
698 hsscll = i2c_data->hsscll_26;
699 break;
700 case 19200000:
701 hsscll = i2c_data->hsscll_19_2;
702 break;
703 case 16800000:
704 hsscll = i2c_data->hsscll_16_8;
705 break;
706 case 12000000:
707 hsscll = i2c_data->hsscll_12;
708 break;
709 default:
710 pr_warn("%s: unsupported sysclk rate: %d!\n", __func__,
711 voltdm->sys_clk.rate);
712 return;
715 /* Loadbits define pull setup for the I2C channels */
716 val = i2c_data->loadbits << 25 | i2c_data->loadbits << 29;
718 /* Write to SYSCTRL_PADCONF_WKUP_CTRL_I2C_2 to setup I2C pull */
719 writel_relaxed(val, OMAP2_L4_IO_ADDRESS(OMAP4_CTRL_MODULE_PAD_WKUP +
720 OMAP4_CTRL_MODULE_PAD_WKUP_CONTROL_I2C_2));
722 /* HSSCLH can always be zero */
723 val = hsscll << OMAP4430_HSSCLL_SHIFT;
724 val |= (0x28 << OMAP4430_SCLL_SHIFT | 0x2c << OMAP4430_SCLH_SHIFT);
726 /* Write setup times to I2C config register */
727 voltdm->write(val, OMAP4_PRM_VC_CFG_I2C_CLK_OFFSET);
733 * omap_vc_i2c_init - initialize I2C interface to PMIC
734 * @voltdm: voltage domain containing VC data
736 * Use PMIC supplied settings for I2C high-speed mode and
737 * master code (if set) and program the VC I2C configuration
738 * register.
740 * The VC I2C configuration is common to all VC channels,
741 * so this function only configures I2C for the first VC
742 * channel registers. All other VC channels will use the
743 * same configuration.
745 static void __init omap_vc_i2c_init(struct voltagedomain *voltdm)
747 struct omap_vc_channel *vc = voltdm->vc;
748 static bool initialized;
749 static bool i2c_high_speed;
750 u8 mcode;
752 if (initialized) {
753 if (voltdm->pmic->i2c_high_speed != i2c_high_speed)
754 pr_warn("%s: I2C config for vdd_%s does not match other channels (%u).\n",
755 __func__, voltdm->name, i2c_high_speed);
756 return;
760 * Note that for omap3 OMAP3430_SREN_MASK clears SREN to work around
761 * erratum i531 "Extra Power Consumed When Repeated Start Operation
762 * Mode Is Enabled on I2C Interface Dedicated for Smart Reflex (I2C4)".
763 * Otherwise I2C4 eventually leads into about 23mW extra power being
764 * consumed even during off idle using VMODE.
766 i2c_high_speed = voltdm->pmic->i2c_high_speed;
767 if (i2c_high_speed)
768 voltdm->rmw(vc->common->i2c_cfg_clear_mask,
769 vc->common->i2c_cfg_hsen_mask,
770 vc->common->i2c_cfg_reg);
772 mcode = voltdm->pmic->i2c_mcode;
773 if (mcode)
774 voltdm->rmw(vc->common->i2c_mcode_mask,
775 mcode << __ffs(vc->common->i2c_mcode_mask),
776 vc->common->i2c_cfg_reg);
778 if (cpu_is_omap44xx())
779 omap4_vc_i2c_timing_init(voltdm);
781 initialized = true;
785 * omap_vc_calc_vsel - calculate vsel value for a channel
786 * @voltdm: channel to calculate value for
787 * @uvolt: microvolt value to convert to vsel
789 * Converts a microvolt value to vsel value for the used PMIC.
790 * This checks whether the microvolt value is out of bounds, and
791 * adjusts the value accordingly. If unsupported value detected,
792 * warning is thrown.
794 static u8 omap_vc_calc_vsel(struct voltagedomain *voltdm, u32 uvolt)
796 if (voltdm->pmic->vddmin > uvolt)
797 uvolt = voltdm->pmic->vddmin;
798 if (voltdm->pmic->vddmax < uvolt) {
799 WARN(1, "%s: voltage not supported by pmic: %u vs max %u\n",
800 __func__, uvolt, voltdm->pmic->vddmax);
801 /* Lets try maximum value anyway */
802 uvolt = voltdm->pmic->vddmax;
805 return voltdm->pmic->uv_to_vsel(uvolt);
808 #ifdef CONFIG_PM
810 * omap_pm_setup_sr_i2c_pcb_length - set length of SR I2C traces on PCB
811 * @mm: length of the PCB trace in millimetres
813 * Sets the PCB trace length for the I2C channel. By default uses 63mm.
814 * This is needed for properly calculating the capacitance value for
815 * the PCB trace, and for setting the SR I2C channel timing parameters.
817 void __init omap_pm_setup_sr_i2c_pcb_length(u32 mm)
819 sr_i2c_pcb_length = mm;
821 #endif
823 void __init omap_vc_init_channel(struct voltagedomain *voltdm)
825 struct omap_vc_channel *vc = voltdm->vc;
826 u8 on_vsel, onlp_vsel, ret_vsel, off_vsel;
827 u32 val;
829 if (!voltdm->pmic || !voltdm->pmic->uv_to_vsel) {
830 pr_err("%s: No PMIC info for vdd_%s\n", __func__, voltdm->name);
831 return;
834 if (!voltdm->read || !voltdm->write) {
835 pr_err("%s: No read/write API for accessing vdd_%s regs\n",
836 __func__, voltdm->name);
837 return;
840 vc->cfg_channel = 0;
841 if (vc->flags & OMAP_VC_CHANNEL_CFG_MUTANT)
842 vc_cfg_bits = &vc_mutant_channel_cfg;
843 else
844 vc_cfg_bits = &vc_default_channel_cfg;
846 /* get PMIC/board specific settings */
847 vc->i2c_slave_addr = voltdm->pmic->i2c_slave_addr;
848 vc->volt_reg_addr = voltdm->pmic->volt_reg_addr;
849 vc->cmd_reg_addr = voltdm->pmic->cmd_reg_addr;
851 /* Configure the i2c slave address for this VC */
852 voltdm->rmw(vc->smps_sa_mask,
853 vc->i2c_slave_addr << __ffs(vc->smps_sa_mask),
854 vc->smps_sa_reg);
855 vc->cfg_channel |= vc_cfg_bits->sa;
858 * Configure the PMIC register addresses.
860 voltdm->rmw(vc->smps_volra_mask,
861 vc->volt_reg_addr << __ffs(vc->smps_volra_mask),
862 vc->smps_volra_reg);
863 vc->cfg_channel |= vc_cfg_bits->rav;
865 if (vc->cmd_reg_addr) {
866 voltdm->rmw(vc->smps_cmdra_mask,
867 vc->cmd_reg_addr << __ffs(vc->smps_cmdra_mask),
868 vc->smps_cmdra_reg);
869 vc->cfg_channel |= vc_cfg_bits->rac;
872 if (vc->cmd_reg_addr == vc->volt_reg_addr)
873 vc->cfg_channel |= vc_cfg_bits->racen;
875 /* Set up the on, inactive, retention and off voltage */
876 on_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->on);
877 onlp_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->onlp);
878 ret_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->ret);
879 off_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->off);
881 val = ((on_vsel << vc->common->cmd_on_shift) |
882 (onlp_vsel << vc->common->cmd_onlp_shift) |
883 (ret_vsel << vc->common->cmd_ret_shift) |
884 (off_vsel << vc->common->cmd_off_shift));
885 voltdm->write(val, vc->cmdval_reg);
886 vc->cfg_channel |= vc_cfg_bits->cmd;
888 /* Channel configuration */
889 omap_vc_config_channel(voltdm);
891 omap_vc_i2c_init(voltdm);
893 if (cpu_is_omap34xx())
894 omap3_vc_init_channel(voltdm);
895 else if (cpu_is_omap44xx())
896 omap4_vc_init_channel(voltdm);