Linux 5.6.13
[linux/fpc-iii.git] / arch / hexagon / include / asm / pgtable.h
blob2fec20ad939eed62a9e99182f2c270c896534b4c
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Page table support for the Hexagon architecture
5 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
6 */
8 #ifndef _ASM_PGTABLE_H
9 #define _ASM_PGTABLE_H
12 * Page table definitions for Qualcomm Hexagon processor.
14 #include <asm/page.h>
15 #define __ARCH_USE_5LEVEL_HACK
16 #include <asm-generic/pgtable-nopmd.h>
18 /* A handy thing to have if one has the RAM. Declared in head.S */
19 extern unsigned long empty_zero_page;
22 * The PTE model described here is that of the Hexagon Virtual Machine,
23 * which autonomously walks 2-level page tables. At a lower level, we
24 * also describe the RISCish software-loaded TLB entry structure of
25 * the underlying Hexagon processor. A kernel built to run on the
26 * virtual machine has no need to know about the underlying hardware.
28 #include <asm/vm_mmu.h>
31 * To maximize the comfort level for the PTE manipulation macros,
32 * define the "well known" architecture-specific bits.
34 #define _PAGE_READ __HVM_PTE_R
35 #define _PAGE_WRITE __HVM_PTE_W
36 #define _PAGE_EXECUTE __HVM_PTE_X
37 #define _PAGE_USER __HVM_PTE_U
40 * We have a total of 4 "soft" bits available in the abstract PTE.
41 * The two mandatory software bits are Dirty and Accessed.
42 * To make nonlinear swap work according to the more recent
43 * model, we want a low order "Present" bit to indicate whether
44 * the PTE describes MMU programming or swap space.
46 #define _PAGE_PRESENT (1<<0)
47 #define _PAGE_DIRTY (1<<1)
48 #define _PAGE_ACCESSED (1<<2)
51 * For now, let's say that Valid and Present are the same thing.
52 * Alternatively, we could say that it's the "or" of R, W, and X
53 * permissions.
55 #define _PAGE_VALID _PAGE_PRESENT
58 * We're not defining _PAGE_GLOBAL here, since there's no concept
59 * of global pages or ASIDs exposed to the Hexagon Virtual Machine,
60 * and we want to use the same page table structures and macros in
61 * the native kernel as we do in the virtual machine kernel.
62 * So we'll put up with a bit of inefficiency for now...
66 * Top "FOURTH" level (pgd), which for the Hexagon VM is really
67 * only the second from the bottom, pgd and pud both being collapsed.
68 * Each entry represents 4MB of virtual address space, 4K of table
69 * thus maps the full 4GB.
71 #define PGDIR_SHIFT 22
72 #define PTRS_PER_PGD 1024
74 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
75 #define PGDIR_MASK (~(PGDIR_SIZE-1))
77 #ifdef CONFIG_PAGE_SIZE_4KB
78 #define PTRS_PER_PTE 1024
79 #endif
81 #ifdef CONFIG_PAGE_SIZE_16KB
82 #define PTRS_PER_PTE 256
83 #endif
85 #ifdef CONFIG_PAGE_SIZE_64KB
86 #define PTRS_PER_PTE 64
87 #endif
89 #ifdef CONFIG_PAGE_SIZE_256KB
90 #define PTRS_PER_PTE 16
91 #endif
93 #ifdef CONFIG_PAGE_SIZE_1MB
94 #define PTRS_PER_PTE 4
95 #endif
97 /* Any bigger and the PTE disappears. */
98 #define pgd_ERROR(e) \
99 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\
100 pgd_val(e))
103 * Page Protection Constants. Includes (in this variant) cache attributes.
105 extern unsigned long _dflt_cache_att;
107 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | \
108 _dflt_cache_att)
109 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \
110 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
111 #define PAGE_COPY PAGE_READONLY
112 #define PAGE_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \
113 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
114 #define PAGE_COPY_EXEC PAGE_EXEC
115 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
116 _PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att)
117 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | \
118 _PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att)
122 * Aliases for mapping mmap() protection bits to page protections.
123 * These get used for static initialization, so using the _dflt_cache_att
124 * variable for the default cache attribute isn't workable. If the
125 * default gets changed at boot time, the boot option code has to
126 * update data structures like the protaction_map[] array.
128 #define CACHEDEF (CACHE_DEFAULT << 6)
130 /* Private (copy-on-write) page protections. */
131 #define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF)
132 #define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF)
133 #define __P010 __P000 /* Write-only copy-on-write */
134 #define __P011 __P001 /* Read/Write copy-on-write */
135 #define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
136 _PAGE_EXECUTE | CACHEDEF)
137 #define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \
138 _PAGE_READ | CACHEDEF)
139 #define __P110 __P100 /* Write/execute copy-on-write */
140 #define __P111 __P101 /* Read/Write/Execute, copy-on-write */
142 /* Shared page protections. */
143 #define __S000 __P000
144 #define __S001 __P001
145 #define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
146 _PAGE_WRITE | CACHEDEF)
147 #define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
148 _PAGE_WRITE | CACHEDEF)
149 #define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
150 _PAGE_EXECUTE | CACHEDEF)
151 #define __S101 __P101
152 #define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
153 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
154 #define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
155 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
157 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* located in head.S */
159 /* Seems to be zero even in architectures where the zero page is firewalled? */
160 #define FIRST_USER_ADDRESS 0UL
161 #define pte_special(pte) 0
162 #define pte_mkspecial(pte) (pte)
164 /* HUGETLB not working currently */
165 #ifdef CONFIG_HUGETLB_PAGE
166 #define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE)
167 #endif
170 * For now, assume that higher-level code will do TLB/MMU invalidations
171 * and don't insert that overhead into this low-level function.
173 extern void sync_icache_dcache(pte_t pte);
175 #define pte_present_exec_user(pte) \
176 ((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \
177 (_PAGE_EXECUTE | _PAGE_USER))
179 static inline void set_pte(pte_t *ptep, pte_t pteval)
181 /* should really be using pte_exec, if it weren't declared later. */
182 if (pte_present_exec_user(pteval))
183 sync_icache_dcache(pteval);
185 *ptep = pteval;
189 * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid
190 * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE
191 * (Linux PTE), the key is to have bits 11..9 all zero. We'd use 0x7
192 * as a universal null entry, but some of those least significant bits
193 * are interpreted by software.
195 #define _NULL_PMD 0x7
196 #define _NULL_PTE 0x0
198 static inline void pmd_clear(pmd_t *pmd_entry_ptr)
200 pmd_val(*pmd_entry_ptr) = _NULL_PMD;
204 * Conveniently, a null PTE value is invalid.
206 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
207 pte_t *ptep)
209 pte_val(*ptep) = _NULL_PTE;
212 #ifdef NEED_PMD_INDEX_DESPITE_BEING_2_LEVEL
214 * pmd_index - returns the index of the entry in the PMD page
215 * which would control the given virtual address
217 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
219 #endif
222 * pgd_index - returns the index of the entry in the PGD page
223 * which would control the given virtual address
225 * This returns the *index* for the address in the pgd_t
227 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
230 * pgd_offset - find an offset in a page-table-directory
232 #define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
235 * pgd_offset_k - get kernel (init_mm) pgd entry pointer for addr
237 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
240 * pmd_none - check if pmd_entry is mapped
241 * @pmd_entry: pmd entry
243 * MIPS checks it against that "invalid pte table" thing.
245 static inline int pmd_none(pmd_t pmd)
247 return pmd_val(pmd) == _NULL_PMD;
251 * pmd_present - is there a page table behind this?
252 * Essentially the inverse of pmd_none. We maybe
253 * save an inline instruction by defining it this
254 * way, instead of simply "!pmd_none".
256 static inline int pmd_present(pmd_t pmd)
258 return pmd_val(pmd) != (unsigned long)_NULL_PMD;
262 * pmd_bad - check if a PMD entry is "bad". That might mean swapped out.
263 * As we have no known cause of badness, it's null, as it is for many
264 * architectures.
266 static inline int pmd_bad(pmd_t pmd)
268 return 0;
272 * pmd_page - converts a PMD entry to a page pointer
274 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
275 #define pmd_pgtable(pmd) pmd_page(pmd)
278 * pte_none - check if pte is mapped
279 * @pte: pte_t entry
281 static inline int pte_none(pte_t pte)
283 return pte_val(pte) == _NULL_PTE;
287 * pte_present - check if page is present
289 static inline int pte_present(pte_t pte)
291 return pte_val(pte) & _PAGE_PRESENT;
294 /* mk_pte - make a PTE out of a page pointer and protection bits */
295 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
297 /* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */
298 #define pte_page(x) pfn_to_page(pte_pfn(x))
300 /* pte_mkold - mark PTE as not recently accessed */
301 static inline pte_t pte_mkold(pte_t pte)
303 pte_val(pte) &= ~_PAGE_ACCESSED;
304 return pte;
307 /* pte_mkyoung - mark PTE as recently accessed */
308 static inline pte_t pte_mkyoung(pte_t pte)
310 pte_val(pte) |= _PAGE_ACCESSED;
311 return pte;
314 /* pte_mkclean - mark page as in sync with backing store */
315 static inline pte_t pte_mkclean(pte_t pte)
317 pte_val(pte) &= ~_PAGE_DIRTY;
318 return pte;
321 /* pte_mkdirty - mark page as modified */
322 static inline pte_t pte_mkdirty(pte_t pte)
324 pte_val(pte) |= _PAGE_DIRTY;
325 return pte;
328 /* pte_young - "is PTE marked as accessed"? */
329 static inline int pte_young(pte_t pte)
331 return pte_val(pte) & _PAGE_ACCESSED;
334 /* pte_dirty - "is PTE dirty?" */
335 static inline int pte_dirty(pte_t pte)
337 return pte_val(pte) & _PAGE_DIRTY;
340 /* pte_modify - set protection bits on PTE */
341 static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
343 pte_val(pte) &= PAGE_MASK;
344 pte_val(pte) |= pgprot_val(prot);
345 return pte;
348 /* pte_wrprotect - mark page as not writable */
349 static inline pte_t pte_wrprotect(pte_t pte)
351 pte_val(pte) &= ~_PAGE_WRITE;
352 return pte;
355 /* pte_mkwrite - mark page as writable */
356 static inline pte_t pte_mkwrite(pte_t pte)
358 pte_val(pte) |= _PAGE_WRITE;
359 return pte;
362 /* pte_mkexec - mark PTE as executable */
363 static inline pte_t pte_mkexec(pte_t pte)
365 pte_val(pte) |= _PAGE_EXECUTE;
366 return pte;
369 /* pte_read - "is PTE marked as readable?" */
370 static inline int pte_read(pte_t pte)
372 return pte_val(pte) & _PAGE_READ;
375 /* pte_write - "is PTE marked as writable?" */
376 static inline int pte_write(pte_t pte)
378 return pte_val(pte) & _PAGE_WRITE;
382 /* pte_exec - "is PTE marked as executable?" */
383 static inline int pte_exec(pte_t pte)
385 return pte_val(pte) & _PAGE_EXECUTE;
388 /* __pte_to_swp_entry - extract swap entry from PTE */
389 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
391 /* __swp_entry_to_pte - extract PTE from swap entry */
392 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
394 /* pfn_pte - convert page number and protection value to page table entry */
395 #define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot))
397 /* pte_pfn - convert pte to page frame number */
398 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
399 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval))
402 * set_pte_at - update page table and do whatever magic may be
403 * necessary to make the underlying hardware/firmware take note.
405 * VM may require a virtual instruction to alert the MMU.
407 #define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte)
410 * May need to invoke the virtual machine as well...
412 #define pte_unmap(pte) do { } while (0)
413 #define pte_unmap_nested(pte) do { } while (0)
416 * pte_offset_map - returns the linear address of the page table entry
417 * corresponding to an address
419 #define pte_offset_map(dir, address) \
420 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
422 #define pte_offset_map_nested(pmd, addr) pte_offset_map(pmd, addr)
424 /* pte_offset_kernel - kernel version of pte_offset */
425 #define pte_offset_kernel(dir, address) \
426 ((pte_t *) (unsigned long) __va(pmd_val(*dir) & PAGE_MASK) \
427 + __pte_offset(address))
429 /* ZERO_PAGE - returns the globally shared zero page */
430 #define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page))
432 #define __pte_offset(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
435 * Swap/file PTE definitions. If _PAGE_PRESENT is zero, the rest of the PTE is
436 * interpreted as swap information. The remaining free bits are interpreted as
437 * swap type/offset tuple. Rather than have the TLB fill handler test
438 * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to
439 * all zeros for swap entries, which speeds up the miss handler at the cost of
440 * 3 bits of offset. That trade-off can be revisited if necessary, but Hexagon
441 * processor architecture and target applications suggest a lot of TLB misses
442 * and not much swap space.
444 * Format of swap PTE:
445 * bit 0: Present (zero)
446 * bits 1-5: swap type (arch independent layer uses 5 bits max)
447 * bits 6-9: bits 3:0 of offset
448 * bits 10-12: effectively _PAGE_PROTNONE (all zero)
449 * bits 13-31: bits 22:4 of swap offset
451 * The split offset makes some of the following macros a little gnarly,
452 * but there's plenty of precedent for this sort of thing.
455 /* Used for swap PTEs */
456 #define __swp_type(swp_pte) (((swp_pte).val >> 1) & 0x1f)
458 #define __swp_offset(swp_pte) \
459 ((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0))
461 #define __swp_entry(type, offset) \
462 ((swp_entry_t) { \
463 ((type << 1) | \
464 ((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) })
466 /* Oh boy. There are a lot of possible arch overrides found in this file. */
467 #include <asm-generic/pgtable.h>
469 #endif