Linux 5.6.13
[linux/fpc-iii.git] / arch / parisc / kernel / kprobes.c
blob77ec5181891652afbb1f292e2a1e95c058a0afdc
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * arch/parisc/kernel/kprobes.c
5 * PA-RISC kprobes implementation
7 * Copyright (c) 2019 Sven Schnelle <svens@stackframe.org>
8 */
10 #include <linux/types.h>
11 #include <linux/kprobes.h>
12 #include <linux/slab.h>
13 #include <asm/cacheflush.h>
14 #include <asm/patch.h>
16 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
17 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
19 int __kprobes arch_prepare_kprobe(struct kprobe *p)
21 if ((unsigned long)p->addr & 3UL)
22 return -EINVAL;
24 p->ainsn.insn = get_insn_slot();
25 if (!p->ainsn.insn)
26 return -ENOMEM;
28 memcpy(p->ainsn.insn, p->addr,
29 MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
30 p->opcode = *p->addr;
31 flush_insn_slot(p);
32 return 0;
35 void __kprobes arch_remove_kprobe(struct kprobe *p)
37 if (!p->ainsn.insn)
38 return;
40 free_insn_slot(p->ainsn.insn, 0);
41 p->ainsn.insn = NULL;
44 void __kprobes arch_arm_kprobe(struct kprobe *p)
46 patch_text(p->addr, PARISC_KPROBES_BREAK_INSN);
49 void __kprobes arch_disarm_kprobe(struct kprobe *p)
51 patch_text(p->addr, p->opcode);
54 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
56 kcb->prev_kprobe.kp = kprobe_running();
57 kcb->prev_kprobe.status = kcb->kprobe_status;
60 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
62 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
63 kcb->kprobe_status = kcb->prev_kprobe.status;
66 static inline void __kprobes set_current_kprobe(struct kprobe *p)
68 __this_cpu_write(current_kprobe, p);
71 static void __kprobes setup_singlestep(struct kprobe *p,
72 struct kprobe_ctlblk *kcb, struct pt_regs *regs)
74 kcb->iaoq[0] = regs->iaoq[0];
75 kcb->iaoq[1] = regs->iaoq[1];
76 regs->iaoq[0] = (unsigned long)p->ainsn.insn;
77 mtctl(0, 0);
78 regs->gr[0] |= PSW_R;
81 int __kprobes parisc_kprobe_break_handler(struct pt_regs *regs)
83 struct kprobe *p;
84 struct kprobe_ctlblk *kcb;
86 preempt_disable();
88 kcb = get_kprobe_ctlblk();
89 p = get_kprobe((unsigned long *)regs->iaoq[0]);
91 if (!p) {
92 preempt_enable_no_resched();
93 return 0;
96 if (kprobe_running()) {
98 * We have reentered the kprobe_handler, since another kprobe
99 * was hit while within the handler, we save the original
100 * kprobes and single step on the instruction of the new probe
101 * without calling any user handlers to avoid recursive
102 * kprobes.
104 save_previous_kprobe(kcb);
105 set_current_kprobe(p);
106 kprobes_inc_nmissed_count(p);
107 setup_singlestep(p, kcb, regs);
108 kcb->kprobe_status = KPROBE_REENTER;
109 return 1;
112 set_current_kprobe(p);
113 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
115 /* If we have no pre-handler or it returned 0, we continue with
116 * normal processing. If we have a pre-handler and it returned
117 * non-zero - which means user handler setup registers to exit
118 * to another instruction, we must skip the single stepping.
121 if (!p->pre_handler || !p->pre_handler(p, regs)) {
122 setup_singlestep(p, kcb, regs);
123 kcb->kprobe_status = KPROBE_HIT_SS;
124 } else {
125 reset_current_kprobe();
126 preempt_enable_no_resched();
128 return 1;
131 int __kprobes parisc_kprobe_ss_handler(struct pt_regs *regs)
133 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
134 struct kprobe *p = kprobe_running();
136 if (!p)
137 return 0;
139 if (regs->iaoq[0] != (unsigned long)p->ainsn.insn+4)
140 return 0;
142 /* restore back original saved kprobe variables and continue */
143 if (kcb->kprobe_status == KPROBE_REENTER) {
144 restore_previous_kprobe(kcb);
145 return 1;
148 /* for absolute branch instructions we can copy iaoq_b. for relative
149 * branch instructions we need to calculate the new address based on the
150 * difference between iaoq_f and iaoq_b. We cannot use iaoq_b without
151 * modificationt because it's based on our ainsn.insn address.
154 if (p->post_handler)
155 p->post_handler(p, regs, 0);
157 switch (regs->iir >> 26) {
158 case 0x38: /* BE */
159 case 0x39: /* BE,L */
160 case 0x3a: /* BV */
161 case 0x3b: /* BVE */
162 /* for absolute branches, regs->iaoq[1] has already the right
163 * address
165 regs->iaoq[0] = kcb->iaoq[1];
166 break;
167 default:
168 regs->iaoq[1] = kcb->iaoq[0];
169 regs->iaoq[1] += (regs->iaoq[1] - regs->iaoq[0]) + 4;
170 regs->iaoq[0] = kcb->iaoq[1];
171 break;
173 kcb->kprobe_status = KPROBE_HIT_SSDONE;
174 reset_current_kprobe();
175 return 1;
178 static inline void kretprobe_trampoline(void)
180 asm volatile("nop");
181 asm volatile("nop");
184 static int __kprobes trampoline_probe_handler(struct kprobe *p,
185 struct pt_regs *regs);
187 static struct kprobe trampoline_p = {
188 .pre_handler = trampoline_probe_handler
191 static int __kprobes trampoline_probe_handler(struct kprobe *p,
192 struct pt_regs *regs)
194 struct kretprobe_instance *ri = NULL;
195 struct hlist_head *head, empty_rp;
196 struct hlist_node *tmp;
197 unsigned long flags, orig_ret_address = 0;
198 unsigned long trampoline_address = (unsigned long)trampoline_p.addr;
199 kprobe_opcode_t *correct_ret_addr = NULL;
201 INIT_HLIST_HEAD(&empty_rp);
202 kretprobe_hash_lock(current, &head, &flags);
205 * It is possible to have multiple instances associated with a given
206 * task either because multiple functions in the call path have
207 * a return probe installed on them, and/or more than one return
208 * probe was registered for a target function.
210 * We can handle this because:
211 * - instances are always inserted at the head of the list
212 * - when multiple return probes are registered for the same
213 * function, the first instance's ret_addr will point to the
214 * real return address, and all the rest will point to
215 * kretprobe_trampoline
217 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
218 if (ri->task != current)
219 /* another task is sharing our hash bucket */
220 continue;
222 orig_ret_address = (unsigned long)ri->ret_addr;
224 if (orig_ret_address != trampoline_address)
226 * This is the real return address. Any other
227 * instances associated with this task are for
228 * other calls deeper on the call stack
230 break;
233 kretprobe_assert(ri, orig_ret_address, trampoline_address);
235 correct_ret_addr = ri->ret_addr;
236 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
237 if (ri->task != current)
238 /* another task is sharing our hash bucket */
239 continue;
241 orig_ret_address = (unsigned long)ri->ret_addr;
242 if (ri->rp && ri->rp->handler) {
243 __this_cpu_write(current_kprobe, &ri->rp->kp);
244 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
245 ri->ret_addr = correct_ret_addr;
246 ri->rp->handler(ri, regs);
247 __this_cpu_write(current_kprobe, NULL);
250 recycle_rp_inst(ri, &empty_rp);
252 if (orig_ret_address != trampoline_address)
254 * This is the real return address. Any other
255 * instances associated with this task are for
256 * other calls deeper on the call stack
258 break;
261 kretprobe_hash_unlock(current, &flags);
263 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
264 hlist_del(&ri->hlist);
265 kfree(ri);
267 instruction_pointer_set(regs, orig_ret_address);
268 return 1;
271 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
272 struct pt_regs *regs)
274 ri->ret_addr = (kprobe_opcode_t *)regs->gr[2];
276 /* Replace the return addr with trampoline addr. */
277 regs->gr[2] = (unsigned long)trampoline_p.addr;
280 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
282 return p->addr == trampoline_p.addr;
285 int __init arch_init_kprobes(void)
287 trampoline_p.addr = (kprobe_opcode_t *)
288 dereference_function_descriptor(kretprobe_trampoline);
289 return register_kprobe(&trampoline_p);