1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Kernel dynamically loadable module help for PARISC.
4 * The best reference for this stuff is probably the Processor-
5 * Specific ELF Supplement for PA-RISC:
6 * http://ftp.parisc-linux.org/docs/arch/elf-pa-hp.pdf
8 * Linux/PA-RISC Project (http://www.parisc-linux.org/)
9 * Copyright (C) 2003 Randolph Chung <tausq at debian . org>
10 * Copyright (C) 2008 Helge Deller <deller@gmx.de>
14 * On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
15 * ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
16 * fail to reach their PLT stub if we only create one big stub array for
17 * all sections at the beginning of the core or init section.
18 * Instead we now insert individual PLT stub entries directly in front of
19 * of the code sections where the stubs are actually called.
20 * This reduces the distance between the PCREL location and the stub entry
21 * so that the relocations can be fulfilled.
22 * While calculating the final layout of the kernel module in memory, the
23 * kernel module loader calls arch_mod_section_prepend() to request the
24 * to be reserved amount of memory in front of each individual section.
27 * We are not doing SEGREL32 handling correctly. According to the ABI, we
28 * should do a value offset, like this:
29 * if (in_init(me, (void *)val))
30 * val -= (uint32_t)me->init_layout.base;
32 * val -= (uint32_t)me->core_layout.base;
33 * However, SEGREL32 is used only for PARISC unwind entries, and we want
34 * those entries to have an absolute address, and not just an offset.
36 * The unwind table mechanism has the ability to specify an offset for
37 * the unwind table; however, because we split off the init functions into
38 * a different piece of memory, it is not possible to do this using a
39 * single offset. Instead, we use the above hack for now.
42 #include <linux/moduleloader.h>
43 #include <linux/elf.h>
44 #include <linux/vmalloc.h>
46 #include <linux/ftrace.h>
47 #include <linux/string.h>
48 #include <linux/kernel.h>
49 #include <linux/bug.h>
51 #include <linux/slab.h>
53 #include <asm/pgtable.h>
54 #include <asm/unwind.h>
55 #include <asm/sections.h>
57 #define RELOC_REACHABLE(val, bits) \
58 (( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 ) || \
59 ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
62 #define CHECK_RELOC(val, bits) \
63 if (!RELOC_REACHABLE(val, bits)) { \
64 printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
65 me->name, strtab + sym->st_name, (unsigned long)val, bits); \
69 /* Maximum number of GOT entries. We use a long displacement ldd from
70 * the bottom of the table, which has a maximum signed displacement of
71 * 0x3fff; however, since we're only going forward, this becomes
72 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
73 * at most 1023 entries.
74 * To overcome this 14bit displacement with some kernel modules, we'll
75 * use instead the unusal 16bit displacement method (see reassemble_16a)
76 * which gives us a maximum positive displacement of 0x7fff, and as such
77 * allows us to allocate up to 4095 GOT entries. */
80 /* three functions to determine where in the module core
81 * or init pieces the location is */
82 static inline int in_init(struct module
*me
, void *loc
)
84 return (loc
>= me
->init_layout
.base
&&
85 loc
<= (me
->init_layout
.base
+ me
->init_layout
.size
));
88 static inline int in_core(struct module
*me
, void *loc
)
90 return (loc
>= me
->core_layout
.base
&&
91 loc
<= (me
->core_layout
.base
+ me
->core_layout
.size
));
94 static inline int in_local(struct module
*me
, void *loc
)
96 return in_init(me
, loc
) || in_core(me
, loc
);
105 Elf32_Word insns
[2]; /* each stub entry has two insns */
113 Elf64_Word insns
[4]; /* each stub entry has four insns */
117 /* Field selection types defined by hppa */
118 #define rnd(x) (((x)+0x1000)&~0x1fff)
119 /* fsel: full 32 bits */
120 #define fsel(v,a) ((v)+(a))
121 /* lsel: select left 21 bits */
122 #define lsel(v,a) (((v)+(a))>>11)
123 /* rsel: select right 11 bits */
124 #define rsel(v,a) (((v)+(a))&0x7ff)
125 /* lrsel with rounding of addend to nearest 8k */
126 #define lrsel(v,a) (((v)+rnd(a))>>11)
127 /* rrsel with rounding of addend to nearest 8k */
128 #define rrsel(v,a) ((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
130 #define mask(x,sz) ((x) & ~((1<<(sz))-1))
133 /* The reassemble_* functions prepare an immediate value for
134 insertion into an opcode. pa-risc uses all sorts of weird bitfields
135 in the instruction to hold the value. */
136 static inline int sign_unext(int x
, int len
)
140 len_ones
= (1 << len
) - 1;
144 static inline int low_sign_unext(int x
, int len
)
148 sign
= (x
>> (len
-1)) & 1;
149 temp
= sign_unext(x
, len
-1);
150 return (temp
<< 1) | sign
;
153 static inline int reassemble_14(int as14
)
155 return (((as14
& 0x1fff) << 1) |
156 ((as14
& 0x2000) >> 13));
159 static inline int reassemble_16a(int as16
)
163 /* Unusual 16-bit encoding, for wide mode only. */
164 t
= (as16
<< 1) & 0xffff;
166 return (t
^ s
^ (s
>> 1)) | (s
>> 15);
170 static inline int reassemble_17(int as17
)
172 return (((as17
& 0x10000) >> 16) |
173 ((as17
& 0x0f800) << 5) |
174 ((as17
& 0x00400) >> 8) |
175 ((as17
& 0x003ff) << 3));
178 static inline int reassemble_21(int as21
)
180 return (((as21
& 0x100000) >> 20) |
181 ((as21
& 0x0ffe00) >> 8) |
182 ((as21
& 0x000180) << 7) |
183 ((as21
& 0x00007c) << 14) |
184 ((as21
& 0x000003) << 12));
187 static inline int reassemble_22(int as22
)
189 return (((as22
& 0x200000) >> 21) |
190 ((as22
& 0x1f0000) << 5) |
191 ((as22
& 0x00f800) << 5) |
192 ((as22
& 0x000400) >> 8) |
193 ((as22
& 0x0003ff) << 3));
196 void *module_alloc(unsigned long size
)
198 /* using RWX means less protection for modules, but it's
199 * easier than trying to map the text, data, init_text and
200 * init_data correctly */
201 return __vmalloc_node_range(size
, 1, VMALLOC_START
, VMALLOC_END
,
203 PAGE_KERNEL_RWX
, 0, NUMA_NO_NODE
,
204 __builtin_return_address(0));
208 static inline unsigned long count_gots(const Elf_Rela
*rela
, unsigned long n
)
213 static inline unsigned long count_fdescs(const Elf_Rela
*rela
, unsigned long n
)
218 static inline unsigned long count_stubs(const Elf_Rela
*rela
, unsigned long n
)
220 unsigned long cnt
= 0;
222 for (; n
> 0; n
--, rela
++)
224 switch (ELF32_R_TYPE(rela
->r_info
)) {
225 case R_PARISC_PCREL17F
:
226 case R_PARISC_PCREL22F
:
234 static inline unsigned long count_gots(const Elf_Rela
*rela
, unsigned long n
)
236 unsigned long cnt
= 0;
238 for (; n
> 0; n
--, rela
++)
240 switch (ELF64_R_TYPE(rela
->r_info
)) {
241 case R_PARISC_LTOFF21L
:
242 case R_PARISC_LTOFF14R
:
243 case R_PARISC_PCREL22F
:
251 static inline unsigned long count_fdescs(const Elf_Rela
*rela
, unsigned long n
)
253 unsigned long cnt
= 0;
255 for (; n
> 0; n
--, rela
++)
257 switch (ELF64_R_TYPE(rela
->r_info
)) {
258 case R_PARISC_FPTR64
:
266 static inline unsigned long count_stubs(const Elf_Rela
*rela
, unsigned long n
)
268 unsigned long cnt
= 0;
270 for (; n
> 0; n
--, rela
++)
272 switch (ELF64_R_TYPE(rela
->r_info
)) {
273 case R_PARISC_PCREL22F
:
282 void module_arch_freeing_init(struct module
*mod
)
284 kfree(mod
->arch
.section
);
285 mod
->arch
.section
= NULL
;
288 /* Additional bytes needed in front of individual sections */
289 unsigned int arch_mod_section_prepend(struct module
*mod
,
290 unsigned int section
)
292 /* size needed for all stubs of this section (including
293 * one additional for correct alignment of the stubs) */
294 return (mod
->arch
.section
[section
].stub_entries
+ 1)
295 * sizeof(struct stub_entry
);
299 int module_frob_arch_sections(CONST Elf_Ehdr
*hdr
,
300 CONST Elf_Shdr
*sechdrs
,
301 CONST
char *secstrings
,
304 unsigned long gots
= 0, fdescs
= 0, len
;
307 len
= hdr
->e_shnum
* sizeof(me
->arch
.section
[0]);
308 me
->arch
.section
= kzalloc(len
, GFP_KERNEL
);
309 if (!me
->arch
.section
)
312 for (i
= 1; i
< hdr
->e_shnum
; i
++) {
313 const Elf_Rela
*rels
= (void *)sechdrs
[i
].sh_addr
;
314 unsigned long nrels
= sechdrs
[i
].sh_size
/ sizeof(*rels
);
315 unsigned int count
, s
;
317 if (strncmp(secstrings
+ sechdrs
[i
].sh_name
,
318 ".PARISC.unwind", 14) == 0)
319 me
->arch
.unwind_section
= i
;
321 if (sechdrs
[i
].sh_type
!= SHT_RELA
)
324 /* some of these are not relevant for 32-bit/64-bit
325 * we leave them here to make the code common. the
326 * compiler will do its thing and optimize out the
327 * stuff we don't need
329 gots
+= count_gots(rels
, nrels
);
330 fdescs
+= count_fdescs(rels
, nrels
);
332 /* XXX: By sorting the relocs and finding duplicate entries
333 * we could reduce the number of necessary stubs and save
335 count
= count_stubs(rels
, nrels
);
339 /* so we need relocation stubs. reserve necessary memory. */
340 /* sh_info gives the section for which we need to add stubs. */
341 s
= sechdrs
[i
].sh_info
;
343 /* each code section should only have one relocation section */
344 WARN_ON(me
->arch
.section
[s
].stub_entries
);
346 /* store number of stubs we need for this section */
347 me
->arch
.section
[s
].stub_entries
+= count
;
350 /* align things a bit */
351 me
->core_layout
.size
= ALIGN(me
->core_layout
.size
, 16);
352 me
->arch
.got_offset
= me
->core_layout
.size
;
353 me
->core_layout
.size
+= gots
* sizeof(struct got_entry
);
355 me
->core_layout
.size
= ALIGN(me
->core_layout
.size
, 16);
356 me
->arch
.fdesc_offset
= me
->core_layout
.size
;
357 me
->core_layout
.size
+= fdescs
* sizeof(Elf_Fdesc
);
359 me
->arch
.got_max
= gots
;
360 me
->arch
.fdesc_max
= fdescs
;
366 static Elf64_Word
get_got(struct module
*me
, unsigned long value
, long addend
)
369 struct got_entry
*got
;
375 got
= me
->core_layout
.base
+ me
->arch
.got_offset
;
376 for (i
= 0; got
[i
].addr
; i
++)
377 if (got
[i
].addr
== value
)
380 BUG_ON(++me
->arch
.got_count
> me
->arch
.got_max
);
384 pr_debug("GOT ENTRY %d[%lx] val %lx\n", i
, i
*sizeof(struct got_entry
),
386 return i
* sizeof(struct got_entry
);
388 #endif /* CONFIG_64BIT */
391 static Elf_Addr
get_fdesc(struct module
*me
, unsigned long value
)
393 Elf_Fdesc
*fdesc
= me
->core_layout
.base
+ me
->arch
.fdesc_offset
;
396 printk(KERN_ERR
"%s: zero OPD requested!\n", me
->name
);
400 /* Look for existing fdesc entry. */
401 while (fdesc
->addr
) {
402 if (fdesc
->addr
== value
)
403 return (Elf_Addr
)fdesc
;
407 BUG_ON(++me
->arch
.fdesc_count
> me
->arch
.fdesc_max
);
411 fdesc
->gp
= (Elf_Addr
)me
->core_layout
.base
+ me
->arch
.got_offset
;
412 return (Elf_Addr
)fdesc
;
414 #endif /* CONFIG_64BIT */
422 static Elf_Addr
get_stub(struct module
*me
, unsigned long value
, long addend
,
423 enum elf_stub_type stub_type
, Elf_Addr loc0
, unsigned int targetsec
)
425 struct stub_entry
*stub
;
426 int __maybe_unused d
;
428 /* initialize stub_offset to point in front of the section */
429 if (!me
->arch
.section
[targetsec
].stub_offset
) {
430 loc0
-= (me
->arch
.section
[targetsec
].stub_entries
+ 1) *
431 sizeof(struct stub_entry
);
432 /* get correct alignment for the stubs */
433 loc0
= ALIGN(loc0
, sizeof(struct stub_entry
));
434 me
->arch
.section
[targetsec
].stub_offset
= loc0
;
437 /* get address of stub entry */
438 stub
= (void *) me
->arch
.section
[targetsec
].stub_offset
;
439 me
->arch
.section
[targetsec
].stub_offset
+= sizeof(struct stub_entry
);
441 /* do not write outside available stub area */
442 BUG_ON(0 == me
->arch
.section
[targetsec
].stub_entries
--);
446 /* for 32-bit the stub looks like this:
448 * be,n R'XXX(%sr4,%r1)
450 //value = *(unsigned long *)((value + addend) & ~3); /* why? */
452 stub
->insns
[0] = 0x20200000; /* ldil L'XXX,%r1 */
453 stub
->insns
[1] = 0xe0202002; /* be,n R'XXX(%sr4,%r1) */
455 stub
->insns
[0] |= reassemble_21(lrsel(value
, addend
));
456 stub
->insns
[1] |= reassemble_17(rrsel(value
, addend
) / 4);
459 /* for 64-bit we have three kinds of stubs:
460 * for normal function calls:
472 * for direct branches (jumps between different section of the
480 d
= get_got(me
, value
, addend
);
483 stub
->insns
[0] = 0x0f6010db; /* ldd 0(%dp),%dp */
484 stub
->insns
[0] |= low_sign_unext(d
, 5) << 16;
487 stub
->insns
[0] = 0x537b0000; /* ldd 0(%dp),%dp */
488 stub
->insns
[0] |= reassemble_16a(d
);
490 stub
->insns
[1] = 0x53610020; /* ldd 10(%dp),%r1 */
491 stub
->insns
[2] = 0xe820d000; /* bve (%r1) */
492 stub
->insns
[3] = 0x537b0030; /* ldd 18(%dp),%dp */
495 stub
->insns
[0] = 0x20200000; /* ldil 0,%r1 */
496 stub
->insns
[1] = 0x34210000; /* ldo 0(%r1), %r1 */
497 stub
->insns
[2] = 0x50210020; /* ldd 10(%r1),%r1 */
498 stub
->insns
[3] = 0xe820d002; /* bve,n (%r1) */
500 stub
->insns
[0] |= reassemble_21(lrsel(value
, addend
));
501 stub
->insns
[1] |= reassemble_14(rrsel(value
, addend
));
503 case ELF_STUB_DIRECT
:
504 stub
->insns
[0] = 0x20200000; /* ldil 0,%r1 */
505 stub
->insns
[1] = 0x34210000; /* ldo 0(%r1), %r1 */
506 stub
->insns
[2] = 0xe820d002; /* bve,n (%r1) */
508 stub
->insns
[0] |= reassemble_21(lrsel(value
, addend
));
509 stub
->insns
[1] |= reassemble_14(rrsel(value
, addend
));
515 return (Elf_Addr
)stub
;
519 int apply_relocate_add(Elf_Shdr
*sechdrs
,
521 unsigned int symindex
,
526 Elf32_Rela
*rel
= (void *)sechdrs
[relsec
].sh_addr
;
533 unsigned int targetsec
= sechdrs
[relsec
].sh_info
;
534 //unsigned long dp = (unsigned long)$global$;
535 register unsigned long dp
asm ("r27");
537 pr_debug("Applying relocate section %u to %u\n", relsec
,
539 for (i
= 0; i
< sechdrs
[relsec
].sh_size
/ sizeof(*rel
); i
++) {
540 /* This is where to make the change */
541 loc
= (void *)sechdrs
[targetsec
].sh_addr
543 /* This is the start of the target section */
544 loc0
= sechdrs
[targetsec
].sh_addr
;
545 /* This is the symbol it is referring to */
546 sym
= (Elf32_Sym
*)sechdrs
[symindex
].sh_addr
547 + ELF32_R_SYM(rel
[i
].r_info
);
548 if (!sym
->st_value
) {
549 printk(KERN_WARNING
"%s: Unknown symbol %s\n",
550 me
->name
, strtab
+ sym
->st_name
);
553 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
554 dot
= (Elf32_Addr
)loc
& ~0x03;
557 addend
= rel
[i
].r_addend
;
560 #define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
561 pr_debug("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
562 strtab
+ sym
->st_name
,
563 (uint32_t)loc
, val
, addend
,
577 switch (ELF32_R_TYPE(rel
[i
].r_info
)) {
578 case R_PARISC_PLABEL32
:
579 /* 32-bit function address */
580 /* no function descriptors... */
581 *loc
= fsel(val
, addend
);
584 /* direct 32-bit ref */
585 *loc
= fsel(val
, addend
);
587 case R_PARISC_DIR21L
:
588 /* left 21 bits of effective address */
589 val
= lrsel(val
, addend
);
590 *loc
= mask(*loc
, 21) | reassemble_21(val
);
592 case R_PARISC_DIR14R
:
593 /* right 14 bits of effective address */
594 val
= rrsel(val
, addend
);
595 *loc
= mask(*loc
, 14) | reassemble_14(val
);
597 case R_PARISC_SEGREL32
:
598 /* 32-bit segment relative address */
599 /* See note about special handling of SEGREL32 at
600 * the beginning of this file.
602 *loc
= fsel(val
, addend
);
604 case R_PARISC_SECREL32
:
605 /* 32-bit section relative address. */
606 *loc
= fsel(val
, addend
);
608 case R_PARISC_DPREL21L
:
609 /* left 21 bit of relative address */
610 val
= lrsel(val
- dp
, addend
);
611 *loc
= mask(*loc
, 21) | reassemble_21(val
);
613 case R_PARISC_DPREL14R
:
614 /* right 14 bit of relative address */
615 val
= rrsel(val
- dp
, addend
);
616 *loc
= mask(*loc
, 14) | reassemble_14(val
);
618 case R_PARISC_PCREL17F
:
619 /* 17-bit PC relative address */
620 /* calculate direct call offset */
622 val
= (val
- dot
- 8)/4;
623 if (!RELOC_REACHABLE(val
, 17)) {
624 /* direct distance too far, create
625 * stub entry instead */
626 val
= get_stub(me
, sym
->st_value
, addend
,
627 ELF_STUB_DIRECT
, loc0
, targetsec
);
628 val
= (val
- dot
- 8)/4;
629 CHECK_RELOC(val
, 17);
631 *loc
= (*loc
& ~0x1f1ffd) | reassemble_17(val
);
633 case R_PARISC_PCREL22F
:
634 /* 22-bit PC relative address; only defined for pa20 */
635 /* calculate direct call offset */
637 val
= (val
- dot
- 8)/4;
638 if (!RELOC_REACHABLE(val
, 22)) {
639 /* direct distance too far, create
640 * stub entry instead */
641 val
= get_stub(me
, sym
->st_value
, addend
,
642 ELF_STUB_DIRECT
, loc0
, targetsec
);
643 val
= (val
- dot
- 8)/4;
644 CHECK_RELOC(val
, 22);
646 *loc
= (*loc
& ~0x3ff1ffd) | reassemble_22(val
);
648 case R_PARISC_PCREL32
:
649 /* 32-bit PC relative address */
650 *loc
= val
- dot
- 8 + addend
;
654 printk(KERN_ERR
"module %s: Unknown relocation: %u\n",
655 me
->name
, ELF32_R_TYPE(rel
[i
].r_info
));
664 int apply_relocate_add(Elf_Shdr
*sechdrs
,
666 unsigned int symindex
,
671 Elf64_Rela
*rel
= (void *)sechdrs
[relsec
].sh_addr
;
679 unsigned int targetsec
= sechdrs
[relsec
].sh_info
;
681 pr_debug("Applying relocate section %u to %u\n", relsec
,
683 for (i
= 0; i
< sechdrs
[relsec
].sh_size
/ sizeof(*rel
); i
++) {
684 /* This is where to make the change */
685 loc
= (void *)sechdrs
[targetsec
].sh_addr
687 /* This is the start of the target section */
688 loc0
= sechdrs
[targetsec
].sh_addr
;
689 /* This is the symbol it is referring to */
690 sym
= (Elf64_Sym
*)sechdrs
[symindex
].sh_addr
691 + ELF64_R_SYM(rel
[i
].r_info
);
692 if (!sym
->st_value
) {
693 printk(KERN_WARNING
"%s: Unknown symbol %s\n",
694 me
->name
, strtab
+ sym
->st_name
);
697 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
698 dot
= (Elf64_Addr
)loc
& ~0x03;
699 loc64
= (Elf64_Xword
*)loc
;
702 addend
= rel
[i
].r_addend
;
705 #define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
706 printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
707 strtab
+ sym
->st_name
,
719 switch (ELF64_R_TYPE(rel
[i
].r_info
)) {
720 case R_PARISC_LTOFF21L
:
721 /* LT-relative; left 21 bits */
722 val
= get_got(me
, val
, addend
);
723 pr_debug("LTOFF21L Symbol %s loc %p val %llx\n",
724 strtab
+ sym
->st_name
,
727 *loc
= mask(*loc
, 21) | reassemble_21(val
);
729 case R_PARISC_LTOFF14R
:
730 /* L(ltoff(val+addend)) */
731 /* LT-relative; right 14 bits */
732 val
= get_got(me
, val
, addend
);
734 pr_debug("LTOFF14R Symbol %s loc %p val %llx\n",
735 strtab
+ sym
->st_name
,
737 *loc
= mask(*loc
, 14) | reassemble_14(val
);
739 case R_PARISC_PCREL22F
:
740 /* PC-relative; 22 bits */
741 pr_debug("PCREL22F Symbol %s loc %p val %llx\n",
742 strtab
+ sym
->st_name
,
745 /* can we reach it locally? */
746 if (in_local(me
, (void *)val
)) {
747 /* this is the case where the symbol is local
748 * to the module, but in a different section,
749 * so stub the jump in case it's more than 22
751 val
= (val
- dot
- 8)/4;
752 if (!RELOC_REACHABLE(val
, 22)) {
753 /* direct distance too far, create
754 * stub entry instead */
755 val
= get_stub(me
, sym
->st_value
,
756 addend
, ELF_STUB_DIRECT
,
759 /* Ok, we can reach it directly. */
765 if (strncmp(strtab
+ sym
->st_name
, "$$", 2)
767 val
= get_stub(me
, val
, addend
, ELF_STUB_MILLI
,
770 val
= get_stub(me
, val
, addend
, ELF_STUB_GOT
,
773 pr_debug("STUB FOR %s loc %px, val %llx+%llx at %llx\n",
774 strtab
+ sym
->st_name
, loc
, sym
->st_value
,
776 val
= (val
- dot
- 8)/4;
777 CHECK_RELOC(val
, 22);
778 *loc
= (*loc
& ~0x3ff1ffd) | reassemble_22(val
);
780 case R_PARISC_PCREL32
:
781 /* 32-bit PC relative address */
782 *loc
= val
- dot
- 8 + addend
;
784 case R_PARISC_PCREL64
:
785 /* 64-bit PC relative address */
786 *loc64
= val
- dot
- 8 + addend
;
789 /* 64-bit effective address */
790 *loc64
= val
+ addend
;
792 case R_PARISC_SEGREL32
:
793 /* 32-bit segment relative address */
794 /* See note about special handling of SEGREL32 at
795 * the beginning of this file.
797 *loc
= fsel(val
, addend
);
799 case R_PARISC_SECREL32
:
800 /* 32-bit section relative address. */
801 *loc
= fsel(val
, addend
);
803 case R_PARISC_FPTR64
:
804 /* 64-bit function address */
805 if(in_local(me
, (void *)(val
+ addend
))) {
806 *loc64
= get_fdesc(me
, val
+addend
);
807 pr_debug("FDESC for %s at %llx points to %llx\n",
808 strtab
+ sym
->st_name
, *loc64
,
809 ((Elf_Fdesc
*)*loc64
)->addr
);
811 /* if the symbol is not local to this
812 * module then val+addend is a pointer
813 * to the function descriptor */
814 pr_debug("Non local FPTR64 Symbol %s loc %p val %llx\n",
815 strtab
+ sym
->st_name
,
817 *loc64
= val
+ addend
;
822 printk(KERN_ERR
"module %s: Unknown relocation: %Lu\n",
823 me
->name
, ELF64_R_TYPE(rel
[i
].r_info
));
832 register_unwind_table(struct module
*me
,
833 const Elf_Shdr
*sechdrs
)
835 unsigned char *table
, *end
;
838 if (!me
->arch
.unwind_section
)
841 table
= (unsigned char *)sechdrs
[me
->arch
.unwind_section
].sh_addr
;
842 end
= table
+ sechdrs
[me
->arch
.unwind_section
].sh_size
;
843 gp
= (Elf_Addr
)me
->core_layout
.base
+ me
->arch
.got_offset
;
845 pr_debug("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
846 me
->arch
.unwind_section
, table
, end
, gp
);
847 me
->arch
.unwind
= unwind_table_add(me
->name
, 0, gp
, table
, end
);
851 deregister_unwind_table(struct module
*me
)
854 unwind_table_remove(me
->arch
.unwind
);
857 int module_finalize(const Elf_Ehdr
*hdr
,
858 const Elf_Shdr
*sechdrs
,
863 const char *strtab
= NULL
;
867 Elf_Sym
*newptr
, *oldptr
;
868 Elf_Shdr
*symhdr
= NULL
;
873 entry
= (Elf_Fdesc
*)me
->init
;
874 printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry
,
875 entry
->gp
, entry
->addr
);
876 addr
= (u32
*)entry
->addr
;
877 printk("INSNS: %x %x %x %x\n",
878 addr
[0], addr
[1], addr
[2], addr
[3]);
879 printk("got entries used %ld, gots max %ld\n"
880 "fdescs used %ld, fdescs max %ld\n",
881 me
->arch
.got_count
, me
->arch
.got_max
,
882 me
->arch
.fdesc_count
, me
->arch
.fdesc_max
);
885 register_unwind_table(me
, sechdrs
);
887 /* haven't filled in me->symtab yet, so have to find it
889 for (i
= 1; i
< hdr
->e_shnum
; i
++) {
890 if(sechdrs
[i
].sh_type
== SHT_SYMTAB
891 && (sechdrs
[i
].sh_flags
& SHF_ALLOC
)) {
892 int strindex
= sechdrs
[i
].sh_link
;
895 * The cast is to drop the const from
896 * the sechdrs pointer */
897 symhdr
= (Elf_Shdr
*)&sechdrs
[i
];
898 strtab
= (char *)sechdrs
[strindex
].sh_addr
;
903 pr_debug("module %s: strtab %p, symhdr %p\n",
904 me
->name
, strtab
, symhdr
);
906 if(me
->arch
.got_count
> MAX_GOTS
) {
907 printk(KERN_ERR
"%s: Global Offset Table overflow (used %ld, allowed %d)\n",
908 me
->name
, me
->arch
.got_count
, MAX_GOTS
);
912 kfree(me
->arch
.section
);
913 me
->arch
.section
= NULL
;
915 /* no symbol table */
919 oldptr
= (void *)symhdr
->sh_addr
;
920 newptr
= oldptr
+ 1; /* we start counting at 1 */
921 nsyms
= symhdr
->sh_size
/ sizeof(Elf_Sym
);
922 pr_debug("OLD num_symtab %lu\n", nsyms
);
924 for (i
= 1; i
< nsyms
; i
++) {
925 oldptr
++; /* note, count starts at 1 so preincrement */
926 if(strncmp(strtab
+ oldptr
->st_name
,
936 nsyms
= newptr
- (Elf_Sym
*)symhdr
->sh_addr
;
937 pr_debug("NEW num_symtab %lu\n", nsyms
);
938 symhdr
->sh_size
= nsyms
* sizeof(Elf_Sym
);
940 /* find .altinstructions section */
941 secstrings
= (void *)hdr
+ sechdrs
[hdr
->e_shstrndx
].sh_offset
;
942 for (s
= sechdrs
; s
< sechdrs
+ hdr
->e_shnum
; s
++) {
943 void *aseg
= (void *) s
->sh_addr
;
944 char *secname
= secstrings
+ s
->sh_name
;
946 if (!strcmp(".altinstructions", secname
))
947 /* patch .altinstructions */
948 apply_alternatives(aseg
, aseg
+ s
->sh_size
, me
->name
);
950 #ifdef CONFIG_DYNAMIC_FTRACE
951 /* For 32 bit kernels we're compiling modules with
952 * -ffunction-sections so we must relocate the addresses in the
953 * ftrace callsite section.
955 if (symindex
!= -1 && !strcmp(secname
, FTRACE_CALLSITE_SECTION
)) {
957 if (s
->sh_type
== SHT_REL
)
958 err
= apply_relocate((Elf_Shdr
*)sechdrs
,
961 else if (s
->sh_type
== SHT_RELA
)
962 err
= apply_relocate_add((Elf_Shdr
*)sechdrs
,
973 void module_arch_cleanup(struct module
*mod
)
975 deregister_unwind_table(mod
);
979 void *dereference_module_function_descriptor(struct module
*mod
, void *ptr
)
981 unsigned long start_opd
= (Elf64_Addr
)mod
->core_layout
.base
+
982 mod
->arch
.fdesc_offset
;
983 unsigned long end_opd
= start_opd
+
984 mod
->arch
.fdesc_count
* sizeof(Elf64_Fdesc
);
986 if (ptr
< (void *)start_opd
|| ptr
>= (void *)end_opd
)
989 return dereference_function_descriptor(ptr
);