Linux 5.6.13
[linux/fpc-iii.git] / arch / x86 / net / bpf_jit_comp.c
blob6aa53c33b4712ef1982b01d349906964834364c6
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * bpf_jit_comp.c: BPF JIT compiler
5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6 * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7 */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/set_memory.h>
16 #include <asm/nospec-branch.h>
17 #include <asm/text-patching.h>
18 #include <asm/asm-prototypes.h>
20 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
22 if (len == 1)
23 *ptr = bytes;
24 else if (len == 2)
25 *(u16 *)ptr = bytes;
26 else {
27 *(u32 *)ptr = bytes;
28 barrier();
30 return ptr + len;
33 #define EMIT(bytes, len) \
34 do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
36 #define EMIT1(b1) EMIT(b1, 1)
37 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
38 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
39 #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
41 #define EMIT1_off32(b1, off) \
42 do { EMIT1(b1); EMIT(off, 4); } while (0)
43 #define EMIT2_off32(b1, b2, off) \
44 do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
45 #define EMIT3_off32(b1, b2, b3, off) \
46 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
47 #define EMIT4_off32(b1, b2, b3, b4, off) \
48 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
50 static bool is_imm8(int value)
52 return value <= 127 && value >= -128;
55 static bool is_simm32(s64 value)
57 return value == (s64)(s32)value;
60 static bool is_uimm32(u64 value)
62 return value == (u64)(u32)value;
65 /* mov dst, src */
66 #define EMIT_mov(DST, SRC) \
67 do { \
68 if (DST != SRC) \
69 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
70 } while (0)
72 static int bpf_size_to_x86_bytes(int bpf_size)
74 if (bpf_size == BPF_W)
75 return 4;
76 else if (bpf_size == BPF_H)
77 return 2;
78 else if (bpf_size == BPF_B)
79 return 1;
80 else if (bpf_size == BPF_DW)
81 return 4; /* imm32 */
82 else
83 return 0;
87 * List of x86 cond jumps opcodes (. + s8)
88 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
90 #define X86_JB 0x72
91 #define X86_JAE 0x73
92 #define X86_JE 0x74
93 #define X86_JNE 0x75
94 #define X86_JBE 0x76
95 #define X86_JA 0x77
96 #define X86_JL 0x7C
97 #define X86_JGE 0x7D
98 #define X86_JLE 0x7E
99 #define X86_JG 0x7F
101 /* Pick a register outside of BPF range for JIT internal work */
102 #define AUX_REG (MAX_BPF_JIT_REG + 1)
103 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
106 * The following table maps BPF registers to x86-64 registers.
108 * x86-64 register R12 is unused, since if used as base address
109 * register in load/store instructions, it always needs an
110 * extra byte of encoding and is callee saved.
112 * x86-64 register R9 is not used by BPF programs, but can be used by BPF
113 * trampoline. x86-64 register R10 is used for blinding (if enabled).
115 static const int reg2hex[] = {
116 [BPF_REG_0] = 0, /* RAX */
117 [BPF_REG_1] = 7, /* RDI */
118 [BPF_REG_2] = 6, /* RSI */
119 [BPF_REG_3] = 2, /* RDX */
120 [BPF_REG_4] = 1, /* RCX */
121 [BPF_REG_5] = 0, /* R8 */
122 [BPF_REG_6] = 3, /* RBX callee saved */
123 [BPF_REG_7] = 5, /* R13 callee saved */
124 [BPF_REG_8] = 6, /* R14 callee saved */
125 [BPF_REG_9] = 7, /* R15 callee saved */
126 [BPF_REG_FP] = 5, /* RBP readonly */
127 [BPF_REG_AX] = 2, /* R10 temp register */
128 [AUX_REG] = 3, /* R11 temp register */
129 [X86_REG_R9] = 1, /* R9 register, 6th function argument */
132 static const int reg2pt_regs[] = {
133 [BPF_REG_0] = offsetof(struct pt_regs, ax),
134 [BPF_REG_1] = offsetof(struct pt_regs, di),
135 [BPF_REG_2] = offsetof(struct pt_regs, si),
136 [BPF_REG_3] = offsetof(struct pt_regs, dx),
137 [BPF_REG_4] = offsetof(struct pt_regs, cx),
138 [BPF_REG_5] = offsetof(struct pt_regs, r8),
139 [BPF_REG_6] = offsetof(struct pt_regs, bx),
140 [BPF_REG_7] = offsetof(struct pt_regs, r13),
141 [BPF_REG_8] = offsetof(struct pt_regs, r14),
142 [BPF_REG_9] = offsetof(struct pt_regs, r15),
146 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
147 * which need extra byte of encoding.
148 * rax,rcx,...,rbp have simpler encoding
150 static bool is_ereg(u32 reg)
152 return (1 << reg) & (BIT(BPF_REG_5) |
153 BIT(AUX_REG) |
154 BIT(BPF_REG_7) |
155 BIT(BPF_REG_8) |
156 BIT(BPF_REG_9) |
157 BIT(X86_REG_R9) |
158 BIT(BPF_REG_AX));
162 * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
163 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
164 * of encoding. al,cl,dl,bl have simpler encoding.
166 static bool is_ereg_8l(u32 reg)
168 return is_ereg(reg) ||
169 (1 << reg) & (BIT(BPF_REG_1) |
170 BIT(BPF_REG_2) |
171 BIT(BPF_REG_FP));
174 static bool is_axreg(u32 reg)
176 return reg == BPF_REG_0;
179 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
180 static u8 add_1mod(u8 byte, u32 reg)
182 if (is_ereg(reg))
183 byte |= 1;
184 return byte;
187 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
189 if (is_ereg(r1))
190 byte |= 1;
191 if (is_ereg(r2))
192 byte |= 4;
193 return byte;
196 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
197 static u8 add_1reg(u8 byte, u32 dst_reg)
199 return byte + reg2hex[dst_reg];
202 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
203 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
205 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
208 static void jit_fill_hole(void *area, unsigned int size)
210 /* Fill whole space with INT3 instructions */
211 memset(area, 0xcc, size);
214 struct jit_context {
215 int cleanup_addr; /* Epilogue code offset */
218 /* Maximum number of bytes emitted while JITing one eBPF insn */
219 #define BPF_MAX_INSN_SIZE 128
220 #define BPF_INSN_SAFETY 64
222 /* Number of bytes emit_patch() needs to generate instructions */
223 #define X86_PATCH_SIZE 5
225 #define PROLOGUE_SIZE 25
228 * Emit x86-64 prologue code for BPF program and check its size.
229 * bpf_tail_call helper will skip it while jumping into another program
231 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf)
233 u8 *prog = *pprog;
234 int cnt = X86_PATCH_SIZE;
236 /* BPF trampoline can be made to work without these nops,
237 * but let's waste 5 bytes for now and optimize later
239 memcpy(prog, ideal_nops[NOP_ATOMIC5], cnt);
240 prog += cnt;
241 EMIT1(0x55); /* push rbp */
242 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
243 /* sub rsp, rounded_stack_depth */
244 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
245 EMIT1(0x53); /* push rbx */
246 EMIT2(0x41, 0x55); /* push r13 */
247 EMIT2(0x41, 0x56); /* push r14 */
248 EMIT2(0x41, 0x57); /* push r15 */
249 if (!ebpf_from_cbpf) {
250 /* zero init tail_call_cnt */
251 EMIT2(0x6a, 0x00);
252 BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
254 *pprog = prog;
257 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
259 u8 *prog = *pprog;
260 int cnt = 0;
261 s64 offset;
263 offset = func - (ip + X86_PATCH_SIZE);
264 if (!is_simm32(offset)) {
265 pr_err("Target call %p is out of range\n", func);
266 return -ERANGE;
268 EMIT1_off32(opcode, offset);
269 *pprog = prog;
270 return 0;
273 static int emit_call(u8 **pprog, void *func, void *ip)
275 return emit_patch(pprog, func, ip, 0xE8);
278 static int emit_jump(u8 **pprog, void *func, void *ip)
280 return emit_patch(pprog, func, ip, 0xE9);
283 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
284 void *old_addr, void *new_addr,
285 const bool text_live)
287 const u8 *nop_insn = ideal_nops[NOP_ATOMIC5];
288 u8 old_insn[X86_PATCH_SIZE];
289 u8 new_insn[X86_PATCH_SIZE];
290 u8 *prog;
291 int ret;
293 memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
294 if (old_addr) {
295 prog = old_insn;
296 ret = t == BPF_MOD_CALL ?
297 emit_call(&prog, old_addr, ip) :
298 emit_jump(&prog, old_addr, ip);
299 if (ret)
300 return ret;
303 memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
304 if (new_addr) {
305 prog = new_insn;
306 ret = t == BPF_MOD_CALL ?
307 emit_call(&prog, new_addr, ip) :
308 emit_jump(&prog, new_addr, ip);
309 if (ret)
310 return ret;
313 ret = -EBUSY;
314 mutex_lock(&text_mutex);
315 if (memcmp(ip, old_insn, X86_PATCH_SIZE))
316 goto out;
317 if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
318 if (text_live)
319 text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
320 else
321 memcpy(ip, new_insn, X86_PATCH_SIZE);
323 ret = 0;
324 out:
325 mutex_unlock(&text_mutex);
326 return ret;
329 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
330 void *old_addr, void *new_addr)
332 if (!is_kernel_text((long)ip) &&
333 !is_bpf_text_address((long)ip))
334 /* BPF poking in modules is not supported */
335 return -EINVAL;
337 return __bpf_arch_text_poke(ip, t, old_addr, new_addr, true);
341 * Generate the following code:
343 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
344 * if (index >= array->map.max_entries)
345 * goto out;
346 * if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
347 * goto out;
348 * prog = array->ptrs[index];
349 * if (prog == NULL)
350 * goto out;
351 * goto *(prog->bpf_func + prologue_size);
352 * out:
354 static void emit_bpf_tail_call_indirect(u8 **pprog)
356 u8 *prog = *pprog;
357 int label1, label2, label3;
358 int cnt = 0;
361 * rdi - pointer to ctx
362 * rsi - pointer to bpf_array
363 * rdx - index in bpf_array
367 * if (index >= array->map.max_entries)
368 * goto out;
370 EMIT2(0x89, 0xD2); /* mov edx, edx */
371 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */
372 offsetof(struct bpf_array, map.max_entries));
373 #define OFFSET1 (41 + RETPOLINE_RAX_BPF_JIT_SIZE) /* Number of bytes to jump */
374 EMIT2(X86_JBE, OFFSET1); /* jbe out */
375 label1 = cnt;
378 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
379 * goto out;
381 EMIT2_off32(0x8B, 0x85, -36 - MAX_BPF_STACK); /* mov eax, dword ptr [rbp - 548] */
382 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
383 #define OFFSET2 (30 + RETPOLINE_RAX_BPF_JIT_SIZE)
384 EMIT2(X86_JA, OFFSET2); /* ja out */
385 label2 = cnt;
386 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
387 EMIT2_off32(0x89, 0x85, -36 - MAX_BPF_STACK); /* mov dword ptr [rbp -548], eax */
389 /* prog = array->ptrs[index]; */
390 EMIT4_off32(0x48, 0x8B, 0x84, 0xD6, /* mov rax, [rsi + rdx * 8 + offsetof(...)] */
391 offsetof(struct bpf_array, ptrs));
394 * if (prog == NULL)
395 * goto out;
397 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */
398 #define OFFSET3 (8 + RETPOLINE_RAX_BPF_JIT_SIZE)
399 EMIT2(X86_JE, OFFSET3); /* je out */
400 label3 = cnt;
402 /* goto *(prog->bpf_func + prologue_size); */
403 EMIT4(0x48, 0x8B, 0x40, /* mov rax, qword ptr [rax + 32] */
404 offsetof(struct bpf_prog, bpf_func));
405 EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE); /* add rax, prologue_size */
408 * Wow we're ready to jump into next BPF program
409 * rdi == ctx (1st arg)
410 * rax == prog->bpf_func + prologue_size
412 RETPOLINE_RAX_BPF_JIT();
414 /* out: */
415 BUILD_BUG_ON(cnt - label1 != OFFSET1);
416 BUILD_BUG_ON(cnt - label2 != OFFSET2);
417 BUILD_BUG_ON(cnt - label3 != OFFSET3);
418 *pprog = prog;
421 static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
422 u8 **pprog, int addr, u8 *image)
424 u8 *prog = *pprog;
425 int cnt = 0;
428 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
429 * goto out;
431 EMIT2_off32(0x8B, 0x85, -36 - MAX_BPF_STACK); /* mov eax, dword ptr [rbp - 548] */
432 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
433 EMIT2(X86_JA, 14); /* ja out */
434 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
435 EMIT2_off32(0x89, 0x85, -36 - MAX_BPF_STACK); /* mov dword ptr [rbp -548], eax */
437 poke->ip = image + (addr - X86_PATCH_SIZE);
438 poke->adj_off = PROLOGUE_SIZE;
440 memcpy(prog, ideal_nops[NOP_ATOMIC5], X86_PATCH_SIZE);
441 prog += X86_PATCH_SIZE;
442 /* out: */
444 *pprog = prog;
447 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
449 struct bpf_jit_poke_descriptor *poke;
450 struct bpf_array *array;
451 struct bpf_prog *target;
452 int i, ret;
454 for (i = 0; i < prog->aux->size_poke_tab; i++) {
455 poke = &prog->aux->poke_tab[i];
456 WARN_ON_ONCE(READ_ONCE(poke->ip_stable));
458 if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
459 continue;
461 array = container_of(poke->tail_call.map, struct bpf_array, map);
462 mutex_lock(&array->aux->poke_mutex);
463 target = array->ptrs[poke->tail_call.key];
464 if (target) {
465 /* Plain memcpy is used when image is not live yet
466 * and still not locked as read-only. Once poke
467 * location is active (poke->ip_stable), any parallel
468 * bpf_arch_text_poke() might occur still on the
469 * read-write image until we finally locked it as
470 * read-only. Both modifications on the given image
471 * are under text_mutex to avoid interference.
473 ret = __bpf_arch_text_poke(poke->ip, BPF_MOD_JUMP, NULL,
474 (u8 *)target->bpf_func +
475 poke->adj_off, false);
476 BUG_ON(ret < 0);
478 WRITE_ONCE(poke->ip_stable, true);
479 mutex_unlock(&array->aux->poke_mutex);
483 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
484 u32 dst_reg, const u32 imm32)
486 u8 *prog = *pprog;
487 u8 b1, b2, b3;
488 int cnt = 0;
491 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
492 * (which zero-extends imm32) to save 2 bytes.
494 if (sign_propagate && (s32)imm32 < 0) {
495 /* 'mov %rax, imm32' sign extends imm32 */
496 b1 = add_1mod(0x48, dst_reg);
497 b2 = 0xC7;
498 b3 = 0xC0;
499 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
500 goto done;
504 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
505 * to save 3 bytes.
507 if (imm32 == 0) {
508 if (is_ereg(dst_reg))
509 EMIT1(add_2mod(0x40, dst_reg, dst_reg));
510 b2 = 0x31; /* xor */
511 b3 = 0xC0;
512 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
513 goto done;
516 /* mov %eax, imm32 */
517 if (is_ereg(dst_reg))
518 EMIT1(add_1mod(0x40, dst_reg));
519 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
520 done:
521 *pprog = prog;
524 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
525 const u32 imm32_hi, const u32 imm32_lo)
527 u8 *prog = *pprog;
528 int cnt = 0;
530 if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
532 * For emitting plain u32, where sign bit must not be
533 * propagated LLVM tends to load imm64 over mov32
534 * directly, so save couple of bytes by just doing
535 * 'mov %eax, imm32' instead.
537 emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
538 } else {
539 /* movabsq %rax, imm64 */
540 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
541 EMIT(imm32_lo, 4);
542 EMIT(imm32_hi, 4);
545 *pprog = prog;
548 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
550 u8 *prog = *pprog;
551 int cnt = 0;
553 if (is64) {
554 /* mov dst, src */
555 EMIT_mov(dst_reg, src_reg);
556 } else {
557 /* mov32 dst, src */
558 if (is_ereg(dst_reg) || is_ereg(src_reg))
559 EMIT1(add_2mod(0x40, dst_reg, src_reg));
560 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
563 *pprog = prog;
566 /* LDX: dst_reg = *(u8*)(src_reg + off) */
567 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
569 u8 *prog = *pprog;
570 int cnt = 0;
572 switch (size) {
573 case BPF_B:
574 /* Emit 'movzx rax, byte ptr [rax + off]' */
575 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
576 break;
577 case BPF_H:
578 /* Emit 'movzx rax, word ptr [rax + off]' */
579 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
580 break;
581 case BPF_W:
582 /* Emit 'mov eax, dword ptr [rax+0x14]' */
583 if (is_ereg(dst_reg) || is_ereg(src_reg))
584 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
585 else
586 EMIT1(0x8B);
587 break;
588 case BPF_DW:
589 /* Emit 'mov rax, qword ptr [rax+0x14]' */
590 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
591 break;
594 * If insn->off == 0 we can save one extra byte, but
595 * special case of x86 R13 which always needs an offset
596 * is not worth the hassle
598 if (is_imm8(off))
599 EMIT2(add_2reg(0x40, src_reg, dst_reg), off);
600 else
601 EMIT1_off32(add_2reg(0x80, src_reg, dst_reg), off);
602 *pprog = prog;
605 /* STX: *(u8*)(dst_reg + off) = src_reg */
606 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
608 u8 *prog = *pprog;
609 int cnt = 0;
611 switch (size) {
612 case BPF_B:
613 /* Emit 'mov byte ptr [rax + off], al' */
614 if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
615 /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
616 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
617 else
618 EMIT1(0x88);
619 break;
620 case BPF_H:
621 if (is_ereg(dst_reg) || is_ereg(src_reg))
622 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
623 else
624 EMIT2(0x66, 0x89);
625 break;
626 case BPF_W:
627 if (is_ereg(dst_reg) || is_ereg(src_reg))
628 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
629 else
630 EMIT1(0x89);
631 break;
632 case BPF_DW:
633 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
634 break;
636 if (is_imm8(off))
637 EMIT2(add_2reg(0x40, dst_reg, src_reg), off);
638 else
639 EMIT1_off32(add_2reg(0x80, dst_reg, src_reg), off);
640 *pprog = prog;
643 static bool ex_handler_bpf(const struct exception_table_entry *x,
644 struct pt_regs *regs, int trapnr,
645 unsigned long error_code, unsigned long fault_addr)
647 u32 reg = x->fixup >> 8;
649 /* jump over faulting load and clear dest register */
650 *(unsigned long *)((void *)regs + reg) = 0;
651 regs->ip += x->fixup & 0xff;
652 return true;
655 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
656 int oldproglen, struct jit_context *ctx)
658 struct bpf_insn *insn = bpf_prog->insnsi;
659 int insn_cnt = bpf_prog->len;
660 bool seen_exit = false;
661 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
662 int i, cnt = 0, excnt = 0;
663 int proglen = 0;
664 u8 *prog = temp;
666 emit_prologue(&prog, bpf_prog->aux->stack_depth,
667 bpf_prog_was_classic(bpf_prog));
668 addrs[0] = prog - temp;
670 for (i = 1; i <= insn_cnt; i++, insn++) {
671 const s32 imm32 = insn->imm;
672 u32 dst_reg = insn->dst_reg;
673 u32 src_reg = insn->src_reg;
674 u8 b2 = 0, b3 = 0;
675 s64 jmp_offset;
676 u8 jmp_cond;
677 int ilen;
678 u8 *func;
680 switch (insn->code) {
681 /* ALU */
682 case BPF_ALU | BPF_ADD | BPF_X:
683 case BPF_ALU | BPF_SUB | BPF_X:
684 case BPF_ALU | BPF_AND | BPF_X:
685 case BPF_ALU | BPF_OR | BPF_X:
686 case BPF_ALU | BPF_XOR | BPF_X:
687 case BPF_ALU64 | BPF_ADD | BPF_X:
688 case BPF_ALU64 | BPF_SUB | BPF_X:
689 case BPF_ALU64 | BPF_AND | BPF_X:
690 case BPF_ALU64 | BPF_OR | BPF_X:
691 case BPF_ALU64 | BPF_XOR | BPF_X:
692 switch (BPF_OP(insn->code)) {
693 case BPF_ADD: b2 = 0x01; break;
694 case BPF_SUB: b2 = 0x29; break;
695 case BPF_AND: b2 = 0x21; break;
696 case BPF_OR: b2 = 0x09; break;
697 case BPF_XOR: b2 = 0x31; break;
699 if (BPF_CLASS(insn->code) == BPF_ALU64)
700 EMIT1(add_2mod(0x48, dst_reg, src_reg));
701 else if (is_ereg(dst_reg) || is_ereg(src_reg))
702 EMIT1(add_2mod(0x40, dst_reg, src_reg));
703 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
704 break;
706 case BPF_ALU64 | BPF_MOV | BPF_X:
707 case BPF_ALU | BPF_MOV | BPF_X:
708 emit_mov_reg(&prog,
709 BPF_CLASS(insn->code) == BPF_ALU64,
710 dst_reg, src_reg);
711 break;
713 /* neg dst */
714 case BPF_ALU | BPF_NEG:
715 case BPF_ALU64 | BPF_NEG:
716 if (BPF_CLASS(insn->code) == BPF_ALU64)
717 EMIT1(add_1mod(0x48, dst_reg));
718 else if (is_ereg(dst_reg))
719 EMIT1(add_1mod(0x40, dst_reg));
720 EMIT2(0xF7, add_1reg(0xD8, dst_reg));
721 break;
723 case BPF_ALU | BPF_ADD | BPF_K:
724 case BPF_ALU | BPF_SUB | BPF_K:
725 case BPF_ALU | BPF_AND | BPF_K:
726 case BPF_ALU | BPF_OR | BPF_K:
727 case BPF_ALU | BPF_XOR | BPF_K:
728 case BPF_ALU64 | BPF_ADD | BPF_K:
729 case BPF_ALU64 | BPF_SUB | BPF_K:
730 case BPF_ALU64 | BPF_AND | BPF_K:
731 case BPF_ALU64 | BPF_OR | BPF_K:
732 case BPF_ALU64 | BPF_XOR | BPF_K:
733 if (BPF_CLASS(insn->code) == BPF_ALU64)
734 EMIT1(add_1mod(0x48, dst_reg));
735 else if (is_ereg(dst_reg))
736 EMIT1(add_1mod(0x40, dst_reg));
739 * b3 holds 'normal' opcode, b2 short form only valid
740 * in case dst is eax/rax.
742 switch (BPF_OP(insn->code)) {
743 case BPF_ADD:
744 b3 = 0xC0;
745 b2 = 0x05;
746 break;
747 case BPF_SUB:
748 b3 = 0xE8;
749 b2 = 0x2D;
750 break;
751 case BPF_AND:
752 b3 = 0xE0;
753 b2 = 0x25;
754 break;
755 case BPF_OR:
756 b3 = 0xC8;
757 b2 = 0x0D;
758 break;
759 case BPF_XOR:
760 b3 = 0xF0;
761 b2 = 0x35;
762 break;
765 if (is_imm8(imm32))
766 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
767 else if (is_axreg(dst_reg))
768 EMIT1_off32(b2, imm32);
769 else
770 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
771 break;
773 case BPF_ALU64 | BPF_MOV | BPF_K:
774 case BPF_ALU | BPF_MOV | BPF_K:
775 emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
776 dst_reg, imm32);
777 break;
779 case BPF_LD | BPF_IMM | BPF_DW:
780 emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
781 insn++;
782 i++;
783 break;
785 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
786 case BPF_ALU | BPF_MOD | BPF_X:
787 case BPF_ALU | BPF_DIV | BPF_X:
788 case BPF_ALU | BPF_MOD | BPF_K:
789 case BPF_ALU | BPF_DIV | BPF_K:
790 case BPF_ALU64 | BPF_MOD | BPF_X:
791 case BPF_ALU64 | BPF_DIV | BPF_X:
792 case BPF_ALU64 | BPF_MOD | BPF_K:
793 case BPF_ALU64 | BPF_DIV | BPF_K:
794 EMIT1(0x50); /* push rax */
795 EMIT1(0x52); /* push rdx */
797 if (BPF_SRC(insn->code) == BPF_X)
798 /* mov r11, src_reg */
799 EMIT_mov(AUX_REG, src_reg);
800 else
801 /* mov r11, imm32 */
802 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
804 /* mov rax, dst_reg */
805 EMIT_mov(BPF_REG_0, dst_reg);
808 * xor edx, edx
809 * equivalent to 'xor rdx, rdx', but one byte less
811 EMIT2(0x31, 0xd2);
813 if (BPF_CLASS(insn->code) == BPF_ALU64)
814 /* div r11 */
815 EMIT3(0x49, 0xF7, 0xF3);
816 else
817 /* div r11d */
818 EMIT3(0x41, 0xF7, 0xF3);
820 if (BPF_OP(insn->code) == BPF_MOD)
821 /* mov r11, rdx */
822 EMIT3(0x49, 0x89, 0xD3);
823 else
824 /* mov r11, rax */
825 EMIT3(0x49, 0x89, 0xC3);
827 EMIT1(0x5A); /* pop rdx */
828 EMIT1(0x58); /* pop rax */
830 /* mov dst_reg, r11 */
831 EMIT_mov(dst_reg, AUX_REG);
832 break;
834 case BPF_ALU | BPF_MUL | BPF_K:
835 case BPF_ALU | BPF_MUL | BPF_X:
836 case BPF_ALU64 | BPF_MUL | BPF_K:
837 case BPF_ALU64 | BPF_MUL | BPF_X:
839 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
841 if (dst_reg != BPF_REG_0)
842 EMIT1(0x50); /* push rax */
843 if (dst_reg != BPF_REG_3)
844 EMIT1(0x52); /* push rdx */
846 /* mov r11, dst_reg */
847 EMIT_mov(AUX_REG, dst_reg);
849 if (BPF_SRC(insn->code) == BPF_X)
850 emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
851 else
852 emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
854 if (is64)
855 EMIT1(add_1mod(0x48, AUX_REG));
856 else if (is_ereg(AUX_REG))
857 EMIT1(add_1mod(0x40, AUX_REG));
858 /* mul(q) r11 */
859 EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
861 if (dst_reg != BPF_REG_3)
862 EMIT1(0x5A); /* pop rdx */
863 if (dst_reg != BPF_REG_0) {
864 /* mov dst_reg, rax */
865 EMIT_mov(dst_reg, BPF_REG_0);
866 EMIT1(0x58); /* pop rax */
868 break;
870 /* Shifts */
871 case BPF_ALU | BPF_LSH | BPF_K:
872 case BPF_ALU | BPF_RSH | BPF_K:
873 case BPF_ALU | BPF_ARSH | BPF_K:
874 case BPF_ALU64 | BPF_LSH | BPF_K:
875 case BPF_ALU64 | BPF_RSH | BPF_K:
876 case BPF_ALU64 | BPF_ARSH | BPF_K:
877 if (BPF_CLASS(insn->code) == BPF_ALU64)
878 EMIT1(add_1mod(0x48, dst_reg));
879 else if (is_ereg(dst_reg))
880 EMIT1(add_1mod(0x40, dst_reg));
882 switch (BPF_OP(insn->code)) {
883 case BPF_LSH: b3 = 0xE0; break;
884 case BPF_RSH: b3 = 0xE8; break;
885 case BPF_ARSH: b3 = 0xF8; break;
888 if (imm32 == 1)
889 EMIT2(0xD1, add_1reg(b3, dst_reg));
890 else
891 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
892 break;
894 case BPF_ALU | BPF_LSH | BPF_X:
895 case BPF_ALU | BPF_RSH | BPF_X:
896 case BPF_ALU | BPF_ARSH | BPF_X:
897 case BPF_ALU64 | BPF_LSH | BPF_X:
898 case BPF_ALU64 | BPF_RSH | BPF_X:
899 case BPF_ALU64 | BPF_ARSH | BPF_X:
901 /* Check for bad case when dst_reg == rcx */
902 if (dst_reg == BPF_REG_4) {
903 /* mov r11, dst_reg */
904 EMIT_mov(AUX_REG, dst_reg);
905 dst_reg = AUX_REG;
908 if (src_reg != BPF_REG_4) { /* common case */
909 EMIT1(0x51); /* push rcx */
911 /* mov rcx, src_reg */
912 EMIT_mov(BPF_REG_4, src_reg);
915 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
916 if (BPF_CLASS(insn->code) == BPF_ALU64)
917 EMIT1(add_1mod(0x48, dst_reg));
918 else if (is_ereg(dst_reg))
919 EMIT1(add_1mod(0x40, dst_reg));
921 switch (BPF_OP(insn->code)) {
922 case BPF_LSH: b3 = 0xE0; break;
923 case BPF_RSH: b3 = 0xE8; break;
924 case BPF_ARSH: b3 = 0xF8; break;
926 EMIT2(0xD3, add_1reg(b3, dst_reg));
928 if (src_reg != BPF_REG_4)
929 EMIT1(0x59); /* pop rcx */
931 if (insn->dst_reg == BPF_REG_4)
932 /* mov dst_reg, r11 */
933 EMIT_mov(insn->dst_reg, AUX_REG);
934 break;
936 case BPF_ALU | BPF_END | BPF_FROM_BE:
937 switch (imm32) {
938 case 16:
939 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
940 EMIT1(0x66);
941 if (is_ereg(dst_reg))
942 EMIT1(0x41);
943 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
945 /* Emit 'movzwl eax, ax' */
946 if (is_ereg(dst_reg))
947 EMIT3(0x45, 0x0F, 0xB7);
948 else
949 EMIT2(0x0F, 0xB7);
950 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
951 break;
952 case 32:
953 /* Emit 'bswap eax' to swap lower 4 bytes */
954 if (is_ereg(dst_reg))
955 EMIT2(0x41, 0x0F);
956 else
957 EMIT1(0x0F);
958 EMIT1(add_1reg(0xC8, dst_reg));
959 break;
960 case 64:
961 /* Emit 'bswap rax' to swap 8 bytes */
962 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
963 add_1reg(0xC8, dst_reg));
964 break;
966 break;
968 case BPF_ALU | BPF_END | BPF_FROM_LE:
969 switch (imm32) {
970 case 16:
972 * Emit 'movzwl eax, ax' to zero extend 16-bit
973 * into 64 bit
975 if (is_ereg(dst_reg))
976 EMIT3(0x45, 0x0F, 0xB7);
977 else
978 EMIT2(0x0F, 0xB7);
979 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
980 break;
981 case 32:
982 /* Emit 'mov eax, eax' to clear upper 32-bits */
983 if (is_ereg(dst_reg))
984 EMIT1(0x45);
985 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
986 break;
987 case 64:
988 /* nop */
989 break;
991 break;
993 /* ST: *(u8*)(dst_reg + off) = imm */
994 case BPF_ST | BPF_MEM | BPF_B:
995 if (is_ereg(dst_reg))
996 EMIT2(0x41, 0xC6);
997 else
998 EMIT1(0xC6);
999 goto st;
1000 case BPF_ST | BPF_MEM | BPF_H:
1001 if (is_ereg(dst_reg))
1002 EMIT3(0x66, 0x41, 0xC7);
1003 else
1004 EMIT2(0x66, 0xC7);
1005 goto st;
1006 case BPF_ST | BPF_MEM | BPF_W:
1007 if (is_ereg(dst_reg))
1008 EMIT2(0x41, 0xC7);
1009 else
1010 EMIT1(0xC7);
1011 goto st;
1012 case BPF_ST | BPF_MEM | BPF_DW:
1013 EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1015 st: if (is_imm8(insn->off))
1016 EMIT2(add_1reg(0x40, dst_reg), insn->off);
1017 else
1018 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1020 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1021 break;
1023 /* STX: *(u8*)(dst_reg + off) = src_reg */
1024 case BPF_STX | BPF_MEM | BPF_B:
1025 case BPF_STX | BPF_MEM | BPF_H:
1026 case BPF_STX | BPF_MEM | BPF_W:
1027 case BPF_STX | BPF_MEM | BPF_DW:
1028 emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1029 break;
1031 /* LDX: dst_reg = *(u8*)(src_reg + off) */
1032 case BPF_LDX | BPF_MEM | BPF_B:
1033 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1034 case BPF_LDX | BPF_MEM | BPF_H:
1035 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1036 case BPF_LDX | BPF_MEM | BPF_W:
1037 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1038 case BPF_LDX | BPF_MEM | BPF_DW:
1039 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1040 emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1041 if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1042 struct exception_table_entry *ex;
1043 u8 *_insn = image + proglen;
1044 s64 delta;
1046 if (!bpf_prog->aux->extable)
1047 break;
1049 if (excnt >= bpf_prog->aux->num_exentries) {
1050 pr_err("ex gen bug\n");
1051 return -EFAULT;
1053 ex = &bpf_prog->aux->extable[excnt++];
1055 delta = _insn - (u8 *)&ex->insn;
1056 if (!is_simm32(delta)) {
1057 pr_err("extable->insn doesn't fit into 32-bit\n");
1058 return -EFAULT;
1060 ex->insn = delta;
1062 delta = (u8 *)ex_handler_bpf - (u8 *)&ex->handler;
1063 if (!is_simm32(delta)) {
1064 pr_err("extable->handler doesn't fit into 32-bit\n");
1065 return -EFAULT;
1067 ex->handler = delta;
1069 if (dst_reg > BPF_REG_9) {
1070 pr_err("verifier error\n");
1071 return -EFAULT;
1074 * Compute size of x86 insn and its target dest x86 register.
1075 * ex_handler_bpf() will use lower 8 bits to adjust
1076 * pt_regs->ip to jump over this x86 instruction
1077 * and upper bits to figure out which pt_regs to zero out.
1078 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1079 * of 4 bytes will be ignored and rbx will be zero inited.
1081 ex->fixup = (prog - temp) | (reg2pt_regs[dst_reg] << 8);
1083 break;
1085 /* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
1086 case BPF_STX | BPF_XADD | BPF_W:
1087 /* Emit 'lock add dword ptr [rax + off], eax' */
1088 if (is_ereg(dst_reg) || is_ereg(src_reg))
1089 EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
1090 else
1091 EMIT2(0xF0, 0x01);
1092 goto xadd;
1093 case BPF_STX | BPF_XADD | BPF_DW:
1094 EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
1095 xadd: if (is_imm8(insn->off))
1096 EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
1097 else
1098 EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
1099 insn->off);
1100 break;
1102 /* call */
1103 case BPF_JMP | BPF_CALL:
1104 func = (u8 *) __bpf_call_base + imm32;
1105 if (!imm32 || emit_call(&prog, func, image + addrs[i - 1]))
1106 return -EINVAL;
1107 break;
1109 case BPF_JMP | BPF_TAIL_CALL:
1110 if (imm32)
1111 emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1112 &prog, addrs[i], image);
1113 else
1114 emit_bpf_tail_call_indirect(&prog);
1115 break;
1117 /* cond jump */
1118 case BPF_JMP | BPF_JEQ | BPF_X:
1119 case BPF_JMP | BPF_JNE | BPF_X:
1120 case BPF_JMP | BPF_JGT | BPF_X:
1121 case BPF_JMP | BPF_JLT | BPF_X:
1122 case BPF_JMP | BPF_JGE | BPF_X:
1123 case BPF_JMP | BPF_JLE | BPF_X:
1124 case BPF_JMP | BPF_JSGT | BPF_X:
1125 case BPF_JMP | BPF_JSLT | BPF_X:
1126 case BPF_JMP | BPF_JSGE | BPF_X:
1127 case BPF_JMP | BPF_JSLE | BPF_X:
1128 case BPF_JMP32 | BPF_JEQ | BPF_X:
1129 case BPF_JMP32 | BPF_JNE | BPF_X:
1130 case BPF_JMP32 | BPF_JGT | BPF_X:
1131 case BPF_JMP32 | BPF_JLT | BPF_X:
1132 case BPF_JMP32 | BPF_JGE | BPF_X:
1133 case BPF_JMP32 | BPF_JLE | BPF_X:
1134 case BPF_JMP32 | BPF_JSGT | BPF_X:
1135 case BPF_JMP32 | BPF_JSLT | BPF_X:
1136 case BPF_JMP32 | BPF_JSGE | BPF_X:
1137 case BPF_JMP32 | BPF_JSLE | BPF_X:
1138 /* cmp dst_reg, src_reg */
1139 if (BPF_CLASS(insn->code) == BPF_JMP)
1140 EMIT1(add_2mod(0x48, dst_reg, src_reg));
1141 else if (is_ereg(dst_reg) || is_ereg(src_reg))
1142 EMIT1(add_2mod(0x40, dst_reg, src_reg));
1143 EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1144 goto emit_cond_jmp;
1146 case BPF_JMP | BPF_JSET | BPF_X:
1147 case BPF_JMP32 | BPF_JSET | BPF_X:
1148 /* test dst_reg, src_reg */
1149 if (BPF_CLASS(insn->code) == BPF_JMP)
1150 EMIT1(add_2mod(0x48, dst_reg, src_reg));
1151 else if (is_ereg(dst_reg) || is_ereg(src_reg))
1152 EMIT1(add_2mod(0x40, dst_reg, src_reg));
1153 EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1154 goto emit_cond_jmp;
1156 case BPF_JMP | BPF_JSET | BPF_K:
1157 case BPF_JMP32 | BPF_JSET | BPF_K:
1158 /* test dst_reg, imm32 */
1159 if (BPF_CLASS(insn->code) == BPF_JMP)
1160 EMIT1(add_1mod(0x48, dst_reg));
1161 else if (is_ereg(dst_reg))
1162 EMIT1(add_1mod(0x40, dst_reg));
1163 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1164 goto emit_cond_jmp;
1166 case BPF_JMP | BPF_JEQ | BPF_K:
1167 case BPF_JMP | BPF_JNE | BPF_K:
1168 case BPF_JMP | BPF_JGT | BPF_K:
1169 case BPF_JMP | BPF_JLT | BPF_K:
1170 case BPF_JMP | BPF_JGE | BPF_K:
1171 case BPF_JMP | BPF_JLE | BPF_K:
1172 case BPF_JMP | BPF_JSGT | BPF_K:
1173 case BPF_JMP | BPF_JSLT | BPF_K:
1174 case BPF_JMP | BPF_JSGE | BPF_K:
1175 case BPF_JMP | BPF_JSLE | BPF_K:
1176 case BPF_JMP32 | BPF_JEQ | BPF_K:
1177 case BPF_JMP32 | BPF_JNE | BPF_K:
1178 case BPF_JMP32 | BPF_JGT | BPF_K:
1179 case BPF_JMP32 | BPF_JLT | BPF_K:
1180 case BPF_JMP32 | BPF_JGE | BPF_K:
1181 case BPF_JMP32 | BPF_JLE | BPF_K:
1182 case BPF_JMP32 | BPF_JSGT | BPF_K:
1183 case BPF_JMP32 | BPF_JSLT | BPF_K:
1184 case BPF_JMP32 | BPF_JSGE | BPF_K:
1185 case BPF_JMP32 | BPF_JSLE | BPF_K:
1186 /* test dst_reg, dst_reg to save one extra byte */
1187 if (imm32 == 0) {
1188 if (BPF_CLASS(insn->code) == BPF_JMP)
1189 EMIT1(add_2mod(0x48, dst_reg, dst_reg));
1190 else if (is_ereg(dst_reg))
1191 EMIT1(add_2mod(0x40, dst_reg, dst_reg));
1192 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1193 goto emit_cond_jmp;
1196 /* cmp dst_reg, imm8/32 */
1197 if (BPF_CLASS(insn->code) == BPF_JMP)
1198 EMIT1(add_1mod(0x48, dst_reg));
1199 else if (is_ereg(dst_reg))
1200 EMIT1(add_1mod(0x40, dst_reg));
1202 if (is_imm8(imm32))
1203 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1204 else
1205 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1207 emit_cond_jmp: /* Convert BPF opcode to x86 */
1208 switch (BPF_OP(insn->code)) {
1209 case BPF_JEQ:
1210 jmp_cond = X86_JE;
1211 break;
1212 case BPF_JSET:
1213 case BPF_JNE:
1214 jmp_cond = X86_JNE;
1215 break;
1216 case BPF_JGT:
1217 /* GT is unsigned '>', JA in x86 */
1218 jmp_cond = X86_JA;
1219 break;
1220 case BPF_JLT:
1221 /* LT is unsigned '<', JB in x86 */
1222 jmp_cond = X86_JB;
1223 break;
1224 case BPF_JGE:
1225 /* GE is unsigned '>=', JAE in x86 */
1226 jmp_cond = X86_JAE;
1227 break;
1228 case BPF_JLE:
1229 /* LE is unsigned '<=', JBE in x86 */
1230 jmp_cond = X86_JBE;
1231 break;
1232 case BPF_JSGT:
1233 /* Signed '>', GT in x86 */
1234 jmp_cond = X86_JG;
1235 break;
1236 case BPF_JSLT:
1237 /* Signed '<', LT in x86 */
1238 jmp_cond = X86_JL;
1239 break;
1240 case BPF_JSGE:
1241 /* Signed '>=', GE in x86 */
1242 jmp_cond = X86_JGE;
1243 break;
1244 case BPF_JSLE:
1245 /* Signed '<=', LE in x86 */
1246 jmp_cond = X86_JLE;
1247 break;
1248 default: /* to silence GCC warning */
1249 return -EFAULT;
1251 jmp_offset = addrs[i + insn->off] - addrs[i];
1252 if (is_imm8(jmp_offset)) {
1253 EMIT2(jmp_cond, jmp_offset);
1254 } else if (is_simm32(jmp_offset)) {
1255 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1256 } else {
1257 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1258 return -EFAULT;
1261 break;
1263 case BPF_JMP | BPF_JA:
1264 if (insn->off == -1)
1265 /* -1 jmp instructions will always jump
1266 * backwards two bytes. Explicitly handling
1267 * this case avoids wasting too many passes
1268 * when there are long sequences of replaced
1269 * dead code.
1271 jmp_offset = -2;
1272 else
1273 jmp_offset = addrs[i + insn->off] - addrs[i];
1275 if (!jmp_offset)
1276 /* Optimize out nop jumps */
1277 break;
1278 emit_jmp:
1279 if (is_imm8(jmp_offset)) {
1280 EMIT2(0xEB, jmp_offset);
1281 } else if (is_simm32(jmp_offset)) {
1282 EMIT1_off32(0xE9, jmp_offset);
1283 } else {
1284 pr_err("jmp gen bug %llx\n", jmp_offset);
1285 return -EFAULT;
1287 break;
1289 case BPF_JMP | BPF_EXIT:
1290 if (seen_exit) {
1291 jmp_offset = ctx->cleanup_addr - addrs[i];
1292 goto emit_jmp;
1294 seen_exit = true;
1295 /* Update cleanup_addr */
1296 ctx->cleanup_addr = proglen;
1297 if (!bpf_prog_was_classic(bpf_prog))
1298 EMIT1(0x5B); /* get rid of tail_call_cnt */
1299 EMIT2(0x41, 0x5F); /* pop r15 */
1300 EMIT2(0x41, 0x5E); /* pop r14 */
1301 EMIT2(0x41, 0x5D); /* pop r13 */
1302 EMIT1(0x5B); /* pop rbx */
1303 EMIT1(0xC9); /* leave */
1304 EMIT1(0xC3); /* ret */
1305 break;
1307 default:
1309 * By design x86-64 JIT should support all BPF instructions.
1310 * This error will be seen if new instruction was added
1311 * to the interpreter, but not to the JIT, or if there is
1312 * junk in bpf_prog.
1314 pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1315 return -EINVAL;
1318 ilen = prog - temp;
1319 if (ilen > BPF_MAX_INSN_SIZE) {
1320 pr_err("bpf_jit: fatal insn size error\n");
1321 return -EFAULT;
1324 if (image) {
1325 if (unlikely(proglen + ilen > oldproglen)) {
1326 pr_err("bpf_jit: fatal error\n");
1327 return -EFAULT;
1329 memcpy(image + proglen, temp, ilen);
1331 proglen += ilen;
1332 addrs[i] = proglen;
1333 prog = temp;
1336 if (image && excnt != bpf_prog->aux->num_exentries) {
1337 pr_err("extable is not populated\n");
1338 return -EFAULT;
1340 return proglen;
1343 static void save_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1344 int stack_size)
1346 int i;
1347 /* Store function arguments to stack.
1348 * For a function that accepts two pointers the sequence will be:
1349 * mov QWORD PTR [rbp-0x10],rdi
1350 * mov QWORD PTR [rbp-0x8],rsi
1352 for (i = 0; i < min(nr_args, 6); i++)
1353 emit_stx(prog, bytes_to_bpf_size(m->arg_size[i]),
1354 BPF_REG_FP,
1355 i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1356 -(stack_size - i * 8));
1359 static void restore_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1360 int stack_size)
1362 int i;
1364 /* Restore function arguments from stack.
1365 * For a function that accepts two pointers the sequence will be:
1366 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
1367 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
1369 for (i = 0; i < min(nr_args, 6); i++)
1370 emit_ldx(prog, bytes_to_bpf_size(m->arg_size[i]),
1371 i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1372 BPF_REG_FP,
1373 -(stack_size - i * 8));
1376 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
1377 struct bpf_prog **progs, int prog_cnt, int stack_size)
1379 u8 *prog = *pprog;
1380 int cnt = 0, i;
1382 for (i = 0; i < prog_cnt; i++) {
1383 if (emit_call(&prog, __bpf_prog_enter, prog))
1384 return -EINVAL;
1385 /* remember prog start time returned by __bpf_prog_enter */
1386 emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
1388 /* arg1: lea rdi, [rbp - stack_size] */
1389 EMIT4(0x48, 0x8D, 0x7D, -stack_size);
1390 /* arg2: progs[i]->insnsi for interpreter */
1391 if (!progs[i]->jited)
1392 emit_mov_imm64(&prog, BPF_REG_2,
1393 (long) progs[i]->insnsi >> 32,
1394 (u32) (long) progs[i]->insnsi);
1395 /* call JITed bpf program or interpreter */
1396 if (emit_call(&prog, progs[i]->bpf_func, prog))
1397 return -EINVAL;
1399 /* arg1: mov rdi, progs[i] */
1400 emit_mov_imm64(&prog, BPF_REG_1, (long) progs[i] >> 32,
1401 (u32) (long) progs[i]);
1402 /* arg2: mov rsi, rbx <- start time in nsec */
1403 emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
1404 if (emit_call(&prog, __bpf_prog_exit, prog))
1405 return -EINVAL;
1407 *pprog = prog;
1408 return 0;
1411 /* Example:
1412 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
1413 * its 'struct btf_func_model' will be nr_args=2
1414 * The assembly code when eth_type_trans is executing after trampoline:
1416 * push rbp
1417 * mov rbp, rsp
1418 * sub rsp, 16 // space for skb and dev
1419 * push rbx // temp regs to pass start time
1420 * mov qword ptr [rbp - 16], rdi // save skb pointer to stack
1421 * mov qword ptr [rbp - 8], rsi // save dev pointer to stack
1422 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
1423 * mov rbx, rax // remember start time in bpf stats are enabled
1424 * lea rdi, [rbp - 16] // R1==ctx of bpf prog
1425 * call addr_of_jited_FENTRY_prog
1426 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
1427 * mov rsi, rbx // prog start time
1428 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
1429 * mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack
1430 * mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack
1431 * pop rbx
1432 * leave
1433 * ret
1435 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
1436 * replaced with 'call generated_bpf_trampoline'. When it returns
1437 * eth_type_trans will continue executing with original skb and dev pointers.
1439 * The assembly code when eth_type_trans is called from trampoline:
1441 * push rbp
1442 * mov rbp, rsp
1443 * sub rsp, 24 // space for skb, dev, return value
1444 * push rbx // temp regs to pass start time
1445 * mov qword ptr [rbp - 24], rdi // save skb pointer to stack
1446 * mov qword ptr [rbp - 16], rsi // save dev pointer to stack
1447 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
1448 * mov rbx, rax // remember start time if bpf stats are enabled
1449 * lea rdi, [rbp - 24] // R1==ctx of bpf prog
1450 * call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev
1451 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
1452 * mov rsi, rbx // prog start time
1453 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
1454 * mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack
1455 * mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack
1456 * call eth_type_trans+5 // execute body of eth_type_trans
1457 * mov qword ptr [rbp - 8], rax // save return value
1458 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
1459 * mov rbx, rax // remember start time in bpf stats are enabled
1460 * lea rdi, [rbp - 24] // R1==ctx of bpf prog
1461 * call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value
1462 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
1463 * mov rsi, rbx // prog start time
1464 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
1465 * mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value
1466 * pop rbx
1467 * leave
1468 * add rsp, 8 // skip eth_type_trans's frame
1469 * ret // return to its caller
1471 int arch_prepare_bpf_trampoline(void *image, void *image_end,
1472 const struct btf_func_model *m, u32 flags,
1473 struct bpf_prog **fentry_progs, int fentry_cnt,
1474 struct bpf_prog **fexit_progs, int fexit_cnt,
1475 void *orig_call)
1477 int cnt = 0, nr_args = m->nr_args;
1478 int stack_size = nr_args * 8;
1479 u8 *prog;
1481 /* x86-64 supports up to 6 arguments. 7+ can be added in the future */
1482 if (nr_args > 6)
1483 return -ENOTSUPP;
1485 if ((flags & BPF_TRAMP_F_RESTORE_REGS) &&
1486 (flags & BPF_TRAMP_F_SKIP_FRAME))
1487 return -EINVAL;
1489 if (flags & BPF_TRAMP_F_CALL_ORIG)
1490 stack_size += 8; /* room for return value of orig_call */
1492 if (flags & BPF_TRAMP_F_SKIP_FRAME)
1493 /* skip patched call instruction and point orig_call to actual
1494 * body of the kernel function.
1496 orig_call += X86_PATCH_SIZE;
1498 prog = image;
1500 EMIT1(0x55); /* push rbp */
1501 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
1502 EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */
1503 EMIT1(0x53); /* push rbx */
1505 save_regs(m, &prog, nr_args, stack_size);
1507 if (fentry_cnt)
1508 if (invoke_bpf(m, &prog, fentry_progs, fentry_cnt, stack_size))
1509 return -EINVAL;
1511 if (flags & BPF_TRAMP_F_CALL_ORIG) {
1512 if (fentry_cnt)
1513 restore_regs(m, &prog, nr_args, stack_size);
1515 /* call original function */
1516 if (emit_call(&prog, orig_call, prog))
1517 return -EINVAL;
1518 /* remember return value in a stack for bpf prog to access */
1519 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1522 if (fexit_cnt)
1523 if (invoke_bpf(m, &prog, fexit_progs, fexit_cnt, stack_size))
1524 return -EINVAL;
1526 if (flags & BPF_TRAMP_F_RESTORE_REGS)
1527 restore_regs(m, &prog, nr_args, stack_size);
1529 if (flags & BPF_TRAMP_F_CALL_ORIG)
1530 /* restore original return value back into RAX */
1531 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
1533 EMIT1(0x5B); /* pop rbx */
1534 EMIT1(0xC9); /* leave */
1535 if (flags & BPF_TRAMP_F_SKIP_FRAME)
1536 /* skip our return address and return to parent */
1537 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
1538 EMIT1(0xC3); /* ret */
1539 /* Make sure the trampoline generation logic doesn't overflow */
1540 if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY))
1541 return -EFAULT;
1542 return prog - (u8 *)image;
1545 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
1547 u8 *prog = *pprog;
1548 int cnt = 0;
1549 s64 offset;
1551 offset = func - (ip + 2 + 4);
1552 if (!is_simm32(offset)) {
1553 pr_err("Target %p is out of range\n", func);
1554 return -EINVAL;
1556 EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
1557 *pprog = prog;
1558 return 0;
1561 static void emit_nops(u8 **pprog, unsigned int len)
1563 unsigned int i, noplen;
1564 u8 *prog = *pprog;
1565 int cnt = 0;
1567 while (len > 0) {
1568 noplen = len;
1570 if (noplen > ASM_NOP_MAX)
1571 noplen = ASM_NOP_MAX;
1573 for (i = 0; i < noplen; i++)
1574 EMIT1(ideal_nops[noplen][i]);
1575 len -= noplen;
1578 *pprog = prog;
1581 static int emit_fallback_jump(u8 **pprog)
1583 u8 *prog = *pprog;
1584 int err = 0;
1586 #ifdef CONFIG_RETPOLINE
1587 /* Note that this assumes the the compiler uses external
1588 * thunks for indirect calls. Both clang and GCC use the same
1589 * naming convention for external thunks.
1591 err = emit_jump(&prog, __x86_indirect_thunk_rdx, prog);
1592 #else
1593 int cnt = 0;
1595 EMIT2(0xFF, 0xE2); /* jmp rdx */
1596 #endif
1597 *pprog = prog;
1598 return err;
1601 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs)
1603 u8 *jg_reloc, *jg_target, *prog = *pprog;
1604 int pivot, err, jg_bytes = 1, cnt = 0;
1605 s64 jg_offset;
1607 if (a == b) {
1608 /* Leaf node of recursion, i.e. not a range of indices
1609 * anymore.
1611 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
1612 if (!is_simm32(progs[a]))
1613 return -1;
1614 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
1615 progs[a]);
1616 err = emit_cond_near_jump(&prog, /* je func */
1617 (void *)progs[a], prog,
1618 X86_JE);
1619 if (err)
1620 return err;
1622 err = emit_fallback_jump(&prog); /* jmp thunk/indirect */
1623 if (err)
1624 return err;
1626 *pprog = prog;
1627 return 0;
1630 /* Not a leaf node, so we pivot, and recursively descend into
1631 * the lower and upper ranges.
1633 pivot = (b - a) / 2;
1634 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
1635 if (!is_simm32(progs[a + pivot]))
1636 return -1;
1637 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
1639 if (pivot > 2) { /* jg upper_part */
1640 /* Require near jump. */
1641 jg_bytes = 4;
1642 EMIT2_off32(0x0F, X86_JG + 0x10, 0);
1643 } else {
1644 EMIT2(X86_JG, 0);
1646 jg_reloc = prog;
1648 err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */
1649 progs);
1650 if (err)
1651 return err;
1653 /* From Intel 64 and IA-32 Architectures Optimization
1654 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
1655 * Coding Rule 11: All branch targets should be 16-byte
1656 * aligned.
1658 jg_target = PTR_ALIGN(prog, 16);
1659 if (jg_target != prog)
1660 emit_nops(&prog, jg_target - prog);
1661 jg_offset = prog - jg_reloc;
1662 emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
1664 err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */
1665 b, progs);
1666 if (err)
1667 return err;
1669 *pprog = prog;
1670 return 0;
1673 static int cmp_ips(const void *a, const void *b)
1675 const s64 *ipa = a;
1676 const s64 *ipb = b;
1678 if (*ipa > *ipb)
1679 return 1;
1680 if (*ipa < *ipb)
1681 return -1;
1682 return 0;
1685 int arch_prepare_bpf_dispatcher(void *image, s64 *funcs, int num_funcs)
1687 u8 *prog = image;
1689 sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
1690 return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs);
1693 struct x64_jit_data {
1694 struct bpf_binary_header *header;
1695 int *addrs;
1696 u8 *image;
1697 int proglen;
1698 struct jit_context ctx;
1701 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1703 struct bpf_binary_header *header = NULL;
1704 struct bpf_prog *tmp, *orig_prog = prog;
1705 struct x64_jit_data *jit_data;
1706 int proglen, oldproglen = 0;
1707 struct jit_context ctx = {};
1708 bool tmp_blinded = false;
1709 bool extra_pass = false;
1710 u8 *image = NULL;
1711 int *addrs;
1712 int pass;
1713 int i;
1715 if (!prog->jit_requested)
1716 return orig_prog;
1718 tmp = bpf_jit_blind_constants(prog);
1720 * If blinding was requested and we failed during blinding,
1721 * we must fall back to the interpreter.
1723 if (IS_ERR(tmp))
1724 return orig_prog;
1725 if (tmp != prog) {
1726 tmp_blinded = true;
1727 prog = tmp;
1730 jit_data = prog->aux->jit_data;
1731 if (!jit_data) {
1732 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1733 if (!jit_data) {
1734 prog = orig_prog;
1735 goto out;
1737 prog->aux->jit_data = jit_data;
1739 addrs = jit_data->addrs;
1740 if (addrs) {
1741 ctx = jit_data->ctx;
1742 oldproglen = jit_data->proglen;
1743 image = jit_data->image;
1744 header = jit_data->header;
1745 extra_pass = true;
1746 goto skip_init_addrs;
1748 addrs = kmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
1749 if (!addrs) {
1750 prog = orig_prog;
1751 goto out_addrs;
1755 * Before first pass, make a rough estimation of addrs[]
1756 * each BPF instruction is translated to less than 64 bytes
1758 for (proglen = 0, i = 0; i <= prog->len; i++) {
1759 proglen += 64;
1760 addrs[i] = proglen;
1762 ctx.cleanup_addr = proglen;
1763 skip_init_addrs:
1766 * JITed image shrinks with every pass and the loop iterates
1767 * until the image stops shrinking. Very large BPF programs
1768 * may converge on the last pass. In such case do one more
1769 * pass to emit the final image.
1771 for (pass = 0; pass < 20 || image; pass++) {
1772 proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
1773 if (proglen <= 0) {
1774 out_image:
1775 image = NULL;
1776 if (header)
1777 bpf_jit_binary_free(header);
1778 prog = orig_prog;
1779 goto out_addrs;
1781 if (image) {
1782 if (proglen != oldproglen) {
1783 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
1784 proglen, oldproglen);
1785 goto out_image;
1787 break;
1789 if (proglen == oldproglen) {
1791 * The number of entries in extable is the number of BPF_LDX
1792 * insns that access kernel memory via "pointer to BTF type".
1793 * The verifier changed their opcode from LDX|MEM|size
1794 * to LDX|PROBE_MEM|size to make JITing easier.
1796 u32 align = __alignof__(struct exception_table_entry);
1797 u32 extable_size = prog->aux->num_exentries *
1798 sizeof(struct exception_table_entry);
1800 /* allocate module memory for x86 insns and extable */
1801 header = bpf_jit_binary_alloc(roundup(proglen, align) + extable_size,
1802 &image, align, jit_fill_hole);
1803 if (!header) {
1804 prog = orig_prog;
1805 goto out_addrs;
1807 prog->aux->extable = (void *) image + roundup(proglen, align);
1809 oldproglen = proglen;
1810 cond_resched();
1813 if (bpf_jit_enable > 1)
1814 bpf_jit_dump(prog->len, proglen, pass + 1, image);
1816 if (image) {
1817 if (!prog->is_func || extra_pass) {
1818 bpf_tail_call_direct_fixup(prog);
1819 bpf_jit_binary_lock_ro(header);
1820 } else {
1821 jit_data->addrs = addrs;
1822 jit_data->ctx = ctx;
1823 jit_data->proglen = proglen;
1824 jit_data->image = image;
1825 jit_data->header = header;
1827 prog->bpf_func = (void *)image;
1828 prog->jited = 1;
1829 prog->jited_len = proglen;
1830 } else {
1831 prog = orig_prog;
1834 if (!image || !prog->is_func || extra_pass) {
1835 if (image)
1836 bpf_prog_fill_jited_linfo(prog, addrs + 1);
1837 out_addrs:
1838 kfree(addrs);
1839 kfree(jit_data);
1840 prog->aux->jit_data = NULL;
1842 out:
1843 if (tmp_blinded)
1844 bpf_jit_prog_release_other(prog, prog == orig_prog ?
1845 tmp : orig_prog);
1846 return prog;