Linux 5.6.13
[linux/fpc-iii.git] / block / blk-mq.h
blob10bfdfb494faf4035f8be143f1cf6e47e32fe50c
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef INT_BLK_MQ_H
3 #define INT_BLK_MQ_H
5 #include "blk-stat.h"
6 #include "blk-mq-tag.h"
8 struct blk_mq_tag_set;
10 struct blk_mq_ctxs {
11 struct kobject kobj;
12 struct blk_mq_ctx __percpu *queue_ctx;
15 /**
16 * struct blk_mq_ctx - State for a software queue facing the submitting CPUs
18 struct blk_mq_ctx {
19 struct {
20 spinlock_t lock;
21 struct list_head rq_lists[HCTX_MAX_TYPES];
22 } ____cacheline_aligned_in_smp;
24 unsigned int cpu;
25 unsigned short index_hw[HCTX_MAX_TYPES];
26 struct blk_mq_hw_ctx *hctxs[HCTX_MAX_TYPES];
28 /* incremented at dispatch time */
29 unsigned long rq_dispatched[2];
30 unsigned long rq_merged;
32 /* incremented at completion time */
33 unsigned long ____cacheline_aligned_in_smp rq_completed[2];
35 struct request_queue *queue;
36 struct blk_mq_ctxs *ctxs;
37 struct kobject kobj;
38 } ____cacheline_aligned_in_smp;
40 void blk_mq_exit_queue(struct request_queue *q);
41 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr);
42 void blk_mq_wake_waiters(struct request_queue *q);
43 bool blk_mq_dispatch_rq_list(struct request_queue *, struct list_head *, bool);
44 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
45 bool kick_requeue_list);
46 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list);
47 bool blk_mq_get_driver_tag(struct request *rq);
48 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
49 struct blk_mq_ctx *start);
52 * Internal helpers for allocating/freeing the request map
54 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
55 unsigned int hctx_idx);
56 void blk_mq_free_rq_map(struct blk_mq_tags *tags);
57 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
58 unsigned int hctx_idx,
59 unsigned int nr_tags,
60 unsigned int reserved_tags);
61 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
62 unsigned int hctx_idx, unsigned int depth);
65 * Internal helpers for request insertion into sw queues
67 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
68 bool at_head);
69 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
70 bool run_queue);
71 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
72 struct list_head *list);
74 /* Used by blk_insert_cloned_request() to issue request directly */
75 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last);
76 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
77 struct list_head *list);
80 * CPU -> queue mappings
82 extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int);
85 * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue
86 * @q: request queue
87 * @type: the hctx type index
88 * @cpu: CPU
90 static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q,
91 enum hctx_type type,
92 unsigned int cpu)
94 return q->queue_hw_ctx[q->tag_set->map[type].mq_map[cpu]];
98 * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue
99 * @q: request queue
100 * @flags: request command flags
101 * @cpu: cpu ctx
103 static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q,
104 unsigned int flags,
105 struct blk_mq_ctx *ctx)
107 enum hctx_type type = HCTX_TYPE_DEFAULT;
110 * The caller ensure that if REQ_HIPRI, poll must be enabled.
112 if (flags & REQ_HIPRI)
113 type = HCTX_TYPE_POLL;
114 else if ((flags & REQ_OP_MASK) == REQ_OP_READ)
115 type = HCTX_TYPE_READ;
117 return ctx->hctxs[type];
121 * sysfs helpers
123 extern void blk_mq_sysfs_init(struct request_queue *q);
124 extern void blk_mq_sysfs_deinit(struct request_queue *q);
125 extern int __blk_mq_register_dev(struct device *dev, struct request_queue *q);
126 extern int blk_mq_sysfs_register(struct request_queue *q);
127 extern void blk_mq_sysfs_unregister(struct request_queue *q);
128 extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx);
130 void blk_mq_release(struct request_queue *q);
132 static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
133 unsigned int cpu)
135 return per_cpu_ptr(q->queue_ctx, cpu);
139 * This assumes per-cpu software queueing queues. They could be per-node
140 * as well, for instance. For now this is hardcoded as-is. Note that we don't
141 * care about preemption, since we know the ctx's are persistent. This does
142 * mean that we can't rely on ctx always matching the currently running CPU.
144 static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
146 return __blk_mq_get_ctx(q, raw_smp_processor_id());
149 struct blk_mq_alloc_data {
150 /* input parameter */
151 struct request_queue *q;
152 blk_mq_req_flags_t flags;
153 unsigned int shallow_depth;
154 unsigned int cmd_flags;
156 /* input & output parameter */
157 struct blk_mq_ctx *ctx;
158 struct blk_mq_hw_ctx *hctx;
161 static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data)
163 if (data->flags & BLK_MQ_REQ_INTERNAL)
164 return data->hctx->sched_tags;
166 return data->hctx->tags;
169 static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx)
171 return test_bit(BLK_MQ_S_STOPPED, &hctx->state);
174 static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx)
176 return hctx->nr_ctx && hctx->tags;
179 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part);
180 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
181 unsigned int inflight[2]);
183 static inline void blk_mq_put_dispatch_budget(struct blk_mq_hw_ctx *hctx)
185 struct request_queue *q = hctx->queue;
187 if (q->mq_ops->put_budget)
188 q->mq_ops->put_budget(hctx);
191 static inline bool blk_mq_get_dispatch_budget(struct blk_mq_hw_ctx *hctx)
193 struct request_queue *q = hctx->queue;
195 if (q->mq_ops->get_budget)
196 return q->mq_ops->get_budget(hctx);
197 return true;
200 static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
201 struct request *rq)
203 blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag);
204 rq->tag = -1;
206 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
207 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
208 atomic_dec(&hctx->nr_active);
212 static inline void blk_mq_put_driver_tag(struct request *rq)
214 if (rq->tag == -1 || rq->internal_tag == -1)
215 return;
217 __blk_mq_put_driver_tag(rq->mq_hctx, rq);
220 static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap)
222 int cpu;
224 for_each_possible_cpu(cpu)
225 qmap->mq_map[cpu] = 0;
229 * blk_mq_plug() - Get caller context plug
230 * @q: request queue
231 * @bio : the bio being submitted by the caller context
233 * Plugging, by design, may delay the insertion of BIOs into the elevator in
234 * order to increase BIO merging opportunities. This however can cause BIO
235 * insertion order to change from the order in which submit_bio() is being
236 * executed in the case of multiple contexts concurrently issuing BIOs to a
237 * device, even if these context are synchronized to tightly control BIO issuing
238 * order. While this is not a problem with regular block devices, this ordering
239 * change can cause write BIO failures with zoned block devices as these
240 * require sequential write patterns to zones. Prevent this from happening by
241 * ignoring the plug state of a BIO issuing context if the target request queue
242 * is for a zoned block device and the BIO to plug is a write operation.
244 * Return current->plug if the bio can be plugged and NULL otherwise
246 static inline struct blk_plug *blk_mq_plug(struct request_queue *q,
247 struct bio *bio)
250 * For regular block devices or read operations, use the context plug
251 * which may be NULL if blk_start_plug() was not executed.
253 if (!blk_queue_is_zoned(q) || !op_is_write(bio_op(bio)))
254 return current->plug;
256 /* Zoned block device write operation case: do not plug the BIO */
257 return NULL;
260 #endif