1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
22 #include "print-tree.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
37 #undef SCRAMBLE_DELAYED_REFS
40 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
41 struct btrfs_delayed_ref_node
*node
, u64 parent
,
42 u64 root_objectid
, u64 owner_objectid
,
43 u64 owner_offset
, int refs_to_drop
,
44 struct btrfs_delayed_extent_op
*extra_op
);
45 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
46 struct extent_buffer
*leaf
,
47 struct btrfs_extent_item
*ei
);
48 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
49 u64 parent
, u64 root_objectid
,
50 u64 flags
, u64 owner
, u64 offset
,
51 struct btrfs_key
*ins
, int ref_mod
);
52 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
53 struct btrfs_delayed_ref_node
*node
,
54 struct btrfs_delayed_extent_op
*extent_op
);
55 static int find_next_key(struct btrfs_path
*path
, int level
,
56 struct btrfs_key
*key
);
58 static int block_group_bits(struct btrfs_block_group
*cache
, u64 bits
)
60 return (cache
->flags
& bits
) == bits
;
63 int btrfs_add_excluded_extent(struct btrfs_fs_info
*fs_info
,
64 u64 start
, u64 num_bytes
)
66 u64 end
= start
+ num_bytes
- 1;
67 set_extent_bits(&fs_info
->freed_extents
[0],
68 start
, end
, EXTENT_UPTODATE
);
69 set_extent_bits(&fs_info
->freed_extents
[1],
70 start
, end
, EXTENT_UPTODATE
);
74 void btrfs_free_excluded_extents(struct btrfs_block_group
*cache
)
76 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
80 end
= start
+ cache
->length
- 1;
82 clear_extent_bits(&fs_info
->freed_extents
[0],
83 start
, end
, EXTENT_UPTODATE
);
84 clear_extent_bits(&fs_info
->freed_extents
[1],
85 start
, end
, EXTENT_UPTODATE
);
88 static u64
generic_ref_to_space_flags(struct btrfs_ref
*ref
)
90 if (ref
->type
== BTRFS_REF_METADATA
) {
91 if (ref
->tree_ref
.root
== BTRFS_CHUNK_TREE_OBJECTID
)
92 return BTRFS_BLOCK_GROUP_SYSTEM
;
94 return BTRFS_BLOCK_GROUP_METADATA
;
96 return BTRFS_BLOCK_GROUP_DATA
;
99 static void add_pinned_bytes(struct btrfs_fs_info
*fs_info
,
100 struct btrfs_ref
*ref
)
102 struct btrfs_space_info
*space_info
;
103 u64 flags
= generic_ref_to_space_flags(ref
);
105 space_info
= btrfs_find_space_info(fs_info
, flags
);
107 percpu_counter_add_batch(&space_info
->total_bytes_pinned
, ref
->len
,
108 BTRFS_TOTAL_BYTES_PINNED_BATCH
);
111 static void sub_pinned_bytes(struct btrfs_fs_info
*fs_info
,
112 struct btrfs_ref
*ref
)
114 struct btrfs_space_info
*space_info
;
115 u64 flags
= generic_ref_to_space_flags(ref
);
117 space_info
= btrfs_find_space_info(fs_info
, flags
);
119 percpu_counter_add_batch(&space_info
->total_bytes_pinned
, -ref
->len
,
120 BTRFS_TOTAL_BYTES_PINNED_BATCH
);
123 /* simple helper to search for an existing data extent at a given offset */
124 int btrfs_lookup_data_extent(struct btrfs_fs_info
*fs_info
, u64 start
, u64 len
)
127 struct btrfs_key key
;
128 struct btrfs_path
*path
;
130 path
= btrfs_alloc_path();
134 key
.objectid
= start
;
136 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
137 ret
= btrfs_search_slot(NULL
, fs_info
->extent_root
, &key
, path
, 0, 0);
138 btrfs_free_path(path
);
143 * helper function to lookup reference count and flags of a tree block.
145 * the head node for delayed ref is used to store the sum of all the
146 * reference count modifications queued up in the rbtree. the head
147 * node may also store the extent flags to set. This way you can check
148 * to see what the reference count and extent flags would be if all of
149 * the delayed refs are not processed.
151 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
152 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
153 u64 offset
, int metadata
, u64
*refs
, u64
*flags
)
155 struct btrfs_delayed_ref_head
*head
;
156 struct btrfs_delayed_ref_root
*delayed_refs
;
157 struct btrfs_path
*path
;
158 struct btrfs_extent_item
*ei
;
159 struct extent_buffer
*leaf
;
160 struct btrfs_key key
;
167 * If we don't have skinny metadata, don't bother doing anything
170 if (metadata
&& !btrfs_fs_incompat(fs_info
, SKINNY_METADATA
)) {
171 offset
= fs_info
->nodesize
;
175 path
= btrfs_alloc_path();
180 path
->skip_locking
= 1;
181 path
->search_commit_root
= 1;
185 key
.objectid
= bytenr
;
188 key
.type
= BTRFS_METADATA_ITEM_KEY
;
190 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
192 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 0);
196 if (ret
> 0 && metadata
&& key
.type
== BTRFS_METADATA_ITEM_KEY
) {
197 if (path
->slots
[0]) {
199 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
201 if (key
.objectid
== bytenr
&&
202 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
203 key
.offset
== fs_info
->nodesize
)
209 leaf
= path
->nodes
[0];
210 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
211 if (item_size
>= sizeof(*ei
)) {
212 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
213 struct btrfs_extent_item
);
214 num_refs
= btrfs_extent_refs(leaf
, ei
);
215 extent_flags
= btrfs_extent_flags(leaf
, ei
);
218 btrfs_print_v0_err(fs_info
);
220 btrfs_abort_transaction(trans
, ret
);
222 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
227 BUG_ON(num_refs
== 0);
237 delayed_refs
= &trans
->transaction
->delayed_refs
;
238 spin_lock(&delayed_refs
->lock
);
239 head
= btrfs_find_delayed_ref_head(delayed_refs
, bytenr
);
241 if (!mutex_trylock(&head
->mutex
)) {
242 refcount_inc(&head
->refs
);
243 spin_unlock(&delayed_refs
->lock
);
245 btrfs_release_path(path
);
248 * Mutex was contended, block until it's released and try
251 mutex_lock(&head
->mutex
);
252 mutex_unlock(&head
->mutex
);
253 btrfs_put_delayed_ref_head(head
);
256 spin_lock(&head
->lock
);
257 if (head
->extent_op
&& head
->extent_op
->update_flags
)
258 extent_flags
|= head
->extent_op
->flags_to_set
;
260 BUG_ON(num_refs
== 0);
262 num_refs
+= head
->ref_mod
;
263 spin_unlock(&head
->lock
);
264 mutex_unlock(&head
->mutex
);
266 spin_unlock(&delayed_refs
->lock
);
268 WARN_ON(num_refs
== 0);
272 *flags
= extent_flags
;
274 btrfs_free_path(path
);
279 * Back reference rules. Back refs have three main goals:
281 * 1) differentiate between all holders of references to an extent so that
282 * when a reference is dropped we can make sure it was a valid reference
283 * before freeing the extent.
285 * 2) Provide enough information to quickly find the holders of an extent
286 * if we notice a given block is corrupted or bad.
288 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
289 * maintenance. This is actually the same as #2, but with a slightly
290 * different use case.
292 * There are two kinds of back refs. The implicit back refs is optimized
293 * for pointers in non-shared tree blocks. For a given pointer in a block,
294 * back refs of this kind provide information about the block's owner tree
295 * and the pointer's key. These information allow us to find the block by
296 * b-tree searching. The full back refs is for pointers in tree blocks not
297 * referenced by their owner trees. The location of tree block is recorded
298 * in the back refs. Actually the full back refs is generic, and can be
299 * used in all cases the implicit back refs is used. The major shortcoming
300 * of the full back refs is its overhead. Every time a tree block gets
301 * COWed, we have to update back refs entry for all pointers in it.
303 * For a newly allocated tree block, we use implicit back refs for
304 * pointers in it. This means most tree related operations only involve
305 * implicit back refs. For a tree block created in old transaction, the
306 * only way to drop a reference to it is COW it. So we can detect the
307 * event that tree block loses its owner tree's reference and do the
308 * back refs conversion.
310 * When a tree block is COWed through a tree, there are four cases:
312 * The reference count of the block is one and the tree is the block's
313 * owner tree. Nothing to do in this case.
315 * The reference count of the block is one and the tree is not the
316 * block's owner tree. In this case, full back refs is used for pointers
317 * in the block. Remove these full back refs, add implicit back refs for
318 * every pointers in the new block.
320 * The reference count of the block is greater than one and the tree is
321 * the block's owner tree. In this case, implicit back refs is used for
322 * pointers in the block. Add full back refs for every pointers in the
323 * block, increase lower level extents' reference counts. The original
324 * implicit back refs are entailed to the new block.
326 * The reference count of the block is greater than one and the tree is
327 * not the block's owner tree. Add implicit back refs for every pointer in
328 * the new block, increase lower level extents' reference count.
330 * Back Reference Key composing:
332 * The key objectid corresponds to the first byte in the extent,
333 * The key type is used to differentiate between types of back refs.
334 * There are different meanings of the key offset for different types
337 * File extents can be referenced by:
339 * - multiple snapshots, subvolumes, or different generations in one subvol
340 * - different files inside a single subvolume
341 * - different offsets inside a file (bookend extents in file.c)
343 * The extent ref structure for the implicit back refs has fields for:
345 * - Objectid of the subvolume root
346 * - objectid of the file holding the reference
347 * - original offset in the file
348 * - how many bookend extents
350 * The key offset for the implicit back refs is hash of the first
353 * The extent ref structure for the full back refs has field for:
355 * - number of pointers in the tree leaf
357 * The key offset for the implicit back refs is the first byte of
360 * When a file extent is allocated, The implicit back refs is used.
361 * the fields are filled in:
363 * (root_key.objectid, inode objectid, offset in file, 1)
365 * When a file extent is removed file truncation, we find the
366 * corresponding implicit back refs and check the following fields:
368 * (btrfs_header_owner(leaf), inode objectid, offset in file)
370 * Btree extents can be referenced by:
372 * - Different subvolumes
374 * Both the implicit back refs and the full back refs for tree blocks
375 * only consist of key. The key offset for the implicit back refs is
376 * objectid of block's owner tree. The key offset for the full back refs
377 * is the first byte of parent block.
379 * When implicit back refs is used, information about the lowest key and
380 * level of the tree block are required. These information are stored in
381 * tree block info structure.
385 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
386 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
387 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
389 int btrfs_get_extent_inline_ref_type(const struct extent_buffer
*eb
,
390 struct btrfs_extent_inline_ref
*iref
,
391 enum btrfs_inline_ref_type is_data
)
393 int type
= btrfs_extent_inline_ref_type(eb
, iref
);
394 u64 offset
= btrfs_extent_inline_ref_offset(eb
, iref
);
396 if (type
== BTRFS_TREE_BLOCK_REF_KEY
||
397 type
== BTRFS_SHARED_BLOCK_REF_KEY
||
398 type
== BTRFS_SHARED_DATA_REF_KEY
||
399 type
== BTRFS_EXTENT_DATA_REF_KEY
) {
400 if (is_data
== BTRFS_REF_TYPE_BLOCK
) {
401 if (type
== BTRFS_TREE_BLOCK_REF_KEY
)
403 if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
406 * Every shared one has parent tree
407 * block, which must be aligned to
411 IS_ALIGNED(offset
, eb
->fs_info
->nodesize
))
414 } else if (is_data
== BTRFS_REF_TYPE_DATA
) {
415 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
417 if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
420 * Every shared one has parent tree
421 * block, which must be aligned to
425 IS_ALIGNED(offset
, eb
->fs_info
->nodesize
))
429 ASSERT(is_data
== BTRFS_REF_TYPE_ANY
);
434 btrfs_print_leaf((struct extent_buffer
*)eb
);
435 btrfs_err(eb
->fs_info
, "eb %llu invalid extent inline ref type %d",
439 return BTRFS_REF_TYPE_INVALID
;
442 u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
444 u32 high_crc
= ~(u32
)0;
445 u32 low_crc
= ~(u32
)0;
448 lenum
= cpu_to_le64(root_objectid
);
449 high_crc
= btrfs_crc32c(high_crc
, &lenum
, sizeof(lenum
));
450 lenum
= cpu_to_le64(owner
);
451 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
452 lenum
= cpu_to_le64(offset
);
453 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
455 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
458 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
459 struct btrfs_extent_data_ref
*ref
)
461 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
462 btrfs_extent_data_ref_objectid(leaf
, ref
),
463 btrfs_extent_data_ref_offset(leaf
, ref
));
466 static int match_extent_data_ref(struct extent_buffer
*leaf
,
467 struct btrfs_extent_data_ref
*ref
,
468 u64 root_objectid
, u64 owner
, u64 offset
)
470 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
471 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
472 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
477 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
478 struct btrfs_path
*path
,
479 u64 bytenr
, u64 parent
,
481 u64 owner
, u64 offset
)
483 struct btrfs_root
*root
= trans
->fs_info
->extent_root
;
484 struct btrfs_key key
;
485 struct btrfs_extent_data_ref
*ref
;
486 struct extent_buffer
*leaf
;
492 key
.objectid
= bytenr
;
494 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
497 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
498 key
.offset
= hash_extent_data_ref(root_objectid
,
503 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
515 leaf
= path
->nodes
[0];
516 nritems
= btrfs_header_nritems(leaf
);
518 if (path
->slots
[0] >= nritems
) {
519 ret
= btrfs_next_leaf(root
, path
);
525 leaf
= path
->nodes
[0];
526 nritems
= btrfs_header_nritems(leaf
);
530 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
531 if (key
.objectid
!= bytenr
||
532 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
535 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
536 struct btrfs_extent_data_ref
);
538 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
541 btrfs_release_path(path
);
553 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
554 struct btrfs_path
*path
,
555 u64 bytenr
, u64 parent
,
556 u64 root_objectid
, u64 owner
,
557 u64 offset
, int refs_to_add
)
559 struct btrfs_root
*root
= trans
->fs_info
->extent_root
;
560 struct btrfs_key key
;
561 struct extent_buffer
*leaf
;
566 key
.objectid
= bytenr
;
568 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
570 size
= sizeof(struct btrfs_shared_data_ref
);
572 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
573 key
.offset
= hash_extent_data_ref(root_objectid
,
575 size
= sizeof(struct btrfs_extent_data_ref
);
578 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
579 if (ret
&& ret
!= -EEXIST
)
582 leaf
= path
->nodes
[0];
584 struct btrfs_shared_data_ref
*ref
;
585 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
586 struct btrfs_shared_data_ref
);
588 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
590 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
591 num_refs
+= refs_to_add
;
592 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
595 struct btrfs_extent_data_ref
*ref
;
596 while (ret
== -EEXIST
) {
597 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
598 struct btrfs_extent_data_ref
);
599 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
602 btrfs_release_path(path
);
604 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
606 if (ret
&& ret
!= -EEXIST
)
609 leaf
= path
->nodes
[0];
611 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
612 struct btrfs_extent_data_ref
);
614 btrfs_set_extent_data_ref_root(leaf
, ref
,
616 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
617 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
618 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
620 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
621 num_refs
+= refs_to_add
;
622 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
625 btrfs_mark_buffer_dirty(leaf
);
628 btrfs_release_path(path
);
632 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
633 struct btrfs_path
*path
,
634 int refs_to_drop
, int *last_ref
)
636 struct btrfs_key key
;
637 struct btrfs_extent_data_ref
*ref1
= NULL
;
638 struct btrfs_shared_data_ref
*ref2
= NULL
;
639 struct extent_buffer
*leaf
;
643 leaf
= path
->nodes
[0];
644 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
646 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
647 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
648 struct btrfs_extent_data_ref
);
649 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
650 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
651 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
652 struct btrfs_shared_data_ref
);
653 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
654 } else if (unlikely(key
.type
== BTRFS_EXTENT_REF_V0_KEY
)) {
655 btrfs_print_v0_err(trans
->fs_info
);
656 btrfs_abort_transaction(trans
, -EINVAL
);
662 BUG_ON(num_refs
< refs_to_drop
);
663 num_refs
-= refs_to_drop
;
666 ret
= btrfs_del_item(trans
, trans
->fs_info
->extent_root
, path
);
669 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
670 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
671 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
672 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
673 btrfs_mark_buffer_dirty(leaf
);
678 static noinline u32
extent_data_ref_count(struct btrfs_path
*path
,
679 struct btrfs_extent_inline_ref
*iref
)
681 struct btrfs_key key
;
682 struct extent_buffer
*leaf
;
683 struct btrfs_extent_data_ref
*ref1
;
684 struct btrfs_shared_data_ref
*ref2
;
688 leaf
= path
->nodes
[0];
689 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
691 BUG_ON(key
.type
== BTRFS_EXTENT_REF_V0_KEY
);
694 * If type is invalid, we should have bailed out earlier than
697 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
, BTRFS_REF_TYPE_DATA
);
698 ASSERT(type
!= BTRFS_REF_TYPE_INVALID
);
699 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
700 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
701 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
703 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
704 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
706 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
707 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
708 struct btrfs_extent_data_ref
);
709 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
710 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
711 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
712 struct btrfs_shared_data_ref
);
713 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
720 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
721 struct btrfs_path
*path
,
722 u64 bytenr
, u64 parent
,
725 struct btrfs_root
*root
= trans
->fs_info
->extent_root
;
726 struct btrfs_key key
;
729 key
.objectid
= bytenr
;
731 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
734 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
735 key
.offset
= root_objectid
;
738 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
744 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
745 struct btrfs_path
*path
,
746 u64 bytenr
, u64 parent
,
749 struct btrfs_key key
;
752 key
.objectid
= bytenr
;
754 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
757 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
758 key
.offset
= root_objectid
;
761 ret
= btrfs_insert_empty_item(trans
, trans
->fs_info
->extent_root
,
763 btrfs_release_path(path
);
767 static inline int extent_ref_type(u64 parent
, u64 owner
)
770 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
772 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
774 type
= BTRFS_TREE_BLOCK_REF_KEY
;
777 type
= BTRFS_SHARED_DATA_REF_KEY
;
779 type
= BTRFS_EXTENT_DATA_REF_KEY
;
784 static int find_next_key(struct btrfs_path
*path
, int level
,
785 struct btrfs_key
*key
)
788 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
789 if (!path
->nodes
[level
])
791 if (path
->slots
[level
] + 1 >=
792 btrfs_header_nritems(path
->nodes
[level
]))
795 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
796 path
->slots
[level
] + 1);
798 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
799 path
->slots
[level
] + 1);
806 * look for inline back ref. if back ref is found, *ref_ret is set
807 * to the address of inline back ref, and 0 is returned.
809 * if back ref isn't found, *ref_ret is set to the address where it
810 * should be inserted, and -ENOENT is returned.
812 * if insert is true and there are too many inline back refs, the path
813 * points to the extent item, and -EAGAIN is returned.
815 * NOTE: inline back refs are ordered in the same way that back ref
816 * items in the tree are ordered.
818 static noinline_for_stack
819 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
820 struct btrfs_path
*path
,
821 struct btrfs_extent_inline_ref
**ref_ret
,
822 u64 bytenr
, u64 num_bytes
,
823 u64 parent
, u64 root_objectid
,
824 u64 owner
, u64 offset
, int insert
)
826 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
827 struct btrfs_root
*root
= fs_info
->extent_root
;
828 struct btrfs_key key
;
829 struct extent_buffer
*leaf
;
830 struct btrfs_extent_item
*ei
;
831 struct btrfs_extent_inline_ref
*iref
;
841 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
844 key
.objectid
= bytenr
;
845 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
846 key
.offset
= num_bytes
;
848 want
= extent_ref_type(parent
, owner
);
850 extra_size
= btrfs_extent_inline_ref_size(want
);
851 path
->keep_locks
= 1;
856 * Owner is our level, so we can just add one to get the level for the
857 * block we are interested in.
859 if (skinny_metadata
&& owner
< BTRFS_FIRST_FREE_OBJECTID
) {
860 key
.type
= BTRFS_METADATA_ITEM_KEY
;
865 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
872 * We may be a newly converted file system which still has the old fat
873 * extent entries for metadata, so try and see if we have one of those.
875 if (ret
> 0 && skinny_metadata
) {
876 skinny_metadata
= false;
877 if (path
->slots
[0]) {
879 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
881 if (key
.objectid
== bytenr
&&
882 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
883 key
.offset
== num_bytes
)
887 key
.objectid
= bytenr
;
888 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
889 key
.offset
= num_bytes
;
890 btrfs_release_path(path
);
895 if (ret
&& !insert
) {
898 } else if (WARN_ON(ret
)) {
903 leaf
= path
->nodes
[0];
904 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
905 if (unlikely(item_size
< sizeof(*ei
))) {
907 btrfs_print_v0_err(fs_info
);
908 btrfs_abort_transaction(trans
, err
);
912 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
913 flags
= btrfs_extent_flags(leaf
, ei
);
915 ptr
= (unsigned long)(ei
+ 1);
916 end
= (unsigned long)ei
+ item_size
;
918 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
&& !skinny_metadata
) {
919 ptr
+= sizeof(struct btrfs_tree_block_info
);
923 if (owner
>= BTRFS_FIRST_FREE_OBJECTID
)
924 needed
= BTRFS_REF_TYPE_DATA
;
926 needed
= BTRFS_REF_TYPE_BLOCK
;
934 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
935 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
, needed
);
936 if (type
== BTRFS_REF_TYPE_INVALID
) {
944 ptr
+= btrfs_extent_inline_ref_size(type
);
948 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
949 struct btrfs_extent_data_ref
*dref
;
950 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
951 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
956 if (hash_extent_data_ref_item(leaf
, dref
) <
957 hash_extent_data_ref(root_objectid
, owner
, offset
))
961 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
963 if (parent
== ref_offset
) {
967 if (ref_offset
< parent
)
970 if (root_objectid
== ref_offset
) {
974 if (ref_offset
< root_objectid
)
978 ptr
+= btrfs_extent_inline_ref_size(type
);
980 if (err
== -ENOENT
&& insert
) {
981 if (item_size
+ extra_size
>=
982 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
987 * To add new inline back ref, we have to make sure
988 * there is no corresponding back ref item.
989 * For simplicity, we just do not add new inline back
990 * ref if there is any kind of item for this block
992 if (find_next_key(path
, 0, &key
) == 0 &&
993 key
.objectid
== bytenr
&&
994 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
999 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1002 path
->keep_locks
= 0;
1003 btrfs_unlock_up_safe(path
, 1);
1009 * helper to add new inline back ref
1011 static noinline_for_stack
1012 void setup_inline_extent_backref(struct btrfs_fs_info
*fs_info
,
1013 struct btrfs_path
*path
,
1014 struct btrfs_extent_inline_ref
*iref
,
1015 u64 parent
, u64 root_objectid
,
1016 u64 owner
, u64 offset
, int refs_to_add
,
1017 struct btrfs_delayed_extent_op
*extent_op
)
1019 struct extent_buffer
*leaf
;
1020 struct btrfs_extent_item
*ei
;
1023 unsigned long item_offset
;
1028 leaf
= path
->nodes
[0];
1029 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1030 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1032 type
= extent_ref_type(parent
, owner
);
1033 size
= btrfs_extent_inline_ref_size(type
);
1035 btrfs_extend_item(path
, size
);
1037 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1038 refs
= btrfs_extent_refs(leaf
, ei
);
1039 refs
+= refs_to_add
;
1040 btrfs_set_extent_refs(leaf
, ei
, refs
);
1042 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1044 ptr
= (unsigned long)ei
+ item_offset
;
1045 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1046 if (ptr
< end
- size
)
1047 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1050 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1051 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1052 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1053 struct btrfs_extent_data_ref
*dref
;
1054 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1055 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1056 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1057 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1058 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1059 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1060 struct btrfs_shared_data_ref
*sref
;
1061 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1062 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1063 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1064 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1065 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1067 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1069 btrfs_mark_buffer_dirty(leaf
);
1072 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1073 struct btrfs_path
*path
,
1074 struct btrfs_extent_inline_ref
**ref_ret
,
1075 u64 bytenr
, u64 num_bytes
, u64 parent
,
1076 u64 root_objectid
, u64 owner
, u64 offset
)
1080 ret
= lookup_inline_extent_backref(trans
, path
, ref_ret
, bytenr
,
1081 num_bytes
, parent
, root_objectid
,
1086 btrfs_release_path(path
);
1089 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1090 ret
= lookup_tree_block_ref(trans
, path
, bytenr
, parent
,
1093 ret
= lookup_extent_data_ref(trans
, path
, bytenr
, parent
,
1094 root_objectid
, owner
, offset
);
1100 * helper to update/remove inline back ref
1102 static noinline_for_stack
1103 void update_inline_extent_backref(struct btrfs_path
*path
,
1104 struct btrfs_extent_inline_ref
*iref
,
1106 struct btrfs_delayed_extent_op
*extent_op
,
1109 struct extent_buffer
*leaf
= path
->nodes
[0];
1110 struct btrfs_extent_item
*ei
;
1111 struct btrfs_extent_data_ref
*dref
= NULL
;
1112 struct btrfs_shared_data_ref
*sref
= NULL
;
1120 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1121 refs
= btrfs_extent_refs(leaf
, ei
);
1122 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1123 refs
+= refs_to_mod
;
1124 btrfs_set_extent_refs(leaf
, ei
, refs
);
1126 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1129 * If type is invalid, we should have bailed out after
1130 * lookup_inline_extent_backref().
1132 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
, BTRFS_REF_TYPE_ANY
);
1133 ASSERT(type
!= BTRFS_REF_TYPE_INVALID
);
1135 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1136 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1137 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1138 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1139 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1140 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1143 BUG_ON(refs_to_mod
!= -1);
1146 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1147 refs
+= refs_to_mod
;
1150 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1151 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1153 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1156 size
= btrfs_extent_inline_ref_size(type
);
1157 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1158 ptr
= (unsigned long)iref
;
1159 end
= (unsigned long)ei
+ item_size
;
1160 if (ptr
+ size
< end
)
1161 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1164 btrfs_truncate_item(path
, item_size
, 1);
1166 btrfs_mark_buffer_dirty(leaf
);
1169 static noinline_for_stack
1170 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1171 struct btrfs_path
*path
,
1172 u64 bytenr
, u64 num_bytes
, u64 parent
,
1173 u64 root_objectid
, u64 owner
,
1174 u64 offset
, int refs_to_add
,
1175 struct btrfs_delayed_extent_op
*extent_op
)
1177 struct btrfs_extent_inline_ref
*iref
;
1180 ret
= lookup_inline_extent_backref(trans
, path
, &iref
, bytenr
,
1181 num_bytes
, parent
, root_objectid
,
1184 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1185 update_inline_extent_backref(path
, iref
, refs_to_add
,
1187 } else if (ret
== -ENOENT
) {
1188 setup_inline_extent_backref(trans
->fs_info
, path
, iref
, parent
,
1189 root_objectid
, owner
, offset
,
1190 refs_to_add
, extent_op
);
1196 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1197 struct btrfs_path
*path
,
1198 u64 bytenr
, u64 parent
, u64 root_objectid
,
1199 u64 owner
, u64 offset
, int refs_to_add
)
1202 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1203 BUG_ON(refs_to_add
!= 1);
1204 ret
= insert_tree_block_ref(trans
, path
, bytenr
, parent
,
1207 ret
= insert_extent_data_ref(trans
, path
, bytenr
, parent
,
1208 root_objectid
, owner
, offset
,
1214 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1215 struct btrfs_path
*path
,
1216 struct btrfs_extent_inline_ref
*iref
,
1217 int refs_to_drop
, int is_data
, int *last_ref
)
1221 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1223 update_inline_extent_backref(path
, iref
, -refs_to_drop
, NULL
,
1225 } else if (is_data
) {
1226 ret
= remove_extent_data_ref(trans
, path
, refs_to_drop
,
1230 ret
= btrfs_del_item(trans
, trans
->fs_info
->extent_root
, path
);
1235 static int btrfs_issue_discard(struct block_device
*bdev
, u64 start
, u64 len
,
1236 u64
*discarded_bytes
)
1239 u64 bytes_left
, end
;
1240 u64 aligned_start
= ALIGN(start
, 1 << 9);
1242 if (WARN_ON(start
!= aligned_start
)) {
1243 len
-= aligned_start
- start
;
1244 len
= round_down(len
, 1 << 9);
1245 start
= aligned_start
;
1248 *discarded_bytes
= 0;
1256 /* Skip any superblocks on this device. */
1257 for (j
= 0; j
< BTRFS_SUPER_MIRROR_MAX
; j
++) {
1258 u64 sb_start
= btrfs_sb_offset(j
);
1259 u64 sb_end
= sb_start
+ BTRFS_SUPER_INFO_SIZE
;
1260 u64 size
= sb_start
- start
;
1262 if (!in_range(sb_start
, start
, bytes_left
) &&
1263 !in_range(sb_end
, start
, bytes_left
) &&
1264 !in_range(start
, sb_start
, BTRFS_SUPER_INFO_SIZE
))
1268 * Superblock spans beginning of range. Adjust start and
1271 if (sb_start
<= start
) {
1272 start
+= sb_end
- start
;
1277 bytes_left
= end
- start
;
1282 ret
= blkdev_issue_discard(bdev
, start
>> 9, size
>> 9,
1285 *discarded_bytes
+= size
;
1286 else if (ret
!= -EOPNOTSUPP
)
1295 bytes_left
= end
- start
;
1299 ret
= blkdev_issue_discard(bdev
, start
>> 9, bytes_left
>> 9,
1302 *discarded_bytes
+= bytes_left
;
1307 int btrfs_discard_extent(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1308 u64 num_bytes
, u64
*actual_bytes
)
1311 u64 discarded_bytes
= 0;
1312 u64 end
= bytenr
+ num_bytes
;
1314 struct btrfs_bio
*bbio
= NULL
;
1318 * Avoid races with device replace and make sure our bbio has devices
1319 * associated to its stripes that don't go away while we are discarding.
1321 btrfs_bio_counter_inc_blocked(fs_info
);
1323 struct btrfs_bio_stripe
*stripe
;
1326 num_bytes
= end
- cur
;
1327 /* Tell the block device(s) that the sectors can be discarded */
1328 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_DISCARD
, cur
,
1329 &num_bytes
, &bbio
, 0);
1331 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or
1332 * -EOPNOTSUPP. For any such error, @num_bytes is not updated,
1333 * thus we can't continue anyway.
1338 stripe
= bbio
->stripes
;
1339 for (i
= 0; i
< bbio
->num_stripes
; i
++, stripe
++) {
1341 struct request_queue
*req_q
;
1343 if (!stripe
->dev
->bdev
) {
1344 ASSERT(btrfs_test_opt(fs_info
, DEGRADED
));
1347 req_q
= bdev_get_queue(stripe
->dev
->bdev
);
1348 if (!blk_queue_discard(req_q
))
1351 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
1356 discarded_bytes
+= bytes
;
1357 } else if (ret
!= -EOPNOTSUPP
) {
1359 * Logic errors or -ENOMEM, or -EIO, but
1360 * unlikely to happen.
1362 * And since there are two loops, explicitly
1363 * go to out to avoid confusion.
1365 btrfs_put_bbio(bbio
);
1370 * Just in case we get back EOPNOTSUPP for some reason,
1371 * just ignore the return value so we don't screw up
1372 * people calling discard_extent.
1376 btrfs_put_bbio(bbio
);
1380 btrfs_bio_counter_dec(fs_info
);
1383 *actual_bytes
= discarded_bytes
;
1386 if (ret
== -EOPNOTSUPP
)
1391 /* Can return -ENOMEM */
1392 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1393 struct btrfs_ref
*generic_ref
)
1395 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1396 int old_ref_mod
, new_ref_mod
;
1399 ASSERT(generic_ref
->type
!= BTRFS_REF_NOT_SET
&&
1400 generic_ref
->action
);
1401 BUG_ON(generic_ref
->type
== BTRFS_REF_METADATA
&&
1402 generic_ref
->tree_ref
.root
== BTRFS_TREE_LOG_OBJECTID
);
1404 if (generic_ref
->type
== BTRFS_REF_METADATA
)
1405 ret
= btrfs_add_delayed_tree_ref(trans
, generic_ref
,
1406 NULL
, &old_ref_mod
, &new_ref_mod
);
1408 ret
= btrfs_add_delayed_data_ref(trans
, generic_ref
, 0,
1409 &old_ref_mod
, &new_ref_mod
);
1411 btrfs_ref_tree_mod(fs_info
, generic_ref
);
1413 if (ret
== 0 && old_ref_mod
< 0 && new_ref_mod
>= 0)
1414 sub_pinned_bytes(fs_info
, generic_ref
);
1420 * __btrfs_inc_extent_ref - insert backreference for a given extent
1422 * @trans: Handle of transaction
1424 * @node: The delayed ref node used to get the bytenr/length for
1425 * extent whose references are incremented.
1427 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1428 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1429 * bytenr of the parent block. Since new extents are always
1430 * created with indirect references, this will only be the case
1431 * when relocating a shared extent. In that case, root_objectid
1432 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
1435 * @root_objectid: The id of the root where this modification has originated,
1436 * this can be either one of the well-known metadata trees or
1437 * the subvolume id which references this extent.
1439 * @owner: For data extents it is the inode number of the owning file.
1440 * For metadata extents this parameter holds the level in the
1441 * tree of the extent.
1443 * @offset: For metadata extents the offset is ignored and is currently
1444 * always passed as 0. For data extents it is the fileoffset
1445 * this extent belongs to.
1447 * @refs_to_add Number of references to add
1449 * @extent_op Pointer to a structure, holding information necessary when
1450 * updating a tree block's flags
1453 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1454 struct btrfs_delayed_ref_node
*node
,
1455 u64 parent
, u64 root_objectid
,
1456 u64 owner
, u64 offset
, int refs_to_add
,
1457 struct btrfs_delayed_extent_op
*extent_op
)
1459 struct btrfs_path
*path
;
1460 struct extent_buffer
*leaf
;
1461 struct btrfs_extent_item
*item
;
1462 struct btrfs_key key
;
1463 u64 bytenr
= node
->bytenr
;
1464 u64 num_bytes
= node
->num_bytes
;
1468 path
= btrfs_alloc_path();
1472 path
->reada
= READA_FORWARD
;
1473 path
->leave_spinning
= 1;
1474 /* this will setup the path even if it fails to insert the back ref */
1475 ret
= insert_inline_extent_backref(trans
, path
, bytenr
, num_bytes
,
1476 parent
, root_objectid
, owner
,
1477 offset
, refs_to_add
, extent_op
);
1478 if ((ret
< 0 && ret
!= -EAGAIN
) || !ret
)
1482 * Ok we had -EAGAIN which means we didn't have space to insert and
1483 * inline extent ref, so just update the reference count and add a
1486 leaf
= path
->nodes
[0];
1487 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1488 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1489 refs
= btrfs_extent_refs(leaf
, item
);
1490 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
1492 __run_delayed_extent_op(extent_op
, leaf
, item
);
1494 btrfs_mark_buffer_dirty(leaf
);
1495 btrfs_release_path(path
);
1497 path
->reada
= READA_FORWARD
;
1498 path
->leave_spinning
= 1;
1499 /* now insert the actual backref */
1500 ret
= insert_extent_backref(trans
, path
, bytenr
, parent
, root_objectid
,
1501 owner
, offset
, refs_to_add
);
1503 btrfs_abort_transaction(trans
, ret
);
1505 btrfs_free_path(path
);
1509 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
1510 struct btrfs_delayed_ref_node
*node
,
1511 struct btrfs_delayed_extent_op
*extent_op
,
1512 int insert_reserved
)
1515 struct btrfs_delayed_data_ref
*ref
;
1516 struct btrfs_key ins
;
1521 ins
.objectid
= node
->bytenr
;
1522 ins
.offset
= node
->num_bytes
;
1523 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1525 ref
= btrfs_delayed_node_to_data_ref(node
);
1526 trace_run_delayed_data_ref(trans
->fs_info
, node
, ref
, node
->action
);
1528 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
1529 parent
= ref
->parent
;
1530 ref_root
= ref
->root
;
1532 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1534 flags
|= extent_op
->flags_to_set
;
1535 ret
= alloc_reserved_file_extent(trans
, parent
, ref_root
,
1536 flags
, ref
->objectid
,
1539 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1540 ret
= __btrfs_inc_extent_ref(trans
, node
, parent
, ref_root
,
1541 ref
->objectid
, ref
->offset
,
1542 node
->ref_mod
, extent_op
);
1543 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1544 ret
= __btrfs_free_extent(trans
, node
, parent
,
1545 ref_root
, ref
->objectid
,
1546 ref
->offset
, node
->ref_mod
,
1554 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
1555 struct extent_buffer
*leaf
,
1556 struct btrfs_extent_item
*ei
)
1558 u64 flags
= btrfs_extent_flags(leaf
, ei
);
1559 if (extent_op
->update_flags
) {
1560 flags
|= extent_op
->flags_to_set
;
1561 btrfs_set_extent_flags(leaf
, ei
, flags
);
1564 if (extent_op
->update_key
) {
1565 struct btrfs_tree_block_info
*bi
;
1566 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
1567 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1568 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
1572 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
1573 struct btrfs_delayed_ref_head
*head
,
1574 struct btrfs_delayed_extent_op
*extent_op
)
1576 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1577 struct btrfs_key key
;
1578 struct btrfs_path
*path
;
1579 struct btrfs_extent_item
*ei
;
1580 struct extent_buffer
*leaf
;
1584 int metadata
= !extent_op
->is_data
;
1589 if (metadata
&& !btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
1592 path
= btrfs_alloc_path();
1596 key
.objectid
= head
->bytenr
;
1599 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1600 key
.offset
= extent_op
->level
;
1602 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1603 key
.offset
= head
->num_bytes
;
1607 path
->reada
= READA_FORWARD
;
1608 path
->leave_spinning
= 1;
1609 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 1);
1616 if (path
->slots
[0] > 0) {
1618 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1620 if (key
.objectid
== head
->bytenr
&&
1621 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
1622 key
.offset
== head
->num_bytes
)
1626 btrfs_release_path(path
);
1629 key
.objectid
= head
->bytenr
;
1630 key
.offset
= head
->num_bytes
;
1631 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1640 leaf
= path
->nodes
[0];
1641 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1643 if (unlikely(item_size
< sizeof(*ei
))) {
1645 btrfs_print_v0_err(fs_info
);
1646 btrfs_abort_transaction(trans
, err
);
1650 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1651 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1653 btrfs_mark_buffer_dirty(leaf
);
1655 btrfs_free_path(path
);
1659 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
1660 struct btrfs_delayed_ref_node
*node
,
1661 struct btrfs_delayed_extent_op
*extent_op
,
1662 int insert_reserved
)
1665 struct btrfs_delayed_tree_ref
*ref
;
1669 ref
= btrfs_delayed_node_to_tree_ref(node
);
1670 trace_run_delayed_tree_ref(trans
->fs_info
, node
, ref
, node
->action
);
1672 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1673 parent
= ref
->parent
;
1674 ref_root
= ref
->root
;
1676 if (node
->ref_mod
!= 1) {
1677 btrfs_err(trans
->fs_info
,
1678 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1679 node
->bytenr
, node
->ref_mod
, node
->action
, ref_root
,
1683 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1684 BUG_ON(!extent_op
|| !extent_op
->update_flags
);
1685 ret
= alloc_reserved_tree_block(trans
, node
, extent_op
);
1686 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1687 ret
= __btrfs_inc_extent_ref(trans
, node
, parent
, ref_root
,
1688 ref
->level
, 0, 1, extent_op
);
1689 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1690 ret
= __btrfs_free_extent(trans
, node
, parent
, ref_root
,
1691 ref
->level
, 0, 1, extent_op
);
1698 /* helper function to actually process a single delayed ref entry */
1699 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
1700 struct btrfs_delayed_ref_node
*node
,
1701 struct btrfs_delayed_extent_op
*extent_op
,
1702 int insert_reserved
)
1706 if (trans
->aborted
) {
1707 if (insert_reserved
)
1708 btrfs_pin_extent(trans
->fs_info
, node
->bytenr
,
1709 node
->num_bytes
, 1);
1713 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
1714 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1715 ret
= run_delayed_tree_ref(trans
, node
, extent_op
,
1717 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
1718 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
1719 ret
= run_delayed_data_ref(trans
, node
, extent_op
,
1723 if (ret
&& insert_reserved
)
1724 btrfs_pin_extent(trans
->fs_info
, node
->bytenr
,
1725 node
->num_bytes
, 1);
1729 static inline struct btrfs_delayed_ref_node
*
1730 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
1732 struct btrfs_delayed_ref_node
*ref
;
1734 if (RB_EMPTY_ROOT(&head
->ref_tree
.rb_root
))
1738 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1739 * This is to prevent a ref count from going down to zero, which deletes
1740 * the extent item from the extent tree, when there still are references
1741 * to add, which would fail because they would not find the extent item.
1743 if (!list_empty(&head
->ref_add_list
))
1744 return list_first_entry(&head
->ref_add_list
,
1745 struct btrfs_delayed_ref_node
, add_list
);
1747 ref
= rb_entry(rb_first_cached(&head
->ref_tree
),
1748 struct btrfs_delayed_ref_node
, ref_node
);
1749 ASSERT(list_empty(&ref
->add_list
));
1753 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root
*delayed_refs
,
1754 struct btrfs_delayed_ref_head
*head
)
1756 spin_lock(&delayed_refs
->lock
);
1757 head
->processing
= 0;
1758 delayed_refs
->num_heads_ready
++;
1759 spin_unlock(&delayed_refs
->lock
);
1760 btrfs_delayed_ref_unlock(head
);
1763 static struct btrfs_delayed_extent_op
*cleanup_extent_op(
1764 struct btrfs_delayed_ref_head
*head
)
1766 struct btrfs_delayed_extent_op
*extent_op
= head
->extent_op
;
1771 if (head
->must_insert_reserved
) {
1772 head
->extent_op
= NULL
;
1773 btrfs_free_delayed_extent_op(extent_op
);
1779 static int run_and_cleanup_extent_op(struct btrfs_trans_handle
*trans
,
1780 struct btrfs_delayed_ref_head
*head
)
1782 struct btrfs_delayed_extent_op
*extent_op
;
1785 extent_op
= cleanup_extent_op(head
);
1788 head
->extent_op
= NULL
;
1789 spin_unlock(&head
->lock
);
1790 ret
= run_delayed_extent_op(trans
, head
, extent_op
);
1791 btrfs_free_delayed_extent_op(extent_op
);
1792 return ret
? ret
: 1;
1795 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info
*fs_info
,
1796 struct btrfs_delayed_ref_root
*delayed_refs
,
1797 struct btrfs_delayed_ref_head
*head
)
1799 int nr_items
= 1; /* Dropping this ref head update. */
1801 if (head
->total_ref_mod
< 0) {
1802 struct btrfs_space_info
*space_info
;
1806 flags
= BTRFS_BLOCK_GROUP_DATA
;
1807 else if (head
->is_system
)
1808 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
1810 flags
= BTRFS_BLOCK_GROUP_METADATA
;
1811 space_info
= btrfs_find_space_info(fs_info
, flags
);
1813 percpu_counter_add_batch(&space_info
->total_bytes_pinned
,
1815 BTRFS_TOTAL_BYTES_PINNED_BATCH
);
1818 * We had csum deletions accounted for in our delayed refs rsv,
1819 * we need to drop the csum leaves for this update from our
1822 if (head
->is_data
) {
1823 spin_lock(&delayed_refs
->lock
);
1824 delayed_refs
->pending_csums
-= head
->num_bytes
;
1825 spin_unlock(&delayed_refs
->lock
);
1826 nr_items
+= btrfs_csum_bytes_to_leaves(fs_info
,
1831 btrfs_delayed_refs_rsv_release(fs_info
, nr_items
);
1834 static int cleanup_ref_head(struct btrfs_trans_handle
*trans
,
1835 struct btrfs_delayed_ref_head
*head
)
1838 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1839 struct btrfs_delayed_ref_root
*delayed_refs
;
1842 delayed_refs
= &trans
->transaction
->delayed_refs
;
1844 ret
= run_and_cleanup_extent_op(trans
, head
);
1846 unselect_delayed_ref_head(delayed_refs
, head
);
1847 btrfs_debug(fs_info
, "run_delayed_extent_op returned %d", ret
);
1854 * Need to drop our head ref lock and re-acquire the delayed ref lock
1855 * and then re-check to make sure nobody got added.
1857 spin_unlock(&head
->lock
);
1858 spin_lock(&delayed_refs
->lock
);
1859 spin_lock(&head
->lock
);
1860 if (!RB_EMPTY_ROOT(&head
->ref_tree
.rb_root
) || head
->extent_op
) {
1861 spin_unlock(&head
->lock
);
1862 spin_unlock(&delayed_refs
->lock
);
1865 btrfs_delete_ref_head(delayed_refs
, head
);
1866 spin_unlock(&head
->lock
);
1867 spin_unlock(&delayed_refs
->lock
);
1869 if (head
->must_insert_reserved
) {
1870 btrfs_pin_extent(fs_info
, head
->bytenr
,
1871 head
->num_bytes
, 1);
1872 if (head
->is_data
) {
1873 ret
= btrfs_del_csums(trans
, fs_info
->csum_root
,
1874 head
->bytenr
, head
->num_bytes
);
1878 btrfs_cleanup_ref_head_accounting(fs_info
, delayed_refs
, head
);
1880 trace_run_delayed_ref_head(fs_info
, head
, 0);
1881 btrfs_delayed_ref_unlock(head
);
1882 btrfs_put_delayed_ref_head(head
);
1886 static struct btrfs_delayed_ref_head
*btrfs_obtain_ref_head(
1887 struct btrfs_trans_handle
*trans
)
1889 struct btrfs_delayed_ref_root
*delayed_refs
=
1890 &trans
->transaction
->delayed_refs
;
1891 struct btrfs_delayed_ref_head
*head
= NULL
;
1894 spin_lock(&delayed_refs
->lock
);
1895 head
= btrfs_select_ref_head(delayed_refs
);
1897 spin_unlock(&delayed_refs
->lock
);
1902 * Grab the lock that says we are going to process all the refs for
1905 ret
= btrfs_delayed_ref_lock(delayed_refs
, head
);
1906 spin_unlock(&delayed_refs
->lock
);
1909 * We may have dropped the spin lock to get the head mutex lock, and
1910 * that might have given someone else time to free the head. If that's
1911 * true, it has been removed from our list and we can move on.
1914 head
= ERR_PTR(-EAGAIN
);
1919 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle
*trans
,
1920 struct btrfs_delayed_ref_head
*locked_ref
,
1921 unsigned long *run_refs
)
1923 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1924 struct btrfs_delayed_ref_root
*delayed_refs
;
1925 struct btrfs_delayed_extent_op
*extent_op
;
1926 struct btrfs_delayed_ref_node
*ref
;
1927 int must_insert_reserved
= 0;
1930 delayed_refs
= &trans
->transaction
->delayed_refs
;
1932 lockdep_assert_held(&locked_ref
->mutex
);
1933 lockdep_assert_held(&locked_ref
->lock
);
1935 while ((ref
= select_delayed_ref(locked_ref
))) {
1937 btrfs_check_delayed_seq(fs_info
, ref
->seq
)) {
1938 spin_unlock(&locked_ref
->lock
);
1939 unselect_delayed_ref_head(delayed_refs
, locked_ref
);
1945 rb_erase_cached(&ref
->ref_node
, &locked_ref
->ref_tree
);
1946 RB_CLEAR_NODE(&ref
->ref_node
);
1947 if (!list_empty(&ref
->add_list
))
1948 list_del(&ref
->add_list
);
1950 * When we play the delayed ref, also correct the ref_mod on
1953 switch (ref
->action
) {
1954 case BTRFS_ADD_DELAYED_REF
:
1955 case BTRFS_ADD_DELAYED_EXTENT
:
1956 locked_ref
->ref_mod
-= ref
->ref_mod
;
1958 case BTRFS_DROP_DELAYED_REF
:
1959 locked_ref
->ref_mod
+= ref
->ref_mod
;
1964 atomic_dec(&delayed_refs
->num_entries
);
1967 * Record the must_insert_reserved flag before we drop the
1970 must_insert_reserved
= locked_ref
->must_insert_reserved
;
1971 locked_ref
->must_insert_reserved
= 0;
1973 extent_op
= locked_ref
->extent_op
;
1974 locked_ref
->extent_op
= NULL
;
1975 spin_unlock(&locked_ref
->lock
);
1977 ret
= run_one_delayed_ref(trans
, ref
, extent_op
,
1978 must_insert_reserved
);
1980 btrfs_free_delayed_extent_op(extent_op
);
1982 unselect_delayed_ref_head(delayed_refs
, locked_ref
);
1983 btrfs_put_delayed_ref(ref
);
1984 btrfs_debug(fs_info
, "run_one_delayed_ref returned %d",
1989 btrfs_put_delayed_ref(ref
);
1992 spin_lock(&locked_ref
->lock
);
1993 btrfs_merge_delayed_refs(trans
, delayed_refs
, locked_ref
);
2000 * Returns 0 on success or if called with an already aborted transaction.
2001 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2003 static noinline
int __btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2006 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2007 struct btrfs_delayed_ref_root
*delayed_refs
;
2008 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2009 ktime_t start
= ktime_get();
2011 unsigned long count
= 0;
2012 unsigned long actual_count
= 0;
2014 delayed_refs
= &trans
->transaction
->delayed_refs
;
2017 locked_ref
= btrfs_obtain_ref_head(trans
);
2018 if (IS_ERR_OR_NULL(locked_ref
)) {
2019 if (PTR_ERR(locked_ref
) == -EAGAIN
) {
2028 * We need to try and merge add/drops of the same ref since we
2029 * can run into issues with relocate dropping the implicit ref
2030 * and then it being added back again before the drop can
2031 * finish. If we merged anything we need to re-loop so we can
2033 * Or we can get node references of the same type that weren't
2034 * merged when created due to bumps in the tree mod seq, and
2035 * we need to merge them to prevent adding an inline extent
2036 * backref before dropping it (triggering a BUG_ON at
2037 * insert_inline_extent_backref()).
2039 spin_lock(&locked_ref
->lock
);
2040 btrfs_merge_delayed_refs(trans
, delayed_refs
, locked_ref
);
2042 ret
= btrfs_run_delayed_refs_for_head(trans
, locked_ref
,
2044 if (ret
< 0 && ret
!= -EAGAIN
) {
2046 * Error, btrfs_run_delayed_refs_for_head already
2047 * unlocked everything so just bail out
2052 * Success, perform the usual cleanup of a processed
2055 ret
= cleanup_ref_head(trans
, locked_ref
);
2057 /* We dropped our lock, we need to loop. */
2066 * Either success case or btrfs_run_delayed_refs_for_head
2067 * returned -EAGAIN, meaning we need to select another head
2072 } while ((nr
!= -1 && count
< nr
) || locked_ref
);
2075 * We don't want to include ref heads since we can have empty ref heads
2076 * and those will drastically skew our runtime down since we just do
2077 * accounting, no actual extent tree updates.
2079 if (actual_count
> 0) {
2080 u64 runtime
= ktime_to_ns(ktime_sub(ktime_get(), start
));
2084 * We weigh the current average higher than our current runtime
2085 * to avoid large swings in the average.
2087 spin_lock(&delayed_refs
->lock
);
2088 avg
= fs_info
->avg_delayed_ref_runtime
* 3 + runtime
;
2089 fs_info
->avg_delayed_ref_runtime
= avg
>> 2; /* div by 4 */
2090 spin_unlock(&delayed_refs
->lock
);
2095 #ifdef SCRAMBLE_DELAYED_REFS
2097 * Normally delayed refs get processed in ascending bytenr order. This
2098 * correlates in most cases to the order added. To expose dependencies on this
2099 * order, we start to process the tree in the middle instead of the beginning
2101 static u64
find_middle(struct rb_root
*root
)
2103 struct rb_node
*n
= root
->rb_node
;
2104 struct btrfs_delayed_ref_node
*entry
;
2107 u64 first
= 0, last
= 0;
2111 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2112 first
= entry
->bytenr
;
2116 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2117 last
= entry
->bytenr
;
2122 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2123 WARN_ON(!entry
->in_tree
);
2125 middle
= entry
->bytenr
;
2138 static inline u64
heads_to_leaves(struct btrfs_fs_info
*fs_info
, u64 heads
)
2142 num_bytes
= heads
* (sizeof(struct btrfs_extent_item
) +
2143 sizeof(struct btrfs_extent_inline_ref
));
2144 if (!btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
2145 num_bytes
+= heads
* sizeof(struct btrfs_tree_block_info
);
2148 * We don't ever fill up leaves all the way so multiply by 2 just to be
2149 * closer to what we're really going to want to use.
2151 return div_u64(num_bytes
, BTRFS_LEAF_DATA_SIZE(fs_info
));
2155 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2156 * would require to store the csums for that many bytes.
2158 u64
btrfs_csum_bytes_to_leaves(struct btrfs_fs_info
*fs_info
, u64 csum_bytes
)
2161 u64 num_csums_per_leaf
;
2164 csum_size
= BTRFS_MAX_ITEM_SIZE(fs_info
);
2165 num_csums_per_leaf
= div64_u64(csum_size
,
2166 (u64
)btrfs_super_csum_size(fs_info
->super_copy
));
2167 num_csums
= div64_u64(csum_bytes
, fs_info
->sectorsize
);
2168 num_csums
+= num_csums_per_leaf
- 1;
2169 num_csums
= div64_u64(num_csums
, num_csums_per_leaf
);
2174 * this starts processing the delayed reference count updates and
2175 * extent insertions we have queued up so far. count can be
2176 * 0, which means to process everything in the tree at the start
2177 * of the run (but not newly added entries), or it can be some target
2178 * number you'd like to process.
2180 * Returns 0 on success or if called with an aborted transaction
2181 * Returns <0 on error and aborts the transaction
2183 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2184 unsigned long count
)
2186 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2187 struct rb_node
*node
;
2188 struct btrfs_delayed_ref_root
*delayed_refs
;
2189 struct btrfs_delayed_ref_head
*head
;
2191 int run_all
= count
== (unsigned long)-1;
2193 /* We'll clean this up in btrfs_cleanup_transaction */
2197 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE
, &fs_info
->flags
))
2200 delayed_refs
= &trans
->transaction
->delayed_refs
;
2202 count
= atomic_read(&delayed_refs
->num_entries
) * 2;
2205 #ifdef SCRAMBLE_DELAYED_REFS
2206 delayed_refs
->run_delayed_start
= find_middle(&delayed_refs
->root
);
2208 ret
= __btrfs_run_delayed_refs(trans
, count
);
2210 btrfs_abort_transaction(trans
, ret
);
2215 btrfs_create_pending_block_groups(trans
);
2217 spin_lock(&delayed_refs
->lock
);
2218 node
= rb_first_cached(&delayed_refs
->href_root
);
2220 spin_unlock(&delayed_refs
->lock
);
2223 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
2225 refcount_inc(&head
->refs
);
2226 spin_unlock(&delayed_refs
->lock
);
2228 /* Mutex was contended, block until it's released and retry. */
2229 mutex_lock(&head
->mutex
);
2230 mutex_unlock(&head
->mutex
);
2232 btrfs_put_delayed_ref_head(head
);
2240 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2241 u64 bytenr
, u64 num_bytes
, u64 flags
,
2242 int level
, int is_data
)
2244 struct btrfs_delayed_extent_op
*extent_op
;
2247 extent_op
= btrfs_alloc_delayed_extent_op();
2251 extent_op
->flags_to_set
= flags
;
2252 extent_op
->update_flags
= true;
2253 extent_op
->update_key
= false;
2254 extent_op
->is_data
= is_data
? true : false;
2255 extent_op
->level
= level
;
2257 ret
= btrfs_add_delayed_extent_op(trans
, bytenr
, num_bytes
, extent_op
);
2259 btrfs_free_delayed_extent_op(extent_op
);
2263 static noinline
int check_delayed_ref(struct btrfs_root
*root
,
2264 struct btrfs_path
*path
,
2265 u64 objectid
, u64 offset
, u64 bytenr
)
2267 struct btrfs_delayed_ref_head
*head
;
2268 struct btrfs_delayed_ref_node
*ref
;
2269 struct btrfs_delayed_data_ref
*data_ref
;
2270 struct btrfs_delayed_ref_root
*delayed_refs
;
2271 struct btrfs_transaction
*cur_trans
;
2272 struct rb_node
*node
;
2275 spin_lock(&root
->fs_info
->trans_lock
);
2276 cur_trans
= root
->fs_info
->running_transaction
;
2278 refcount_inc(&cur_trans
->use_count
);
2279 spin_unlock(&root
->fs_info
->trans_lock
);
2283 delayed_refs
= &cur_trans
->delayed_refs
;
2284 spin_lock(&delayed_refs
->lock
);
2285 head
= btrfs_find_delayed_ref_head(delayed_refs
, bytenr
);
2287 spin_unlock(&delayed_refs
->lock
);
2288 btrfs_put_transaction(cur_trans
);
2292 if (!mutex_trylock(&head
->mutex
)) {
2293 refcount_inc(&head
->refs
);
2294 spin_unlock(&delayed_refs
->lock
);
2296 btrfs_release_path(path
);
2299 * Mutex was contended, block until it's released and let
2302 mutex_lock(&head
->mutex
);
2303 mutex_unlock(&head
->mutex
);
2304 btrfs_put_delayed_ref_head(head
);
2305 btrfs_put_transaction(cur_trans
);
2308 spin_unlock(&delayed_refs
->lock
);
2310 spin_lock(&head
->lock
);
2312 * XXX: We should replace this with a proper search function in the
2315 for (node
= rb_first_cached(&head
->ref_tree
); node
;
2316 node
= rb_next(node
)) {
2317 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, ref_node
);
2318 /* If it's a shared ref we know a cross reference exists */
2319 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
) {
2324 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
2327 * If our ref doesn't match the one we're currently looking at
2328 * then we have a cross reference.
2330 if (data_ref
->root
!= root
->root_key
.objectid
||
2331 data_ref
->objectid
!= objectid
||
2332 data_ref
->offset
!= offset
) {
2337 spin_unlock(&head
->lock
);
2338 mutex_unlock(&head
->mutex
);
2339 btrfs_put_transaction(cur_trans
);
2343 static noinline
int check_committed_ref(struct btrfs_root
*root
,
2344 struct btrfs_path
*path
,
2345 u64 objectid
, u64 offset
, u64 bytenr
)
2347 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2348 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
2349 struct extent_buffer
*leaf
;
2350 struct btrfs_extent_data_ref
*ref
;
2351 struct btrfs_extent_inline_ref
*iref
;
2352 struct btrfs_extent_item
*ei
;
2353 struct btrfs_key key
;
2358 key
.objectid
= bytenr
;
2359 key
.offset
= (u64
)-1;
2360 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2362 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
2365 BUG_ON(ret
== 0); /* Corruption */
2368 if (path
->slots
[0] == 0)
2372 leaf
= path
->nodes
[0];
2373 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2375 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
2379 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2380 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2382 /* If extent item has more than 1 inline ref then it's shared */
2383 if (item_size
!= sizeof(*ei
) +
2384 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
2387 /* If extent created before last snapshot => it's definitely shared */
2388 if (btrfs_extent_generation(leaf
, ei
) <=
2389 btrfs_root_last_snapshot(&root
->root_item
))
2392 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
2394 /* If this extent has SHARED_DATA_REF then it's shared */
2395 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
, BTRFS_REF_TYPE_DATA
);
2396 if (type
!= BTRFS_EXTENT_DATA_REF_KEY
)
2399 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
2400 if (btrfs_extent_refs(leaf
, ei
) !=
2401 btrfs_extent_data_ref_count(leaf
, ref
) ||
2402 btrfs_extent_data_ref_root(leaf
, ref
) !=
2403 root
->root_key
.objectid
||
2404 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
2405 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
2413 int btrfs_cross_ref_exist(struct btrfs_root
*root
, u64 objectid
, u64 offset
,
2416 struct btrfs_path
*path
;
2419 path
= btrfs_alloc_path();
2424 ret
= check_committed_ref(root
, path
, objectid
,
2426 if (ret
&& ret
!= -ENOENT
)
2429 ret
= check_delayed_ref(root
, path
, objectid
, offset
, bytenr
);
2430 } while (ret
== -EAGAIN
);
2433 btrfs_free_path(path
);
2434 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
2439 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
2440 struct btrfs_root
*root
,
2441 struct extent_buffer
*buf
,
2442 int full_backref
, int inc
)
2444 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2450 struct btrfs_key key
;
2451 struct btrfs_file_extent_item
*fi
;
2452 struct btrfs_ref generic_ref
= { 0 };
2453 bool for_reloc
= btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
);
2459 if (btrfs_is_testing(fs_info
))
2462 ref_root
= btrfs_header_owner(buf
);
2463 nritems
= btrfs_header_nritems(buf
);
2464 level
= btrfs_header_level(buf
);
2466 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) && level
== 0)
2470 parent
= buf
->start
;
2474 action
= BTRFS_ADD_DELAYED_REF
;
2476 action
= BTRFS_DROP_DELAYED_REF
;
2478 for (i
= 0; i
< nritems
; i
++) {
2480 btrfs_item_key_to_cpu(buf
, &key
, i
);
2481 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2483 fi
= btrfs_item_ptr(buf
, i
,
2484 struct btrfs_file_extent_item
);
2485 if (btrfs_file_extent_type(buf
, fi
) ==
2486 BTRFS_FILE_EXTENT_INLINE
)
2488 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2492 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
2493 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
2494 btrfs_init_generic_ref(&generic_ref
, action
, bytenr
,
2496 generic_ref
.real_root
= root
->root_key
.objectid
;
2497 btrfs_init_data_ref(&generic_ref
, ref_root
, key
.objectid
,
2499 generic_ref
.skip_qgroup
= for_reloc
;
2501 ret
= btrfs_inc_extent_ref(trans
, &generic_ref
);
2503 ret
= btrfs_free_extent(trans
, &generic_ref
);
2507 bytenr
= btrfs_node_blockptr(buf
, i
);
2508 num_bytes
= fs_info
->nodesize
;
2509 btrfs_init_generic_ref(&generic_ref
, action
, bytenr
,
2511 generic_ref
.real_root
= root
->root_key
.objectid
;
2512 btrfs_init_tree_ref(&generic_ref
, level
- 1, ref_root
);
2513 generic_ref
.skip_qgroup
= for_reloc
;
2515 ret
= btrfs_inc_extent_ref(trans
, &generic_ref
);
2517 ret
= btrfs_free_extent(trans
, &generic_ref
);
2527 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2528 struct extent_buffer
*buf
, int full_backref
)
2530 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
2533 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2534 struct extent_buffer
*buf
, int full_backref
)
2536 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
2539 int btrfs_extent_readonly(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
2541 struct btrfs_block_group
*block_group
;
2544 block_group
= btrfs_lookup_block_group(fs_info
, bytenr
);
2545 if (!block_group
|| block_group
->ro
)
2548 btrfs_put_block_group(block_group
);
2552 static u64
get_alloc_profile_by_root(struct btrfs_root
*root
, int data
)
2554 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2559 flags
= BTRFS_BLOCK_GROUP_DATA
;
2560 else if (root
== fs_info
->chunk_root
)
2561 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
2563 flags
= BTRFS_BLOCK_GROUP_METADATA
;
2565 ret
= btrfs_get_alloc_profile(fs_info
, flags
);
2569 static u64
first_logical_byte(struct btrfs_fs_info
*fs_info
, u64 search_start
)
2571 struct btrfs_block_group
*cache
;
2574 spin_lock(&fs_info
->block_group_cache_lock
);
2575 bytenr
= fs_info
->first_logical_byte
;
2576 spin_unlock(&fs_info
->block_group_cache_lock
);
2578 if (bytenr
< (u64
)-1)
2581 cache
= btrfs_lookup_first_block_group(fs_info
, search_start
);
2585 bytenr
= cache
->start
;
2586 btrfs_put_block_group(cache
);
2591 static int pin_down_extent(struct btrfs_block_group
*cache
,
2592 u64 bytenr
, u64 num_bytes
, int reserved
)
2594 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
2596 spin_lock(&cache
->space_info
->lock
);
2597 spin_lock(&cache
->lock
);
2598 cache
->pinned
+= num_bytes
;
2599 btrfs_space_info_update_bytes_pinned(fs_info
, cache
->space_info
,
2602 cache
->reserved
-= num_bytes
;
2603 cache
->space_info
->bytes_reserved
-= num_bytes
;
2605 spin_unlock(&cache
->lock
);
2606 spin_unlock(&cache
->space_info
->lock
);
2608 percpu_counter_add_batch(&cache
->space_info
->total_bytes_pinned
,
2609 num_bytes
, BTRFS_TOTAL_BYTES_PINNED_BATCH
);
2610 set_extent_dirty(fs_info
->pinned_extents
, bytenr
,
2611 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
2615 int btrfs_pin_extent(struct btrfs_fs_info
*fs_info
,
2616 u64 bytenr
, u64 num_bytes
, int reserved
)
2618 struct btrfs_block_group
*cache
;
2620 ASSERT(fs_info
->running_transaction
);
2622 cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
2623 BUG_ON(!cache
); /* Logic error */
2625 pin_down_extent(cache
, bytenr
, num_bytes
, reserved
);
2627 btrfs_put_block_group(cache
);
2632 * this function must be called within transaction
2634 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info
*fs_info
,
2635 u64 bytenr
, u64 num_bytes
)
2637 struct btrfs_block_group
*cache
;
2640 cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
2645 * pull in the free space cache (if any) so that our pin
2646 * removes the free space from the cache. We have load_only set
2647 * to one because the slow code to read in the free extents does check
2648 * the pinned extents.
2650 btrfs_cache_block_group(cache
, 1);
2652 pin_down_extent(cache
, bytenr
, num_bytes
, 0);
2654 /* remove us from the free space cache (if we're there at all) */
2655 ret
= btrfs_remove_free_space(cache
, bytenr
, num_bytes
);
2656 btrfs_put_block_group(cache
);
2660 static int __exclude_logged_extent(struct btrfs_fs_info
*fs_info
,
2661 u64 start
, u64 num_bytes
)
2664 struct btrfs_block_group
*block_group
;
2665 struct btrfs_caching_control
*caching_ctl
;
2667 block_group
= btrfs_lookup_block_group(fs_info
, start
);
2671 btrfs_cache_block_group(block_group
, 0);
2672 caching_ctl
= btrfs_get_caching_control(block_group
);
2676 BUG_ON(!btrfs_block_group_done(block_group
));
2677 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
2679 mutex_lock(&caching_ctl
->mutex
);
2681 if (start
>= caching_ctl
->progress
) {
2682 ret
= btrfs_add_excluded_extent(fs_info
, start
,
2684 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
2685 ret
= btrfs_remove_free_space(block_group
,
2688 num_bytes
= caching_ctl
->progress
- start
;
2689 ret
= btrfs_remove_free_space(block_group
,
2694 num_bytes
= (start
+ num_bytes
) -
2695 caching_ctl
->progress
;
2696 start
= caching_ctl
->progress
;
2697 ret
= btrfs_add_excluded_extent(fs_info
, start
,
2701 mutex_unlock(&caching_ctl
->mutex
);
2702 btrfs_put_caching_control(caching_ctl
);
2704 btrfs_put_block_group(block_group
);
2708 int btrfs_exclude_logged_extents(struct extent_buffer
*eb
)
2710 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
2711 struct btrfs_file_extent_item
*item
;
2712 struct btrfs_key key
;
2717 if (!btrfs_fs_incompat(fs_info
, MIXED_GROUPS
))
2720 for (i
= 0; i
< btrfs_header_nritems(eb
); i
++) {
2721 btrfs_item_key_to_cpu(eb
, &key
, i
);
2722 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2724 item
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
2725 found_type
= btrfs_file_extent_type(eb
, item
);
2726 if (found_type
== BTRFS_FILE_EXTENT_INLINE
)
2728 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
2730 key
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
2731 key
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
2732 ret
= __exclude_logged_extent(fs_info
, key
.objectid
, key
.offset
);
2741 btrfs_inc_block_group_reservations(struct btrfs_block_group
*bg
)
2743 atomic_inc(&bg
->reservations
);
2746 void btrfs_prepare_extent_commit(struct btrfs_fs_info
*fs_info
)
2748 struct btrfs_caching_control
*next
;
2749 struct btrfs_caching_control
*caching_ctl
;
2750 struct btrfs_block_group
*cache
;
2752 down_write(&fs_info
->commit_root_sem
);
2754 list_for_each_entry_safe(caching_ctl
, next
,
2755 &fs_info
->caching_block_groups
, list
) {
2756 cache
= caching_ctl
->block_group
;
2757 if (btrfs_block_group_done(cache
)) {
2758 cache
->last_byte_to_unpin
= (u64
)-1;
2759 list_del_init(&caching_ctl
->list
);
2760 btrfs_put_caching_control(caching_ctl
);
2762 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
2766 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
2767 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
2769 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
2771 up_write(&fs_info
->commit_root_sem
);
2773 btrfs_update_global_block_rsv(fs_info
);
2777 * Returns the free cluster for the given space info and sets empty_cluster to
2778 * what it should be based on the mount options.
2780 static struct btrfs_free_cluster
*
2781 fetch_cluster_info(struct btrfs_fs_info
*fs_info
,
2782 struct btrfs_space_info
*space_info
, u64
*empty_cluster
)
2784 struct btrfs_free_cluster
*ret
= NULL
;
2787 if (btrfs_mixed_space_info(space_info
))
2790 if (space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
2791 ret
= &fs_info
->meta_alloc_cluster
;
2792 if (btrfs_test_opt(fs_info
, SSD
))
2793 *empty_cluster
= SZ_2M
;
2795 *empty_cluster
= SZ_64K
;
2796 } else if ((space_info
->flags
& BTRFS_BLOCK_GROUP_DATA
) &&
2797 btrfs_test_opt(fs_info
, SSD_SPREAD
)) {
2798 *empty_cluster
= SZ_2M
;
2799 ret
= &fs_info
->data_alloc_cluster
;
2805 static int unpin_extent_range(struct btrfs_fs_info
*fs_info
,
2807 const bool return_free_space
)
2809 struct btrfs_block_group
*cache
= NULL
;
2810 struct btrfs_space_info
*space_info
;
2811 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
2812 struct btrfs_free_cluster
*cluster
= NULL
;
2814 u64 total_unpinned
= 0;
2815 u64 empty_cluster
= 0;
2818 while (start
<= end
) {
2821 start
>= cache
->start
+ cache
->length
) {
2823 btrfs_put_block_group(cache
);
2825 cache
= btrfs_lookup_block_group(fs_info
, start
);
2826 BUG_ON(!cache
); /* Logic error */
2828 cluster
= fetch_cluster_info(fs_info
,
2831 empty_cluster
<<= 1;
2834 len
= cache
->start
+ cache
->length
- start
;
2835 len
= min(len
, end
+ 1 - start
);
2837 if (start
< cache
->last_byte_to_unpin
) {
2838 len
= min(len
, cache
->last_byte_to_unpin
- start
);
2839 if (return_free_space
)
2840 btrfs_add_free_space(cache
, start
, len
);
2844 total_unpinned
+= len
;
2845 space_info
= cache
->space_info
;
2848 * If this space cluster has been marked as fragmented and we've
2849 * unpinned enough in this block group to potentially allow a
2850 * cluster to be created inside of it go ahead and clear the
2853 if (cluster
&& cluster
->fragmented
&&
2854 total_unpinned
> empty_cluster
) {
2855 spin_lock(&cluster
->lock
);
2856 cluster
->fragmented
= 0;
2857 spin_unlock(&cluster
->lock
);
2860 spin_lock(&space_info
->lock
);
2861 spin_lock(&cache
->lock
);
2862 cache
->pinned
-= len
;
2863 btrfs_space_info_update_bytes_pinned(fs_info
, space_info
, -len
);
2864 space_info
->max_extent_size
= 0;
2865 percpu_counter_add_batch(&space_info
->total_bytes_pinned
,
2866 -len
, BTRFS_TOTAL_BYTES_PINNED_BATCH
);
2868 space_info
->bytes_readonly
+= len
;
2871 spin_unlock(&cache
->lock
);
2872 if (!readonly
&& return_free_space
&&
2873 global_rsv
->space_info
== space_info
) {
2876 spin_lock(&global_rsv
->lock
);
2877 if (!global_rsv
->full
) {
2878 to_add
= min(len
, global_rsv
->size
-
2879 global_rsv
->reserved
);
2880 global_rsv
->reserved
+= to_add
;
2881 btrfs_space_info_update_bytes_may_use(fs_info
,
2882 space_info
, to_add
);
2883 if (global_rsv
->reserved
>= global_rsv
->size
)
2884 global_rsv
->full
= 1;
2887 spin_unlock(&global_rsv
->lock
);
2888 /* Add to any tickets we may have */
2890 btrfs_try_granting_tickets(fs_info
,
2893 spin_unlock(&space_info
->lock
);
2897 btrfs_put_block_group(cache
);
2901 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
)
2903 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2904 struct btrfs_block_group
*block_group
, *tmp
;
2905 struct list_head
*deleted_bgs
;
2906 struct extent_io_tree
*unpin
;
2911 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
2912 unpin
= &fs_info
->freed_extents
[1];
2914 unpin
= &fs_info
->freed_extents
[0];
2916 while (!trans
->aborted
) {
2917 struct extent_state
*cached_state
= NULL
;
2919 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
2920 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
2921 EXTENT_DIRTY
, &cached_state
);
2923 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
2927 if (btrfs_test_opt(fs_info
, DISCARD_SYNC
))
2928 ret
= btrfs_discard_extent(fs_info
, start
,
2929 end
+ 1 - start
, NULL
);
2931 clear_extent_dirty(unpin
, start
, end
, &cached_state
);
2932 unpin_extent_range(fs_info
, start
, end
, true);
2933 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
2934 free_extent_state(cached_state
);
2938 if (btrfs_test_opt(fs_info
, DISCARD_ASYNC
)) {
2939 btrfs_discard_calc_delay(&fs_info
->discard_ctl
);
2940 btrfs_discard_schedule_work(&fs_info
->discard_ctl
, true);
2944 * Transaction is finished. We don't need the lock anymore. We
2945 * do need to clean up the block groups in case of a transaction
2948 deleted_bgs
= &trans
->transaction
->deleted_bgs
;
2949 list_for_each_entry_safe(block_group
, tmp
, deleted_bgs
, bg_list
) {
2953 if (!trans
->aborted
)
2954 ret
= btrfs_discard_extent(fs_info
,
2956 block_group
->length
,
2959 list_del_init(&block_group
->bg_list
);
2960 btrfs_put_block_group_trimming(block_group
);
2961 btrfs_put_block_group(block_group
);
2964 const char *errstr
= btrfs_decode_error(ret
);
2966 "discard failed while removing blockgroup: errno=%d %s",
2974 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
2975 struct btrfs_delayed_ref_node
*node
, u64 parent
,
2976 u64 root_objectid
, u64 owner_objectid
,
2977 u64 owner_offset
, int refs_to_drop
,
2978 struct btrfs_delayed_extent_op
*extent_op
)
2980 struct btrfs_fs_info
*info
= trans
->fs_info
;
2981 struct btrfs_key key
;
2982 struct btrfs_path
*path
;
2983 struct btrfs_root
*extent_root
= info
->extent_root
;
2984 struct extent_buffer
*leaf
;
2985 struct btrfs_extent_item
*ei
;
2986 struct btrfs_extent_inline_ref
*iref
;
2989 int extent_slot
= 0;
2990 int found_extent
= 0;
2994 u64 bytenr
= node
->bytenr
;
2995 u64 num_bytes
= node
->num_bytes
;
2997 bool skinny_metadata
= btrfs_fs_incompat(info
, SKINNY_METADATA
);
2999 path
= btrfs_alloc_path();
3003 path
->reada
= READA_FORWARD
;
3004 path
->leave_spinning
= 1;
3006 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
3007 BUG_ON(!is_data
&& refs_to_drop
!= 1);
3010 skinny_metadata
= false;
3012 ret
= lookup_extent_backref(trans
, path
, &iref
, bytenr
, num_bytes
,
3013 parent
, root_objectid
, owner_objectid
,
3016 extent_slot
= path
->slots
[0];
3017 while (extent_slot
>= 0) {
3018 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3020 if (key
.objectid
!= bytenr
)
3022 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
3023 key
.offset
== num_bytes
) {
3027 if (key
.type
== BTRFS_METADATA_ITEM_KEY
&&
3028 key
.offset
== owner_objectid
) {
3032 if (path
->slots
[0] - extent_slot
> 5)
3037 if (!found_extent
) {
3039 ret
= remove_extent_backref(trans
, path
, NULL
,
3041 is_data
, &last_ref
);
3043 btrfs_abort_transaction(trans
, ret
);
3046 btrfs_release_path(path
);
3047 path
->leave_spinning
= 1;
3049 key
.objectid
= bytenr
;
3050 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3051 key
.offset
= num_bytes
;
3053 if (!is_data
&& skinny_metadata
) {
3054 key
.type
= BTRFS_METADATA_ITEM_KEY
;
3055 key
.offset
= owner_objectid
;
3058 ret
= btrfs_search_slot(trans
, extent_root
,
3060 if (ret
> 0 && skinny_metadata
&& path
->slots
[0]) {
3062 * Couldn't find our skinny metadata item,
3063 * see if we have ye olde extent item.
3066 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3068 if (key
.objectid
== bytenr
&&
3069 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
3070 key
.offset
== num_bytes
)
3074 if (ret
> 0 && skinny_metadata
) {
3075 skinny_metadata
= false;
3076 key
.objectid
= bytenr
;
3077 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3078 key
.offset
= num_bytes
;
3079 btrfs_release_path(path
);
3080 ret
= btrfs_search_slot(trans
, extent_root
,
3086 "umm, got %d back from search, was looking for %llu",
3089 btrfs_print_leaf(path
->nodes
[0]);
3092 btrfs_abort_transaction(trans
, ret
);
3095 extent_slot
= path
->slots
[0];
3097 } else if (WARN_ON(ret
== -ENOENT
)) {
3098 btrfs_print_leaf(path
->nodes
[0]);
3100 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
3101 bytenr
, parent
, root_objectid
, owner_objectid
,
3103 btrfs_abort_transaction(trans
, ret
);
3106 btrfs_abort_transaction(trans
, ret
);
3110 leaf
= path
->nodes
[0];
3111 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
3112 if (unlikely(item_size
< sizeof(*ei
))) {
3114 btrfs_print_v0_err(info
);
3115 btrfs_abort_transaction(trans
, ret
);
3118 ei
= btrfs_item_ptr(leaf
, extent_slot
,
3119 struct btrfs_extent_item
);
3120 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
3121 key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
3122 struct btrfs_tree_block_info
*bi
;
3123 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
3124 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
3125 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
3128 refs
= btrfs_extent_refs(leaf
, ei
);
3129 if (refs
< refs_to_drop
) {
3131 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
3132 refs_to_drop
, refs
, bytenr
);
3134 btrfs_abort_transaction(trans
, ret
);
3137 refs
-= refs_to_drop
;
3141 __run_delayed_extent_op(extent_op
, leaf
, ei
);
3143 * In the case of inline back ref, reference count will
3144 * be updated by remove_extent_backref
3147 BUG_ON(!found_extent
);
3149 btrfs_set_extent_refs(leaf
, ei
, refs
);
3150 btrfs_mark_buffer_dirty(leaf
);
3153 ret
= remove_extent_backref(trans
, path
, iref
,
3154 refs_to_drop
, is_data
,
3157 btrfs_abort_transaction(trans
, ret
);
3163 BUG_ON(is_data
&& refs_to_drop
!=
3164 extent_data_ref_count(path
, iref
));
3166 BUG_ON(path
->slots
[0] != extent_slot
);
3168 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
3169 path
->slots
[0] = extent_slot
;
3175 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
3178 btrfs_abort_transaction(trans
, ret
);
3181 btrfs_release_path(path
);
3184 ret
= btrfs_del_csums(trans
, info
->csum_root
, bytenr
,
3187 btrfs_abort_transaction(trans
, ret
);
3192 ret
= add_to_free_space_tree(trans
, bytenr
, num_bytes
);
3194 btrfs_abort_transaction(trans
, ret
);
3198 ret
= btrfs_update_block_group(trans
, bytenr
, num_bytes
, 0);
3200 btrfs_abort_transaction(trans
, ret
);
3204 btrfs_release_path(path
);
3207 btrfs_free_path(path
);
3212 * when we free an block, it is possible (and likely) that we free the last
3213 * delayed ref for that extent as well. This searches the delayed ref tree for
3214 * a given extent, and if there are no other delayed refs to be processed, it
3215 * removes it from the tree.
3217 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
3220 struct btrfs_delayed_ref_head
*head
;
3221 struct btrfs_delayed_ref_root
*delayed_refs
;
3224 delayed_refs
= &trans
->transaction
->delayed_refs
;
3225 spin_lock(&delayed_refs
->lock
);
3226 head
= btrfs_find_delayed_ref_head(delayed_refs
, bytenr
);
3228 goto out_delayed_unlock
;
3230 spin_lock(&head
->lock
);
3231 if (!RB_EMPTY_ROOT(&head
->ref_tree
.rb_root
))
3234 if (cleanup_extent_op(head
) != NULL
)
3238 * waiting for the lock here would deadlock. If someone else has it
3239 * locked they are already in the process of dropping it anyway
3241 if (!mutex_trylock(&head
->mutex
))
3244 btrfs_delete_ref_head(delayed_refs
, head
);
3245 head
->processing
= 0;
3247 spin_unlock(&head
->lock
);
3248 spin_unlock(&delayed_refs
->lock
);
3250 BUG_ON(head
->extent_op
);
3251 if (head
->must_insert_reserved
)
3254 btrfs_cleanup_ref_head_accounting(trans
->fs_info
, delayed_refs
, head
);
3255 mutex_unlock(&head
->mutex
);
3256 btrfs_put_delayed_ref_head(head
);
3259 spin_unlock(&head
->lock
);
3262 spin_unlock(&delayed_refs
->lock
);
3266 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
3267 struct btrfs_root
*root
,
3268 struct extent_buffer
*buf
,
3269 u64 parent
, int last_ref
)
3271 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3272 struct btrfs_ref generic_ref
= { 0 };
3276 btrfs_init_generic_ref(&generic_ref
, BTRFS_DROP_DELAYED_REF
,
3277 buf
->start
, buf
->len
, parent
);
3278 btrfs_init_tree_ref(&generic_ref
, btrfs_header_level(buf
),
3279 root
->root_key
.objectid
);
3281 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
3282 int old_ref_mod
, new_ref_mod
;
3284 btrfs_ref_tree_mod(fs_info
, &generic_ref
);
3285 ret
= btrfs_add_delayed_tree_ref(trans
, &generic_ref
, NULL
,
3286 &old_ref_mod
, &new_ref_mod
);
3287 BUG_ON(ret
); /* -ENOMEM */
3288 pin
= old_ref_mod
>= 0 && new_ref_mod
< 0;
3291 if (last_ref
&& btrfs_header_generation(buf
) == trans
->transid
) {
3292 struct btrfs_block_group
*cache
;
3294 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
3295 ret
= check_ref_cleanup(trans
, buf
->start
);
3301 cache
= btrfs_lookup_block_group(fs_info
, buf
->start
);
3303 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
3304 pin_down_extent(cache
, buf
->start
, buf
->len
, 1);
3305 btrfs_put_block_group(cache
);
3309 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
3311 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
3312 btrfs_free_reserved_bytes(cache
, buf
->len
, 0);
3313 btrfs_put_block_group(cache
);
3314 trace_btrfs_reserved_extent_free(fs_info
, buf
->start
, buf
->len
);
3318 add_pinned_bytes(fs_info
, &generic_ref
);
3322 * Deleting the buffer, clear the corrupt flag since it doesn't
3325 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
3329 /* Can return -ENOMEM */
3330 int btrfs_free_extent(struct btrfs_trans_handle
*trans
, struct btrfs_ref
*ref
)
3332 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
3333 int old_ref_mod
, new_ref_mod
;
3336 if (btrfs_is_testing(fs_info
))
3340 * tree log blocks never actually go into the extent allocation
3341 * tree, just update pinning info and exit early.
3343 if ((ref
->type
== BTRFS_REF_METADATA
&&
3344 ref
->tree_ref
.root
== BTRFS_TREE_LOG_OBJECTID
) ||
3345 (ref
->type
== BTRFS_REF_DATA
&&
3346 ref
->data_ref
.ref_root
== BTRFS_TREE_LOG_OBJECTID
)) {
3347 /* unlocks the pinned mutex */
3348 btrfs_pin_extent(fs_info
, ref
->bytenr
, ref
->len
, 1);
3349 old_ref_mod
= new_ref_mod
= 0;
3351 } else if (ref
->type
== BTRFS_REF_METADATA
) {
3352 ret
= btrfs_add_delayed_tree_ref(trans
, ref
, NULL
,
3353 &old_ref_mod
, &new_ref_mod
);
3355 ret
= btrfs_add_delayed_data_ref(trans
, ref
, 0,
3356 &old_ref_mod
, &new_ref_mod
);
3359 if (!((ref
->type
== BTRFS_REF_METADATA
&&
3360 ref
->tree_ref
.root
== BTRFS_TREE_LOG_OBJECTID
) ||
3361 (ref
->type
== BTRFS_REF_DATA
&&
3362 ref
->data_ref
.ref_root
== BTRFS_TREE_LOG_OBJECTID
)))
3363 btrfs_ref_tree_mod(fs_info
, ref
);
3365 if (ret
== 0 && old_ref_mod
>= 0 && new_ref_mod
< 0)
3366 add_pinned_bytes(fs_info
, ref
);
3371 enum btrfs_loop_type
{
3372 LOOP_CACHING_NOWAIT
,
3379 btrfs_lock_block_group(struct btrfs_block_group
*cache
,
3383 down_read(&cache
->data_rwsem
);
3386 static inline void btrfs_grab_block_group(struct btrfs_block_group
*cache
,
3389 btrfs_get_block_group(cache
);
3391 down_read(&cache
->data_rwsem
);
3394 static struct btrfs_block_group
*btrfs_lock_cluster(
3395 struct btrfs_block_group
*block_group
,
3396 struct btrfs_free_cluster
*cluster
,
3399 struct btrfs_block_group
*used_bg
= NULL
;
3401 spin_lock(&cluster
->refill_lock
);
3403 used_bg
= cluster
->block_group
;
3407 if (used_bg
== block_group
)
3410 btrfs_get_block_group(used_bg
);
3415 if (down_read_trylock(&used_bg
->data_rwsem
))
3418 spin_unlock(&cluster
->refill_lock
);
3420 /* We should only have one-level nested. */
3421 down_read_nested(&used_bg
->data_rwsem
, SINGLE_DEPTH_NESTING
);
3423 spin_lock(&cluster
->refill_lock
);
3424 if (used_bg
== cluster
->block_group
)
3427 up_read(&used_bg
->data_rwsem
);
3428 btrfs_put_block_group(used_bg
);
3433 btrfs_release_block_group(struct btrfs_block_group
*cache
,
3437 up_read(&cache
->data_rwsem
);
3438 btrfs_put_block_group(cache
);
3442 * Structure used internally for find_free_extent() function. Wraps needed
3445 struct find_free_extent_ctl
{
3446 /* Basic allocation info */
3452 /* Where to start the search inside the bg */
3455 /* For clustered allocation */
3458 bool have_caching_bg
;
3459 bool orig_have_caching_bg
;
3461 /* RAID index, converted from flags */
3465 * Current loop number, check find_free_extent_update_loop() for details
3470 * Whether we're refilling a cluster, if true we need to re-search
3471 * current block group but don't try to refill the cluster again.
3473 bool retry_clustered
;
3476 * Whether we're updating free space cache, if true we need to re-search
3477 * current block group but don't try updating free space cache again.
3479 bool retry_unclustered
;
3481 /* If current block group is cached */
3484 /* Max contiguous hole found */
3485 u64 max_extent_size
;
3487 /* Total free space from free space cache, not always contiguous */
3488 u64 total_free_space
;
3496 * Helper function for find_free_extent().
3498 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3499 * Return -EAGAIN to inform caller that we need to re-search this block group
3500 * Return >0 to inform caller that we find nothing
3501 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3503 static int find_free_extent_clustered(struct btrfs_block_group
*bg
,
3504 struct btrfs_free_cluster
*last_ptr
,
3505 struct find_free_extent_ctl
*ffe_ctl
,
3506 struct btrfs_block_group
**cluster_bg_ret
)
3508 struct btrfs_block_group
*cluster_bg
;
3509 u64 aligned_cluster
;
3513 cluster_bg
= btrfs_lock_cluster(bg
, last_ptr
, ffe_ctl
->delalloc
);
3515 goto refill_cluster
;
3516 if (cluster_bg
!= bg
&& (cluster_bg
->ro
||
3517 !block_group_bits(cluster_bg
, ffe_ctl
->flags
)))
3518 goto release_cluster
;
3520 offset
= btrfs_alloc_from_cluster(cluster_bg
, last_ptr
,
3521 ffe_ctl
->num_bytes
, cluster_bg
->start
,
3522 &ffe_ctl
->max_extent_size
);
3524 /* We have a block, we're done */
3525 spin_unlock(&last_ptr
->refill_lock
);
3526 trace_btrfs_reserve_extent_cluster(cluster_bg
,
3527 ffe_ctl
->search_start
, ffe_ctl
->num_bytes
);
3528 *cluster_bg_ret
= cluster_bg
;
3529 ffe_ctl
->found_offset
= offset
;
3532 WARN_ON(last_ptr
->block_group
!= cluster_bg
);
3536 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3537 * lets just skip it and let the allocator find whatever block it can
3538 * find. If we reach this point, we will have tried the cluster
3539 * allocator plenty of times and not have found anything, so we are
3540 * likely way too fragmented for the clustering stuff to find anything.
3542 * However, if the cluster is taken from the current block group,
3543 * release the cluster first, so that we stand a better chance of
3544 * succeeding in the unclustered allocation.
3546 if (ffe_ctl
->loop
>= LOOP_NO_EMPTY_SIZE
&& cluster_bg
!= bg
) {
3547 spin_unlock(&last_ptr
->refill_lock
);
3548 btrfs_release_block_group(cluster_bg
, ffe_ctl
->delalloc
);
3552 /* This cluster didn't work out, free it and start over */
3553 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
3555 if (cluster_bg
!= bg
)
3556 btrfs_release_block_group(cluster_bg
, ffe_ctl
->delalloc
);
3559 if (ffe_ctl
->loop
>= LOOP_NO_EMPTY_SIZE
) {
3560 spin_unlock(&last_ptr
->refill_lock
);
3564 aligned_cluster
= max_t(u64
,
3565 ffe_ctl
->empty_cluster
+ ffe_ctl
->empty_size
,
3566 bg
->full_stripe_len
);
3567 ret
= btrfs_find_space_cluster(bg
, last_ptr
, ffe_ctl
->search_start
,
3568 ffe_ctl
->num_bytes
, aligned_cluster
);
3570 /* Now pull our allocation out of this cluster */
3571 offset
= btrfs_alloc_from_cluster(bg
, last_ptr
,
3572 ffe_ctl
->num_bytes
, ffe_ctl
->search_start
,
3573 &ffe_ctl
->max_extent_size
);
3575 /* We found one, proceed */
3576 spin_unlock(&last_ptr
->refill_lock
);
3577 trace_btrfs_reserve_extent_cluster(bg
,
3578 ffe_ctl
->search_start
,
3579 ffe_ctl
->num_bytes
);
3580 ffe_ctl
->found_offset
= offset
;
3583 } else if (!ffe_ctl
->cached
&& ffe_ctl
->loop
> LOOP_CACHING_NOWAIT
&&
3584 !ffe_ctl
->retry_clustered
) {
3585 spin_unlock(&last_ptr
->refill_lock
);
3587 ffe_ctl
->retry_clustered
= true;
3588 btrfs_wait_block_group_cache_progress(bg
, ffe_ctl
->num_bytes
+
3589 ffe_ctl
->empty_cluster
+ ffe_ctl
->empty_size
);
3593 * At this point we either didn't find a cluster or we weren't able to
3594 * allocate a block from our cluster. Free the cluster we've been
3595 * trying to use, and go to the next block group.
3597 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
3598 spin_unlock(&last_ptr
->refill_lock
);
3603 * Return >0 to inform caller that we find nothing
3604 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3605 * Return -EAGAIN to inform caller that we need to re-search this block group
3607 static int find_free_extent_unclustered(struct btrfs_block_group
*bg
,
3608 struct btrfs_free_cluster
*last_ptr
,
3609 struct find_free_extent_ctl
*ffe_ctl
)
3614 * We are doing an unclustered allocation, set the fragmented flag so
3615 * we don't bother trying to setup a cluster again until we get more
3618 if (unlikely(last_ptr
)) {
3619 spin_lock(&last_ptr
->lock
);
3620 last_ptr
->fragmented
= 1;
3621 spin_unlock(&last_ptr
->lock
);
3623 if (ffe_ctl
->cached
) {
3624 struct btrfs_free_space_ctl
*free_space_ctl
;
3626 free_space_ctl
= bg
->free_space_ctl
;
3627 spin_lock(&free_space_ctl
->tree_lock
);
3628 if (free_space_ctl
->free_space
<
3629 ffe_ctl
->num_bytes
+ ffe_ctl
->empty_cluster
+
3630 ffe_ctl
->empty_size
) {
3631 ffe_ctl
->total_free_space
= max_t(u64
,
3632 ffe_ctl
->total_free_space
,
3633 free_space_ctl
->free_space
);
3634 spin_unlock(&free_space_ctl
->tree_lock
);
3637 spin_unlock(&free_space_ctl
->tree_lock
);
3640 offset
= btrfs_find_space_for_alloc(bg
, ffe_ctl
->search_start
,
3641 ffe_ctl
->num_bytes
, ffe_ctl
->empty_size
,
3642 &ffe_ctl
->max_extent_size
);
3645 * If we didn't find a chunk, and we haven't failed on this block group
3646 * before, and this block group is in the middle of caching and we are
3647 * ok with waiting, then go ahead and wait for progress to be made, and
3648 * set @retry_unclustered to true.
3650 * If @retry_unclustered is true then we've already waited on this
3651 * block group once and should move on to the next block group.
3653 if (!offset
&& !ffe_ctl
->retry_unclustered
&& !ffe_ctl
->cached
&&
3654 ffe_ctl
->loop
> LOOP_CACHING_NOWAIT
) {
3655 btrfs_wait_block_group_cache_progress(bg
, ffe_ctl
->num_bytes
+
3656 ffe_ctl
->empty_size
);
3657 ffe_ctl
->retry_unclustered
= true;
3659 } else if (!offset
) {
3662 ffe_ctl
->found_offset
= offset
;
3667 * Return >0 means caller needs to re-search for free extent
3668 * Return 0 means we have the needed free extent.
3669 * Return <0 means we failed to locate any free extent.
3671 static int find_free_extent_update_loop(struct btrfs_fs_info
*fs_info
,
3672 struct btrfs_free_cluster
*last_ptr
,
3673 struct btrfs_key
*ins
,
3674 struct find_free_extent_ctl
*ffe_ctl
,
3675 int full_search
, bool use_cluster
)
3677 struct btrfs_root
*root
= fs_info
->extent_root
;
3680 if ((ffe_ctl
->loop
== LOOP_CACHING_NOWAIT
) &&
3681 ffe_ctl
->have_caching_bg
&& !ffe_ctl
->orig_have_caching_bg
)
3682 ffe_ctl
->orig_have_caching_bg
= true;
3684 if (!ins
->objectid
&& ffe_ctl
->loop
>= LOOP_CACHING_WAIT
&&
3685 ffe_ctl
->have_caching_bg
)
3688 if (!ins
->objectid
&& ++(ffe_ctl
->index
) < BTRFS_NR_RAID_TYPES
)
3691 if (ins
->objectid
) {
3692 if (!use_cluster
&& last_ptr
) {
3693 spin_lock(&last_ptr
->lock
);
3694 last_ptr
->window_start
= ins
->objectid
;
3695 spin_unlock(&last_ptr
->lock
);
3701 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3702 * caching kthreads as we move along
3703 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3704 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3705 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3708 if (ffe_ctl
->loop
< LOOP_NO_EMPTY_SIZE
) {
3710 if (ffe_ctl
->loop
== LOOP_CACHING_NOWAIT
) {
3712 * We want to skip the LOOP_CACHING_WAIT step if we
3713 * don't have any uncached bgs and we've already done a
3714 * full search through.
3716 if (ffe_ctl
->orig_have_caching_bg
|| !full_search
)
3717 ffe_ctl
->loop
= LOOP_CACHING_WAIT
;
3719 ffe_ctl
->loop
= LOOP_ALLOC_CHUNK
;
3724 if (ffe_ctl
->loop
== LOOP_ALLOC_CHUNK
) {
3725 struct btrfs_trans_handle
*trans
;
3728 trans
= current
->journal_info
;
3732 trans
= btrfs_join_transaction(root
);
3734 if (IS_ERR(trans
)) {
3735 ret
= PTR_ERR(trans
);
3739 ret
= btrfs_chunk_alloc(trans
, ffe_ctl
->flags
,
3743 * If we can't allocate a new chunk we've already looped
3744 * through at least once, move on to the NO_EMPTY_SIZE
3748 ffe_ctl
->loop
= LOOP_NO_EMPTY_SIZE
;
3750 /* Do not bail out on ENOSPC since we can do more. */
3751 if (ret
< 0 && ret
!= -ENOSPC
)
3752 btrfs_abort_transaction(trans
, ret
);
3756 btrfs_end_transaction(trans
);
3761 if (ffe_ctl
->loop
== LOOP_NO_EMPTY_SIZE
) {
3763 * Don't loop again if we already have no empty_size and
3766 if (ffe_ctl
->empty_size
== 0 &&
3767 ffe_ctl
->empty_cluster
== 0)
3769 ffe_ctl
->empty_size
= 0;
3770 ffe_ctl
->empty_cluster
= 0;
3778 * walks the btree of allocated extents and find a hole of a given size.
3779 * The key ins is changed to record the hole:
3780 * ins->objectid == start position
3781 * ins->flags = BTRFS_EXTENT_ITEM_KEY
3782 * ins->offset == the size of the hole.
3783 * Any available blocks before search_start are skipped.
3785 * If there is no suitable free space, we will record the max size of
3786 * the free space extent currently.
3788 * The overall logic and call chain:
3790 * find_free_extent()
3791 * |- Iterate through all block groups
3792 * | |- Get a valid block group
3793 * | |- Try to do clustered allocation in that block group
3794 * | |- Try to do unclustered allocation in that block group
3795 * | |- Check if the result is valid
3796 * | | |- If valid, then exit
3797 * | |- Jump to next block group
3799 * |- Push harder to find free extents
3800 * |- If not found, re-iterate all block groups
3802 static noinline
int find_free_extent(struct btrfs_fs_info
*fs_info
,
3803 u64 ram_bytes
, u64 num_bytes
, u64 empty_size
,
3804 u64 hint_byte
, struct btrfs_key
*ins
,
3805 u64 flags
, int delalloc
)
3808 int cache_block_group_error
= 0;
3809 struct btrfs_free_cluster
*last_ptr
= NULL
;
3810 struct btrfs_block_group
*block_group
= NULL
;
3811 struct find_free_extent_ctl ffe_ctl
= {0};
3812 struct btrfs_space_info
*space_info
;
3813 bool use_cluster
= true;
3814 bool full_search
= false;
3816 WARN_ON(num_bytes
< fs_info
->sectorsize
);
3818 ffe_ctl
.num_bytes
= num_bytes
;
3819 ffe_ctl
.empty_size
= empty_size
;
3820 ffe_ctl
.flags
= flags
;
3821 ffe_ctl
.search_start
= 0;
3822 ffe_ctl
.retry_clustered
= false;
3823 ffe_ctl
.retry_unclustered
= false;
3824 ffe_ctl
.delalloc
= delalloc
;
3825 ffe_ctl
.index
= btrfs_bg_flags_to_raid_index(flags
);
3826 ffe_ctl
.have_caching_bg
= false;
3827 ffe_ctl
.orig_have_caching_bg
= false;
3828 ffe_ctl
.found_offset
= 0;
3830 ins
->type
= BTRFS_EXTENT_ITEM_KEY
;
3834 trace_find_free_extent(fs_info
, num_bytes
, empty_size
, flags
);
3836 space_info
= btrfs_find_space_info(fs_info
, flags
);
3838 btrfs_err(fs_info
, "No space info for %llu", flags
);
3843 * If our free space is heavily fragmented we may not be able to make
3844 * big contiguous allocations, so instead of doing the expensive search
3845 * for free space, simply return ENOSPC with our max_extent_size so we
3846 * can go ahead and search for a more manageable chunk.
3848 * If our max_extent_size is large enough for our allocation simply
3849 * disable clustering since we will likely not be able to find enough
3850 * space to create a cluster and induce latency trying.
3852 if (unlikely(space_info
->max_extent_size
)) {
3853 spin_lock(&space_info
->lock
);
3854 if (space_info
->max_extent_size
&&
3855 num_bytes
> space_info
->max_extent_size
) {
3856 ins
->offset
= space_info
->max_extent_size
;
3857 spin_unlock(&space_info
->lock
);
3859 } else if (space_info
->max_extent_size
) {
3860 use_cluster
= false;
3862 spin_unlock(&space_info
->lock
);
3865 last_ptr
= fetch_cluster_info(fs_info
, space_info
,
3866 &ffe_ctl
.empty_cluster
);
3868 spin_lock(&last_ptr
->lock
);
3869 if (last_ptr
->block_group
)
3870 hint_byte
= last_ptr
->window_start
;
3871 if (last_ptr
->fragmented
) {
3873 * We still set window_start so we can keep track of the
3874 * last place we found an allocation to try and save
3877 hint_byte
= last_ptr
->window_start
;
3878 use_cluster
= false;
3880 spin_unlock(&last_ptr
->lock
);
3883 ffe_ctl
.search_start
= max(ffe_ctl
.search_start
,
3884 first_logical_byte(fs_info
, 0));
3885 ffe_ctl
.search_start
= max(ffe_ctl
.search_start
, hint_byte
);
3886 if (ffe_ctl
.search_start
== hint_byte
) {
3887 block_group
= btrfs_lookup_block_group(fs_info
,
3888 ffe_ctl
.search_start
);
3890 * we don't want to use the block group if it doesn't match our
3891 * allocation bits, or if its not cached.
3893 * However if we are re-searching with an ideal block group
3894 * picked out then we don't care that the block group is cached.
3896 if (block_group
&& block_group_bits(block_group
, flags
) &&
3897 block_group
->cached
!= BTRFS_CACHE_NO
) {
3898 down_read(&space_info
->groups_sem
);
3899 if (list_empty(&block_group
->list
) ||
3902 * someone is removing this block group,
3903 * we can't jump into the have_block_group
3904 * target because our list pointers are not
3907 btrfs_put_block_group(block_group
);
3908 up_read(&space_info
->groups_sem
);
3910 ffe_ctl
.index
= btrfs_bg_flags_to_raid_index(
3911 block_group
->flags
);
3912 btrfs_lock_block_group(block_group
, delalloc
);
3913 goto have_block_group
;
3915 } else if (block_group
) {
3916 btrfs_put_block_group(block_group
);
3920 ffe_ctl
.have_caching_bg
= false;
3921 if (ffe_ctl
.index
== btrfs_bg_flags_to_raid_index(flags
) ||
3924 down_read(&space_info
->groups_sem
);
3925 list_for_each_entry(block_group
,
3926 &space_info
->block_groups
[ffe_ctl
.index
], list
) {
3927 /* If the block group is read-only, we can skip it entirely. */
3928 if (unlikely(block_group
->ro
))
3931 btrfs_grab_block_group(block_group
, delalloc
);
3932 ffe_ctl
.search_start
= block_group
->start
;
3935 * this can happen if we end up cycling through all the
3936 * raid types, but we want to make sure we only allocate
3937 * for the proper type.
3939 if (!block_group_bits(block_group
, flags
)) {
3940 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
3941 BTRFS_BLOCK_GROUP_RAID1_MASK
|
3942 BTRFS_BLOCK_GROUP_RAID56_MASK
|
3943 BTRFS_BLOCK_GROUP_RAID10
;
3946 * if they asked for extra copies and this block group
3947 * doesn't provide them, bail. This does allow us to
3948 * fill raid0 from raid1.
3950 if ((flags
& extra
) && !(block_group
->flags
& extra
))
3954 * This block group has different flags than we want.
3955 * It's possible that we have MIXED_GROUP flag but no
3956 * block group is mixed. Just skip such block group.
3958 btrfs_release_block_group(block_group
, delalloc
);
3963 ffe_ctl
.cached
= btrfs_block_group_done(block_group
);
3964 if (unlikely(!ffe_ctl
.cached
)) {
3965 ffe_ctl
.have_caching_bg
= true;
3966 ret
= btrfs_cache_block_group(block_group
, 0);
3969 * If we get ENOMEM here or something else we want to
3970 * try other block groups, because it may not be fatal.
3971 * However if we can't find anything else we need to
3972 * save our return here so that we return the actual
3973 * error that caused problems, not ENOSPC.
3976 if (!cache_block_group_error
)
3977 cache_block_group_error
= ret
;
3984 if (unlikely(block_group
->cached
== BTRFS_CACHE_ERROR
))
3988 * Ok we want to try and use the cluster allocator, so
3991 if (last_ptr
&& use_cluster
) {
3992 struct btrfs_block_group
*cluster_bg
= NULL
;
3994 ret
= find_free_extent_clustered(block_group
, last_ptr
,
3995 &ffe_ctl
, &cluster_bg
);
3998 if (cluster_bg
&& cluster_bg
!= block_group
) {
3999 btrfs_release_block_group(block_group
,
4001 block_group
= cluster_bg
;
4004 } else if (ret
== -EAGAIN
) {
4005 goto have_block_group
;
4006 } else if (ret
> 0) {
4009 /* ret == -ENOENT case falls through */
4012 ret
= find_free_extent_unclustered(block_group
, last_ptr
,
4015 goto have_block_group
;
4018 /* ret == 0 case falls through */
4020 ffe_ctl
.search_start
= round_up(ffe_ctl
.found_offset
,
4021 fs_info
->stripesize
);
4023 /* move on to the next group */
4024 if (ffe_ctl
.search_start
+ num_bytes
>
4025 block_group
->start
+ block_group
->length
) {
4026 btrfs_add_free_space(block_group
, ffe_ctl
.found_offset
,
4031 if (ffe_ctl
.found_offset
< ffe_ctl
.search_start
)
4032 btrfs_add_free_space(block_group
, ffe_ctl
.found_offset
,
4033 ffe_ctl
.search_start
- ffe_ctl
.found_offset
);
4035 ret
= btrfs_add_reserved_bytes(block_group
, ram_bytes
,
4036 num_bytes
, delalloc
);
4037 if (ret
== -EAGAIN
) {
4038 btrfs_add_free_space(block_group
, ffe_ctl
.found_offset
,
4042 btrfs_inc_block_group_reservations(block_group
);
4044 /* we are all good, lets return */
4045 ins
->objectid
= ffe_ctl
.search_start
;
4046 ins
->offset
= num_bytes
;
4048 trace_btrfs_reserve_extent(block_group
, ffe_ctl
.search_start
,
4050 btrfs_release_block_group(block_group
, delalloc
);
4053 ffe_ctl
.retry_clustered
= false;
4054 ffe_ctl
.retry_unclustered
= false;
4055 BUG_ON(btrfs_bg_flags_to_raid_index(block_group
->flags
) !=
4057 btrfs_release_block_group(block_group
, delalloc
);
4060 up_read(&space_info
->groups_sem
);
4062 ret
= find_free_extent_update_loop(fs_info
, last_ptr
, ins
, &ffe_ctl
,
4063 full_search
, use_cluster
);
4067 if (ret
== -ENOSPC
&& !cache_block_group_error
) {
4069 * Use ffe_ctl->total_free_space as fallback if we can't find
4070 * any contiguous hole.
4072 if (!ffe_ctl
.max_extent_size
)
4073 ffe_ctl
.max_extent_size
= ffe_ctl
.total_free_space
;
4074 spin_lock(&space_info
->lock
);
4075 space_info
->max_extent_size
= ffe_ctl
.max_extent_size
;
4076 spin_unlock(&space_info
->lock
);
4077 ins
->offset
= ffe_ctl
.max_extent_size
;
4078 } else if (ret
== -ENOSPC
) {
4079 ret
= cache_block_group_error
;
4085 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4086 * hole that is at least as big as @num_bytes.
4088 * @root - The root that will contain this extent
4090 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4091 * is used for accounting purposes. This value differs
4092 * from @num_bytes only in the case of compressed extents.
4094 * @num_bytes - Number of bytes to allocate on-disk.
4096 * @min_alloc_size - Indicates the minimum amount of space that the
4097 * allocator should try to satisfy. In some cases
4098 * @num_bytes may be larger than what is required and if
4099 * the filesystem is fragmented then allocation fails.
4100 * However, the presence of @min_alloc_size gives a
4101 * chance to try and satisfy the smaller allocation.
4103 * @empty_size - A hint that you plan on doing more COW. This is the
4104 * size in bytes the allocator should try to find free
4105 * next to the block it returns. This is just a hint and
4106 * may be ignored by the allocator.
4108 * @hint_byte - Hint to the allocator to start searching above the byte
4109 * address passed. It might be ignored.
4111 * @ins - This key is modified to record the found hole. It will
4112 * have the following values:
4113 * ins->objectid == start position
4114 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4115 * ins->offset == the size of the hole.
4117 * @is_data - Boolean flag indicating whether an extent is
4118 * allocated for data (true) or metadata (false)
4120 * @delalloc - Boolean flag indicating whether this allocation is for
4121 * delalloc or not. If 'true' data_rwsem of block groups
4122 * is going to be acquired.
4125 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4126 * case -ENOSPC is returned then @ins->offset will contain the size of the
4127 * largest available hole the allocator managed to find.
4129 int btrfs_reserve_extent(struct btrfs_root
*root
, u64 ram_bytes
,
4130 u64 num_bytes
, u64 min_alloc_size
,
4131 u64 empty_size
, u64 hint_byte
,
4132 struct btrfs_key
*ins
, int is_data
, int delalloc
)
4134 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4135 bool final_tried
= num_bytes
== min_alloc_size
;
4139 flags
= get_alloc_profile_by_root(root
, is_data
);
4141 WARN_ON(num_bytes
< fs_info
->sectorsize
);
4142 ret
= find_free_extent(fs_info
, ram_bytes
, num_bytes
, empty_size
,
4143 hint_byte
, ins
, flags
, delalloc
);
4144 if (!ret
&& !is_data
) {
4145 btrfs_dec_block_group_reservations(fs_info
, ins
->objectid
);
4146 } else if (ret
== -ENOSPC
) {
4147 if (!final_tried
&& ins
->offset
) {
4148 num_bytes
= min(num_bytes
>> 1, ins
->offset
);
4149 num_bytes
= round_down(num_bytes
,
4150 fs_info
->sectorsize
);
4151 num_bytes
= max(num_bytes
, min_alloc_size
);
4152 ram_bytes
= num_bytes
;
4153 if (num_bytes
== min_alloc_size
)
4156 } else if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
4157 struct btrfs_space_info
*sinfo
;
4159 sinfo
= btrfs_find_space_info(fs_info
, flags
);
4161 "allocation failed flags %llu, wanted %llu",
4164 btrfs_dump_space_info(fs_info
, sinfo
,
4172 int btrfs_free_reserved_extent(struct btrfs_fs_info
*fs_info
,
4173 u64 start
, u64 len
, int delalloc
)
4175 struct btrfs_block_group
*cache
;
4177 cache
= btrfs_lookup_block_group(fs_info
, start
);
4179 btrfs_err(fs_info
, "Unable to find block group for %llu",
4184 btrfs_add_free_space(cache
, start
, len
);
4185 btrfs_free_reserved_bytes(cache
, len
, delalloc
);
4186 trace_btrfs_reserved_extent_free(fs_info
, start
, len
);
4188 btrfs_put_block_group(cache
);
4192 int btrfs_pin_reserved_extent(struct btrfs_fs_info
*fs_info
, u64 start
, u64 len
)
4194 struct btrfs_block_group
*cache
;
4197 cache
= btrfs_lookup_block_group(fs_info
, start
);
4199 btrfs_err(fs_info
, "unable to find block group for %llu", start
);
4203 ret
= pin_down_extent(cache
, start
, len
, 1);
4204 btrfs_put_block_group(cache
);
4208 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
4209 u64 parent
, u64 root_objectid
,
4210 u64 flags
, u64 owner
, u64 offset
,
4211 struct btrfs_key
*ins
, int ref_mod
)
4213 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
4215 struct btrfs_extent_item
*extent_item
;
4216 struct btrfs_extent_inline_ref
*iref
;
4217 struct btrfs_path
*path
;
4218 struct extent_buffer
*leaf
;
4223 type
= BTRFS_SHARED_DATA_REF_KEY
;
4225 type
= BTRFS_EXTENT_DATA_REF_KEY
;
4227 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
4229 path
= btrfs_alloc_path();
4233 path
->leave_spinning
= 1;
4234 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
4237 btrfs_free_path(path
);
4241 leaf
= path
->nodes
[0];
4242 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4243 struct btrfs_extent_item
);
4244 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
4245 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
4246 btrfs_set_extent_flags(leaf
, extent_item
,
4247 flags
| BTRFS_EXTENT_FLAG_DATA
);
4249 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
4250 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
4252 struct btrfs_shared_data_ref
*ref
;
4253 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
4254 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
4255 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
4257 struct btrfs_extent_data_ref
*ref
;
4258 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
4259 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
4260 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
4261 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
4262 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
4265 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4266 btrfs_free_path(path
);
4268 ret
= remove_from_free_space_tree(trans
, ins
->objectid
, ins
->offset
);
4272 ret
= btrfs_update_block_group(trans
, ins
->objectid
, ins
->offset
, 1);
4273 if (ret
) { /* -ENOENT, logic error */
4274 btrfs_err(fs_info
, "update block group failed for %llu %llu",
4275 ins
->objectid
, ins
->offset
);
4278 trace_btrfs_reserved_extent_alloc(fs_info
, ins
->objectid
, ins
->offset
);
4282 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
4283 struct btrfs_delayed_ref_node
*node
,
4284 struct btrfs_delayed_extent_op
*extent_op
)
4286 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
4288 struct btrfs_extent_item
*extent_item
;
4289 struct btrfs_key extent_key
;
4290 struct btrfs_tree_block_info
*block_info
;
4291 struct btrfs_extent_inline_ref
*iref
;
4292 struct btrfs_path
*path
;
4293 struct extent_buffer
*leaf
;
4294 struct btrfs_delayed_tree_ref
*ref
;
4295 u32 size
= sizeof(*extent_item
) + sizeof(*iref
);
4297 u64 flags
= extent_op
->flags_to_set
;
4298 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
4300 ref
= btrfs_delayed_node_to_tree_ref(node
);
4302 extent_key
.objectid
= node
->bytenr
;
4303 if (skinny_metadata
) {
4304 extent_key
.offset
= ref
->level
;
4305 extent_key
.type
= BTRFS_METADATA_ITEM_KEY
;
4306 num_bytes
= fs_info
->nodesize
;
4308 extent_key
.offset
= node
->num_bytes
;
4309 extent_key
.type
= BTRFS_EXTENT_ITEM_KEY
;
4310 size
+= sizeof(*block_info
);
4311 num_bytes
= node
->num_bytes
;
4314 path
= btrfs_alloc_path();
4318 path
->leave_spinning
= 1;
4319 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
4322 btrfs_free_path(path
);
4326 leaf
= path
->nodes
[0];
4327 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4328 struct btrfs_extent_item
);
4329 btrfs_set_extent_refs(leaf
, extent_item
, 1);
4330 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
4331 btrfs_set_extent_flags(leaf
, extent_item
,
4332 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
4334 if (skinny_metadata
) {
4335 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
4337 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
4338 btrfs_set_tree_block_key(leaf
, block_info
, &extent_op
->key
);
4339 btrfs_set_tree_block_level(leaf
, block_info
, ref
->level
);
4340 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
4343 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
4344 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
4345 btrfs_set_extent_inline_ref_type(leaf
, iref
,
4346 BTRFS_SHARED_BLOCK_REF_KEY
);
4347 btrfs_set_extent_inline_ref_offset(leaf
, iref
, ref
->parent
);
4349 btrfs_set_extent_inline_ref_type(leaf
, iref
,
4350 BTRFS_TREE_BLOCK_REF_KEY
);
4351 btrfs_set_extent_inline_ref_offset(leaf
, iref
, ref
->root
);
4354 btrfs_mark_buffer_dirty(leaf
);
4355 btrfs_free_path(path
);
4357 ret
= remove_from_free_space_tree(trans
, extent_key
.objectid
,
4362 ret
= btrfs_update_block_group(trans
, extent_key
.objectid
,
4363 fs_info
->nodesize
, 1);
4364 if (ret
) { /* -ENOENT, logic error */
4365 btrfs_err(fs_info
, "update block group failed for %llu %llu",
4366 extent_key
.objectid
, extent_key
.offset
);
4370 trace_btrfs_reserved_extent_alloc(fs_info
, extent_key
.objectid
,
4375 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
4376 struct btrfs_root
*root
, u64 owner
,
4377 u64 offset
, u64 ram_bytes
,
4378 struct btrfs_key
*ins
)
4380 struct btrfs_ref generic_ref
= { 0 };
4383 BUG_ON(root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
);
4385 btrfs_init_generic_ref(&generic_ref
, BTRFS_ADD_DELAYED_EXTENT
,
4386 ins
->objectid
, ins
->offset
, 0);
4387 btrfs_init_data_ref(&generic_ref
, root
->root_key
.objectid
, owner
, offset
);
4388 btrfs_ref_tree_mod(root
->fs_info
, &generic_ref
);
4389 ret
= btrfs_add_delayed_data_ref(trans
, &generic_ref
,
4390 ram_bytes
, NULL
, NULL
);
4395 * this is used by the tree logging recovery code. It records that
4396 * an extent has been allocated and makes sure to clear the free
4397 * space cache bits as well
4399 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
4400 u64 root_objectid
, u64 owner
, u64 offset
,
4401 struct btrfs_key
*ins
)
4403 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
4405 struct btrfs_block_group
*block_group
;
4406 struct btrfs_space_info
*space_info
;
4409 * Mixed block groups will exclude before processing the log so we only
4410 * need to do the exclude dance if this fs isn't mixed.
4412 if (!btrfs_fs_incompat(fs_info
, MIXED_GROUPS
)) {
4413 ret
= __exclude_logged_extent(fs_info
, ins
->objectid
,
4419 block_group
= btrfs_lookup_block_group(fs_info
, ins
->objectid
);
4423 space_info
= block_group
->space_info
;
4424 spin_lock(&space_info
->lock
);
4425 spin_lock(&block_group
->lock
);
4426 space_info
->bytes_reserved
+= ins
->offset
;
4427 block_group
->reserved
+= ins
->offset
;
4428 spin_unlock(&block_group
->lock
);
4429 spin_unlock(&space_info
->lock
);
4431 ret
= alloc_reserved_file_extent(trans
, 0, root_objectid
, 0, owner
,
4434 btrfs_pin_extent(fs_info
, ins
->objectid
, ins
->offset
, 1);
4435 btrfs_put_block_group(block_group
);
4439 static struct extent_buffer
*
4440 btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4441 u64 bytenr
, int level
, u64 owner
)
4443 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4444 struct extent_buffer
*buf
;
4446 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
4451 * Extra safety check in case the extent tree is corrupted and extent
4452 * allocator chooses to use a tree block which is already used and
4455 if (buf
->lock_owner
== current
->pid
) {
4456 btrfs_err_rl(fs_info
,
4457 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4458 buf
->start
, btrfs_header_owner(buf
), current
->pid
);
4459 free_extent_buffer(buf
);
4460 return ERR_PTR(-EUCLEAN
);
4463 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, buf
, level
);
4464 btrfs_tree_lock(buf
);
4465 btrfs_clean_tree_block(buf
);
4466 clear_bit(EXTENT_BUFFER_STALE
, &buf
->bflags
);
4468 btrfs_set_lock_blocking_write(buf
);
4469 set_extent_buffer_uptodate(buf
);
4471 memzero_extent_buffer(buf
, 0, sizeof(struct btrfs_header
));
4472 btrfs_set_header_level(buf
, level
);
4473 btrfs_set_header_bytenr(buf
, buf
->start
);
4474 btrfs_set_header_generation(buf
, trans
->transid
);
4475 btrfs_set_header_backref_rev(buf
, BTRFS_MIXED_BACKREF_REV
);
4476 btrfs_set_header_owner(buf
, owner
);
4477 write_extent_buffer_fsid(buf
, fs_info
->fs_devices
->metadata_uuid
);
4478 write_extent_buffer_chunk_tree_uuid(buf
, fs_info
->chunk_tree_uuid
);
4479 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
4480 buf
->log_index
= root
->log_transid
% 2;
4482 * we allow two log transactions at a time, use different
4483 * EXTENT bit to differentiate dirty pages.
4485 if (buf
->log_index
== 0)
4486 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
4487 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
4489 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
4490 buf
->start
+ buf
->len
- 1);
4492 buf
->log_index
= -1;
4493 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
4494 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
4496 trans
->dirty
= true;
4497 /* this returns a buffer locked for blocking */
4502 * finds a free extent and does all the dirty work required for allocation
4503 * returns the tree buffer or an ERR_PTR on error.
4505 struct extent_buffer
*btrfs_alloc_tree_block(struct btrfs_trans_handle
*trans
,
4506 struct btrfs_root
*root
,
4507 u64 parent
, u64 root_objectid
,
4508 const struct btrfs_disk_key
*key
,
4509 int level
, u64 hint
,
4512 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4513 struct btrfs_key ins
;
4514 struct btrfs_block_rsv
*block_rsv
;
4515 struct extent_buffer
*buf
;
4516 struct btrfs_delayed_extent_op
*extent_op
;
4517 struct btrfs_ref generic_ref
= { 0 };
4520 u32 blocksize
= fs_info
->nodesize
;
4521 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
4523 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4524 if (btrfs_is_testing(fs_info
)) {
4525 buf
= btrfs_init_new_buffer(trans
, root
, root
->alloc_bytenr
,
4526 level
, root_objectid
);
4528 root
->alloc_bytenr
+= blocksize
;
4533 block_rsv
= btrfs_use_block_rsv(trans
, root
, blocksize
);
4534 if (IS_ERR(block_rsv
))
4535 return ERR_CAST(block_rsv
);
4537 ret
= btrfs_reserve_extent(root
, blocksize
, blocksize
, blocksize
,
4538 empty_size
, hint
, &ins
, 0, 0);
4542 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
, level
,
4546 goto out_free_reserved
;
4549 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
4551 parent
= ins
.objectid
;
4552 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
4556 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4557 extent_op
= btrfs_alloc_delayed_extent_op();
4563 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
4565 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
4566 extent_op
->flags_to_set
= flags
;
4567 extent_op
->update_key
= skinny_metadata
? false : true;
4568 extent_op
->update_flags
= true;
4569 extent_op
->is_data
= false;
4570 extent_op
->level
= level
;
4572 btrfs_init_generic_ref(&generic_ref
, BTRFS_ADD_DELAYED_EXTENT
,
4573 ins
.objectid
, ins
.offset
, parent
);
4574 generic_ref
.real_root
= root
->root_key
.objectid
;
4575 btrfs_init_tree_ref(&generic_ref
, level
, root_objectid
);
4576 btrfs_ref_tree_mod(fs_info
, &generic_ref
);
4577 ret
= btrfs_add_delayed_tree_ref(trans
, &generic_ref
,
4578 extent_op
, NULL
, NULL
);
4580 goto out_free_delayed
;
4585 btrfs_free_delayed_extent_op(extent_op
);
4587 free_extent_buffer(buf
);
4589 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 0);
4591 btrfs_unuse_block_rsv(fs_info
, block_rsv
, blocksize
);
4592 return ERR_PTR(ret
);
4595 struct walk_control
{
4596 u64 refs
[BTRFS_MAX_LEVEL
];
4597 u64 flags
[BTRFS_MAX_LEVEL
];
4598 struct btrfs_key update_progress
;
4599 struct btrfs_key drop_progress
;
4611 #define DROP_REFERENCE 1
4612 #define UPDATE_BACKREF 2
4614 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
4615 struct btrfs_root
*root
,
4616 struct walk_control
*wc
,
4617 struct btrfs_path
*path
)
4619 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4625 struct btrfs_key key
;
4626 struct extent_buffer
*eb
;
4631 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
4632 wc
->reada_count
= wc
->reada_count
* 2 / 3;
4633 wc
->reada_count
= max(wc
->reada_count
, 2);
4635 wc
->reada_count
= wc
->reada_count
* 3 / 2;
4636 wc
->reada_count
= min_t(int, wc
->reada_count
,
4637 BTRFS_NODEPTRS_PER_BLOCK(fs_info
));
4640 eb
= path
->nodes
[wc
->level
];
4641 nritems
= btrfs_header_nritems(eb
);
4643 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
4644 if (nread
>= wc
->reada_count
)
4648 bytenr
= btrfs_node_blockptr(eb
, slot
);
4649 generation
= btrfs_node_ptr_generation(eb
, slot
);
4651 if (slot
== path
->slots
[wc
->level
])
4654 if (wc
->stage
== UPDATE_BACKREF
&&
4655 generation
<= root
->root_key
.offset
)
4658 /* We don't lock the tree block, it's OK to be racy here */
4659 ret
= btrfs_lookup_extent_info(trans
, fs_info
, bytenr
,
4660 wc
->level
- 1, 1, &refs
,
4662 /* We don't care about errors in readahead. */
4667 if (wc
->stage
== DROP_REFERENCE
) {
4671 if (wc
->level
== 1 &&
4672 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
4674 if (!wc
->update_ref
||
4675 generation
<= root
->root_key
.offset
)
4677 btrfs_node_key_to_cpu(eb
, &key
, slot
);
4678 ret
= btrfs_comp_cpu_keys(&key
,
4679 &wc
->update_progress
);
4683 if (wc
->level
== 1 &&
4684 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
4688 readahead_tree_block(fs_info
, bytenr
);
4691 wc
->reada_slot
= slot
;
4695 * helper to process tree block while walking down the tree.
4697 * when wc->stage == UPDATE_BACKREF, this function updates
4698 * back refs for pointers in the block.
4700 * NOTE: return value 1 means we should stop walking down.
4702 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
4703 struct btrfs_root
*root
,
4704 struct btrfs_path
*path
,
4705 struct walk_control
*wc
, int lookup_info
)
4707 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4708 int level
= wc
->level
;
4709 struct extent_buffer
*eb
= path
->nodes
[level
];
4710 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
4713 if (wc
->stage
== UPDATE_BACKREF
&&
4714 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
4718 * when reference count of tree block is 1, it won't increase
4719 * again. once full backref flag is set, we never clear it.
4722 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
4723 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
4724 BUG_ON(!path
->locks
[level
]);
4725 ret
= btrfs_lookup_extent_info(trans
, fs_info
,
4726 eb
->start
, level
, 1,
4729 BUG_ON(ret
== -ENOMEM
);
4732 BUG_ON(wc
->refs
[level
] == 0);
4735 if (wc
->stage
== DROP_REFERENCE
) {
4736 if (wc
->refs
[level
] > 1)
4739 if (path
->locks
[level
] && !wc
->keep_locks
) {
4740 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
4741 path
->locks
[level
] = 0;
4746 /* wc->stage == UPDATE_BACKREF */
4747 if (!(wc
->flags
[level
] & flag
)) {
4748 BUG_ON(!path
->locks
[level
]);
4749 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
4750 BUG_ON(ret
); /* -ENOMEM */
4751 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
4752 BUG_ON(ret
); /* -ENOMEM */
4753 ret
= btrfs_set_disk_extent_flags(trans
, eb
->start
,
4755 btrfs_header_level(eb
), 0);
4756 BUG_ON(ret
); /* -ENOMEM */
4757 wc
->flags
[level
] |= flag
;
4761 * the block is shared by multiple trees, so it's not good to
4762 * keep the tree lock
4764 if (path
->locks
[level
] && level
> 0) {
4765 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
4766 path
->locks
[level
] = 0;
4772 * This is used to verify a ref exists for this root to deal with a bug where we
4773 * would have a drop_progress key that hadn't been updated properly.
4775 static int check_ref_exists(struct btrfs_trans_handle
*trans
,
4776 struct btrfs_root
*root
, u64 bytenr
, u64 parent
,
4779 struct btrfs_path
*path
;
4780 struct btrfs_extent_inline_ref
*iref
;
4783 path
= btrfs_alloc_path();
4787 ret
= lookup_extent_backref(trans
, path
, &iref
, bytenr
,
4788 root
->fs_info
->nodesize
, parent
,
4789 root
->root_key
.objectid
, level
, 0);
4790 btrfs_free_path(path
);
4799 * helper to process tree block pointer.
4801 * when wc->stage == DROP_REFERENCE, this function checks
4802 * reference count of the block pointed to. if the block
4803 * is shared and we need update back refs for the subtree
4804 * rooted at the block, this function changes wc->stage to
4805 * UPDATE_BACKREF. if the block is shared and there is no
4806 * need to update back, this function drops the reference
4809 * NOTE: return value 1 means we should stop walking down.
4811 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
4812 struct btrfs_root
*root
,
4813 struct btrfs_path
*path
,
4814 struct walk_control
*wc
, int *lookup_info
)
4816 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4820 struct btrfs_key key
;
4821 struct btrfs_key first_key
;
4822 struct btrfs_ref ref
= { 0 };
4823 struct extent_buffer
*next
;
4824 int level
= wc
->level
;
4827 bool need_account
= false;
4829 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
4830 path
->slots
[level
]);
4832 * if the lower level block was created before the snapshot
4833 * was created, we know there is no need to update back refs
4836 if (wc
->stage
== UPDATE_BACKREF
&&
4837 generation
<= root
->root_key
.offset
) {
4842 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
4843 btrfs_node_key_to_cpu(path
->nodes
[level
], &first_key
,
4844 path
->slots
[level
]);
4846 next
= find_extent_buffer(fs_info
, bytenr
);
4848 next
= btrfs_find_create_tree_block(fs_info
, bytenr
);
4850 return PTR_ERR(next
);
4852 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, next
,
4856 btrfs_tree_lock(next
);
4857 btrfs_set_lock_blocking_write(next
);
4859 ret
= btrfs_lookup_extent_info(trans
, fs_info
, bytenr
, level
- 1, 1,
4860 &wc
->refs
[level
- 1],
4861 &wc
->flags
[level
- 1]);
4865 if (unlikely(wc
->refs
[level
- 1] == 0)) {
4866 btrfs_err(fs_info
, "Missing references.");
4872 if (wc
->stage
== DROP_REFERENCE
) {
4873 if (wc
->refs
[level
- 1] > 1) {
4874 need_account
= true;
4876 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
4879 if (!wc
->update_ref
||
4880 generation
<= root
->root_key
.offset
)
4883 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
4884 path
->slots
[level
]);
4885 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
4889 wc
->stage
= UPDATE_BACKREF
;
4890 wc
->shared_level
= level
- 1;
4894 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
4898 if (!btrfs_buffer_uptodate(next
, generation
, 0)) {
4899 btrfs_tree_unlock(next
);
4900 free_extent_buffer(next
);
4906 if (reada
&& level
== 1)
4907 reada_walk_down(trans
, root
, wc
, path
);
4908 next
= read_tree_block(fs_info
, bytenr
, generation
, level
- 1,
4911 return PTR_ERR(next
);
4912 } else if (!extent_buffer_uptodate(next
)) {
4913 free_extent_buffer(next
);
4916 btrfs_tree_lock(next
);
4917 btrfs_set_lock_blocking_write(next
);
4921 ASSERT(level
== btrfs_header_level(next
));
4922 if (level
!= btrfs_header_level(next
)) {
4923 btrfs_err(root
->fs_info
, "mismatched level");
4927 path
->nodes
[level
] = next
;
4928 path
->slots
[level
] = 0;
4929 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
4935 wc
->refs
[level
- 1] = 0;
4936 wc
->flags
[level
- 1] = 0;
4937 if (wc
->stage
== DROP_REFERENCE
) {
4938 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
4939 parent
= path
->nodes
[level
]->start
;
4941 ASSERT(root
->root_key
.objectid
==
4942 btrfs_header_owner(path
->nodes
[level
]));
4943 if (root
->root_key
.objectid
!=
4944 btrfs_header_owner(path
->nodes
[level
])) {
4945 btrfs_err(root
->fs_info
,
4946 "mismatched block owner");
4954 * If we had a drop_progress we need to verify the refs are set
4955 * as expected. If we find our ref then we know that from here
4956 * on out everything should be correct, and we can clear the
4959 if (wc
->restarted
) {
4960 ret
= check_ref_exists(trans
, root
, bytenr
, parent
,
4971 * Reloc tree doesn't contribute to qgroup numbers, and we have
4972 * already accounted them at merge time (replace_path),
4973 * thus we could skip expensive subtree trace here.
4975 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
&&
4977 ret
= btrfs_qgroup_trace_subtree(trans
, next
,
4978 generation
, level
- 1);
4980 btrfs_err_rl(fs_info
,
4981 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
4987 * We need to update the next key in our walk control so we can
4988 * update the drop_progress key accordingly. We don't care if
4989 * find_next_key doesn't find a key because that means we're at
4990 * the end and are going to clean up now.
4992 wc
->drop_level
= level
;
4993 find_next_key(path
, level
, &wc
->drop_progress
);
4995 btrfs_init_generic_ref(&ref
, BTRFS_DROP_DELAYED_REF
, bytenr
,
4996 fs_info
->nodesize
, parent
);
4997 btrfs_init_tree_ref(&ref
, level
- 1, root
->root_key
.objectid
);
4998 ret
= btrfs_free_extent(trans
, &ref
);
5007 btrfs_tree_unlock(next
);
5008 free_extent_buffer(next
);
5014 * helper to process tree block while walking up the tree.
5016 * when wc->stage == DROP_REFERENCE, this function drops
5017 * reference count on the block.
5019 * when wc->stage == UPDATE_BACKREF, this function changes
5020 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5021 * to UPDATE_BACKREF previously while processing the block.
5023 * NOTE: return value 1 means we should stop walking up.
5025 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
5026 struct btrfs_root
*root
,
5027 struct btrfs_path
*path
,
5028 struct walk_control
*wc
)
5030 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5032 int level
= wc
->level
;
5033 struct extent_buffer
*eb
= path
->nodes
[level
];
5036 if (wc
->stage
== UPDATE_BACKREF
) {
5037 BUG_ON(wc
->shared_level
< level
);
5038 if (level
< wc
->shared_level
)
5041 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
5045 wc
->stage
= DROP_REFERENCE
;
5046 wc
->shared_level
= -1;
5047 path
->slots
[level
] = 0;
5050 * check reference count again if the block isn't locked.
5051 * we should start walking down the tree again if reference
5054 if (!path
->locks
[level
]) {
5056 btrfs_tree_lock(eb
);
5057 btrfs_set_lock_blocking_write(eb
);
5058 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
5060 ret
= btrfs_lookup_extent_info(trans
, fs_info
,
5061 eb
->start
, level
, 1,
5065 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
5066 path
->locks
[level
] = 0;
5069 BUG_ON(wc
->refs
[level
] == 0);
5070 if (wc
->refs
[level
] == 1) {
5071 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
5072 path
->locks
[level
] = 0;
5078 /* wc->stage == DROP_REFERENCE */
5079 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
5081 if (wc
->refs
[level
] == 1) {
5083 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
5084 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
5086 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
5087 BUG_ON(ret
); /* -ENOMEM */
5088 if (is_fstree(root
->root_key
.objectid
)) {
5089 ret
= btrfs_qgroup_trace_leaf_items(trans
, eb
);
5091 btrfs_err_rl(fs_info
,
5092 "error %d accounting leaf items, quota is out of sync, rescan required",
5097 /* make block locked assertion in btrfs_clean_tree_block happy */
5098 if (!path
->locks
[level
] &&
5099 btrfs_header_generation(eb
) == trans
->transid
) {
5100 btrfs_tree_lock(eb
);
5101 btrfs_set_lock_blocking_write(eb
);
5102 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
5104 btrfs_clean_tree_block(eb
);
5107 if (eb
== root
->node
) {
5108 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
5110 else if (root
->root_key
.objectid
!= btrfs_header_owner(eb
))
5111 goto owner_mismatch
;
5113 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
5114 parent
= path
->nodes
[level
+ 1]->start
;
5115 else if (root
->root_key
.objectid
!=
5116 btrfs_header_owner(path
->nodes
[level
+ 1]))
5117 goto owner_mismatch
;
5120 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
5122 wc
->refs
[level
] = 0;
5123 wc
->flags
[level
] = 0;
5127 btrfs_err_rl(fs_info
, "unexpected tree owner, have %llu expect %llu",
5128 btrfs_header_owner(eb
), root
->root_key
.objectid
);
5132 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
5133 struct btrfs_root
*root
,
5134 struct btrfs_path
*path
,
5135 struct walk_control
*wc
)
5137 int level
= wc
->level
;
5138 int lookup_info
= 1;
5141 while (level
>= 0) {
5142 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
5149 if (path
->slots
[level
] >=
5150 btrfs_header_nritems(path
->nodes
[level
]))
5153 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
5155 path
->slots
[level
]++;
5164 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
5165 struct btrfs_root
*root
,
5166 struct btrfs_path
*path
,
5167 struct walk_control
*wc
, int max_level
)
5169 int level
= wc
->level
;
5172 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
5173 while (level
< max_level
&& path
->nodes
[level
]) {
5175 if (path
->slots
[level
] + 1 <
5176 btrfs_header_nritems(path
->nodes
[level
])) {
5177 path
->slots
[level
]++;
5180 ret
= walk_up_proc(trans
, root
, path
, wc
);
5186 if (path
->locks
[level
]) {
5187 btrfs_tree_unlock_rw(path
->nodes
[level
],
5188 path
->locks
[level
]);
5189 path
->locks
[level
] = 0;
5191 free_extent_buffer(path
->nodes
[level
]);
5192 path
->nodes
[level
] = NULL
;
5200 * drop a subvolume tree.
5202 * this function traverses the tree freeing any blocks that only
5203 * referenced by the tree.
5205 * when a shared tree block is found. this function decreases its
5206 * reference count by one. if update_ref is true, this function
5207 * also make sure backrefs for the shared block and all lower level
5208 * blocks are properly updated.
5210 * If called with for_reloc == 0, may exit early with -EAGAIN
5212 int btrfs_drop_snapshot(struct btrfs_root
*root
,
5213 struct btrfs_block_rsv
*block_rsv
, int update_ref
,
5216 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5217 struct btrfs_path
*path
;
5218 struct btrfs_trans_handle
*trans
;
5219 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
5220 struct btrfs_root_item
*root_item
= &root
->root_item
;
5221 struct walk_control
*wc
;
5222 struct btrfs_key key
;
5226 bool root_dropped
= false;
5228 btrfs_debug(fs_info
, "Drop subvolume %llu", root
->root_key
.objectid
);
5230 path
= btrfs_alloc_path();
5236 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
5238 btrfs_free_path(path
);
5243 trans
= btrfs_start_transaction(tree_root
, 0);
5244 if (IS_ERR(trans
)) {
5245 err
= PTR_ERR(trans
);
5249 err
= btrfs_run_delayed_items(trans
);
5254 trans
->block_rsv
= block_rsv
;
5257 * This will help us catch people modifying the fs tree while we're
5258 * dropping it. It is unsafe to mess with the fs tree while it's being
5259 * dropped as we unlock the root node and parent nodes as we walk down
5260 * the tree, assuming nothing will change. If something does change
5261 * then we'll have stale information and drop references to blocks we've
5264 set_bit(BTRFS_ROOT_DELETING
, &root
->state
);
5265 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
5266 level
= btrfs_header_level(root
->node
);
5267 path
->nodes
[level
] = btrfs_lock_root_node(root
);
5268 btrfs_set_lock_blocking_write(path
->nodes
[level
]);
5269 path
->slots
[level
] = 0;
5270 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
5271 memset(&wc
->update_progress
, 0,
5272 sizeof(wc
->update_progress
));
5274 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
5275 memcpy(&wc
->update_progress
, &key
,
5276 sizeof(wc
->update_progress
));
5278 level
= root_item
->drop_level
;
5280 path
->lowest_level
= level
;
5281 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5282 path
->lowest_level
= 0;
5290 * unlock our path, this is safe because only this
5291 * function is allowed to delete this snapshot
5293 btrfs_unlock_up_safe(path
, 0);
5295 level
= btrfs_header_level(root
->node
);
5297 btrfs_tree_lock(path
->nodes
[level
]);
5298 btrfs_set_lock_blocking_write(path
->nodes
[level
]);
5299 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
5301 ret
= btrfs_lookup_extent_info(trans
, fs_info
,
5302 path
->nodes
[level
]->start
,
5303 level
, 1, &wc
->refs
[level
],
5309 BUG_ON(wc
->refs
[level
] == 0);
5311 if (level
== root_item
->drop_level
)
5314 btrfs_tree_unlock(path
->nodes
[level
]);
5315 path
->locks
[level
] = 0;
5316 WARN_ON(wc
->refs
[level
] != 1);
5321 wc
->restarted
= test_bit(BTRFS_ROOT_DEAD_TREE
, &root
->state
);
5323 wc
->shared_level
= -1;
5324 wc
->stage
= DROP_REFERENCE
;
5325 wc
->update_ref
= update_ref
;
5327 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
);
5331 ret
= walk_down_tree(trans
, root
, path
, wc
);
5337 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
5344 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
5348 if (wc
->stage
== DROP_REFERENCE
) {
5349 wc
->drop_level
= wc
->level
;
5350 btrfs_node_key_to_cpu(path
->nodes
[wc
->drop_level
],
5352 path
->slots
[wc
->drop_level
]);
5354 btrfs_cpu_key_to_disk(&root_item
->drop_progress
,
5355 &wc
->drop_progress
);
5356 root_item
->drop_level
= wc
->drop_level
;
5358 BUG_ON(wc
->level
== 0);
5359 if (btrfs_should_end_transaction(trans
) ||
5360 (!for_reloc
&& btrfs_need_cleaner_sleep(fs_info
))) {
5361 ret
= btrfs_update_root(trans
, tree_root
,
5365 btrfs_abort_transaction(trans
, ret
);
5370 btrfs_end_transaction_throttle(trans
);
5371 if (!for_reloc
&& btrfs_need_cleaner_sleep(fs_info
)) {
5372 btrfs_debug(fs_info
,
5373 "drop snapshot early exit");
5378 trans
= btrfs_start_transaction(tree_root
, 0);
5379 if (IS_ERR(trans
)) {
5380 err
= PTR_ERR(trans
);
5384 trans
->block_rsv
= block_rsv
;
5387 btrfs_release_path(path
);
5391 ret
= btrfs_del_root(trans
, &root
->root_key
);
5393 btrfs_abort_transaction(trans
, ret
);
5398 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
5399 ret
= btrfs_find_root(tree_root
, &root
->root_key
, path
,
5402 btrfs_abort_transaction(trans
, ret
);
5405 } else if (ret
> 0) {
5406 /* if we fail to delete the orphan item this time
5407 * around, it'll get picked up the next time.
5409 * The most common failure here is just -ENOENT.
5411 btrfs_del_orphan_item(trans
, tree_root
,
5412 root
->root_key
.objectid
);
5416 if (test_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
)) {
5417 btrfs_add_dropped_root(trans
, root
);
5419 free_extent_buffer(root
->node
);
5420 free_extent_buffer(root
->commit_root
);
5421 btrfs_put_fs_root(root
);
5423 root_dropped
= true;
5425 btrfs_end_transaction_throttle(trans
);
5428 btrfs_free_path(path
);
5431 * So if we need to stop dropping the snapshot for whatever reason we
5432 * need to make sure to add it back to the dead root list so that we
5433 * keep trying to do the work later. This also cleans up roots if we
5434 * don't have it in the radix (like when we recover after a power fail
5435 * or unmount) so we don't leak memory.
5437 if (!for_reloc
&& !root_dropped
)
5438 btrfs_add_dead_root(root
);
5439 if (err
&& err
!= -EAGAIN
)
5440 btrfs_handle_fs_error(fs_info
, err
, NULL
);
5445 * drop subtree rooted at tree block 'node'.
5447 * NOTE: this function will unlock and release tree block 'node'
5448 * only used by relocation code
5450 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
5451 struct btrfs_root
*root
,
5452 struct extent_buffer
*node
,
5453 struct extent_buffer
*parent
)
5455 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5456 struct btrfs_path
*path
;
5457 struct walk_control
*wc
;
5463 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
5465 path
= btrfs_alloc_path();
5469 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
5471 btrfs_free_path(path
);
5475 btrfs_assert_tree_locked(parent
);
5476 parent_level
= btrfs_header_level(parent
);
5477 atomic_inc(&parent
->refs
);
5478 path
->nodes
[parent_level
] = parent
;
5479 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
5481 btrfs_assert_tree_locked(node
);
5482 level
= btrfs_header_level(node
);
5483 path
->nodes
[level
] = node
;
5484 path
->slots
[level
] = 0;
5485 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
5487 wc
->refs
[parent_level
] = 1;
5488 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
5490 wc
->shared_level
= -1;
5491 wc
->stage
= DROP_REFERENCE
;
5494 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
);
5497 wret
= walk_down_tree(trans
, root
, path
, wc
);
5503 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
5511 btrfs_free_path(path
);
5516 * helper to account the unused space of all the readonly block group in the
5517 * space_info. takes mirrors into account.
5519 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
5521 struct btrfs_block_group
*block_group
;
5525 /* It's df, we don't care if it's racy */
5526 if (list_empty(&sinfo
->ro_bgs
))
5529 spin_lock(&sinfo
->lock
);
5530 list_for_each_entry(block_group
, &sinfo
->ro_bgs
, ro_list
) {
5531 spin_lock(&block_group
->lock
);
5533 if (!block_group
->ro
) {
5534 spin_unlock(&block_group
->lock
);
5538 factor
= btrfs_bg_type_to_factor(block_group
->flags
);
5539 free_bytes
+= (block_group
->length
-
5540 block_group
->used
) * factor
;
5542 spin_unlock(&block_group
->lock
);
5544 spin_unlock(&sinfo
->lock
);
5549 int btrfs_error_unpin_extent_range(struct btrfs_fs_info
*fs_info
,
5552 return unpin_extent_range(fs_info
, start
, end
, false);
5556 * It used to be that old block groups would be left around forever.
5557 * Iterating over them would be enough to trim unused space. Since we
5558 * now automatically remove them, we also need to iterate over unallocated
5561 * We don't want a transaction for this since the discard may take a
5562 * substantial amount of time. We don't require that a transaction be
5563 * running, but we do need to take a running transaction into account
5564 * to ensure that we're not discarding chunks that were released or
5565 * allocated in the current transaction.
5567 * Holding the chunks lock will prevent other threads from allocating
5568 * or releasing chunks, but it won't prevent a running transaction
5569 * from committing and releasing the memory that the pending chunks
5570 * list head uses. For that, we need to take a reference to the
5571 * transaction and hold the commit root sem. We only need to hold
5572 * it while performing the free space search since we have already
5573 * held back allocations.
5575 static int btrfs_trim_free_extents(struct btrfs_device
*device
, u64
*trimmed
)
5577 u64 start
= SZ_1M
, len
= 0, end
= 0;
5582 /* Discard not supported = nothing to do. */
5583 if (!blk_queue_discard(bdev_get_queue(device
->bdev
)))
5586 /* Not writable = nothing to do. */
5587 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
5590 /* No free space = nothing to do. */
5591 if (device
->total_bytes
<= device
->bytes_used
)
5597 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
5600 ret
= mutex_lock_interruptible(&fs_info
->chunk_mutex
);
5604 find_first_clear_extent_bit(&device
->alloc_state
, start
,
5606 CHUNK_TRIMMED
| CHUNK_ALLOCATED
);
5608 /* Ensure we skip the reserved area in the first 1M */
5609 start
= max_t(u64
, start
, SZ_1M
);
5612 * If find_first_clear_extent_bit find a range that spans the
5613 * end of the device it will set end to -1, in this case it's up
5614 * to the caller to trim the value to the size of the device.
5616 end
= min(end
, device
->total_bytes
- 1);
5618 len
= end
- start
+ 1;
5620 /* We didn't find any extents */
5622 mutex_unlock(&fs_info
->chunk_mutex
);
5627 ret
= btrfs_issue_discard(device
->bdev
, start
, len
,
5630 set_extent_bits(&device
->alloc_state
, start
,
5633 mutex_unlock(&fs_info
->chunk_mutex
);
5641 if (fatal_signal_pending(current
)) {
5653 * Trim the whole filesystem by:
5654 * 1) trimming the free space in each block group
5655 * 2) trimming the unallocated space on each device
5657 * This will also continue trimming even if a block group or device encounters
5658 * an error. The return value will be the last error, or 0 if nothing bad
5661 int btrfs_trim_fs(struct btrfs_fs_info
*fs_info
, struct fstrim_range
*range
)
5663 struct btrfs_block_group
*cache
= NULL
;
5664 struct btrfs_device
*device
;
5665 struct list_head
*devices
;
5667 u64 range_end
= U64_MAX
;
5678 * Check range overflow if range->len is set.
5679 * The default range->len is U64_MAX.
5681 if (range
->len
!= U64_MAX
&&
5682 check_add_overflow(range
->start
, range
->len
, &range_end
))
5685 cache
= btrfs_lookup_first_block_group(fs_info
, range
->start
);
5686 for (; cache
; cache
= btrfs_next_block_group(cache
)) {
5687 if (cache
->start
>= range_end
) {
5688 btrfs_put_block_group(cache
);
5692 start
= max(range
->start
, cache
->start
);
5693 end
= min(range_end
, cache
->start
+ cache
->length
);
5695 if (end
- start
>= range
->minlen
) {
5696 if (!btrfs_block_group_done(cache
)) {
5697 ret
= btrfs_cache_block_group(cache
, 0);
5703 ret
= btrfs_wait_block_group_cache_done(cache
);
5710 ret
= btrfs_trim_block_group(cache
,
5716 trimmed
+= group_trimmed
;
5727 "failed to trim %llu block group(s), last error %d",
5729 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
5730 devices
= &fs_info
->fs_devices
->devices
;
5731 list_for_each_entry(device
, devices
, dev_list
) {
5732 ret
= btrfs_trim_free_extents(device
, &group_trimmed
);
5739 trimmed
+= group_trimmed
;
5741 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
5745 "failed to trim %llu device(s), last error %d",
5746 dev_failed
, dev_ret
);
5747 range
->len
= trimmed
;
5754 * btrfs_{start,end}_write_no_snapshotting() are similar to
5755 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
5756 * data into the page cache through nocow before the subvolume is snapshoted,
5757 * but flush the data into disk after the snapshot creation, or to prevent
5758 * operations while snapshotting is ongoing and that cause the snapshot to be
5759 * inconsistent (writes followed by expanding truncates for example).
5761 void btrfs_end_write_no_snapshotting(struct btrfs_root
*root
)
5763 percpu_counter_dec(&root
->subv_writers
->counter
);
5764 cond_wake_up(&root
->subv_writers
->wait
);
5767 int btrfs_start_write_no_snapshotting(struct btrfs_root
*root
)
5769 if (atomic_read(&root
->will_be_snapshotted
))
5772 percpu_counter_inc(&root
->subv_writers
->counter
);
5774 * Make sure counter is updated before we check for snapshot creation.
5777 if (atomic_read(&root
->will_be_snapshotted
)) {
5778 btrfs_end_write_no_snapshotting(root
);
5784 void btrfs_wait_for_snapshot_creation(struct btrfs_root
*root
)
5789 ret
= btrfs_start_write_no_snapshotting(root
);
5792 wait_var_event(&root
->will_be_snapshotted
,
5793 !atomic_read(&root
->will_be_snapshotted
));