1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/sched/mm.h>
32 #include <asm/unaligned.h>
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "ordered-data.h"
43 #include "compression.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
49 #include "delalloc-space.h"
50 #include "block-group.h"
52 struct btrfs_iget_args
{
53 struct btrfs_key
*location
;
54 struct btrfs_root
*root
;
57 struct btrfs_dio_data
{
59 u64 unsubmitted_oe_range_start
;
60 u64 unsubmitted_oe_range_end
;
64 static const struct inode_operations btrfs_dir_inode_operations
;
65 static const struct inode_operations btrfs_symlink_inode_operations
;
66 static const struct inode_operations btrfs_special_inode_operations
;
67 static const struct inode_operations btrfs_file_inode_operations
;
68 static const struct address_space_operations btrfs_aops
;
69 static const struct file_operations btrfs_dir_file_operations
;
70 static const struct extent_io_ops btrfs_extent_io_ops
;
72 static struct kmem_cache
*btrfs_inode_cachep
;
73 struct kmem_cache
*btrfs_trans_handle_cachep
;
74 struct kmem_cache
*btrfs_path_cachep
;
75 struct kmem_cache
*btrfs_free_space_cachep
;
76 struct kmem_cache
*btrfs_free_space_bitmap_cachep
;
78 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
);
79 static int btrfs_truncate(struct inode
*inode
, bool skip_writeback
);
80 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
);
81 static noinline
int cow_file_range(struct inode
*inode
,
82 struct page
*locked_page
,
83 u64 start
, u64 end
, int *page_started
,
84 unsigned long *nr_written
, int unlock
);
85 static struct extent_map
*create_io_em(struct inode
*inode
, u64 start
, u64 len
,
86 u64 orig_start
, u64 block_start
,
87 u64 block_len
, u64 orig_block_len
,
88 u64 ram_bytes
, int compress_type
,
91 static void __endio_write_update_ordered(struct inode
*inode
,
92 const u64 offset
, const u64 bytes
,
96 * Cleanup all submitted ordered extents in specified range to handle errors
97 * from the btrfs_run_delalloc_range() callback.
99 * NOTE: caller must ensure that when an error happens, it can not call
100 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
101 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
102 * to be released, which we want to happen only when finishing the ordered
103 * extent (btrfs_finish_ordered_io()).
105 static inline void btrfs_cleanup_ordered_extents(struct inode
*inode
,
106 struct page
*locked_page
,
107 u64 offset
, u64 bytes
)
109 unsigned long index
= offset
>> PAGE_SHIFT
;
110 unsigned long end_index
= (offset
+ bytes
- 1) >> PAGE_SHIFT
;
111 u64 page_start
= page_offset(locked_page
);
112 u64 page_end
= page_start
+ PAGE_SIZE
- 1;
116 while (index
<= end_index
) {
117 page
= find_get_page(inode
->i_mapping
, index
);
121 ClearPagePrivate2(page
);
126 * In case this page belongs to the delalloc range being instantiated
127 * then skip it, since the first page of a range is going to be
128 * properly cleaned up by the caller of run_delalloc_range
130 if (page_start
>= offset
&& page_end
<= (offset
+ bytes
- 1)) {
135 return __endio_write_update_ordered(inode
, offset
, bytes
, false);
138 static int btrfs_dirty_inode(struct inode
*inode
);
140 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
141 void btrfs_test_inode_set_ops(struct inode
*inode
)
143 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
147 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
148 struct inode
*inode
, struct inode
*dir
,
149 const struct qstr
*qstr
)
153 err
= btrfs_init_acl(trans
, inode
, dir
);
155 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
160 * this does all the hard work for inserting an inline extent into
161 * the btree. The caller should have done a btrfs_drop_extents so that
162 * no overlapping inline items exist in the btree
164 static int insert_inline_extent(struct btrfs_trans_handle
*trans
,
165 struct btrfs_path
*path
, int extent_inserted
,
166 struct btrfs_root
*root
, struct inode
*inode
,
167 u64 start
, size_t size
, size_t compressed_size
,
169 struct page
**compressed_pages
)
171 struct extent_buffer
*leaf
;
172 struct page
*page
= NULL
;
175 struct btrfs_file_extent_item
*ei
;
177 size_t cur_size
= size
;
178 unsigned long offset
;
180 ASSERT((compressed_size
> 0 && compressed_pages
) ||
181 (compressed_size
== 0 && !compressed_pages
));
183 if (compressed_size
&& compressed_pages
)
184 cur_size
= compressed_size
;
186 inode_add_bytes(inode
, size
);
188 if (!extent_inserted
) {
189 struct btrfs_key key
;
192 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
194 key
.type
= BTRFS_EXTENT_DATA_KEY
;
196 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
197 path
->leave_spinning
= 1;
198 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
203 leaf
= path
->nodes
[0];
204 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
205 struct btrfs_file_extent_item
);
206 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
207 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
208 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
209 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
210 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
211 ptr
= btrfs_file_extent_inline_start(ei
);
213 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
216 while (compressed_size
> 0) {
217 cpage
= compressed_pages
[i
];
218 cur_size
= min_t(unsigned long, compressed_size
,
221 kaddr
= kmap_atomic(cpage
);
222 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
223 kunmap_atomic(kaddr
);
227 compressed_size
-= cur_size
;
229 btrfs_set_file_extent_compression(leaf
, ei
,
232 page
= find_get_page(inode
->i_mapping
,
233 start
>> PAGE_SHIFT
);
234 btrfs_set_file_extent_compression(leaf
, ei
, 0);
235 kaddr
= kmap_atomic(page
);
236 offset
= offset_in_page(start
);
237 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
238 kunmap_atomic(kaddr
);
241 btrfs_mark_buffer_dirty(leaf
);
242 btrfs_release_path(path
);
245 * we're an inline extent, so nobody can
246 * extend the file past i_size without locking
247 * a page we already have locked.
249 * We must do any isize and inode updates
250 * before we unlock the pages. Otherwise we
251 * could end up racing with unlink.
253 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
254 ret
= btrfs_update_inode(trans
, root
, inode
);
262 * conditionally insert an inline extent into the file. This
263 * does the checks required to make sure the data is small enough
264 * to fit as an inline extent.
266 static noinline
int cow_file_range_inline(struct inode
*inode
, u64 start
,
267 u64 end
, size_t compressed_size
,
269 struct page
**compressed_pages
)
271 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
272 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
273 struct btrfs_trans_handle
*trans
;
274 u64 isize
= i_size_read(inode
);
275 u64 actual_end
= min(end
+ 1, isize
);
276 u64 inline_len
= actual_end
- start
;
277 u64 aligned_end
= ALIGN(end
, fs_info
->sectorsize
);
278 u64 data_len
= inline_len
;
280 struct btrfs_path
*path
;
281 int extent_inserted
= 0;
282 u32 extent_item_size
;
285 data_len
= compressed_size
;
288 actual_end
> fs_info
->sectorsize
||
289 data_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
) ||
291 (actual_end
& (fs_info
->sectorsize
- 1)) == 0) ||
293 data_len
> fs_info
->max_inline
) {
297 path
= btrfs_alloc_path();
301 trans
= btrfs_join_transaction(root
);
303 btrfs_free_path(path
);
304 return PTR_ERR(trans
);
306 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
308 if (compressed_size
&& compressed_pages
)
309 extent_item_size
= btrfs_file_extent_calc_inline_size(
312 extent_item_size
= btrfs_file_extent_calc_inline_size(
315 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
316 start
, aligned_end
, NULL
,
317 1, 1, extent_item_size
, &extent_inserted
);
319 btrfs_abort_transaction(trans
, ret
);
323 if (isize
> actual_end
)
324 inline_len
= min_t(u64
, isize
, actual_end
);
325 ret
= insert_inline_extent(trans
, path
, extent_inserted
,
327 inline_len
, compressed_size
,
328 compress_type
, compressed_pages
);
329 if (ret
&& ret
!= -ENOSPC
) {
330 btrfs_abort_transaction(trans
, ret
);
332 } else if (ret
== -ENOSPC
) {
337 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
338 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, aligned_end
- 1, 0);
341 * Don't forget to free the reserved space, as for inlined extent
342 * it won't count as data extent, free them directly here.
343 * And at reserve time, it's always aligned to page size, so
344 * just free one page here.
346 btrfs_qgroup_free_data(inode
, NULL
, 0, PAGE_SIZE
);
347 btrfs_free_path(path
);
348 btrfs_end_transaction(trans
);
352 struct async_extent
{
357 unsigned long nr_pages
;
359 struct list_head list
;
364 struct page
*locked_page
;
367 unsigned int write_flags
;
368 struct list_head extents
;
369 struct cgroup_subsys_state
*blkcg_css
;
370 struct btrfs_work work
;
375 /* Number of chunks in flight; must be first in the structure */
377 struct async_chunk chunks
[];
380 static noinline
int add_async_extent(struct async_chunk
*cow
,
381 u64 start
, u64 ram_size
,
384 unsigned long nr_pages
,
387 struct async_extent
*async_extent
;
389 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
390 BUG_ON(!async_extent
); /* -ENOMEM */
391 async_extent
->start
= start
;
392 async_extent
->ram_size
= ram_size
;
393 async_extent
->compressed_size
= compressed_size
;
394 async_extent
->pages
= pages
;
395 async_extent
->nr_pages
= nr_pages
;
396 async_extent
->compress_type
= compress_type
;
397 list_add_tail(&async_extent
->list
, &cow
->extents
);
402 * Check if the inode has flags compatible with compression
404 static inline bool inode_can_compress(struct inode
*inode
)
406 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
||
407 BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
413 * Check if the inode needs to be submitted to compression, based on mount
414 * options, defragmentation, properties or heuristics.
416 static inline int inode_need_compress(struct inode
*inode
, u64 start
, u64 end
)
418 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
420 if (!inode_can_compress(inode
)) {
421 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG
),
422 KERN_ERR
"BTRFS: unexpected compression for ino %llu\n",
423 btrfs_ino(BTRFS_I(inode
)));
427 if (btrfs_test_opt(fs_info
, FORCE_COMPRESS
))
430 if (BTRFS_I(inode
)->defrag_compress
)
432 /* bad compression ratios */
433 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
435 if (btrfs_test_opt(fs_info
, COMPRESS
) ||
436 BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
||
437 BTRFS_I(inode
)->prop_compress
)
438 return btrfs_compress_heuristic(inode
, start
, end
);
442 static inline void inode_should_defrag(struct btrfs_inode
*inode
,
443 u64 start
, u64 end
, u64 num_bytes
, u64 small_write
)
445 /* If this is a small write inside eof, kick off a defrag */
446 if (num_bytes
< small_write
&&
447 (start
> 0 || end
+ 1 < inode
->disk_i_size
))
448 btrfs_add_inode_defrag(NULL
, inode
);
452 * we create compressed extents in two phases. The first
453 * phase compresses a range of pages that have already been
454 * locked (both pages and state bits are locked).
456 * This is done inside an ordered work queue, and the compression
457 * is spread across many cpus. The actual IO submission is step
458 * two, and the ordered work queue takes care of making sure that
459 * happens in the same order things were put onto the queue by
460 * writepages and friends.
462 * If this code finds it can't get good compression, it puts an
463 * entry onto the work queue to write the uncompressed bytes. This
464 * makes sure that both compressed inodes and uncompressed inodes
465 * are written in the same order that the flusher thread sent them
468 static noinline
int compress_file_range(struct async_chunk
*async_chunk
)
470 struct inode
*inode
= async_chunk
->inode
;
471 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
472 u64 blocksize
= fs_info
->sectorsize
;
473 u64 start
= async_chunk
->start
;
474 u64 end
= async_chunk
->end
;
478 struct page
**pages
= NULL
;
479 unsigned long nr_pages
;
480 unsigned long total_compressed
= 0;
481 unsigned long total_in
= 0;
484 int compress_type
= fs_info
->compress_type
;
485 int compressed_extents
= 0;
488 inode_should_defrag(BTRFS_I(inode
), start
, end
, end
- start
+ 1,
492 * We need to save i_size before now because it could change in between
493 * us evaluating the size and assigning it. This is because we lock and
494 * unlock the page in truncate and fallocate, and then modify the i_size
497 * The barriers are to emulate READ_ONCE, remove that once i_size_read
501 i_size
= i_size_read(inode
);
503 actual_end
= min_t(u64
, i_size
, end
+ 1);
506 nr_pages
= (end
>> PAGE_SHIFT
) - (start
>> PAGE_SHIFT
) + 1;
507 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED
% PAGE_SIZE
) != 0);
508 nr_pages
= min_t(unsigned long, nr_pages
,
509 BTRFS_MAX_COMPRESSED
/ PAGE_SIZE
);
512 * we don't want to send crud past the end of i_size through
513 * compression, that's just a waste of CPU time. So, if the
514 * end of the file is before the start of our current
515 * requested range of bytes, we bail out to the uncompressed
516 * cleanup code that can deal with all of this.
518 * It isn't really the fastest way to fix things, but this is a
519 * very uncommon corner.
521 if (actual_end
<= start
)
522 goto cleanup_and_bail_uncompressed
;
524 total_compressed
= actual_end
- start
;
527 * skip compression for a small file range(<=blocksize) that
528 * isn't an inline extent, since it doesn't save disk space at all.
530 if (total_compressed
<= blocksize
&&
531 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
532 goto cleanup_and_bail_uncompressed
;
534 total_compressed
= min_t(unsigned long, total_compressed
,
535 BTRFS_MAX_UNCOMPRESSED
);
540 * we do compression for mount -o compress and when the
541 * inode has not been flagged as nocompress. This flag can
542 * change at any time if we discover bad compression ratios.
544 if (inode_need_compress(inode
, start
, end
)) {
546 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_NOFS
);
548 /* just bail out to the uncompressed code */
553 if (BTRFS_I(inode
)->defrag_compress
)
554 compress_type
= BTRFS_I(inode
)->defrag_compress
;
555 else if (BTRFS_I(inode
)->prop_compress
)
556 compress_type
= BTRFS_I(inode
)->prop_compress
;
559 * we need to call clear_page_dirty_for_io on each
560 * page in the range. Otherwise applications with the file
561 * mmap'd can wander in and change the page contents while
562 * we are compressing them.
564 * If the compression fails for any reason, we set the pages
565 * dirty again later on.
567 * Note that the remaining part is redirtied, the start pointer
568 * has moved, the end is the original one.
571 extent_range_clear_dirty_for_io(inode
, start
, end
);
575 /* Compression level is applied here and only here */
576 ret
= btrfs_compress_pages(
577 compress_type
| (fs_info
->compress_level
<< 4),
578 inode
->i_mapping
, start
,
585 unsigned long offset
= offset_in_page(total_compressed
);
586 struct page
*page
= pages
[nr_pages
- 1];
589 /* zero the tail end of the last page, we might be
590 * sending it down to disk
593 kaddr
= kmap_atomic(page
);
594 memset(kaddr
+ offset
, 0,
596 kunmap_atomic(kaddr
);
603 /* lets try to make an inline extent */
604 if (ret
|| total_in
< actual_end
) {
605 /* we didn't compress the entire range, try
606 * to make an uncompressed inline extent.
608 ret
= cow_file_range_inline(inode
, start
, end
, 0,
609 BTRFS_COMPRESS_NONE
, NULL
);
611 /* try making a compressed inline extent */
612 ret
= cow_file_range_inline(inode
, start
, end
,
614 compress_type
, pages
);
617 unsigned long clear_flags
= EXTENT_DELALLOC
|
618 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
619 EXTENT_DO_ACCOUNTING
;
620 unsigned long page_error_op
;
622 page_error_op
= ret
< 0 ? PAGE_SET_ERROR
: 0;
625 * inline extent creation worked or returned error,
626 * we don't need to create any more async work items.
627 * Unlock and free up our temp pages.
629 * We use DO_ACCOUNTING here because we need the
630 * delalloc_release_metadata to be done _after_ we drop
631 * our outstanding extent for clearing delalloc for this
634 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
,
642 for (i
= 0; i
< nr_pages
; i
++) {
643 WARN_ON(pages
[i
]->mapping
);
654 * we aren't doing an inline extent round the compressed size
655 * up to a block size boundary so the allocator does sane
658 total_compressed
= ALIGN(total_compressed
, blocksize
);
661 * one last check to make sure the compression is really a
662 * win, compare the page count read with the blocks on disk,
663 * compression must free at least one sector size
665 total_in
= ALIGN(total_in
, PAGE_SIZE
);
666 if (total_compressed
+ blocksize
<= total_in
) {
667 compressed_extents
++;
670 * The async work queues will take care of doing actual
671 * allocation on disk for these compressed pages, and
672 * will submit them to the elevator.
674 add_async_extent(async_chunk
, start
, total_in
,
675 total_compressed
, pages
, nr_pages
,
678 if (start
+ total_in
< end
) {
684 return compressed_extents
;
689 * the compression code ran but failed to make things smaller,
690 * free any pages it allocated and our page pointer array
692 for (i
= 0; i
< nr_pages
; i
++) {
693 WARN_ON(pages
[i
]->mapping
);
698 total_compressed
= 0;
701 /* flag the file so we don't compress in the future */
702 if (!btrfs_test_opt(fs_info
, FORCE_COMPRESS
) &&
703 !(BTRFS_I(inode
)->prop_compress
)) {
704 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
707 cleanup_and_bail_uncompressed
:
709 * No compression, but we still need to write the pages in the file
710 * we've been given so far. redirty the locked page if it corresponds
711 * to our extent and set things up for the async work queue to run
712 * cow_file_range to do the normal delalloc dance.
714 if (async_chunk
->locked_page
&&
715 (page_offset(async_chunk
->locked_page
) >= start
&&
716 page_offset(async_chunk
->locked_page
)) <= end
) {
717 __set_page_dirty_nobuffers(async_chunk
->locked_page
);
718 /* unlocked later on in the async handlers */
722 extent_range_redirty_for_io(inode
, start
, end
);
723 add_async_extent(async_chunk
, start
, end
- start
+ 1, 0, NULL
, 0,
724 BTRFS_COMPRESS_NONE
);
725 compressed_extents
++;
727 return compressed_extents
;
730 static void free_async_extent_pages(struct async_extent
*async_extent
)
734 if (!async_extent
->pages
)
737 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
738 WARN_ON(async_extent
->pages
[i
]->mapping
);
739 put_page(async_extent
->pages
[i
]);
741 kfree(async_extent
->pages
);
742 async_extent
->nr_pages
= 0;
743 async_extent
->pages
= NULL
;
747 * phase two of compressed writeback. This is the ordered portion
748 * of the code, which only gets called in the order the work was
749 * queued. We walk all the async extents created by compress_file_range
750 * and send them down to the disk.
752 static noinline
void submit_compressed_extents(struct async_chunk
*async_chunk
)
754 struct inode
*inode
= async_chunk
->inode
;
755 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
756 struct async_extent
*async_extent
;
758 struct btrfs_key ins
;
759 struct extent_map
*em
;
760 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
761 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
765 while (!list_empty(&async_chunk
->extents
)) {
766 async_extent
= list_entry(async_chunk
->extents
.next
,
767 struct async_extent
, list
);
768 list_del(&async_extent
->list
);
771 lock_extent(io_tree
, async_extent
->start
,
772 async_extent
->start
+ async_extent
->ram_size
- 1);
773 /* did the compression code fall back to uncompressed IO? */
774 if (!async_extent
->pages
) {
775 int page_started
= 0;
776 unsigned long nr_written
= 0;
778 /* allocate blocks */
779 ret
= cow_file_range(inode
, async_chunk
->locked_page
,
781 async_extent
->start
+
782 async_extent
->ram_size
- 1,
783 &page_started
, &nr_written
, 0);
788 * if page_started, cow_file_range inserted an
789 * inline extent and took care of all the unlocking
790 * and IO for us. Otherwise, we need to submit
791 * all those pages down to the drive.
793 if (!page_started
&& !ret
)
794 extent_write_locked_range(inode
,
796 async_extent
->start
+
797 async_extent
->ram_size
- 1,
799 else if (ret
&& async_chunk
->locked_page
)
800 unlock_page(async_chunk
->locked_page
);
806 ret
= btrfs_reserve_extent(root
, async_extent
->ram_size
,
807 async_extent
->compressed_size
,
808 async_extent
->compressed_size
,
809 0, alloc_hint
, &ins
, 1, 1);
811 free_async_extent_pages(async_extent
);
813 if (ret
== -ENOSPC
) {
814 unlock_extent(io_tree
, async_extent
->start
,
815 async_extent
->start
+
816 async_extent
->ram_size
- 1);
819 * we need to redirty the pages if we decide to
820 * fallback to uncompressed IO, otherwise we
821 * will not submit these pages down to lower
824 extent_range_redirty_for_io(inode
,
826 async_extent
->start
+
827 async_extent
->ram_size
- 1);
834 * here we're doing allocation and writeback of the
837 em
= create_io_em(inode
, async_extent
->start
,
838 async_extent
->ram_size
, /* len */
839 async_extent
->start
, /* orig_start */
840 ins
.objectid
, /* block_start */
841 ins
.offset
, /* block_len */
842 ins
.offset
, /* orig_block_len */
843 async_extent
->ram_size
, /* ram_bytes */
844 async_extent
->compress_type
,
845 BTRFS_ORDERED_COMPRESSED
);
847 /* ret value is not necessary due to void function */
848 goto out_free_reserve
;
851 ret
= btrfs_add_ordered_extent_compress(inode
,
854 async_extent
->ram_size
,
856 BTRFS_ORDERED_COMPRESSED
,
857 async_extent
->compress_type
);
859 btrfs_drop_extent_cache(BTRFS_I(inode
),
861 async_extent
->start
+
862 async_extent
->ram_size
- 1, 0);
863 goto out_free_reserve
;
865 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
868 * clear dirty, set writeback and unlock the pages.
870 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
871 async_extent
->start
+
872 async_extent
->ram_size
- 1,
873 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
,
874 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
876 if (btrfs_submit_compressed_write(inode
,
878 async_extent
->ram_size
,
880 ins
.offset
, async_extent
->pages
,
881 async_extent
->nr_pages
,
882 async_chunk
->write_flags
,
883 async_chunk
->blkcg_css
)) {
884 struct page
*p
= async_extent
->pages
[0];
885 const u64 start
= async_extent
->start
;
886 const u64 end
= start
+ async_extent
->ram_size
- 1;
888 p
->mapping
= inode
->i_mapping
;
889 btrfs_writepage_endio_finish_ordered(p
, start
, end
, 0);
892 extent_clear_unlock_delalloc(inode
, start
, end
,
896 free_async_extent_pages(async_extent
);
898 alloc_hint
= ins
.objectid
+ ins
.offset
;
904 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
905 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
907 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
908 async_extent
->start
+
909 async_extent
->ram_size
- 1,
910 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
|
911 EXTENT_DELALLOC_NEW
|
912 EXTENT_DEFRAG
| EXTENT_DO_ACCOUNTING
,
913 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
914 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
|
916 free_async_extent_pages(async_extent
);
921 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
924 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
925 struct extent_map
*em
;
928 read_lock(&em_tree
->lock
);
929 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
932 * if block start isn't an actual block number then find the
933 * first block in this inode and use that as a hint. If that
934 * block is also bogus then just don't worry about it.
936 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
938 em
= search_extent_mapping(em_tree
, 0, 0);
939 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
940 alloc_hint
= em
->block_start
;
944 alloc_hint
= em
->block_start
;
948 read_unlock(&em_tree
->lock
);
954 * when extent_io.c finds a delayed allocation range in the file,
955 * the call backs end up in this code. The basic idea is to
956 * allocate extents on disk for the range, and create ordered data structs
957 * in ram to track those extents.
959 * locked_page is the page that writepage had locked already. We use
960 * it to make sure we don't do extra locks or unlocks.
962 * *page_started is set to one if we unlock locked_page and do everything
963 * required to start IO on it. It may be clean and already done with
966 static noinline
int cow_file_range(struct inode
*inode
,
967 struct page
*locked_page
,
968 u64 start
, u64 end
, int *page_started
,
969 unsigned long *nr_written
, int unlock
)
971 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
972 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
975 unsigned long ram_size
;
976 u64 cur_alloc_size
= 0;
977 u64 blocksize
= fs_info
->sectorsize
;
978 struct btrfs_key ins
;
979 struct extent_map
*em
;
981 unsigned long page_ops
;
982 bool extent_reserved
= false;
985 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
991 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
992 num_bytes
= max(blocksize
, num_bytes
);
993 ASSERT(num_bytes
<= btrfs_super_total_bytes(fs_info
->super_copy
));
995 inode_should_defrag(BTRFS_I(inode
), start
, end
, num_bytes
, SZ_64K
);
998 /* lets try to make an inline extent */
999 ret
= cow_file_range_inline(inode
, start
, end
, 0,
1000 BTRFS_COMPRESS_NONE
, NULL
);
1003 * We use DO_ACCOUNTING here because we need the
1004 * delalloc_release_metadata to be run _after_ we drop
1005 * our outstanding extent for clearing delalloc for this
1008 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
,
1009 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1010 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
1011 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1012 PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
1013 PAGE_END_WRITEBACK
);
1014 *nr_written
= *nr_written
+
1015 (end
- start
+ PAGE_SIZE
) / PAGE_SIZE
;
1018 } else if (ret
< 0) {
1023 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
1024 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
1025 start
+ num_bytes
- 1, 0);
1027 while (num_bytes
> 0) {
1028 cur_alloc_size
= num_bytes
;
1029 ret
= btrfs_reserve_extent(root
, cur_alloc_size
, cur_alloc_size
,
1030 fs_info
->sectorsize
, 0, alloc_hint
,
1034 cur_alloc_size
= ins
.offset
;
1035 extent_reserved
= true;
1037 ram_size
= ins
.offset
;
1038 em
= create_io_em(inode
, start
, ins
.offset
, /* len */
1039 start
, /* orig_start */
1040 ins
.objectid
, /* block_start */
1041 ins
.offset
, /* block_len */
1042 ins
.offset
, /* orig_block_len */
1043 ram_size
, /* ram_bytes */
1044 BTRFS_COMPRESS_NONE
, /* compress_type */
1045 BTRFS_ORDERED_REGULAR
/* type */);
1050 free_extent_map(em
);
1052 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
1053 ram_size
, cur_alloc_size
, 0);
1055 goto out_drop_extent_cache
;
1057 if (root
->root_key
.objectid
==
1058 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1059 ret
= btrfs_reloc_clone_csums(inode
, start
,
1062 * Only drop cache here, and process as normal.
1064 * We must not allow extent_clear_unlock_delalloc()
1065 * at out_unlock label to free meta of this ordered
1066 * extent, as its meta should be freed by
1067 * btrfs_finish_ordered_io().
1069 * So we must continue until @start is increased to
1070 * skip current ordered extent.
1073 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
1074 start
+ ram_size
- 1, 0);
1077 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1079 /* we're not doing compressed IO, don't unlock the first
1080 * page (which the caller expects to stay locked), don't
1081 * clear any dirty bits and don't set any writeback bits
1083 * Do set the Private2 bit so we know this page was properly
1084 * setup for writepage
1086 page_ops
= unlock
? PAGE_UNLOCK
: 0;
1087 page_ops
|= PAGE_SET_PRIVATE2
;
1089 extent_clear_unlock_delalloc(inode
, start
,
1090 start
+ ram_size
- 1,
1092 EXTENT_LOCKED
| EXTENT_DELALLOC
,
1094 if (num_bytes
< cur_alloc_size
)
1097 num_bytes
-= cur_alloc_size
;
1098 alloc_hint
= ins
.objectid
+ ins
.offset
;
1099 start
+= cur_alloc_size
;
1100 extent_reserved
= false;
1103 * btrfs_reloc_clone_csums() error, since start is increased
1104 * extent_clear_unlock_delalloc() at out_unlock label won't
1105 * free metadata of current ordered extent, we're OK to exit.
1113 out_drop_extent_cache
:
1114 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, start
+ ram_size
- 1, 0);
1116 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1117 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
1119 clear_bits
= EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
1120 EXTENT_DEFRAG
| EXTENT_CLEAR_META_RESV
;
1121 page_ops
= PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
1124 * If we reserved an extent for our delalloc range (or a subrange) and
1125 * failed to create the respective ordered extent, then it means that
1126 * when we reserved the extent we decremented the extent's size from
1127 * the data space_info's bytes_may_use counter and incremented the
1128 * space_info's bytes_reserved counter by the same amount. We must make
1129 * sure extent_clear_unlock_delalloc() does not try to decrement again
1130 * the data space_info's bytes_may_use counter, therefore we do not pass
1131 * it the flag EXTENT_CLEAR_DATA_RESV.
1133 if (extent_reserved
) {
1134 extent_clear_unlock_delalloc(inode
, start
,
1135 start
+ cur_alloc_size
,
1139 start
+= cur_alloc_size
;
1143 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1144 clear_bits
| EXTENT_CLEAR_DATA_RESV
,
1150 * work queue call back to started compression on a file and pages
1152 static noinline
void async_cow_start(struct btrfs_work
*work
)
1154 struct async_chunk
*async_chunk
;
1155 int compressed_extents
;
1157 async_chunk
= container_of(work
, struct async_chunk
, work
);
1159 compressed_extents
= compress_file_range(async_chunk
);
1160 if (compressed_extents
== 0) {
1161 btrfs_add_delayed_iput(async_chunk
->inode
);
1162 async_chunk
->inode
= NULL
;
1167 * work queue call back to submit previously compressed pages
1169 static noinline
void async_cow_submit(struct btrfs_work
*work
)
1171 struct async_chunk
*async_chunk
= container_of(work
, struct async_chunk
,
1173 struct btrfs_fs_info
*fs_info
= btrfs_work_owner(work
);
1174 unsigned long nr_pages
;
1176 nr_pages
= (async_chunk
->end
- async_chunk
->start
+ PAGE_SIZE
) >>
1179 /* atomic_sub_return implies a barrier */
1180 if (atomic_sub_return(nr_pages
, &fs_info
->async_delalloc_pages
) <
1182 cond_wake_up_nomb(&fs_info
->async_submit_wait
);
1185 * ->inode could be NULL if async_chunk_start has failed to compress,
1186 * in which case we don't have anything to submit, yet we need to
1187 * always adjust ->async_delalloc_pages as its paired with the init
1188 * happening in cow_file_range_async
1190 if (async_chunk
->inode
)
1191 submit_compressed_extents(async_chunk
);
1194 static noinline
void async_cow_free(struct btrfs_work
*work
)
1196 struct async_chunk
*async_chunk
;
1198 async_chunk
= container_of(work
, struct async_chunk
, work
);
1199 if (async_chunk
->inode
)
1200 btrfs_add_delayed_iput(async_chunk
->inode
);
1201 if (async_chunk
->blkcg_css
)
1202 css_put(async_chunk
->blkcg_css
);
1204 * Since the pointer to 'pending' is at the beginning of the array of
1205 * async_chunk's, freeing it ensures the whole array has been freed.
1207 if (atomic_dec_and_test(async_chunk
->pending
))
1208 kvfree(async_chunk
->pending
);
1211 static int cow_file_range_async(struct inode
*inode
,
1212 struct writeback_control
*wbc
,
1213 struct page
*locked_page
,
1214 u64 start
, u64 end
, int *page_started
,
1215 unsigned long *nr_written
)
1217 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1218 struct cgroup_subsys_state
*blkcg_css
= wbc_blkcg_css(wbc
);
1219 struct async_cow
*ctx
;
1220 struct async_chunk
*async_chunk
;
1221 unsigned long nr_pages
;
1223 u64 num_chunks
= DIV_ROUND_UP(end
- start
, SZ_512K
);
1225 bool should_compress
;
1227 const unsigned int write_flags
= wbc_to_write_flags(wbc
);
1229 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
, end
);
1231 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
&&
1232 !btrfs_test_opt(fs_info
, FORCE_COMPRESS
)) {
1234 should_compress
= false;
1236 should_compress
= true;
1239 nofs_flag
= memalloc_nofs_save();
1240 ctx
= kvmalloc(struct_size(ctx
, chunks
, num_chunks
), GFP_KERNEL
);
1241 memalloc_nofs_restore(nofs_flag
);
1244 unsigned clear_bits
= EXTENT_LOCKED
| EXTENT_DELALLOC
|
1245 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
1246 EXTENT_DO_ACCOUNTING
;
1247 unsigned long page_ops
= PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
1248 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
|
1251 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1252 clear_bits
, page_ops
);
1256 async_chunk
= ctx
->chunks
;
1257 atomic_set(&ctx
->num_chunks
, num_chunks
);
1259 for (i
= 0; i
< num_chunks
; i
++) {
1260 if (should_compress
)
1261 cur_end
= min(end
, start
+ SZ_512K
- 1);
1266 * igrab is called higher up in the call chain, take only the
1267 * lightweight reference for the callback lifetime
1270 async_chunk
[i
].pending
= &ctx
->num_chunks
;
1271 async_chunk
[i
].inode
= inode
;
1272 async_chunk
[i
].start
= start
;
1273 async_chunk
[i
].end
= cur_end
;
1274 async_chunk
[i
].write_flags
= write_flags
;
1275 INIT_LIST_HEAD(&async_chunk
[i
].extents
);
1278 * The locked_page comes all the way from writepage and its
1279 * the original page we were actually given. As we spread
1280 * this large delalloc region across multiple async_chunk
1281 * structs, only the first struct needs a pointer to locked_page
1283 * This way we don't need racey decisions about who is supposed
1288 * Depending on the compressibility, the pages might or
1289 * might not go through async. We want all of them to
1290 * be accounted against wbc once. Let's do it here
1291 * before the paths diverge. wbc accounting is used
1292 * only for foreign writeback detection and doesn't
1293 * need full accuracy. Just account the whole thing
1294 * against the first page.
1296 wbc_account_cgroup_owner(wbc
, locked_page
,
1298 async_chunk
[i
].locked_page
= locked_page
;
1301 async_chunk
[i
].locked_page
= NULL
;
1304 if (blkcg_css
!= blkcg_root_css
) {
1306 async_chunk
[i
].blkcg_css
= blkcg_css
;
1308 async_chunk
[i
].blkcg_css
= NULL
;
1311 btrfs_init_work(&async_chunk
[i
].work
, async_cow_start
,
1312 async_cow_submit
, async_cow_free
);
1314 nr_pages
= DIV_ROUND_UP(cur_end
- start
, PAGE_SIZE
);
1315 atomic_add(nr_pages
, &fs_info
->async_delalloc_pages
);
1317 btrfs_queue_work(fs_info
->delalloc_workers
, &async_chunk
[i
].work
);
1319 *nr_written
+= nr_pages
;
1320 start
= cur_end
+ 1;
1326 static noinline
int csum_exist_in_range(struct btrfs_fs_info
*fs_info
,
1327 u64 bytenr
, u64 num_bytes
)
1330 struct btrfs_ordered_sum
*sums
;
1333 ret
= btrfs_lookup_csums_range(fs_info
->csum_root
, bytenr
,
1334 bytenr
+ num_bytes
- 1, &list
, 0);
1335 if (ret
== 0 && list_empty(&list
))
1338 while (!list_empty(&list
)) {
1339 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1340 list_del(&sums
->list
);
1349 * when nowcow writeback call back. This checks for snapshots or COW copies
1350 * of the extents that exist in the file, and COWs the file as required.
1352 * If no cow copies or snapshots exist, we write directly to the existing
1355 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1356 struct page
*locked_page
,
1357 const u64 start
, const u64 end
,
1358 int *page_started
, int force
,
1359 unsigned long *nr_written
)
1361 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1362 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1363 struct btrfs_path
*path
;
1364 u64 cow_start
= (u64
)-1;
1365 u64 cur_offset
= start
;
1367 bool check_prev
= true;
1368 const bool freespace_inode
= btrfs_is_free_space_inode(BTRFS_I(inode
));
1369 u64 ino
= btrfs_ino(BTRFS_I(inode
));
1371 u64 disk_bytenr
= 0;
1373 path
= btrfs_alloc_path();
1375 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1376 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1377 EXTENT_DO_ACCOUNTING
|
1378 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1380 PAGE_SET_WRITEBACK
|
1381 PAGE_END_WRITEBACK
);
1386 struct btrfs_key found_key
;
1387 struct btrfs_file_extent_item
*fi
;
1388 struct extent_buffer
*leaf
;
1398 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, ino
,
1404 * If there is no extent for our range when doing the initial
1405 * search, then go back to the previous slot as it will be the
1406 * one containing the search offset
1408 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1409 leaf
= path
->nodes
[0];
1410 btrfs_item_key_to_cpu(leaf
, &found_key
,
1411 path
->slots
[0] - 1);
1412 if (found_key
.objectid
== ino
&&
1413 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1418 /* Go to next leaf if we have exhausted the current one */
1419 leaf
= path
->nodes
[0];
1420 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1421 ret
= btrfs_next_leaf(root
, path
);
1423 if (cow_start
!= (u64
)-1)
1424 cur_offset
= cow_start
;
1429 leaf
= path
->nodes
[0];
1432 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1434 /* Didn't find anything for our INO */
1435 if (found_key
.objectid
> ino
)
1438 * Keep searching until we find an EXTENT_ITEM or there are no
1439 * more extents for this inode
1441 if (WARN_ON_ONCE(found_key
.objectid
< ino
) ||
1442 found_key
.type
< BTRFS_EXTENT_DATA_KEY
) {
1447 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1448 if (found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1449 found_key
.offset
> end
)
1453 * If the found extent starts after requested offset, then
1454 * adjust extent_end to be right before this extent begins
1456 if (found_key
.offset
> cur_offset
) {
1457 extent_end
= found_key
.offset
;
1463 * Found extent which begins before our range and potentially
1466 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1467 struct btrfs_file_extent_item
);
1468 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1470 ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
1471 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1472 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1473 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1474 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1475 extent_end
= found_key
.offset
+
1476 btrfs_file_extent_num_bytes(leaf
, fi
);
1478 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1480 * If the extent we got ends before our current offset,
1481 * skip to the next extent.
1483 if (extent_end
<= cur_offset
) {
1488 if (disk_bytenr
== 0)
1490 /* Skip compressed/encrypted/encoded extents */
1491 if (btrfs_file_extent_compression(leaf
, fi
) ||
1492 btrfs_file_extent_encryption(leaf
, fi
) ||
1493 btrfs_file_extent_other_encoding(leaf
, fi
))
1496 * If extent is created before the last volume's snapshot
1497 * this implies the extent is shared, hence we can't do
1498 * nocow. This is the same check as in
1499 * btrfs_cross_ref_exist but without calling
1500 * btrfs_search_slot.
1502 if (!freespace_inode
&&
1503 btrfs_file_extent_generation(leaf
, fi
) <=
1504 btrfs_root_last_snapshot(&root
->root_item
))
1506 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1508 /* If extent is RO, we must COW it */
1509 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
1511 ret
= btrfs_cross_ref_exist(root
, ino
,
1513 extent_offset
, disk_bytenr
);
1516 * ret could be -EIO if the above fails to read
1520 if (cow_start
!= (u64
)-1)
1521 cur_offset
= cow_start
;
1525 WARN_ON_ONCE(freespace_inode
);
1528 disk_bytenr
+= extent_offset
;
1529 disk_bytenr
+= cur_offset
- found_key
.offset
;
1530 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1532 * If there are pending snapshots for this root, we
1533 * fall into common COW way
1535 if (!freespace_inode
&& atomic_read(&root
->snapshot_force_cow
))
1538 * force cow if csum exists in the range.
1539 * this ensure that csum for a given extent are
1540 * either valid or do not exist.
1542 ret
= csum_exist_in_range(fs_info
, disk_bytenr
,
1546 * ret could be -EIO if the above fails to read
1550 if (cow_start
!= (u64
)-1)
1551 cur_offset
= cow_start
;
1554 WARN_ON_ONCE(freespace_inode
);
1557 if (!btrfs_inc_nocow_writers(fs_info
, disk_bytenr
))
1560 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1561 extent_end
= found_key
.offset
+ ram_bytes
;
1562 extent_end
= ALIGN(extent_end
, fs_info
->sectorsize
);
1563 /* Skip extents outside of our requested range */
1564 if (extent_end
<= start
) {
1569 /* If this triggers then we have a memory corruption */
1574 * If nocow is false then record the beginning of the range
1575 * that needs to be COWed
1578 if (cow_start
== (u64
)-1)
1579 cow_start
= cur_offset
;
1580 cur_offset
= extent_end
;
1581 if (cur_offset
> end
)
1587 btrfs_release_path(path
);
1590 * COW range from cow_start to found_key.offset - 1. As the key
1591 * will contain the beginning of the first extent that can be
1592 * NOCOW, following one which needs to be COW'ed
1594 if (cow_start
!= (u64
)-1) {
1595 ret
= cow_file_range(inode
, locked_page
,
1596 cow_start
, found_key
.offset
- 1,
1597 page_started
, nr_written
, 1);
1600 btrfs_dec_nocow_writers(fs_info
,
1604 cow_start
= (u64
)-1;
1607 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1608 u64 orig_start
= found_key
.offset
- extent_offset
;
1609 struct extent_map
*em
;
1611 em
= create_io_em(inode
, cur_offset
, num_bytes
,
1613 disk_bytenr
, /* block_start */
1614 num_bytes
, /* block_len */
1615 disk_num_bytes
, /* orig_block_len */
1616 ram_bytes
, BTRFS_COMPRESS_NONE
,
1617 BTRFS_ORDERED_PREALLOC
);
1620 btrfs_dec_nocow_writers(fs_info
,
1625 free_extent_map(em
);
1626 ret
= btrfs_add_ordered_extent(inode
, cur_offset
,
1627 disk_bytenr
, num_bytes
,
1629 BTRFS_ORDERED_PREALLOC
);
1631 btrfs_drop_extent_cache(BTRFS_I(inode
),
1633 cur_offset
+ num_bytes
- 1,
1638 ret
= btrfs_add_ordered_extent(inode
, cur_offset
,
1639 disk_bytenr
, num_bytes
,
1641 BTRFS_ORDERED_NOCOW
);
1647 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1650 if (root
->root_key
.objectid
==
1651 BTRFS_DATA_RELOC_TREE_OBJECTID
)
1653 * Error handled later, as we must prevent
1654 * extent_clear_unlock_delalloc() in error handler
1655 * from freeing metadata of created ordered extent.
1657 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1660 extent_clear_unlock_delalloc(inode
, cur_offset
,
1661 cur_offset
+ num_bytes
- 1,
1662 locked_page
, EXTENT_LOCKED
|
1664 EXTENT_CLEAR_DATA_RESV
,
1665 PAGE_UNLOCK
| PAGE_SET_PRIVATE2
);
1667 cur_offset
= extent_end
;
1670 * btrfs_reloc_clone_csums() error, now we're OK to call error
1671 * handler, as metadata for created ordered extent will only
1672 * be freed by btrfs_finish_ordered_io().
1676 if (cur_offset
> end
)
1679 btrfs_release_path(path
);
1681 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1682 cow_start
= cur_offset
;
1684 if (cow_start
!= (u64
)-1) {
1686 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1687 page_started
, nr_written
, 1);
1694 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1696 if (ret
&& cur_offset
< end
)
1697 extent_clear_unlock_delalloc(inode
, cur_offset
, end
,
1698 locked_page
, EXTENT_LOCKED
|
1699 EXTENT_DELALLOC
| EXTENT_DEFRAG
|
1700 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1702 PAGE_SET_WRITEBACK
|
1703 PAGE_END_WRITEBACK
);
1704 btrfs_free_path(path
);
1708 static inline int need_force_cow(struct inode
*inode
, u64 start
, u64 end
)
1711 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
1712 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
))
1716 * @defrag_bytes is a hint value, no spinlock held here,
1717 * if is not zero, it means the file is defragging.
1718 * Force cow if given extent needs to be defragged.
1720 if (BTRFS_I(inode
)->defrag_bytes
&&
1721 test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, end
,
1722 EXTENT_DEFRAG
, 0, NULL
))
1729 * Function to process delayed allocation (create CoW) for ranges which are
1730 * being touched for the first time.
1732 int btrfs_run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1733 u64 start
, u64 end
, int *page_started
, unsigned long *nr_written
,
1734 struct writeback_control
*wbc
)
1737 int force_cow
= need_force_cow(inode
, start
, end
);
1739 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
&& !force_cow
) {
1740 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1741 page_started
, 1, nr_written
);
1742 } else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
&& !force_cow
) {
1743 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1744 page_started
, 0, nr_written
);
1745 } else if (!inode_can_compress(inode
) ||
1746 !inode_need_compress(inode
, start
, end
)) {
1747 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1748 page_started
, nr_written
, 1);
1750 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1751 &BTRFS_I(inode
)->runtime_flags
);
1752 ret
= cow_file_range_async(inode
, wbc
, locked_page
, start
, end
,
1753 page_started
, nr_written
);
1756 btrfs_cleanup_ordered_extents(inode
, locked_page
, start
,
1761 void btrfs_split_delalloc_extent(struct inode
*inode
,
1762 struct extent_state
*orig
, u64 split
)
1766 /* not delalloc, ignore it */
1767 if (!(orig
->state
& EXTENT_DELALLOC
))
1770 size
= orig
->end
- orig
->start
+ 1;
1771 if (size
> BTRFS_MAX_EXTENT_SIZE
) {
1776 * See the explanation in btrfs_merge_delalloc_extent, the same
1777 * applies here, just in reverse.
1779 new_size
= orig
->end
- split
+ 1;
1780 num_extents
= count_max_extents(new_size
);
1781 new_size
= split
- orig
->start
;
1782 num_extents
+= count_max_extents(new_size
);
1783 if (count_max_extents(size
) >= num_extents
)
1787 spin_lock(&BTRFS_I(inode
)->lock
);
1788 btrfs_mod_outstanding_extents(BTRFS_I(inode
), 1);
1789 spin_unlock(&BTRFS_I(inode
)->lock
);
1793 * Handle merged delayed allocation extents so we can keep track of new extents
1794 * that are just merged onto old extents, such as when we are doing sequential
1795 * writes, so we can properly account for the metadata space we'll need.
1797 void btrfs_merge_delalloc_extent(struct inode
*inode
, struct extent_state
*new,
1798 struct extent_state
*other
)
1800 u64 new_size
, old_size
;
1803 /* not delalloc, ignore it */
1804 if (!(other
->state
& EXTENT_DELALLOC
))
1807 if (new->start
> other
->start
)
1808 new_size
= new->end
- other
->start
+ 1;
1810 new_size
= other
->end
- new->start
+ 1;
1812 /* we're not bigger than the max, unreserve the space and go */
1813 if (new_size
<= BTRFS_MAX_EXTENT_SIZE
) {
1814 spin_lock(&BTRFS_I(inode
)->lock
);
1815 btrfs_mod_outstanding_extents(BTRFS_I(inode
), -1);
1816 spin_unlock(&BTRFS_I(inode
)->lock
);
1821 * We have to add up either side to figure out how many extents were
1822 * accounted for before we merged into one big extent. If the number of
1823 * extents we accounted for is <= the amount we need for the new range
1824 * then we can return, otherwise drop. Think of it like this
1828 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1829 * need 2 outstanding extents, on one side we have 1 and the other side
1830 * we have 1 so they are == and we can return. But in this case
1832 * [MAX_SIZE+4k][MAX_SIZE+4k]
1834 * Each range on their own accounts for 2 extents, but merged together
1835 * they are only 3 extents worth of accounting, so we need to drop in
1838 old_size
= other
->end
- other
->start
+ 1;
1839 num_extents
= count_max_extents(old_size
);
1840 old_size
= new->end
- new->start
+ 1;
1841 num_extents
+= count_max_extents(old_size
);
1842 if (count_max_extents(new_size
) >= num_extents
)
1845 spin_lock(&BTRFS_I(inode
)->lock
);
1846 btrfs_mod_outstanding_extents(BTRFS_I(inode
), -1);
1847 spin_unlock(&BTRFS_I(inode
)->lock
);
1850 static void btrfs_add_delalloc_inodes(struct btrfs_root
*root
,
1851 struct inode
*inode
)
1853 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1855 spin_lock(&root
->delalloc_lock
);
1856 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1857 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1858 &root
->delalloc_inodes
);
1859 set_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1860 &BTRFS_I(inode
)->runtime_flags
);
1861 root
->nr_delalloc_inodes
++;
1862 if (root
->nr_delalloc_inodes
== 1) {
1863 spin_lock(&fs_info
->delalloc_root_lock
);
1864 BUG_ON(!list_empty(&root
->delalloc_root
));
1865 list_add_tail(&root
->delalloc_root
,
1866 &fs_info
->delalloc_roots
);
1867 spin_unlock(&fs_info
->delalloc_root_lock
);
1870 spin_unlock(&root
->delalloc_lock
);
1874 void __btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1875 struct btrfs_inode
*inode
)
1877 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1879 if (!list_empty(&inode
->delalloc_inodes
)) {
1880 list_del_init(&inode
->delalloc_inodes
);
1881 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1882 &inode
->runtime_flags
);
1883 root
->nr_delalloc_inodes
--;
1884 if (!root
->nr_delalloc_inodes
) {
1885 ASSERT(list_empty(&root
->delalloc_inodes
));
1886 spin_lock(&fs_info
->delalloc_root_lock
);
1887 BUG_ON(list_empty(&root
->delalloc_root
));
1888 list_del_init(&root
->delalloc_root
);
1889 spin_unlock(&fs_info
->delalloc_root_lock
);
1894 static void btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1895 struct btrfs_inode
*inode
)
1897 spin_lock(&root
->delalloc_lock
);
1898 __btrfs_del_delalloc_inode(root
, inode
);
1899 spin_unlock(&root
->delalloc_lock
);
1903 * Properly track delayed allocation bytes in the inode and to maintain the
1904 * list of inodes that have pending delalloc work to be done.
1906 void btrfs_set_delalloc_extent(struct inode
*inode
, struct extent_state
*state
,
1909 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1911 if ((*bits
& EXTENT_DEFRAG
) && !(*bits
& EXTENT_DELALLOC
))
1914 * set_bit and clear bit hooks normally require _irqsave/restore
1915 * but in this case, we are only testing for the DELALLOC
1916 * bit, which is only set or cleared with irqs on
1918 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1919 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1920 u64 len
= state
->end
+ 1 - state
->start
;
1921 u32 num_extents
= count_max_extents(len
);
1922 bool do_list
= !btrfs_is_free_space_inode(BTRFS_I(inode
));
1924 spin_lock(&BTRFS_I(inode
)->lock
);
1925 btrfs_mod_outstanding_extents(BTRFS_I(inode
), num_extents
);
1926 spin_unlock(&BTRFS_I(inode
)->lock
);
1928 /* For sanity tests */
1929 if (btrfs_is_testing(fs_info
))
1932 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, len
,
1933 fs_info
->delalloc_batch
);
1934 spin_lock(&BTRFS_I(inode
)->lock
);
1935 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1936 if (*bits
& EXTENT_DEFRAG
)
1937 BTRFS_I(inode
)->defrag_bytes
+= len
;
1938 if (do_list
&& !test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1939 &BTRFS_I(inode
)->runtime_flags
))
1940 btrfs_add_delalloc_inodes(root
, inode
);
1941 spin_unlock(&BTRFS_I(inode
)->lock
);
1944 if (!(state
->state
& EXTENT_DELALLOC_NEW
) &&
1945 (*bits
& EXTENT_DELALLOC_NEW
)) {
1946 spin_lock(&BTRFS_I(inode
)->lock
);
1947 BTRFS_I(inode
)->new_delalloc_bytes
+= state
->end
+ 1 -
1949 spin_unlock(&BTRFS_I(inode
)->lock
);
1954 * Once a range is no longer delalloc this function ensures that proper
1955 * accounting happens.
1957 void btrfs_clear_delalloc_extent(struct inode
*vfs_inode
,
1958 struct extent_state
*state
, unsigned *bits
)
1960 struct btrfs_inode
*inode
= BTRFS_I(vfs_inode
);
1961 struct btrfs_fs_info
*fs_info
= btrfs_sb(vfs_inode
->i_sb
);
1962 u64 len
= state
->end
+ 1 - state
->start
;
1963 u32 num_extents
= count_max_extents(len
);
1965 if ((state
->state
& EXTENT_DEFRAG
) && (*bits
& EXTENT_DEFRAG
)) {
1966 spin_lock(&inode
->lock
);
1967 inode
->defrag_bytes
-= len
;
1968 spin_unlock(&inode
->lock
);
1972 * set_bit and clear bit hooks normally require _irqsave/restore
1973 * but in this case, we are only testing for the DELALLOC
1974 * bit, which is only set or cleared with irqs on
1976 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1977 struct btrfs_root
*root
= inode
->root
;
1978 bool do_list
= !btrfs_is_free_space_inode(inode
);
1980 spin_lock(&inode
->lock
);
1981 btrfs_mod_outstanding_extents(inode
, -num_extents
);
1982 spin_unlock(&inode
->lock
);
1985 * We don't reserve metadata space for space cache inodes so we
1986 * don't need to call delalloc_release_metadata if there is an
1989 if (*bits
& EXTENT_CLEAR_META_RESV
&&
1990 root
!= fs_info
->tree_root
)
1991 btrfs_delalloc_release_metadata(inode
, len
, false);
1993 /* For sanity tests. */
1994 if (btrfs_is_testing(fs_info
))
1997 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1998 do_list
&& !(state
->state
& EXTENT_NORESERVE
) &&
1999 (*bits
& EXTENT_CLEAR_DATA_RESV
))
2000 btrfs_free_reserved_data_space_noquota(
2004 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, -len
,
2005 fs_info
->delalloc_batch
);
2006 spin_lock(&inode
->lock
);
2007 inode
->delalloc_bytes
-= len
;
2008 if (do_list
&& inode
->delalloc_bytes
== 0 &&
2009 test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
2010 &inode
->runtime_flags
))
2011 btrfs_del_delalloc_inode(root
, inode
);
2012 spin_unlock(&inode
->lock
);
2015 if ((state
->state
& EXTENT_DELALLOC_NEW
) &&
2016 (*bits
& EXTENT_DELALLOC_NEW
)) {
2017 spin_lock(&inode
->lock
);
2018 ASSERT(inode
->new_delalloc_bytes
>= len
);
2019 inode
->new_delalloc_bytes
-= len
;
2020 spin_unlock(&inode
->lock
);
2025 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2026 * in a chunk's stripe. This function ensures that bios do not span a
2029 * @page - The page we are about to add to the bio
2030 * @size - size we want to add to the bio
2031 * @bio - bio we want to ensure is smaller than a stripe
2032 * @bio_flags - flags of the bio
2034 * return 1 if page cannot be added to the bio
2035 * return 0 if page can be added to the bio
2036 * return error otherwise
2038 int btrfs_bio_fits_in_stripe(struct page
*page
, size_t size
, struct bio
*bio
,
2039 unsigned long bio_flags
)
2041 struct inode
*inode
= page
->mapping
->host
;
2042 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2043 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
2047 struct btrfs_io_geometry geom
;
2049 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
2052 length
= bio
->bi_iter
.bi_size
;
2053 map_length
= length
;
2054 ret
= btrfs_get_io_geometry(fs_info
, btrfs_op(bio
), logical
, map_length
,
2059 if (geom
.len
< length
+ size
)
2065 * in order to insert checksums into the metadata in large chunks,
2066 * we wait until bio submission time. All the pages in the bio are
2067 * checksummed and sums are attached onto the ordered extent record.
2069 * At IO completion time the cums attached on the ordered extent record
2070 * are inserted into the btree
2072 static blk_status_t
btrfs_submit_bio_start(void *private_data
, struct bio
*bio
,
2075 struct inode
*inode
= private_data
;
2076 blk_status_t ret
= 0;
2078 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
2079 BUG_ON(ret
); /* -ENOMEM */
2084 * extent_io.c submission hook. This does the right thing for csum calculation
2085 * on write, or reading the csums from the tree before a read.
2087 * Rules about async/sync submit,
2088 * a) read: sync submit
2090 * b) write without checksum: sync submit
2092 * c) write with checksum:
2093 * c-1) if bio is issued by fsync: sync submit
2094 * (sync_writers != 0)
2096 * c-2) if root is reloc root: sync submit
2097 * (only in case of buffered IO)
2099 * c-3) otherwise: async submit
2101 static blk_status_t
btrfs_submit_bio_hook(struct inode
*inode
, struct bio
*bio
,
2103 unsigned long bio_flags
)
2106 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2107 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2108 enum btrfs_wq_endio_type metadata
= BTRFS_WQ_ENDIO_DATA
;
2109 blk_status_t ret
= 0;
2111 int async
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
2113 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
2115 if (btrfs_is_free_space_inode(BTRFS_I(inode
)))
2116 metadata
= BTRFS_WQ_ENDIO_FREE_SPACE
;
2118 if (bio_op(bio
) != REQ_OP_WRITE
) {
2119 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, metadata
);
2123 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
2124 ret
= btrfs_submit_compressed_read(inode
, bio
,
2128 } else if (!skip_sum
) {
2129 ret
= btrfs_lookup_bio_sums(inode
, bio
, (u64
)-1, NULL
);
2134 } else if (async
&& !skip_sum
) {
2135 /* csum items have already been cloned */
2136 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
2138 /* we're doing a write, do the async checksumming */
2139 ret
= btrfs_wq_submit_bio(fs_info
, bio
, mirror_num
, bio_flags
,
2140 0, inode
, btrfs_submit_bio_start
);
2142 } else if (!skip_sum
) {
2143 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
2149 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
);
2153 bio
->bi_status
= ret
;
2160 * given a list of ordered sums record them in the inode. This happens
2161 * at IO completion time based on sums calculated at bio submission time.
2163 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
2164 struct inode
*inode
, struct list_head
*list
)
2166 struct btrfs_ordered_sum
*sum
;
2169 list_for_each_entry(sum
, list
, list
) {
2170 trans
->adding_csums
= true;
2171 ret
= btrfs_csum_file_blocks(trans
,
2172 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
2173 trans
->adding_csums
= false;
2180 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
2181 unsigned int extra_bits
,
2182 struct extent_state
**cached_state
)
2184 WARN_ON(PAGE_ALIGNED(end
));
2185 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
2186 extra_bits
, cached_state
);
2189 /* see btrfs_writepage_start_hook for details on why this is required */
2190 struct btrfs_writepage_fixup
{
2192 struct inode
*inode
;
2193 struct btrfs_work work
;
2196 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
2198 struct btrfs_writepage_fixup
*fixup
;
2199 struct btrfs_ordered_extent
*ordered
;
2200 struct extent_state
*cached_state
= NULL
;
2201 struct extent_changeset
*data_reserved
= NULL
;
2203 struct inode
*inode
;
2207 bool free_delalloc_space
= true;
2209 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
2211 inode
= fixup
->inode
;
2212 page_start
= page_offset(page
);
2213 page_end
= page_offset(page
) + PAGE_SIZE
- 1;
2216 * This is similar to page_mkwrite, we need to reserve the space before
2217 * we take the page lock.
2219 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
2225 * Before we queued this fixup, we took a reference on the page.
2226 * page->mapping may go NULL, but it shouldn't be moved to a different
2229 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
2231 * Unfortunately this is a little tricky, either
2233 * 1) We got here and our page had already been dealt with and
2234 * we reserved our space, thus ret == 0, so we need to just
2235 * drop our space reservation and bail. This can happen the
2236 * first time we come into the fixup worker, or could happen
2237 * while waiting for the ordered extent.
2238 * 2) Our page was already dealt with, but we happened to get an
2239 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2240 * this case we obviously don't have anything to release, but
2241 * because the page was already dealt with we don't want to
2242 * mark the page with an error, so make sure we're resetting
2243 * ret to 0. This is why we have this check _before_ the ret
2244 * check, because we do not want to have a surprise ENOSPC
2245 * when the page was already properly dealt with.
2248 btrfs_delalloc_release_extents(BTRFS_I(inode
),
2250 btrfs_delalloc_release_space(inode
, data_reserved
,
2251 page_start
, PAGE_SIZE
,
2259 * We can't mess with the page state unless it is locked, so now that
2260 * it is locked bail if we failed to make our space reservation.
2265 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2268 /* already ordered? We're done */
2269 if (PagePrivate2(page
))
2272 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
2275 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
2276 page_end
, &cached_state
);
2278 btrfs_start_ordered_extent(inode
, ordered
, 1);
2279 btrfs_put_ordered_extent(ordered
);
2283 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
, 0,
2289 * Everything went as planned, we're now the owner of a dirty page with
2290 * delayed allocation bits set and space reserved for our COW
2293 * The page was dirty when we started, nothing should have cleaned it.
2295 BUG_ON(!PageDirty(page
));
2296 free_delalloc_space
= false;
2298 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
2299 if (free_delalloc_space
)
2300 btrfs_delalloc_release_space(inode
, data_reserved
, page_start
,
2302 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2307 * We hit ENOSPC or other errors. Update the mapping and page
2308 * to reflect the errors and clean the page.
2310 mapping_set_error(page
->mapping
, ret
);
2311 end_extent_writepage(page
, ret
, page_start
, page_end
);
2312 clear_page_dirty_for_io(page
);
2315 ClearPageChecked(page
);
2319 extent_changeset_free(data_reserved
);
2321 * As a precaution, do a delayed iput in case it would be the last iput
2322 * that could need flushing space. Recursing back to fixup worker would
2325 btrfs_add_delayed_iput(inode
);
2329 * There are a few paths in the higher layers of the kernel that directly
2330 * set the page dirty bit without asking the filesystem if it is a
2331 * good idea. This causes problems because we want to make sure COW
2332 * properly happens and the data=ordered rules are followed.
2334 * In our case any range that doesn't have the ORDERED bit set
2335 * hasn't been properly setup for IO. We kick off an async process
2336 * to fix it up. The async helper will wait for ordered extents, set
2337 * the delalloc bit and make it safe to write the page.
2339 int btrfs_writepage_cow_fixup(struct page
*page
, u64 start
, u64 end
)
2341 struct inode
*inode
= page
->mapping
->host
;
2342 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2343 struct btrfs_writepage_fixup
*fixup
;
2345 /* this page is properly in the ordered list */
2346 if (TestClearPagePrivate2(page
))
2350 * PageChecked is set below when we create a fixup worker for this page,
2351 * don't try to create another one if we're already PageChecked()
2353 * The extent_io writepage code will redirty the page if we send back
2356 if (PageChecked(page
))
2359 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
2364 * We are already holding a reference to this inode from
2365 * write_cache_pages. We need to hold it because the space reservation
2366 * takes place outside of the page lock, and we can't trust
2367 * page->mapping outside of the page lock.
2370 SetPageChecked(page
);
2372 btrfs_init_work(&fixup
->work
, btrfs_writepage_fixup_worker
, NULL
, NULL
);
2374 fixup
->inode
= inode
;
2375 btrfs_queue_work(fs_info
->fixup_workers
, &fixup
->work
);
2380 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
2381 struct inode
*inode
, u64 file_pos
,
2382 u64 disk_bytenr
, u64 disk_num_bytes
,
2383 u64 num_bytes
, u64 ram_bytes
,
2384 u8 compression
, u8 encryption
,
2385 u16 other_encoding
, int extent_type
)
2387 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2388 struct btrfs_file_extent_item
*fi
;
2389 struct btrfs_path
*path
;
2390 struct extent_buffer
*leaf
;
2391 struct btrfs_key ins
;
2393 int extent_inserted
= 0;
2396 path
= btrfs_alloc_path();
2401 * we may be replacing one extent in the tree with another.
2402 * The new extent is pinned in the extent map, and we don't want
2403 * to drop it from the cache until it is completely in the btree.
2405 * So, tell btrfs_drop_extents to leave this extent in the cache.
2406 * the caller is expected to unpin it and allow it to be merged
2409 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, file_pos
,
2410 file_pos
+ num_bytes
, NULL
, 0,
2411 1, sizeof(*fi
), &extent_inserted
);
2415 if (!extent_inserted
) {
2416 ins
.objectid
= btrfs_ino(BTRFS_I(inode
));
2417 ins
.offset
= file_pos
;
2418 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
2420 path
->leave_spinning
= 1;
2421 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
,
2426 leaf
= path
->nodes
[0];
2427 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2428 struct btrfs_file_extent_item
);
2429 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
2430 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
2431 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
2432 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
2433 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2434 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2435 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
2436 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
2437 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
2438 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
2440 btrfs_mark_buffer_dirty(leaf
);
2441 btrfs_release_path(path
);
2443 inode_add_bytes(inode
, num_bytes
);
2445 ins
.objectid
= disk_bytenr
;
2446 ins
.offset
= disk_num_bytes
;
2447 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2450 * Release the reserved range from inode dirty range map, as it is
2451 * already moved into delayed_ref_head
2453 ret
= btrfs_qgroup_release_data(inode
, file_pos
, ram_bytes
);
2457 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
2458 btrfs_ino(BTRFS_I(inode
)),
2459 file_pos
, qg_released
, &ins
);
2461 btrfs_free_path(path
);
2466 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info
*fs_info
,
2469 struct btrfs_block_group
*cache
;
2471 cache
= btrfs_lookup_block_group(fs_info
, start
);
2474 spin_lock(&cache
->lock
);
2475 cache
->delalloc_bytes
-= len
;
2476 spin_unlock(&cache
->lock
);
2478 btrfs_put_block_group(cache
);
2481 /* as ordered data IO finishes, this gets called so we can finish
2482 * an ordered extent if the range of bytes in the file it covers are
2485 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
)
2487 struct inode
*inode
= ordered_extent
->inode
;
2488 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2489 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2490 struct btrfs_trans_handle
*trans
= NULL
;
2491 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2492 struct extent_state
*cached_state
= NULL
;
2494 int compress_type
= 0;
2496 u64 logical_len
= ordered_extent
->num_bytes
;
2497 bool freespace_inode
;
2498 bool truncated
= false;
2499 bool range_locked
= false;
2500 bool clear_new_delalloc_bytes
= false;
2501 bool clear_reserved_extent
= true;
2502 unsigned int clear_bits
;
2504 start
= ordered_extent
->file_offset
;
2505 end
= start
+ ordered_extent
->num_bytes
- 1;
2507 if (!test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
2508 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
) &&
2509 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered_extent
->flags
))
2510 clear_new_delalloc_bytes
= true;
2512 freespace_inode
= btrfs_is_free_space_inode(BTRFS_I(inode
));
2514 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered_extent
->flags
)) {
2519 btrfs_free_io_failure_record(BTRFS_I(inode
), start
, end
);
2521 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered_extent
->flags
)) {
2523 logical_len
= ordered_extent
->truncated_len
;
2524 /* Truncated the entire extent, don't bother adding */
2529 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
2530 BUG_ON(!list_empty(&ordered_extent
->list
)); /* Logic error */
2533 * For mwrite(mmap + memset to write) case, we still reserve
2534 * space for NOCOW range.
2535 * As NOCOW won't cause a new delayed ref, just free the space
2537 btrfs_qgroup_free_data(inode
, NULL
, start
,
2538 ordered_extent
->num_bytes
);
2539 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
2540 if (freespace_inode
)
2541 trans
= btrfs_join_transaction_spacecache(root
);
2543 trans
= btrfs_join_transaction(root
);
2544 if (IS_ERR(trans
)) {
2545 ret
= PTR_ERR(trans
);
2549 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
2550 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2551 if (ret
) /* -ENOMEM or corruption */
2552 btrfs_abort_transaction(trans
, ret
);
2556 range_locked
= true;
2557 lock_extent_bits(io_tree
, start
, end
, &cached_state
);
2559 if (freespace_inode
)
2560 trans
= btrfs_join_transaction_spacecache(root
);
2562 trans
= btrfs_join_transaction(root
);
2563 if (IS_ERR(trans
)) {
2564 ret
= PTR_ERR(trans
);
2569 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
2571 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
2572 compress_type
= ordered_extent
->compress_type
;
2573 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
2574 BUG_ON(compress_type
);
2575 btrfs_qgroup_free_data(inode
, NULL
, start
,
2576 ordered_extent
->num_bytes
);
2577 ret
= btrfs_mark_extent_written(trans
, BTRFS_I(inode
),
2578 ordered_extent
->file_offset
,
2579 ordered_extent
->file_offset
+
2582 BUG_ON(root
== fs_info
->tree_root
);
2583 ret
= insert_reserved_file_extent(trans
, inode
, start
,
2584 ordered_extent
->disk_bytenr
,
2585 ordered_extent
->disk_num_bytes
,
2586 logical_len
, logical_len
,
2587 compress_type
, 0, 0,
2588 BTRFS_FILE_EXTENT_REG
);
2590 clear_reserved_extent
= false;
2591 btrfs_release_delalloc_bytes(fs_info
,
2592 ordered_extent
->disk_bytenr
,
2593 ordered_extent
->disk_num_bytes
);
2596 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
2597 ordered_extent
->file_offset
,
2598 ordered_extent
->num_bytes
, trans
->transid
);
2600 btrfs_abort_transaction(trans
, ret
);
2604 ret
= add_pending_csums(trans
, inode
, &ordered_extent
->list
);
2606 btrfs_abort_transaction(trans
, ret
);
2610 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
2611 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2612 if (ret
) { /* -ENOMEM or corruption */
2613 btrfs_abort_transaction(trans
, ret
);
2618 clear_bits
= EXTENT_DEFRAG
;
2620 clear_bits
|= EXTENT_LOCKED
;
2621 if (clear_new_delalloc_bytes
)
2622 clear_bits
|= EXTENT_DELALLOC_NEW
;
2623 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, clear_bits
,
2624 (clear_bits
& EXTENT_LOCKED
) ? 1 : 0, 0,
2628 btrfs_end_transaction(trans
);
2630 if (ret
|| truncated
) {
2631 u64 unwritten_start
= start
;
2634 unwritten_start
+= logical_len
;
2635 clear_extent_uptodate(io_tree
, unwritten_start
, end
, NULL
);
2637 /* Drop the cache for the part of the extent we didn't write. */
2638 btrfs_drop_extent_cache(BTRFS_I(inode
), unwritten_start
, end
, 0);
2641 * If the ordered extent had an IOERR or something else went
2642 * wrong we need to return the space for this ordered extent
2643 * back to the allocator. We only free the extent in the
2644 * truncated case if we didn't write out the extent at all.
2646 * If we made it past insert_reserved_file_extent before we
2647 * errored out then we don't need to do this as the accounting
2648 * has already been done.
2650 if ((ret
|| !logical_len
) &&
2651 clear_reserved_extent
&&
2652 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
2653 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
2655 * Discard the range before returning it back to the
2658 if (ret
&& btrfs_test_opt(fs_info
, DISCARD_SYNC
))
2659 btrfs_discard_extent(fs_info
,
2660 ordered_extent
->disk_bytenr
,
2661 ordered_extent
->disk_num_bytes
,
2663 btrfs_free_reserved_extent(fs_info
,
2664 ordered_extent
->disk_bytenr
,
2665 ordered_extent
->disk_num_bytes
, 1);
2670 * This needs to be done to make sure anybody waiting knows we are done
2671 * updating everything for this ordered extent.
2673 btrfs_remove_ordered_extent(inode
, ordered_extent
);
2676 btrfs_put_ordered_extent(ordered_extent
);
2677 /* once for the tree */
2678 btrfs_put_ordered_extent(ordered_extent
);
2683 static void finish_ordered_fn(struct btrfs_work
*work
)
2685 struct btrfs_ordered_extent
*ordered_extent
;
2686 ordered_extent
= container_of(work
, struct btrfs_ordered_extent
, work
);
2687 btrfs_finish_ordered_io(ordered_extent
);
2690 void btrfs_writepage_endio_finish_ordered(struct page
*page
, u64 start
,
2691 u64 end
, int uptodate
)
2693 struct inode
*inode
= page
->mapping
->host
;
2694 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2695 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
2696 struct btrfs_workqueue
*wq
;
2698 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
2700 ClearPagePrivate2(page
);
2701 if (!btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
2702 end
- start
+ 1, uptodate
))
2705 if (btrfs_is_free_space_inode(BTRFS_I(inode
)))
2706 wq
= fs_info
->endio_freespace_worker
;
2708 wq
= fs_info
->endio_write_workers
;
2710 btrfs_init_work(&ordered_extent
->work
, finish_ordered_fn
, NULL
, NULL
);
2711 btrfs_queue_work(wq
, &ordered_extent
->work
);
2714 static int __readpage_endio_check(struct inode
*inode
,
2715 struct btrfs_io_bio
*io_bio
,
2716 int icsum
, struct page
*page
,
2717 int pgoff
, u64 start
, size_t len
)
2719 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2720 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
2722 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
2724 u8 csum
[BTRFS_CSUM_SIZE
];
2726 csum_expected
= ((u8
*)io_bio
->csum
) + icsum
* csum_size
;
2728 kaddr
= kmap_atomic(page
);
2729 shash
->tfm
= fs_info
->csum_shash
;
2731 crypto_shash_init(shash
);
2732 crypto_shash_update(shash
, kaddr
+ pgoff
, len
);
2733 crypto_shash_final(shash
, csum
);
2735 if (memcmp(csum
, csum_expected
, csum_size
))
2738 kunmap_atomic(kaddr
);
2741 btrfs_print_data_csum_error(BTRFS_I(inode
), start
, csum
, csum_expected
,
2742 io_bio
->mirror_num
);
2743 memset(kaddr
+ pgoff
, 1, len
);
2744 flush_dcache_page(page
);
2745 kunmap_atomic(kaddr
);
2750 * when reads are done, we need to check csums to verify the data is correct
2751 * if there's a match, we allow the bio to finish. If not, the code in
2752 * extent_io.c will try to find good copies for us.
2754 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
2755 u64 phy_offset
, struct page
*page
,
2756 u64 start
, u64 end
, int mirror
)
2758 size_t offset
= start
- page_offset(page
);
2759 struct inode
*inode
= page
->mapping
->host
;
2760 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2761 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2763 if (PageChecked(page
)) {
2764 ClearPageChecked(page
);
2768 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
2771 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
2772 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
2773 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
);
2777 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
2778 return __readpage_endio_check(inode
, io_bio
, phy_offset
, page
, offset
,
2779 start
, (size_t)(end
- start
+ 1));
2783 * btrfs_add_delayed_iput - perform a delayed iput on @inode
2785 * @inode: The inode we want to perform iput on
2787 * This function uses the generic vfs_inode::i_count to track whether we should
2788 * just decrement it (in case it's > 1) or if this is the last iput then link
2789 * the inode to the delayed iput machinery. Delayed iputs are processed at
2790 * transaction commit time/superblock commit/cleaner kthread.
2792 void btrfs_add_delayed_iput(struct inode
*inode
)
2794 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2795 struct btrfs_inode
*binode
= BTRFS_I(inode
);
2797 if (atomic_add_unless(&inode
->i_count
, -1, 1))
2800 atomic_inc(&fs_info
->nr_delayed_iputs
);
2801 spin_lock(&fs_info
->delayed_iput_lock
);
2802 ASSERT(list_empty(&binode
->delayed_iput
));
2803 list_add_tail(&binode
->delayed_iput
, &fs_info
->delayed_iputs
);
2804 spin_unlock(&fs_info
->delayed_iput_lock
);
2805 if (!test_bit(BTRFS_FS_CLEANER_RUNNING
, &fs_info
->flags
))
2806 wake_up_process(fs_info
->cleaner_kthread
);
2809 static void run_delayed_iput_locked(struct btrfs_fs_info
*fs_info
,
2810 struct btrfs_inode
*inode
)
2812 list_del_init(&inode
->delayed_iput
);
2813 spin_unlock(&fs_info
->delayed_iput_lock
);
2814 iput(&inode
->vfs_inode
);
2815 if (atomic_dec_and_test(&fs_info
->nr_delayed_iputs
))
2816 wake_up(&fs_info
->delayed_iputs_wait
);
2817 spin_lock(&fs_info
->delayed_iput_lock
);
2820 static void btrfs_run_delayed_iput(struct btrfs_fs_info
*fs_info
,
2821 struct btrfs_inode
*inode
)
2823 if (!list_empty(&inode
->delayed_iput
)) {
2824 spin_lock(&fs_info
->delayed_iput_lock
);
2825 if (!list_empty(&inode
->delayed_iput
))
2826 run_delayed_iput_locked(fs_info
, inode
);
2827 spin_unlock(&fs_info
->delayed_iput_lock
);
2831 void btrfs_run_delayed_iputs(struct btrfs_fs_info
*fs_info
)
2834 spin_lock(&fs_info
->delayed_iput_lock
);
2835 while (!list_empty(&fs_info
->delayed_iputs
)) {
2836 struct btrfs_inode
*inode
;
2838 inode
= list_first_entry(&fs_info
->delayed_iputs
,
2839 struct btrfs_inode
, delayed_iput
);
2840 run_delayed_iput_locked(fs_info
, inode
);
2842 spin_unlock(&fs_info
->delayed_iput_lock
);
2846 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
2847 * @fs_info - the fs_info for this fs
2848 * @return - EINTR if we were killed, 0 if nothing's pending
2850 * This will wait on any delayed iputs that are currently running with KILLABLE
2851 * set. Once they are all done running we will return, unless we are killed in
2852 * which case we return EINTR. This helps in user operations like fallocate etc
2853 * that might get blocked on the iputs.
2855 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info
*fs_info
)
2857 int ret
= wait_event_killable(fs_info
->delayed_iputs_wait
,
2858 atomic_read(&fs_info
->nr_delayed_iputs
) == 0);
2865 * This creates an orphan entry for the given inode in case something goes wrong
2866 * in the middle of an unlink.
2868 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
,
2869 struct btrfs_inode
*inode
)
2873 ret
= btrfs_insert_orphan_item(trans
, inode
->root
, btrfs_ino(inode
));
2874 if (ret
&& ret
!= -EEXIST
) {
2875 btrfs_abort_transaction(trans
, ret
);
2883 * We have done the delete so we can go ahead and remove the orphan item for
2884 * this particular inode.
2886 static int btrfs_orphan_del(struct btrfs_trans_handle
*trans
,
2887 struct btrfs_inode
*inode
)
2889 return btrfs_del_orphan_item(trans
, inode
->root
, btrfs_ino(inode
));
2893 * this cleans up any orphans that may be left on the list from the last use
2896 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
2898 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2899 struct btrfs_path
*path
;
2900 struct extent_buffer
*leaf
;
2901 struct btrfs_key key
, found_key
;
2902 struct btrfs_trans_handle
*trans
;
2903 struct inode
*inode
;
2904 u64 last_objectid
= 0;
2905 int ret
= 0, nr_unlink
= 0;
2907 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
2910 path
= btrfs_alloc_path();
2915 path
->reada
= READA_BACK
;
2917 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
2918 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
2919 key
.offset
= (u64
)-1;
2922 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2927 * if ret == 0 means we found what we were searching for, which
2928 * is weird, but possible, so only screw with path if we didn't
2929 * find the key and see if we have stuff that matches
2933 if (path
->slots
[0] == 0)
2938 /* pull out the item */
2939 leaf
= path
->nodes
[0];
2940 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2942 /* make sure the item matches what we want */
2943 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
2945 if (found_key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
2948 /* release the path since we're done with it */
2949 btrfs_release_path(path
);
2952 * this is where we are basically btrfs_lookup, without the
2953 * crossing root thing. we store the inode number in the
2954 * offset of the orphan item.
2957 if (found_key
.offset
== last_objectid
) {
2959 "Error removing orphan entry, stopping orphan cleanup");
2964 last_objectid
= found_key
.offset
;
2966 found_key
.objectid
= found_key
.offset
;
2967 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
2968 found_key
.offset
= 0;
2969 inode
= btrfs_iget(fs_info
->sb
, &found_key
, root
);
2970 ret
= PTR_ERR_OR_ZERO(inode
);
2971 if (ret
&& ret
!= -ENOENT
)
2974 if (ret
== -ENOENT
&& root
== fs_info
->tree_root
) {
2975 struct btrfs_root
*dead_root
;
2976 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2977 int is_dead_root
= 0;
2980 * this is an orphan in the tree root. Currently these
2981 * could come from 2 sources:
2982 * a) a snapshot deletion in progress
2983 * b) a free space cache inode
2984 * We need to distinguish those two, as the snapshot
2985 * orphan must not get deleted.
2986 * find_dead_roots already ran before us, so if this
2987 * is a snapshot deletion, we should find the root
2988 * in the dead_roots list
2990 spin_lock(&fs_info
->trans_lock
);
2991 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
2993 if (dead_root
->root_key
.objectid
==
2994 found_key
.objectid
) {
2999 spin_unlock(&fs_info
->trans_lock
);
3001 /* prevent this orphan from being found again */
3002 key
.offset
= found_key
.objectid
- 1;
3009 * If we have an inode with links, there are a couple of
3010 * possibilities. Old kernels (before v3.12) used to create an
3011 * orphan item for truncate indicating that there were possibly
3012 * extent items past i_size that needed to be deleted. In v3.12,
3013 * truncate was changed to update i_size in sync with the extent
3014 * items, but the (useless) orphan item was still created. Since
3015 * v4.18, we don't create the orphan item for truncate at all.
3017 * So, this item could mean that we need to do a truncate, but
3018 * only if this filesystem was last used on a pre-v3.12 kernel
3019 * and was not cleanly unmounted. The odds of that are quite
3020 * slim, and it's a pain to do the truncate now, so just delete
3023 * It's also possible that this orphan item was supposed to be
3024 * deleted but wasn't. The inode number may have been reused,
3025 * but either way, we can delete the orphan item.
3027 if (ret
== -ENOENT
|| inode
->i_nlink
) {
3030 trans
= btrfs_start_transaction(root
, 1);
3031 if (IS_ERR(trans
)) {
3032 ret
= PTR_ERR(trans
);
3035 btrfs_debug(fs_info
, "auto deleting %Lu",
3036 found_key
.objectid
);
3037 ret
= btrfs_del_orphan_item(trans
, root
,
3038 found_key
.objectid
);
3039 btrfs_end_transaction(trans
);
3047 /* this will do delete_inode and everything for us */
3050 /* release the path since we're done with it */
3051 btrfs_release_path(path
);
3053 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
3055 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
)) {
3056 trans
= btrfs_join_transaction(root
);
3058 btrfs_end_transaction(trans
);
3062 btrfs_debug(fs_info
, "unlinked %d orphans", nr_unlink
);
3066 btrfs_err(fs_info
, "could not do orphan cleanup %d", ret
);
3067 btrfs_free_path(path
);
3072 * very simple check to peek ahead in the leaf looking for xattrs. If we
3073 * don't find any xattrs, we know there can't be any acls.
3075 * slot is the slot the inode is in, objectid is the objectid of the inode
3077 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
3078 int slot
, u64 objectid
,
3079 int *first_xattr_slot
)
3081 u32 nritems
= btrfs_header_nritems(leaf
);
3082 struct btrfs_key found_key
;
3083 static u64 xattr_access
= 0;
3084 static u64 xattr_default
= 0;
3087 if (!xattr_access
) {
3088 xattr_access
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS
,
3089 strlen(XATTR_NAME_POSIX_ACL_ACCESS
));
3090 xattr_default
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT
,
3091 strlen(XATTR_NAME_POSIX_ACL_DEFAULT
));
3095 *first_xattr_slot
= -1;
3096 while (slot
< nritems
) {
3097 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3099 /* we found a different objectid, there must not be acls */
3100 if (found_key
.objectid
!= objectid
)
3103 /* we found an xattr, assume we've got an acl */
3104 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
3105 if (*first_xattr_slot
== -1)
3106 *first_xattr_slot
= slot
;
3107 if (found_key
.offset
== xattr_access
||
3108 found_key
.offset
== xattr_default
)
3113 * we found a key greater than an xattr key, there can't
3114 * be any acls later on
3116 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
3123 * it goes inode, inode backrefs, xattrs, extents,
3124 * so if there are a ton of hard links to an inode there can
3125 * be a lot of backrefs. Don't waste time searching too hard,
3126 * this is just an optimization
3131 /* we hit the end of the leaf before we found an xattr or
3132 * something larger than an xattr. We have to assume the inode
3135 if (*first_xattr_slot
== -1)
3136 *first_xattr_slot
= slot
;
3141 * read an inode from the btree into the in-memory inode
3143 static int btrfs_read_locked_inode(struct inode
*inode
,
3144 struct btrfs_path
*in_path
)
3146 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3147 struct btrfs_path
*path
= in_path
;
3148 struct extent_buffer
*leaf
;
3149 struct btrfs_inode_item
*inode_item
;
3150 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3151 struct btrfs_key location
;
3156 bool filled
= false;
3157 int first_xattr_slot
;
3159 ret
= btrfs_fill_inode(inode
, &rdev
);
3164 path
= btrfs_alloc_path();
3169 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
3171 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
3173 if (path
!= in_path
)
3174 btrfs_free_path(path
);
3178 leaf
= path
->nodes
[0];
3183 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3184 struct btrfs_inode_item
);
3185 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
3186 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
3187 i_uid_write(inode
, btrfs_inode_uid(leaf
, inode_item
));
3188 i_gid_write(inode
, btrfs_inode_gid(leaf
, inode_item
));
3189 btrfs_i_size_write(BTRFS_I(inode
), btrfs_inode_size(leaf
, inode_item
));
3191 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->atime
);
3192 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->atime
);
3194 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->mtime
);
3195 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->mtime
);
3197 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->ctime
);
3198 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->ctime
);
3200 BTRFS_I(inode
)->i_otime
.tv_sec
=
3201 btrfs_timespec_sec(leaf
, &inode_item
->otime
);
3202 BTRFS_I(inode
)->i_otime
.tv_nsec
=
3203 btrfs_timespec_nsec(leaf
, &inode_item
->otime
);
3205 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
3206 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
3207 BTRFS_I(inode
)->last_trans
= btrfs_inode_transid(leaf
, inode_item
);
3209 inode_set_iversion_queried(inode
,
3210 btrfs_inode_sequence(leaf
, inode_item
));
3211 inode
->i_generation
= BTRFS_I(inode
)->generation
;
3213 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
3215 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
3216 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
3220 * If we were modified in the current generation and evicted from memory
3221 * and then re-read we need to do a full sync since we don't have any
3222 * idea about which extents were modified before we were evicted from
3225 * This is required for both inode re-read from disk and delayed inode
3226 * in delayed_nodes_tree.
3228 if (BTRFS_I(inode
)->last_trans
== fs_info
->generation
)
3229 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3230 &BTRFS_I(inode
)->runtime_flags
);
3233 * We don't persist the id of the transaction where an unlink operation
3234 * against the inode was last made. So here we assume the inode might
3235 * have been evicted, and therefore the exact value of last_unlink_trans
3236 * lost, and set it to last_trans to avoid metadata inconsistencies
3237 * between the inode and its parent if the inode is fsync'ed and the log
3238 * replayed. For example, in the scenario:
3241 * ln mydir/foo mydir/bar
3244 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3245 * xfs_io -c fsync mydir/foo
3247 * mount fs, triggers fsync log replay
3249 * We must make sure that when we fsync our inode foo we also log its
3250 * parent inode, otherwise after log replay the parent still has the
3251 * dentry with the "bar" name but our inode foo has a link count of 1
3252 * and doesn't have an inode ref with the name "bar" anymore.
3254 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3255 * but it guarantees correctness at the expense of occasional full
3256 * transaction commits on fsync if our inode is a directory, or if our
3257 * inode is not a directory, logging its parent unnecessarily.
3259 BTRFS_I(inode
)->last_unlink_trans
= BTRFS_I(inode
)->last_trans
;
3262 if (inode
->i_nlink
!= 1 ||
3263 path
->slots
[0] >= btrfs_header_nritems(leaf
))
3266 btrfs_item_key_to_cpu(leaf
, &location
, path
->slots
[0]);
3267 if (location
.objectid
!= btrfs_ino(BTRFS_I(inode
)))
3270 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3271 if (location
.type
== BTRFS_INODE_REF_KEY
) {
3272 struct btrfs_inode_ref
*ref
;
3274 ref
= (struct btrfs_inode_ref
*)ptr
;
3275 BTRFS_I(inode
)->dir_index
= btrfs_inode_ref_index(leaf
, ref
);
3276 } else if (location
.type
== BTRFS_INODE_EXTREF_KEY
) {
3277 struct btrfs_inode_extref
*extref
;
3279 extref
= (struct btrfs_inode_extref
*)ptr
;
3280 BTRFS_I(inode
)->dir_index
= btrfs_inode_extref_index(leaf
,
3285 * try to precache a NULL acl entry for files that don't have
3286 * any xattrs or acls
3288 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
3289 btrfs_ino(BTRFS_I(inode
)), &first_xattr_slot
);
3290 if (first_xattr_slot
!= -1) {
3291 path
->slots
[0] = first_xattr_slot
;
3292 ret
= btrfs_load_inode_props(inode
, path
);
3295 "error loading props for ino %llu (root %llu): %d",
3296 btrfs_ino(BTRFS_I(inode
)),
3297 root
->root_key
.objectid
, ret
);
3299 if (path
!= in_path
)
3300 btrfs_free_path(path
);
3303 cache_no_acl(inode
);
3305 switch (inode
->i_mode
& S_IFMT
) {
3307 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3308 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3309 inode
->i_fop
= &btrfs_file_operations
;
3310 inode
->i_op
= &btrfs_file_inode_operations
;
3313 inode
->i_fop
= &btrfs_dir_file_operations
;
3314 inode
->i_op
= &btrfs_dir_inode_operations
;
3317 inode
->i_op
= &btrfs_symlink_inode_operations
;
3318 inode_nohighmem(inode
);
3319 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3322 inode
->i_op
= &btrfs_special_inode_operations
;
3323 init_special_inode(inode
, inode
->i_mode
, rdev
);
3327 btrfs_sync_inode_flags_to_i_flags(inode
);
3332 * given a leaf and an inode, copy the inode fields into the leaf
3334 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3335 struct extent_buffer
*leaf
,
3336 struct btrfs_inode_item
*item
,
3337 struct inode
*inode
)
3339 struct btrfs_map_token token
;
3341 btrfs_init_map_token(&token
, leaf
);
3343 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3344 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3345 btrfs_set_token_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
,
3347 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3348 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3350 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3351 inode
->i_atime
.tv_sec
, &token
);
3352 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3353 inode
->i_atime
.tv_nsec
, &token
);
3355 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3356 inode
->i_mtime
.tv_sec
, &token
);
3357 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3358 inode
->i_mtime
.tv_nsec
, &token
);
3360 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3361 inode
->i_ctime
.tv_sec
, &token
);
3362 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3363 inode
->i_ctime
.tv_nsec
, &token
);
3365 btrfs_set_token_timespec_sec(leaf
, &item
->otime
,
3366 BTRFS_I(inode
)->i_otime
.tv_sec
, &token
);
3367 btrfs_set_token_timespec_nsec(leaf
, &item
->otime
,
3368 BTRFS_I(inode
)->i_otime
.tv_nsec
, &token
);
3370 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3372 btrfs_set_token_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
,
3374 btrfs_set_token_inode_sequence(leaf
, item
, inode_peek_iversion(inode
),
3376 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3377 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3378 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3379 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3383 * copy everything in the in-memory inode into the btree.
3385 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
3386 struct btrfs_root
*root
, struct inode
*inode
)
3388 struct btrfs_inode_item
*inode_item
;
3389 struct btrfs_path
*path
;
3390 struct extent_buffer
*leaf
;
3393 path
= btrfs_alloc_path();
3397 path
->leave_spinning
= 1;
3398 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
3406 leaf
= path
->nodes
[0];
3407 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3408 struct btrfs_inode_item
);
3410 fill_inode_item(trans
, leaf
, inode_item
, inode
);
3411 btrfs_mark_buffer_dirty(leaf
);
3412 btrfs_set_inode_last_trans(trans
, inode
);
3415 btrfs_free_path(path
);
3420 * copy everything in the in-memory inode into the btree.
3422 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
3423 struct btrfs_root
*root
, struct inode
*inode
)
3425 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3429 * If the inode is a free space inode, we can deadlock during commit
3430 * if we put it into the delayed code.
3432 * The data relocation inode should also be directly updated
3435 if (!btrfs_is_free_space_inode(BTRFS_I(inode
))
3436 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
3437 && !test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
)) {
3438 btrfs_update_root_times(trans
, root
);
3440 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
3442 btrfs_set_inode_last_trans(trans
, inode
);
3446 return btrfs_update_inode_item(trans
, root
, inode
);
3449 noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
3450 struct btrfs_root
*root
,
3451 struct inode
*inode
)
3455 ret
= btrfs_update_inode(trans
, root
, inode
);
3457 return btrfs_update_inode_item(trans
, root
, inode
);
3462 * unlink helper that gets used here in inode.c and in the tree logging
3463 * recovery code. It remove a link in a directory with a given name, and
3464 * also drops the back refs in the inode to the directory
3466 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3467 struct btrfs_root
*root
,
3468 struct btrfs_inode
*dir
,
3469 struct btrfs_inode
*inode
,
3470 const char *name
, int name_len
)
3472 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3473 struct btrfs_path
*path
;
3475 struct btrfs_dir_item
*di
;
3477 u64 ino
= btrfs_ino(inode
);
3478 u64 dir_ino
= btrfs_ino(dir
);
3480 path
= btrfs_alloc_path();
3486 path
->leave_spinning
= 1;
3487 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3488 name
, name_len
, -1);
3489 if (IS_ERR_OR_NULL(di
)) {
3490 ret
= di
? PTR_ERR(di
) : -ENOENT
;
3493 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3496 btrfs_release_path(path
);
3499 * If we don't have dir index, we have to get it by looking up
3500 * the inode ref, since we get the inode ref, remove it directly,
3501 * it is unnecessary to do delayed deletion.
3503 * But if we have dir index, needn't search inode ref to get it.
3504 * Since the inode ref is close to the inode item, it is better
3505 * that we delay to delete it, and just do this deletion when
3506 * we update the inode item.
3508 if (inode
->dir_index
) {
3509 ret
= btrfs_delayed_delete_inode_ref(inode
);
3511 index
= inode
->dir_index
;
3516 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
3520 "failed to delete reference to %.*s, inode %llu parent %llu",
3521 name_len
, name
, ino
, dir_ino
);
3522 btrfs_abort_transaction(trans
, ret
);
3526 ret
= btrfs_delete_delayed_dir_index(trans
, dir
, index
);
3528 btrfs_abort_transaction(trans
, ret
);
3532 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
, inode
,
3534 if (ret
!= 0 && ret
!= -ENOENT
) {
3535 btrfs_abort_transaction(trans
, ret
);
3539 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
, dir
,
3544 btrfs_abort_transaction(trans
, ret
);
3547 * If we have a pending delayed iput we could end up with the final iput
3548 * being run in btrfs-cleaner context. If we have enough of these built
3549 * up we can end up burning a lot of time in btrfs-cleaner without any
3550 * way to throttle the unlinks. Since we're currently holding a ref on
3551 * the inode we can run the delayed iput here without any issues as the
3552 * final iput won't be done until after we drop the ref we're currently
3555 btrfs_run_delayed_iput(fs_info
, inode
);
3557 btrfs_free_path(path
);
3561 btrfs_i_size_write(dir
, dir
->vfs_inode
.i_size
- name_len
* 2);
3562 inode_inc_iversion(&inode
->vfs_inode
);
3563 inode_inc_iversion(&dir
->vfs_inode
);
3564 inode
->vfs_inode
.i_ctime
= dir
->vfs_inode
.i_mtime
=
3565 dir
->vfs_inode
.i_ctime
= current_time(&inode
->vfs_inode
);
3566 ret
= btrfs_update_inode(trans
, root
, &dir
->vfs_inode
);
3571 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3572 struct btrfs_root
*root
,
3573 struct btrfs_inode
*dir
, struct btrfs_inode
*inode
,
3574 const char *name
, int name_len
)
3577 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
3579 drop_nlink(&inode
->vfs_inode
);
3580 ret
= btrfs_update_inode(trans
, root
, &inode
->vfs_inode
);
3586 * helper to start transaction for unlink and rmdir.
3588 * unlink and rmdir are special in btrfs, they do not always free space, so
3589 * if we cannot make our reservations the normal way try and see if there is
3590 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3591 * allow the unlink to occur.
3593 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
)
3595 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3598 * 1 for the possible orphan item
3599 * 1 for the dir item
3600 * 1 for the dir index
3601 * 1 for the inode ref
3604 return btrfs_start_transaction_fallback_global_rsv(root
, 5, 5);
3607 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
3609 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3610 struct btrfs_trans_handle
*trans
;
3611 struct inode
*inode
= d_inode(dentry
);
3614 trans
= __unlink_start_trans(dir
);
3616 return PTR_ERR(trans
);
3618 btrfs_record_unlink_dir(trans
, BTRFS_I(dir
), BTRFS_I(d_inode(dentry
)),
3621 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
3622 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
3623 dentry
->d_name
.len
);
3627 if (inode
->i_nlink
== 0) {
3628 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
3634 btrfs_end_transaction(trans
);
3635 btrfs_btree_balance_dirty(root
->fs_info
);
3639 static int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
3640 struct inode
*dir
, struct dentry
*dentry
)
3642 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3643 struct btrfs_inode
*inode
= BTRFS_I(d_inode(dentry
));
3644 struct btrfs_path
*path
;
3645 struct extent_buffer
*leaf
;
3646 struct btrfs_dir_item
*di
;
3647 struct btrfs_key key
;
3648 const char *name
= dentry
->d_name
.name
;
3649 int name_len
= dentry
->d_name
.len
;
3653 u64 dir_ino
= btrfs_ino(BTRFS_I(dir
));
3655 if (btrfs_ino(inode
) == BTRFS_FIRST_FREE_OBJECTID
) {
3656 objectid
= inode
->root
->root_key
.objectid
;
3657 } else if (btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
) {
3658 objectid
= inode
->location
.objectid
;
3664 path
= btrfs_alloc_path();
3668 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3669 name
, name_len
, -1);
3670 if (IS_ERR_OR_NULL(di
)) {
3671 ret
= di
? PTR_ERR(di
) : -ENOENT
;
3675 leaf
= path
->nodes
[0];
3676 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3677 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
3678 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3680 btrfs_abort_transaction(trans
, ret
);
3683 btrfs_release_path(path
);
3686 * This is a placeholder inode for a subvolume we didn't have a
3687 * reference to at the time of the snapshot creation. In the meantime
3688 * we could have renamed the real subvol link into our snapshot, so
3689 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3690 * Instead simply lookup the dir_index_item for this entry so we can
3691 * remove it. Otherwise we know we have a ref to the root and we can
3692 * call btrfs_del_root_ref, and it _shouldn't_ fail.
3694 if (btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
) {
3695 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
3697 if (IS_ERR_OR_NULL(di
)) {
3702 btrfs_abort_transaction(trans
, ret
);
3706 leaf
= path
->nodes
[0];
3707 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3709 btrfs_release_path(path
);
3711 ret
= btrfs_del_root_ref(trans
, objectid
,
3712 root
->root_key
.objectid
, dir_ino
,
3713 &index
, name
, name_len
);
3715 btrfs_abort_transaction(trans
, ret
);
3720 ret
= btrfs_delete_delayed_dir_index(trans
, BTRFS_I(dir
), index
);
3722 btrfs_abort_transaction(trans
, ret
);
3726 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
- name_len
* 2);
3727 inode_inc_iversion(dir
);
3728 dir
->i_mtime
= dir
->i_ctime
= current_time(dir
);
3729 ret
= btrfs_update_inode_fallback(trans
, root
, dir
);
3731 btrfs_abort_transaction(trans
, ret
);
3733 btrfs_free_path(path
);
3738 * Helper to check if the subvolume references other subvolumes or if it's
3741 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
3743 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3744 struct btrfs_path
*path
;
3745 struct btrfs_dir_item
*di
;
3746 struct btrfs_key key
;
3750 path
= btrfs_alloc_path();
3754 /* Make sure this root isn't set as the default subvol */
3755 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
3756 di
= btrfs_lookup_dir_item(NULL
, fs_info
->tree_root
, path
,
3757 dir_id
, "default", 7, 0);
3758 if (di
&& !IS_ERR(di
)) {
3759 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
3760 if (key
.objectid
== root
->root_key
.objectid
) {
3763 "deleting default subvolume %llu is not allowed",
3767 btrfs_release_path(path
);
3770 key
.objectid
= root
->root_key
.objectid
;
3771 key
.type
= BTRFS_ROOT_REF_KEY
;
3772 key
.offset
= (u64
)-1;
3774 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
3780 if (path
->slots
[0] > 0) {
3782 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
3783 if (key
.objectid
== root
->root_key
.objectid
&&
3784 key
.type
== BTRFS_ROOT_REF_KEY
)
3788 btrfs_free_path(path
);
3792 /* Delete all dentries for inodes belonging to the root */
3793 static void btrfs_prune_dentries(struct btrfs_root
*root
)
3795 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3796 struct rb_node
*node
;
3797 struct rb_node
*prev
;
3798 struct btrfs_inode
*entry
;
3799 struct inode
*inode
;
3802 if (!test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
3803 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
3805 spin_lock(&root
->inode_lock
);
3807 node
= root
->inode_tree
.rb_node
;
3811 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3813 if (objectid
< btrfs_ino(entry
))
3814 node
= node
->rb_left
;
3815 else if (objectid
> btrfs_ino(entry
))
3816 node
= node
->rb_right
;
3822 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
3823 if (objectid
<= btrfs_ino(entry
)) {
3827 prev
= rb_next(prev
);
3831 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3832 objectid
= btrfs_ino(entry
) + 1;
3833 inode
= igrab(&entry
->vfs_inode
);
3835 spin_unlock(&root
->inode_lock
);
3836 if (atomic_read(&inode
->i_count
) > 1)
3837 d_prune_aliases(inode
);
3839 * btrfs_drop_inode will have it removed from the inode
3840 * cache when its usage count hits zero.
3844 spin_lock(&root
->inode_lock
);
3848 if (cond_resched_lock(&root
->inode_lock
))
3851 node
= rb_next(node
);
3853 spin_unlock(&root
->inode_lock
);
3856 int btrfs_delete_subvolume(struct inode
*dir
, struct dentry
*dentry
)
3858 struct btrfs_fs_info
*fs_info
= btrfs_sb(dentry
->d_sb
);
3859 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3860 struct inode
*inode
= d_inode(dentry
);
3861 struct btrfs_root
*dest
= BTRFS_I(inode
)->root
;
3862 struct btrfs_trans_handle
*trans
;
3863 struct btrfs_block_rsv block_rsv
;
3869 * Don't allow to delete a subvolume with send in progress. This is
3870 * inside the inode lock so the error handling that has to drop the bit
3871 * again is not run concurrently.
3873 spin_lock(&dest
->root_item_lock
);
3874 if (dest
->send_in_progress
) {
3875 spin_unlock(&dest
->root_item_lock
);
3877 "attempt to delete subvolume %llu during send",
3878 dest
->root_key
.objectid
);
3881 root_flags
= btrfs_root_flags(&dest
->root_item
);
3882 btrfs_set_root_flags(&dest
->root_item
,
3883 root_flags
| BTRFS_ROOT_SUBVOL_DEAD
);
3884 spin_unlock(&dest
->root_item_lock
);
3886 down_write(&fs_info
->subvol_sem
);
3888 err
= may_destroy_subvol(dest
);
3892 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
3894 * One for dir inode,
3895 * two for dir entries,
3896 * two for root ref/backref.
3898 err
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
, 5, true);
3902 trans
= btrfs_start_transaction(root
, 0);
3903 if (IS_ERR(trans
)) {
3904 err
= PTR_ERR(trans
);
3907 trans
->block_rsv
= &block_rsv
;
3908 trans
->bytes_reserved
= block_rsv
.size
;
3910 btrfs_record_snapshot_destroy(trans
, BTRFS_I(dir
));
3912 ret
= btrfs_unlink_subvol(trans
, dir
, dentry
);
3915 btrfs_abort_transaction(trans
, ret
);
3919 btrfs_record_root_in_trans(trans
, dest
);
3921 memset(&dest
->root_item
.drop_progress
, 0,
3922 sizeof(dest
->root_item
.drop_progress
));
3923 dest
->root_item
.drop_level
= 0;
3924 btrfs_set_root_refs(&dest
->root_item
, 0);
3926 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &dest
->state
)) {
3927 ret
= btrfs_insert_orphan_item(trans
,
3929 dest
->root_key
.objectid
);
3931 btrfs_abort_transaction(trans
, ret
);
3937 ret
= btrfs_uuid_tree_remove(trans
, dest
->root_item
.uuid
,
3938 BTRFS_UUID_KEY_SUBVOL
,
3939 dest
->root_key
.objectid
);
3940 if (ret
&& ret
!= -ENOENT
) {
3941 btrfs_abort_transaction(trans
, ret
);
3945 if (!btrfs_is_empty_uuid(dest
->root_item
.received_uuid
)) {
3946 ret
= btrfs_uuid_tree_remove(trans
,
3947 dest
->root_item
.received_uuid
,
3948 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
3949 dest
->root_key
.objectid
);
3950 if (ret
&& ret
!= -ENOENT
) {
3951 btrfs_abort_transaction(trans
, ret
);
3958 trans
->block_rsv
= NULL
;
3959 trans
->bytes_reserved
= 0;
3960 ret
= btrfs_end_transaction(trans
);
3963 inode
->i_flags
|= S_DEAD
;
3965 btrfs_subvolume_release_metadata(fs_info
, &block_rsv
);
3967 up_write(&fs_info
->subvol_sem
);
3969 spin_lock(&dest
->root_item_lock
);
3970 root_flags
= btrfs_root_flags(&dest
->root_item
);
3971 btrfs_set_root_flags(&dest
->root_item
,
3972 root_flags
& ~BTRFS_ROOT_SUBVOL_DEAD
);
3973 spin_unlock(&dest
->root_item_lock
);
3975 d_invalidate(dentry
);
3976 btrfs_prune_dentries(dest
);
3977 ASSERT(dest
->send_in_progress
== 0);
3980 if (dest
->ino_cache_inode
) {
3981 iput(dest
->ino_cache_inode
);
3982 dest
->ino_cache_inode
= NULL
;
3989 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
3991 struct inode
*inode
= d_inode(dentry
);
3993 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3994 struct btrfs_trans_handle
*trans
;
3995 u64 last_unlink_trans
;
3997 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
3999 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_FIRST_FREE_OBJECTID
)
4000 return btrfs_delete_subvolume(dir
, dentry
);
4002 trans
= __unlink_start_trans(dir
);
4004 return PTR_ERR(trans
);
4006 if (unlikely(btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
4007 err
= btrfs_unlink_subvol(trans
, dir
, dentry
);
4011 err
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
4015 last_unlink_trans
= BTRFS_I(inode
)->last_unlink_trans
;
4017 /* now the directory is empty */
4018 err
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
4019 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
4020 dentry
->d_name
.len
);
4022 btrfs_i_size_write(BTRFS_I(inode
), 0);
4024 * Propagate the last_unlink_trans value of the deleted dir to
4025 * its parent directory. This is to prevent an unrecoverable
4026 * log tree in the case we do something like this:
4028 * 2) create snapshot under dir foo
4029 * 3) delete the snapshot
4032 * 6) fsync foo or some file inside foo
4034 if (last_unlink_trans
>= trans
->transid
)
4035 BTRFS_I(dir
)->last_unlink_trans
= last_unlink_trans
;
4038 btrfs_end_transaction(trans
);
4039 btrfs_btree_balance_dirty(root
->fs_info
);
4045 * Return this if we need to call truncate_block for the last bit of the
4048 #define NEED_TRUNCATE_BLOCK 1
4051 * this can truncate away extent items, csum items and directory items.
4052 * It starts at a high offset and removes keys until it can't find
4053 * any higher than new_size
4055 * csum items that cross the new i_size are truncated to the new size
4058 * min_type is the minimum key type to truncate down to. If set to 0, this
4059 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4061 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
4062 struct btrfs_root
*root
,
4063 struct inode
*inode
,
4064 u64 new_size
, u32 min_type
)
4066 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4067 struct btrfs_path
*path
;
4068 struct extent_buffer
*leaf
;
4069 struct btrfs_file_extent_item
*fi
;
4070 struct btrfs_key key
;
4071 struct btrfs_key found_key
;
4072 u64 extent_start
= 0;
4073 u64 extent_num_bytes
= 0;
4074 u64 extent_offset
= 0;
4076 u64 last_size
= new_size
;
4077 u32 found_type
= (u8
)-1;
4080 int pending_del_nr
= 0;
4081 int pending_del_slot
= 0;
4082 int extent_type
= -1;
4084 u64 ino
= btrfs_ino(BTRFS_I(inode
));
4085 u64 bytes_deleted
= 0;
4086 bool be_nice
= false;
4087 bool should_throttle
= false;
4088 const u64 lock_start
= ALIGN_DOWN(new_size
, fs_info
->sectorsize
);
4089 struct extent_state
*cached_state
= NULL
;
4091 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
4094 * for non-free space inodes and ref cows, we want to back off from
4097 if (!btrfs_is_free_space_inode(BTRFS_I(inode
)) &&
4098 test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4101 path
= btrfs_alloc_path();
4104 path
->reada
= READA_BACK
;
4106 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
4107 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lock_start
, (u64
)-1,
4111 * We want to drop from the next block forward in case this new size is
4112 * not block aligned since we will be keeping the last block of the
4113 * extent just the way it is.
4115 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4116 root
== fs_info
->tree_root
)
4117 btrfs_drop_extent_cache(BTRFS_I(inode
), ALIGN(new_size
,
4118 fs_info
->sectorsize
),
4122 * This function is also used to drop the items in the log tree before
4123 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4124 * it is used to drop the logged items. So we shouldn't kill the delayed
4127 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
4128 btrfs_kill_delayed_inode_items(BTRFS_I(inode
));
4131 key
.offset
= (u64
)-1;
4136 * with a 16K leaf size and 128MB extents, you can actually queue
4137 * up a huge file in a single leaf. Most of the time that
4138 * bytes_deleted is > 0, it will be huge by the time we get here
4140 if (be_nice
&& bytes_deleted
> SZ_32M
&&
4141 btrfs_should_end_transaction(trans
)) {
4146 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
4152 /* there are no items in the tree for us to truncate, we're
4155 if (path
->slots
[0] == 0)
4162 leaf
= path
->nodes
[0];
4163 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4164 found_type
= found_key
.type
;
4166 if (found_key
.objectid
!= ino
)
4169 if (found_type
< min_type
)
4172 item_end
= found_key
.offset
;
4173 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
4174 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4175 struct btrfs_file_extent_item
);
4176 extent_type
= btrfs_file_extent_type(leaf
, fi
);
4177 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4179 btrfs_file_extent_num_bytes(leaf
, fi
);
4181 trace_btrfs_truncate_show_fi_regular(
4182 BTRFS_I(inode
), leaf
, fi
,
4184 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4185 item_end
+= btrfs_file_extent_ram_bytes(leaf
,
4188 trace_btrfs_truncate_show_fi_inline(
4189 BTRFS_I(inode
), leaf
, fi
, path
->slots
[0],
4194 if (found_type
> min_type
) {
4197 if (item_end
< new_size
)
4199 if (found_key
.offset
>= new_size
)
4205 /* FIXME, shrink the extent if the ref count is only 1 */
4206 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
4209 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4211 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
4213 u64 orig_num_bytes
=
4214 btrfs_file_extent_num_bytes(leaf
, fi
);
4215 extent_num_bytes
= ALIGN(new_size
-
4217 fs_info
->sectorsize
);
4218 btrfs_set_file_extent_num_bytes(leaf
, fi
,
4220 num_dec
= (orig_num_bytes
-
4222 if (test_bit(BTRFS_ROOT_REF_COWS
,
4225 inode_sub_bytes(inode
, num_dec
);
4226 btrfs_mark_buffer_dirty(leaf
);
4229 btrfs_file_extent_disk_num_bytes(leaf
,
4231 extent_offset
= found_key
.offset
-
4232 btrfs_file_extent_offset(leaf
, fi
);
4234 /* FIXME blocksize != 4096 */
4235 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
4236 if (extent_start
!= 0) {
4238 if (test_bit(BTRFS_ROOT_REF_COWS
,
4240 inode_sub_bytes(inode
, num_dec
);
4243 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4245 * we can't truncate inline items that have had
4249 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
4250 btrfs_file_extent_other_encoding(leaf
, fi
) == 0 &&
4251 btrfs_file_extent_compression(leaf
, fi
) == 0) {
4252 u32 size
= (u32
)(new_size
- found_key
.offset
);
4254 btrfs_set_file_extent_ram_bytes(leaf
, fi
, size
);
4255 size
= btrfs_file_extent_calc_inline_size(size
);
4256 btrfs_truncate_item(path
, size
, 1);
4257 } else if (!del_item
) {
4259 * We have to bail so the last_size is set to
4260 * just before this extent.
4262 ret
= NEED_TRUNCATE_BLOCK
;
4266 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4267 inode_sub_bytes(inode
, item_end
+ 1 - new_size
);
4271 last_size
= found_key
.offset
;
4273 last_size
= new_size
;
4275 if (!pending_del_nr
) {
4276 /* no pending yet, add ourselves */
4277 pending_del_slot
= path
->slots
[0];
4279 } else if (pending_del_nr
&&
4280 path
->slots
[0] + 1 == pending_del_slot
) {
4281 /* hop on the pending chunk */
4283 pending_del_slot
= path
->slots
[0];
4290 should_throttle
= false;
4293 (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4294 root
== fs_info
->tree_root
)) {
4295 struct btrfs_ref ref
= { 0 };
4297 bytes_deleted
+= extent_num_bytes
;
4299 btrfs_init_generic_ref(&ref
, BTRFS_DROP_DELAYED_REF
,
4300 extent_start
, extent_num_bytes
, 0);
4301 ref
.real_root
= root
->root_key
.objectid
;
4302 btrfs_init_data_ref(&ref
, btrfs_header_owner(leaf
),
4303 ino
, extent_offset
);
4304 ret
= btrfs_free_extent(trans
, &ref
);
4306 btrfs_abort_transaction(trans
, ret
);
4310 if (btrfs_should_throttle_delayed_refs(trans
))
4311 should_throttle
= true;
4315 if (found_type
== BTRFS_INODE_ITEM_KEY
)
4318 if (path
->slots
[0] == 0 ||
4319 path
->slots
[0] != pending_del_slot
||
4321 if (pending_del_nr
) {
4322 ret
= btrfs_del_items(trans
, root
, path
,
4326 btrfs_abort_transaction(trans
, ret
);
4331 btrfs_release_path(path
);
4334 * We can generate a lot of delayed refs, so we need to
4335 * throttle every once and a while and make sure we're
4336 * adding enough space to keep up with the work we are
4337 * generating. Since we hold a transaction here we
4338 * can't flush, and we don't want to FLUSH_LIMIT because
4339 * we could have generated too many delayed refs to
4340 * actually allocate, so just bail if we're short and
4341 * let the normal reservation dance happen higher up.
4343 if (should_throttle
) {
4344 ret
= btrfs_delayed_refs_rsv_refill(fs_info
,
4345 BTRFS_RESERVE_NO_FLUSH
);
4357 if (ret
>= 0 && pending_del_nr
) {
4360 err
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
4363 btrfs_abort_transaction(trans
, err
);
4367 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4368 ASSERT(last_size
>= new_size
);
4369 if (!ret
&& last_size
> new_size
)
4370 last_size
= new_size
;
4371 btrfs_ordered_update_i_size(inode
, last_size
, NULL
);
4372 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lock_start
,
4373 (u64
)-1, &cached_state
);
4376 btrfs_free_path(path
);
4381 * btrfs_truncate_block - read, zero a chunk and write a block
4382 * @inode - inode that we're zeroing
4383 * @from - the offset to start zeroing
4384 * @len - the length to zero, 0 to zero the entire range respective to the
4386 * @front - zero up to the offset instead of from the offset on
4388 * This will find the block for the "from" offset and cow the block and zero the
4389 * part we want to zero. This is used with truncate and hole punching.
4391 int btrfs_truncate_block(struct inode
*inode
, loff_t from
, loff_t len
,
4394 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4395 struct address_space
*mapping
= inode
->i_mapping
;
4396 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4397 struct btrfs_ordered_extent
*ordered
;
4398 struct extent_state
*cached_state
= NULL
;
4399 struct extent_changeset
*data_reserved
= NULL
;
4401 u32 blocksize
= fs_info
->sectorsize
;
4402 pgoff_t index
= from
>> PAGE_SHIFT
;
4403 unsigned offset
= from
& (blocksize
- 1);
4405 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
4410 if (IS_ALIGNED(offset
, blocksize
) &&
4411 (!len
|| IS_ALIGNED(len
, blocksize
)))
4414 block_start
= round_down(from
, blocksize
);
4415 block_end
= block_start
+ blocksize
- 1;
4417 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
4418 block_start
, blocksize
);
4423 page
= find_or_create_page(mapping
, index
, mask
);
4425 btrfs_delalloc_release_space(inode
, data_reserved
,
4426 block_start
, blocksize
, true);
4427 btrfs_delalloc_release_extents(BTRFS_I(inode
), blocksize
);
4432 if (!PageUptodate(page
)) {
4433 ret
= btrfs_readpage(NULL
, page
);
4435 if (page
->mapping
!= mapping
) {
4440 if (!PageUptodate(page
)) {
4445 wait_on_page_writeback(page
);
4447 lock_extent_bits(io_tree
, block_start
, block_end
, &cached_state
);
4448 set_page_extent_mapped(page
);
4450 ordered
= btrfs_lookup_ordered_extent(inode
, block_start
);
4452 unlock_extent_cached(io_tree
, block_start
, block_end
,
4456 btrfs_start_ordered_extent(inode
, ordered
, 1);
4457 btrfs_put_ordered_extent(ordered
);
4461 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, block_start
, block_end
,
4462 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
4463 0, 0, &cached_state
);
4465 ret
= btrfs_set_extent_delalloc(inode
, block_start
, block_end
, 0,
4468 unlock_extent_cached(io_tree
, block_start
, block_end
,
4473 if (offset
!= blocksize
) {
4475 len
= blocksize
- offset
;
4478 memset(kaddr
+ (block_start
- page_offset(page
)),
4481 memset(kaddr
+ (block_start
- page_offset(page
)) + offset
,
4483 flush_dcache_page(page
);
4486 ClearPageChecked(page
);
4487 set_page_dirty(page
);
4488 unlock_extent_cached(io_tree
, block_start
, block_end
, &cached_state
);
4492 btrfs_delalloc_release_space(inode
, data_reserved
, block_start
,
4494 btrfs_delalloc_release_extents(BTRFS_I(inode
), blocksize
);
4498 extent_changeset_free(data_reserved
);
4502 static int maybe_insert_hole(struct btrfs_root
*root
, struct inode
*inode
,
4503 u64 offset
, u64 len
)
4505 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4506 struct btrfs_trans_handle
*trans
;
4510 * Still need to make sure the inode looks like it's been updated so
4511 * that any holes get logged if we fsync.
4513 if (btrfs_fs_incompat(fs_info
, NO_HOLES
)) {
4514 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
4515 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
4516 BTRFS_I(inode
)->last_log_commit
= root
->last_log_commit
;
4521 * 1 - for the one we're dropping
4522 * 1 - for the one we're adding
4523 * 1 - for updating the inode.
4525 trans
= btrfs_start_transaction(root
, 3);
4527 return PTR_ERR(trans
);
4529 ret
= btrfs_drop_extents(trans
, root
, inode
, offset
, offset
+ len
, 1);
4531 btrfs_abort_transaction(trans
, ret
);
4532 btrfs_end_transaction(trans
);
4536 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(BTRFS_I(inode
)),
4537 offset
, 0, 0, len
, 0, len
, 0, 0, 0);
4539 btrfs_abort_transaction(trans
, ret
);
4541 btrfs_update_inode(trans
, root
, inode
);
4542 btrfs_end_transaction(trans
);
4547 * This function puts in dummy file extents for the area we're creating a hole
4548 * for. So if we are truncating this file to a larger size we need to insert
4549 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4550 * the range between oldsize and size
4552 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
4554 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4555 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4556 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4557 struct extent_map
*em
= NULL
;
4558 struct extent_state
*cached_state
= NULL
;
4559 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4560 u64 hole_start
= ALIGN(oldsize
, fs_info
->sectorsize
);
4561 u64 block_end
= ALIGN(size
, fs_info
->sectorsize
);
4568 * If our size started in the middle of a block we need to zero out the
4569 * rest of the block before we expand the i_size, otherwise we could
4570 * expose stale data.
4572 err
= btrfs_truncate_block(inode
, oldsize
, 0, 0);
4576 if (size
<= hole_start
)
4579 btrfs_lock_and_flush_ordered_range(io_tree
, BTRFS_I(inode
), hole_start
,
4580 block_end
- 1, &cached_state
);
4581 cur_offset
= hole_start
;
4583 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, cur_offset
,
4584 block_end
- cur_offset
);
4590 last_byte
= min(extent_map_end(em
), block_end
);
4591 last_byte
= ALIGN(last_byte
, fs_info
->sectorsize
);
4592 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
4593 struct extent_map
*hole_em
;
4594 hole_size
= last_byte
- cur_offset
;
4596 err
= maybe_insert_hole(root
, inode
, cur_offset
,
4600 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
4601 cur_offset
+ hole_size
- 1, 0);
4602 hole_em
= alloc_extent_map();
4604 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4605 &BTRFS_I(inode
)->runtime_flags
);
4608 hole_em
->start
= cur_offset
;
4609 hole_em
->len
= hole_size
;
4610 hole_em
->orig_start
= cur_offset
;
4612 hole_em
->block_start
= EXTENT_MAP_HOLE
;
4613 hole_em
->block_len
= 0;
4614 hole_em
->orig_block_len
= 0;
4615 hole_em
->ram_bytes
= hole_size
;
4616 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
4617 hole_em
->generation
= fs_info
->generation
;
4620 write_lock(&em_tree
->lock
);
4621 err
= add_extent_mapping(em_tree
, hole_em
, 1);
4622 write_unlock(&em_tree
->lock
);
4625 btrfs_drop_extent_cache(BTRFS_I(inode
),
4630 free_extent_map(hole_em
);
4633 free_extent_map(em
);
4635 cur_offset
= last_byte
;
4636 if (cur_offset
>= block_end
)
4639 free_extent_map(em
);
4640 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
);
4644 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
)
4646 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4647 struct btrfs_trans_handle
*trans
;
4648 loff_t oldsize
= i_size_read(inode
);
4649 loff_t newsize
= attr
->ia_size
;
4650 int mask
= attr
->ia_valid
;
4654 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4655 * special case where we need to update the times despite not having
4656 * these flags set. For all other operations the VFS set these flags
4657 * explicitly if it wants a timestamp update.
4659 if (newsize
!= oldsize
) {
4660 inode_inc_iversion(inode
);
4661 if (!(mask
& (ATTR_CTIME
| ATTR_MTIME
)))
4662 inode
->i_ctime
= inode
->i_mtime
=
4663 current_time(inode
);
4666 if (newsize
> oldsize
) {
4668 * Don't do an expanding truncate while snapshotting is ongoing.
4669 * This is to ensure the snapshot captures a fully consistent
4670 * state of this file - if the snapshot captures this expanding
4671 * truncation, it must capture all writes that happened before
4674 btrfs_wait_for_snapshot_creation(root
);
4675 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
4677 btrfs_end_write_no_snapshotting(root
);
4681 trans
= btrfs_start_transaction(root
, 1);
4682 if (IS_ERR(trans
)) {
4683 btrfs_end_write_no_snapshotting(root
);
4684 return PTR_ERR(trans
);
4687 i_size_write(inode
, newsize
);
4688 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
4689 pagecache_isize_extended(inode
, oldsize
, newsize
);
4690 ret
= btrfs_update_inode(trans
, root
, inode
);
4691 btrfs_end_write_no_snapshotting(root
);
4692 btrfs_end_transaction(trans
);
4696 * We're truncating a file that used to have good data down to
4697 * zero. Make sure it gets into the ordered flush list so that
4698 * any new writes get down to disk quickly.
4701 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
4702 &BTRFS_I(inode
)->runtime_flags
);
4704 truncate_setsize(inode
, newsize
);
4706 /* Disable nonlocked read DIO to avoid the endless truncate */
4707 btrfs_inode_block_unlocked_dio(BTRFS_I(inode
));
4708 inode_dio_wait(inode
);
4709 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode
));
4711 ret
= btrfs_truncate(inode
, newsize
== oldsize
);
4712 if (ret
&& inode
->i_nlink
) {
4716 * Truncate failed, so fix up the in-memory size. We
4717 * adjusted disk_i_size down as we removed extents, so
4718 * wait for disk_i_size to be stable and then update the
4719 * in-memory size to match.
4721 err
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
4724 i_size_write(inode
, BTRFS_I(inode
)->disk_i_size
);
4731 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4733 struct inode
*inode
= d_inode(dentry
);
4734 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4737 if (btrfs_root_readonly(root
))
4740 err
= setattr_prepare(dentry
, attr
);
4744 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
4745 err
= btrfs_setsize(inode
, attr
);
4750 if (attr
->ia_valid
) {
4751 setattr_copy(inode
, attr
);
4752 inode_inc_iversion(inode
);
4753 err
= btrfs_dirty_inode(inode
);
4755 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
4756 err
= posix_acl_chmod(inode
, inode
->i_mode
);
4763 * While truncating the inode pages during eviction, we get the VFS calling
4764 * btrfs_invalidatepage() against each page of the inode. This is slow because
4765 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4766 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4767 * extent_state structures over and over, wasting lots of time.
4769 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4770 * those expensive operations on a per page basis and do only the ordered io
4771 * finishing, while we release here the extent_map and extent_state structures,
4772 * without the excessive merging and splitting.
4774 static void evict_inode_truncate_pages(struct inode
*inode
)
4776 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4777 struct extent_map_tree
*map_tree
= &BTRFS_I(inode
)->extent_tree
;
4778 struct rb_node
*node
;
4780 ASSERT(inode
->i_state
& I_FREEING
);
4781 truncate_inode_pages_final(&inode
->i_data
);
4783 write_lock(&map_tree
->lock
);
4784 while (!RB_EMPTY_ROOT(&map_tree
->map
.rb_root
)) {
4785 struct extent_map
*em
;
4787 node
= rb_first_cached(&map_tree
->map
);
4788 em
= rb_entry(node
, struct extent_map
, rb_node
);
4789 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
4790 clear_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
4791 remove_extent_mapping(map_tree
, em
);
4792 free_extent_map(em
);
4793 if (need_resched()) {
4794 write_unlock(&map_tree
->lock
);
4796 write_lock(&map_tree
->lock
);
4799 write_unlock(&map_tree
->lock
);
4802 * Keep looping until we have no more ranges in the io tree.
4803 * We can have ongoing bios started by readpages (called from readahead)
4804 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
4805 * still in progress (unlocked the pages in the bio but did not yet
4806 * unlocked the ranges in the io tree). Therefore this means some
4807 * ranges can still be locked and eviction started because before
4808 * submitting those bios, which are executed by a separate task (work
4809 * queue kthread), inode references (inode->i_count) were not taken
4810 * (which would be dropped in the end io callback of each bio).
4811 * Therefore here we effectively end up waiting for those bios and
4812 * anyone else holding locked ranges without having bumped the inode's
4813 * reference count - if we don't do it, when they access the inode's
4814 * io_tree to unlock a range it may be too late, leading to an
4815 * use-after-free issue.
4817 spin_lock(&io_tree
->lock
);
4818 while (!RB_EMPTY_ROOT(&io_tree
->state
)) {
4819 struct extent_state
*state
;
4820 struct extent_state
*cached_state
= NULL
;
4823 unsigned state_flags
;
4825 node
= rb_first(&io_tree
->state
);
4826 state
= rb_entry(node
, struct extent_state
, rb_node
);
4827 start
= state
->start
;
4829 state_flags
= state
->state
;
4830 spin_unlock(&io_tree
->lock
);
4832 lock_extent_bits(io_tree
, start
, end
, &cached_state
);
4835 * If still has DELALLOC flag, the extent didn't reach disk,
4836 * and its reserved space won't be freed by delayed_ref.
4837 * So we need to free its reserved space here.
4838 * (Refer to comment in btrfs_invalidatepage, case 2)
4840 * Note, end is the bytenr of last byte, so we need + 1 here.
4842 if (state_flags
& EXTENT_DELALLOC
)
4843 btrfs_qgroup_free_data(inode
, NULL
, start
, end
- start
+ 1);
4845 clear_extent_bit(io_tree
, start
, end
,
4846 EXTENT_LOCKED
| EXTENT_DELALLOC
|
4847 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 1, 1,
4851 spin_lock(&io_tree
->lock
);
4853 spin_unlock(&io_tree
->lock
);
4856 static struct btrfs_trans_handle
*evict_refill_and_join(struct btrfs_root
*root
,
4857 struct btrfs_block_rsv
*rsv
)
4859 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4860 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
4861 struct btrfs_trans_handle
*trans
;
4862 u64 delayed_refs_extra
= btrfs_calc_insert_metadata_size(fs_info
, 1);
4866 * Eviction should be taking place at some place safe because of our
4867 * delayed iputs. However the normal flushing code will run delayed
4868 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
4870 * We reserve the delayed_refs_extra here again because we can't use
4871 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
4872 * above. We reserve our extra bit here because we generate a ton of
4873 * delayed refs activity by truncating.
4875 * If we cannot make our reservation we'll attempt to steal from the
4876 * global reserve, because we really want to be able to free up space.
4878 ret
= btrfs_block_rsv_refill(root
, rsv
, rsv
->size
+ delayed_refs_extra
,
4879 BTRFS_RESERVE_FLUSH_EVICT
);
4882 * Try to steal from the global reserve if there is space for
4885 if (btrfs_check_space_for_delayed_refs(fs_info
) ||
4886 btrfs_block_rsv_migrate(global_rsv
, rsv
, rsv
->size
, 0)) {
4888 "could not allocate space for delete; will truncate on mount");
4889 return ERR_PTR(-ENOSPC
);
4891 delayed_refs_extra
= 0;
4894 trans
= btrfs_join_transaction(root
);
4898 if (delayed_refs_extra
) {
4899 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
4900 trans
->bytes_reserved
= delayed_refs_extra
;
4901 btrfs_block_rsv_migrate(rsv
, trans
->block_rsv
,
4902 delayed_refs_extra
, 1);
4907 void btrfs_evict_inode(struct inode
*inode
)
4909 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4910 struct btrfs_trans_handle
*trans
;
4911 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4912 struct btrfs_block_rsv
*rsv
;
4915 trace_btrfs_inode_evict(inode
);
4922 evict_inode_truncate_pages(inode
);
4924 if (inode
->i_nlink
&&
4925 ((btrfs_root_refs(&root
->root_item
) != 0 &&
4926 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
) ||
4927 btrfs_is_free_space_inode(BTRFS_I(inode
))))
4930 if (is_bad_inode(inode
))
4933 btrfs_free_io_failure_record(BTRFS_I(inode
), 0, (u64
)-1);
4935 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
))
4938 if (inode
->i_nlink
> 0) {
4939 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0 &&
4940 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
);
4944 ret
= btrfs_commit_inode_delayed_inode(BTRFS_I(inode
));
4948 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
4951 rsv
->size
= btrfs_calc_metadata_size(fs_info
, 1);
4954 btrfs_i_size_write(BTRFS_I(inode
), 0);
4957 trans
= evict_refill_and_join(root
, rsv
);
4961 trans
->block_rsv
= rsv
;
4963 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
4964 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
4965 btrfs_end_transaction(trans
);
4966 btrfs_btree_balance_dirty(fs_info
);
4967 if (ret
&& ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
4974 * Errors here aren't a big deal, it just means we leave orphan items in
4975 * the tree. They will be cleaned up on the next mount. If the inode
4976 * number gets reused, cleanup deletes the orphan item without doing
4977 * anything, and unlink reuses the existing orphan item.
4979 * If it turns out that we are dropping too many of these, we might want
4980 * to add a mechanism for retrying these after a commit.
4982 trans
= evict_refill_and_join(root
, rsv
);
4983 if (!IS_ERR(trans
)) {
4984 trans
->block_rsv
= rsv
;
4985 btrfs_orphan_del(trans
, BTRFS_I(inode
));
4986 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
4987 btrfs_end_transaction(trans
);
4990 if (!(root
== fs_info
->tree_root
||
4991 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
4992 btrfs_return_ino(root
, btrfs_ino(BTRFS_I(inode
)));
4995 btrfs_free_block_rsv(fs_info
, rsv
);
4998 * If we didn't successfully delete, the orphan item will still be in
4999 * the tree and we'll retry on the next mount. Again, we might also want
5000 * to retry these periodically in the future.
5002 btrfs_remove_delayed_node(BTRFS_I(inode
));
5007 * Return the key found in the dir entry in the location pointer, fill @type
5008 * with BTRFS_FT_*, and return 0.
5010 * If no dir entries were found, returns -ENOENT.
5011 * If found a corrupted location in dir entry, returns -EUCLEAN.
5013 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
5014 struct btrfs_key
*location
, u8
*type
)
5016 const char *name
= dentry
->d_name
.name
;
5017 int namelen
= dentry
->d_name
.len
;
5018 struct btrfs_dir_item
*di
;
5019 struct btrfs_path
*path
;
5020 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5023 path
= btrfs_alloc_path();
5027 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(BTRFS_I(dir
)),
5029 if (IS_ERR_OR_NULL(di
)) {
5030 ret
= di
? PTR_ERR(di
) : -ENOENT
;
5034 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
5035 if (location
->type
!= BTRFS_INODE_ITEM_KEY
&&
5036 location
->type
!= BTRFS_ROOT_ITEM_KEY
) {
5038 btrfs_warn(root
->fs_info
,
5039 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5040 __func__
, name
, btrfs_ino(BTRFS_I(dir
)),
5041 location
->objectid
, location
->type
, location
->offset
);
5044 *type
= btrfs_dir_type(path
->nodes
[0], di
);
5046 btrfs_free_path(path
);
5051 * when we hit a tree root in a directory, the btrfs part of the inode
5052 * needs to be changed to reflect the root directory of the tree root. This
5053 * is kind of like crossing a mount point.
5055 static int fixup_tree_root_location(struct btrfs_fs_info
*fs_info
,
5057 struct dentry
*dentry
,
5058 struct btrfs_key
*location
,
5059 struct btrfs_root
**sub_root
)
5061 struct btrfs_path
*path
;
5062 struct btrfs_root
*new_root
;
5063 struct btrfs_root_ref
*ref
;
5064 struct extent_buffer
*leaf
;
5065 struct btrfs_key key
;
5069 path
= btrfs_alloc_path();
5076 key
.objectid
= BTRFS_I(dir
)->root
->root_key
.objectid
;
5077 key
.type
= BTRFS_ROOT_REF_KEY
;
5078 key
.offset
= location
->objectid
;
5080 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
5087 leaf
= path
->nodes
[0];
5088 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
5089 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(BTRFS_I(dir
)) ||
5090 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
5093 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
5094 (unsigned long)(ref
+ 1),
5095 dentry
->d_name
.len
);
5099 btrfs_release_path(path
);
5101 new_root
= btrfs_read_fs_root_no_name(fs_info
, location
);
5102 if (IS_ERR(new_root
)) {
5103 err
= PTR_ERR(new_root
);
5107 *sub_root
= new_root
;
5108 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
5109 location
->type
= BTRFS_INODE_ITEM_KEY
;
5110 location
->offset
= 0;
5113 btrfs_free_path(path
);
5117 static void inode_tree_add(struct inode
*inode
)
5119 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5120 struct btrfs_inode
*entry
;
5122 struct rb_node
*parent
;
5123 struct rb_node
*new = &BTRFS_I(inode
)->rb_node
;
5124 u64 ino
= btrfs_ino(BTRFS_I(inode
));
5126 if (inode_unhashed(inode
))
5129 spin_lock(&root
->inode_lock
);
5130 p
= &root
->inode_tree
.rb_node
;
5133 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
5135 if (ino
< btrfs_ino(entry
))
5136 p
= &parent
->rb_left
;
5137 else if (ino
> btrfs_ino(entry
))
5138 p
= &parent
->rb_right
;
5140 WARN_ON(!(entry
->vfs_inode
.i_state
&
5141 (I_WILL_FREE
| I_FREEING
)));
5142 rb_replace_node(parent
, new, &root
->inode_tree
);
5143 RB_CLEAR_NODE(parent
);
5144 spin_unlock(&root
->inode_lock
);
5148 rb_link_node(new, parent
, p
);
5149 rb_insert_color(new, &root
->inode_tree
);
5150 spin_unlock(&root
->inode_lock
);
5153 static void inode_tree_del(struct inode
*inode
)
5155 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5158 spin_lock(&root
->inode_lock
);
5159 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
5160 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
5161 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
5162 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5164 spin_unlock(&root
->inode_lock
);
5166 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0) {
5167 spin_lock(&root
->inode_lock
);
5168 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5169 spin_unlock(&root
->inode_lock
);
5171 btrfs_add_dead_root(root
);
5176 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
5178 struct btrfs_iget_args
*args
= p
;
5179 inode
->i_ino
= args
->location
->objectid
;
5180 memcpy(&BTRFS_I(inode
)->location
, args
->location
,
5181 sizeof(*args
->location
));
5182 BTRFS_I(inode
)->root
= args
->root
;
5186 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
5188 struct btrfs_iget_args
*args
= opaque
;
5189 return args
->location
->objectid
== BTRFS_I(inode
)->location
.objectid
&&
5190 args
->root
== BTRFS_I(inode
)->root
;
5193 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
5194 struct btrfs_key
*location
,
5195 struct btrfs_root
*root
)
5197 struct inode
*inode
;
5198 struct btrfs_iget_args args
;
5199 unsigned long hashval
= btrfs_inode_hash(location
->objectid
, root
);
5201 args
.location
= location
;
5204 inode
= iget5_locked(s
, hashval
, btrfs_find_actor
,
5205 btrfs_init_locked_inode
,
5211 * Get an inode object given its location and corresponding root.
5212 * Path can be preallocated to prevent recursing back to iget through
5213 * allocator. NULL is also valid but may require an additional allocation
5216 struct inode
*btrfs_iget_path(struct super_block
*s
, struct btrfs_key
*location
,
5217 struct btrfs_root
*root
, struct btrfs_path
*path
)
5219 struct inode
*inode
;
5221 inode
= btrfs_iget_locked(s
, location
, root
);
5223 return ERR_PTR(-ENOMEM
);
5225 if (inode
->i_state
& I_NEW
) {
5228 ret
= btrfs_read_locked_inode(inode
, path
);
5230 inode_tree_add(inode
);
5231 unlock_new_inode(inode
);
5235 * ret > 0 can come from btrfs_search_slot called by
5236 * btrfs_read_locked_inode, this means the inode item
5241 inode
= ERR_PTR(ret
);
5248 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
5249 struct btrfs_root
*root
)
5251 return btrfs_iget_path(s
, location
, root
, NULL
);
5254 static struct inode
*new_simple_dir(struct super_block
*s
,
5255 struct btrfs_key
*key
,
5256 struct btrfs_root
*root
)
5258 struct inode
*inode
= new_inode(s
);
5261 return ERR_PTR(-ENOMEM
);
5263 BTRFS_I(inode
)->root
= root
;
5264 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
5265 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
5267 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
5269 * We only need lookup, the rest is read-only and there's no inode
5270 * associated with the dentry
5272 inode
->i_op
= &simple_dir_inode_operations
;
5273 inode
->i_opflags
&= ~IOP_XATTR
;
5274 inode
->i_fop
= &simple_dir_operations
;
5275 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
5276 inode
->i_mtime
= current_time(inode
);
5277 inode
->i_atime
= inode
->i_mtime
;
5278 inode
->i_ctime
= inode
->i_mtime
;
5279 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
5284 static inline u8
btrfs_inode_type(struct inode
*inode
)
5287 * Compile-time asserts that generic FT_* types still match
5290 BUILD_BUG_ON(BTRFS_FT_UNKNOWN
!= FT_UNKNOWN
);
5291 BUILD_BUG_ON(BTRFS_FT_REG_FILE
!= FT_REG_FILE
);
5292 BUILD_BUG_ON(BTRFS_FT_DIR
!= FT_DIR
);
5293 BUILD_BUG_ON(BTRFS_FT_CHRDEV
!= FT_CHRDEV
);
5294 BUILD_BUG_ON(BTRFS_FT_BLKDEV
!= FT_BLKDEV
);
5295 BUILD_BUG_ON(BTRFS_FT_FIFO
!= FT_FIFO
);
5296 BUILD_BUG_ON(BTRFS_FT_SOCK
!= FT_SOCK
);
5297 BUILD_BUG_ON(BTRFS_FT_SYMLINK
!= FT_SYMLINK
);
5299 return fs_umode_to_ftype(inode
->i_mode
);
5302 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
5304 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
5305 struct inode
*inode
;
5306 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5307 struct btrfs_root
*sub_root
= root
;
5308 struct btrfs_key location
;
5313 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
5314 return ERR_PTR(-ENAMETOOLONG
);
5316 ret
= btrfs_inode_by_name(dir
, dentry
, &location
, &di_type
);
5318 return ERR_PTR(ret
);
5320 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
5321 inode
= btrfs_iget(dir
->i_sb
, &location
, root
);
5325 /* Do extra check against inode mode with di_type */
5326 if (btrfs_inode_type(inode
) != di_type
) {
5328 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5329 inode
->i_mode
, btrfs_inode_type(inode
),
5332 return ERR_PTR(-EUCLEAN
);
5337 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
5338 ret
= fixup_tree_root_location(fs_info
, dir
, dentry
,
5339 &location
, &sub_root
);
5342 inode
= ERR_PTR(ret
);
5344 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
5346 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
);
5348 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
5350 if (!IS_ERR(inode
) && root
!= sub_root
) {
5351 down_read(&fs_info
->cleanup_work_sem
);
5352 if (!sb_rdonly(inode
->i_sb
))
5353 ret
= btrfs_orphan_cleanup(sub_root
);
5354 up_read(&fs_info
->cleanup_work_sem
);
5357 inode
= ERR_PTR(ret
);
5364 static int btrfs_dentry_delete(const struct dentry
*dentry
)
5366 struct btrfs_root
*root
;
5367 struct inode
*inode
= d_inode(dentry
);
5369 if (!inode
&& !IS_ROOT(dentry
))
5370 inode
= d_inode(dentry
->d_parent
);
5373 root
= BTRFS_I(inode
)->root
;
5374 if (btrfs_root_refs(&root
->root_item
) == 0)
5377 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
5383 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
5386 struct inode
*inode
= btrfs_lookup_dentry(dir
, dentry
);
5388 if (inode
== ERR_PTR(-ENOENT
))
5390 return d_splice_alias(inode
, dentry
);
5394 * All this infrastructure exists because dir_emit can fault, and we are holding
5395 * the tree lock when doing readdir. For now just allocate a buffer and copy
5396 * our information into that, and then dir_emit from the buffer. This is
5397 * similar to what NFS does, only we don't keep the buffer around in pagecache
5398 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5399 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5402 static int btrfs_opendir(struct inode
*inode
, struct file
*file
)
5404 struct btrfs_file_private
*private;
5406 private = kzalloc(sizeof(struct btrfs_file_private
), GFP_KERNEL
);
5409 private->filldir_buf
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
5410 if (!private->filldir_buf
) {
5414 file
->private_data
= private;
5425 static int btrfs_filldir(void *addr
, int entries
, struct dir_context
*ctx
)
5428 struct dir_entry
*entry
= addr
;
5429 char *name
= (char *)(entry
+ 1);
5431 ctx
->pos
= get_unaligned(&entry
->offset
);
5432 if (!dir_emit(ctx
, name
, get_unaligned(&entry
->name_len
),
5433 get_unaligned(&entry
->ino
),
5434 get_unaligned(&entry
->type
)))
5436 addr
+= sizeof(struct dir_entry
) +
5437 get_unaligned(&entry
->name_len
);
5443 static int btrfs_real_readdir(struct file
*file
, struct dir_context
*ctx
)
5445 struct inode
*inode
= file_inode(file
);
5446 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5447 struct btrfs_file_private
*private = file
->private_data
;
5448 struct btrfs_dir_item
*di
;
5449 struct btrfs_key key
;
5450 struct btrfs_key found_key
;
5451 struct btrfs_path
*path
;
5453 struct list_head ins_list
;
5454 struct list_head del_list
;
5456 struct extent_buffer
*leaf
;
5463 struct btrfs_key location
;
5465 if (!dir_emit_dots(file
, ctx
))
5468 path
= btrfs_alloc_path();
5472 addr
= private->filldir_buf
;
5473 path
->reada
= READA_FORWARD
;
5475 INIT_LIST_HEAD(&ins_list
);
5476 INIT_LIST_HEAD(&del_list
);
5477 put
= btrfs_readdir_get_delayed_items(inode
, &ins_list
, &del_list
);
5480 key
.type
= BTRFS_DIR_INDEX_KEY
;
5481 key
.offset
= ctx
->pos
;
5482 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
5484 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5489 struct dir_entry
*entry
;
5491 leaf
= path
->nodes
[0];
5492 slot
= path
->slots
[0];
5493 if (slot
>= btrfs_header_nritems(leaf
)) {
5494 ret
= btrfs_next_leaf(root
, path
);
5502 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5504 if (found_key
.objectid
!= key
.objectid
)
5506 if (found_key
.type
!= BTRFS_DIR_INDEX_KEY
)
5508 if (found_key
.offset
< ctx
->pos
)
5510 if (btrfs_should_delete_dir_index(&del_list
, found_key
.offset
))
5512 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
5513 name_len
= btrfs_dir_name_len(leaf
, di
);
5514 if ((total_len
+ sizeof(struct dir_entry
) + name_len
) >=
5516 btrfs_release_path(path
);
5517 ret
= btrfs_filldir(private->filldir_buf
, entries
, ctx
);
5520 addr
= private->filldir_buf
;
5527 put_unaligned(name_len
, &entry
->name_len
);
5528 name_ptr
= (char *)(entry
+ 1);
5529 read_extent_buffer(leaf
, name_ptr
, (unsigned long)(di
+ 1),
5531 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf
, di
)),
5533 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
5534 put_unaligned(location
.objectid
, &entry
->ino
);
5535 put_unaligned(found_key
.offset
, &entry
->offset
);
5537 addr
+= sizeof(struct dir_entry
) + name_len
;
5538 total_len
+= sizeof(struct dir_entry
) + name_len
;
5542 btrfs_release_path(path
);
5544 ret
= btrfs_filldir(private->filldir_buf
, entries
, ctx
);
5548 ret
= btrfs_readdir_delayed_dir_index(ctx
, &ins_list
);
5553 * Stop new entries from being returned after we return the last
5556 * New directory entries are assigned a strictly increasing
5557 * offset. This means that new entries created during readdir
5558 * are *guaranteed* to be seen in the future by that readdir.
5559 * This has broken buggy programs which operate on names as
5560 * they're returned by readdir. Until we re-use freed offsets
5561 * we have this hack to stop new entries from being returned
5562 * under the assumption that they'll never reach this huge
5565 * This is being careful not to overflow 32bit loff_t unless the
5566 * last entry requires it because doing so has broken 32bit apps
5569 if (ctx
->pos
>= INT_MAX
)
5570 ctx
->pos
= LLONG_MAX
;
5577 btrfs_readdir_put_delayed_items(inode
, &ins_list
, &del_list
);
5578 btrfs_free_path(path
);
5583 * This is somewhat expensive, updating the tree every time the
5584 * inode changes. But, it is most likely to find the inode in cache.
5585 * FIXME, needs more benchmarking...there are no reasons other than performance
5586 * to keep or drop this code.
5588 static int btrfs_dirty_inode(struct inode
*inode
)
5590 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5591 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5592 struct btrfs_trans_handle
*trans
;
5595 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
5598 trans
= btrfs_join_transaction(root
);
5600 return PTR_ERR(trans
);
5602 ret
= btrfs_update_inode(trans
, root
, inode
);
5603 if (ret
&& ret
== -ENOSPC
) {
5604 /* whoops, lets try again with the full transaction */
5605 btrfs_end_transaction(trans
);
5606 trans
= btrfs_start_transaction(root
, 1);
5608 return PTR_ERR(trans
);
5610 ret
= btrfs_update_inode(trans
, root
, inode
);
5612 btrfs_end_transaction(trans
);
5613 if (BTRFS_I(inode
)->delayed_node
)
5614 btrfs_balance_delayed_items(fs_info
);
5620 * This is a copy of file_update_time. We need this so we can return error on
5621 * ENOSPC for updating the inode in the case of file write and mmap writes.
5623 static int btrfs_update_time(struct inode
*inode
, struct timespec64
*now
,
5626 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5627 bool dirty
= flags
& ~S_VERSION
;
5629 if (btrfs_root_readonly(root
))
5632 if (flags
& S_VERSION
)
5633 dirty
|= inode_maybe_inc_iversion(inode
, dirty
);
5634 if (flags
& S_CTIME
)
5635 inode
->i_ctime
= *now
;
5636 if (flags
& S_MTIME
)
5637 inode
->i_mtime
= *now
;
5638 if (flags
& S_ATIME
)
5639 inode
->i_atime
= *now
;
5640 return dirty
? btrfs_dirty_inode(inode
) : 0;
5644 * find the highest existing sequence number in a directory
5645 * and then set the in-memory index_cnt variable to reflect
5646 * free sequence numbers
5648 static int btrfs_set_inode_index_count(struct btrfs_inode
*inode
)
5650 struct btrfs_root
*root
= inode
->root
;
5651 struct btrfs_key key
, found_key
;
5652 struct btrfs_path
*path
;
5653 struct extent_buffer
*leaf
;
5656 key
.objectid
= btrfs_ino(inode
);
5657 key
.type
= BTRFS_DIR_INDEX_KEY
;
5658 key
.offset
= (u64
)-1;
5660 path
= btrfs_alloc_path();
5664 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5667 /* FIXME: we should be able to handle this */
5673 * MAGIC NUMBER EXPLANATION:
5674 * since we search a directory based on f_pos we have to start at 2
5675 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5676 * else has to start at 2
5678 if (path
->slots
[0] == 0) {
5679 inode
->index_cnt
= 2;
5685 leaf
= path
->nodes
[0];
5686 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5688 if (found_key
.objectid
!= btrfs_ino(inode
) ||
5689 found_key
.type
!= BTRFS_DIR_INDEX_KEY
) {
5690 inode
->index_cnt
= 2;
5694 inode
->index_cnt
= found_key
.offset
+ 1;
5696 btrfs_free_path(path
);
5701 * helper to find a free sequence number in a given directory. This current
5702 * code is very simple, later versions will do smarter things in the btree
5704 int btrfs_set_inode_index(struct btrfs_inode
*dir
, u64
*index
)
5708 if (dir
->index_cnt
== (u64
)-1) {
5709 ret
= btrfs_inode_delayed_dir_index_count(dir
);
5711 ret
= btrfs_set_inode_index_count(dir
);
5717 *index
= dir
->index_cnt
;
5723 static int btrfs_insert_inode_locked(struct inode
*inode
)
5725 struct btrfs_iget_args args
;
5726 args
.location
= &BTRFS_I(inode
)->location
;
5727 args
.root
= BTRFS_I(inode
)->root
;
5729 return insert_inode_locked4(inode
,
5730 btrfs_inode_hash(inode
->i_ino
, BTRFS_I(inode
)->root
),
5731 btrfs_find_actor
, &args
);
5735 * Inherit flags from the parent inode.
5737 * Currently only the compression flags and the cow flags are inherited.
5739 static void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
5746 flags
= BTRFS_I(dir
)->flags
;
5748 if (flags
& BTRFS_INODE_NOCOMPRESS
) {
5749 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_COMPRESS
;
5750 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
5751 } else if (flags
& BTRFS_INODE_COMPRESS
) {
5752 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
5753 BTRFS_I(inode
)->flags
|= BTRFS_INODE_COMPRESS
;
5756 if (flags
& BTRFS_INODE_NODATACOW
) {
5757 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
5758 if (S_ISREG(inode
->i_mode
))
5759 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
5762 btrfs_sync_inode_flags_to_i_flags(inode
);
5765 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
5766 struct btrfs_root
*root
,
5768 const char *name
, int name_len
,
5769 u64 ref_objectid
, u64 objectid
,
5770 umode_t mode
, u64
*index
)
5772 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5773 struct inode
*inode
;
5774 struct btrfs_inode_item
*inode_item
;
5775 struct btrfs_key
*location
;
5776 struct btrfs_path
*path
;
5777 struct btrfs_inode_ref
*ref
;
5778 struct btrfs_key key
[2];
5780 int nitems
= name
? 2 : 1;
5782 unsigned int nofs_flag
;
5785 path
= btrfs_alloc_path();
5787 return ERR_PTR(-ENOMEM
);
5789 nofs_flag
= memalloc_nofs_save();
5790 inode
= new_inode(fs_info
->sb
);
5791 memalloc_nofs_restore(nofs_flag
);
5793 btrfs_free_path(path
);
5794 return ERR_PTR(-ENOMEM
);
5798 * O_TMPFILE, set link count to 0, so that after this point,
5799 * we fill in an inode item with the correct link count.
5802 set_nlink(inode
, 0);
5805 * we have to initialize this early, so we can reclaim the inode
5806 * number if we fail afterwards in this function.
5808 inode
->i_ino
= objectid
;
5811 trace_btrfs_inode_request(dir
);
5813 ret
= btrfs_set_inode_index(BTRFS_I(dir
), index
);
5815 btrfs_free_path(path
);
5817 return ERR_PTR(ret
);
5823 * index_cnt is ignored for everything but a dir,
5824 * btrfs_set_inode_index_count has an explanation for the magic
5827 BTRFS_I(inode
)->index_cnt
= 2;
5828 BTRFS_I(inode
)->dir_index
= *index
;
5829 BTRFS_I(inode
)->root
= root
;
5830 BTRFS_I(inode
)->generation
= trans
->transid
;
5831 inode
->i_generation
= BTRFS_I(inode
)->generation
;
5834 * We could have gotten an inode number from somebody who was fsynced
5835 * and then removed in this same transaction, so let's just set full
5836 * sync since it will be a full sync anyway and this will blow away the
5837 * old info in the log.
5839 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
5841 key
[0].objectid
= objectid
;
5842 key
[0].type
= BTRFS_INODE_ITEM_KEY
;
5845 sizes
[0] = sizeof(struct btrfs_inode_item
);
5849 * Start new inodes with an inode_ref. This is slightly more
5850 * efficient for small numbers of hard links since they will
5851 * be packed into one item. Extended refs will kick in if we
5852 * add more hard links than can fit in the ref item.
5854 key
[1].objectid
= objectid
;
5855 key
[1].type
= BTRFS_INODE_REF_KEY
;
5856 key
[1].offset
= ref_objectid
;
5858 sizes
[1] = name_len
+ sizeof(*ref
);
5861 location
= &BTRFS_I(inode
)->location
;
5862 location
->objectid
= objectid
;
5863 location
->offset
= 0;
5864 location
->type
= BTRFS_INODE_ITEM_KEY
;
5866 ret
= btrfs_insert_inode_locked(inode
);
5872 path
->leave_spinning
= 1;
5873 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, nitems
);
5877 inode_init_owner(inode
, dir
, mode
);
5878 inode_set_bytes(inode
, 0);
5880 inode
->i_mtime
= current_time(inode
);
5881 inode
->i_atime
= inode
->i_mtime
;
5882 inode
->i_ctime
= inode
->i_mtime
;
5883 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
5885 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5886 struct btrfs_inode_item
);
5887 memzero_extent_buffer(path
->nodes
[0], (unsigned long)inode_item
,
5888 sizeof(*inode_item
));
5889 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
5892 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
5893 struct btrfs_inode_ref
);
5894 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
5895 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
5896 ptr
= (unsigned long)(ref
+ 1);
5897 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
5900 btrfs_mark_buffer_dirty(path
->nodes
[0]);
5901 btrfs_free_path(path
);
5903 btrfs_inherit_iflags(inode
, dir
);
5905 if (S_ISREG(mode
)) {
5906 if (btrfs_test_opt(fs_info
, NODATASUM
))
5907 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
5908 if (btrfs_test_opt(fs_info
, NODATACOW
))
5909 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
|
5910 BTRFS_INODE_NODATASUM
;
5913 inode_tree_add(inode
);
5915 trace_btrfs_inode_new(inode
);
5916 btrfs_set_inode_last_trans(trans
, inode
);
5918 btrfs_update_root_times(trans
, root
);
5920 ret
= btrfs_inode_inherit_props(trans
, inode
, dir
);
5923 "error inheriting props for ino %llu (root %llu): %d",
5924 btrfs_ino(BTRFS_I(inode
)), root
->root_key
.objectid
, ret
);
5929 discard_new_inode(inode
);
5932 BTRFS_I(dir
)->index_cnt
--;
5933 btrfs_free_path(path
);
5934 return ERR_PTR(ret
);
5938 * utility function to add 'inode' into 'parent_inode' with
5939 * a give name and a given sequence number.
5940 * if 'add_backref' is true, also insert a backref from the
5941 * inode to the parent directory.
5943 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
5944 struct btrfs_inode
*parent_inode
, struct btrfs_inode
*inode
,
5945 const char *name
, int name_len
, int add_backref
, u64 index
)
5948 struct btrfs_key key
;
5949 struct btrfs_root
*root
= parent_inode
->root
;
5950 u64 ino
= btrfs_ino(inode
);
5951 u64 parent_ino
= btrfs_ino(parent_inode
);
5953 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
5954 memcpy(&key
, &inode
->root
->root_key
, sizeof(key
));
5957 key
.type
= BTRFS_INODE_ITEM_KEY
;
5961 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
5962 ret
= btrfs_add_root_ref(trans
, key
.objectid
,
5963 root
->root_key
.objectid
, parent_ino
,
5964 index
, name
, name_len
);
5965 } else if (add_backref
) {
5966 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
5970 /* Nothing to clean up yet */
5974 ret
= btrfs_insert_dir_item(trans
, name
, name_len
, parent_inode
, &key
,
5975 btrfs_inode_type(&inode
->vfs_inode
), index
);
5976 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
)
5979 btrfs_abort_transaction(trans
, ret
);
5983 btrfs_i_size_write(parent_inode
, parent_inode
->vfs_inode
.i_size
+
5985 inode_inc_iversion(&parent_inode
->vfs_inode
);
5987 * If we are replaying a log tree, we do not want to update the mtime
5988 * and ctime of the parent directory with the current time, since the
5989 * log replay procedure is responsible for setting them to their correct
5990 * values (the ones it had when the fsync was done).
5992 if (!test_bit(BTRFS_FS_LOG_RECOVERING
, &root
->fs_info
->flags
)) {
5993 struct timespec64 now
= current_time(&parent_inode
->vfs_inode
);
5995 parent_inode
->vfs_inode
.i_mtime
= now
;
5996 parent_inode
->vfs_inode
.i_ctime
= now
;
5998 ret
= btrfs_update_inode(trans
, root
, &parent_inode
->vfs_inode
);
6000 btrfs_abort_transaction(trans
, ret
);
6004 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6007 err
= btrfs_del_root_ref(trans
, key
.objectid
,
6008 root
->root_key
.objectid
, parent_ino
,
6009 &local_index
, name
, name_len
);
6011 btrfs_abort_transaction(trans
, err
);
6012 } else if (add_backref
) {
6016 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
6017 ino
, parent_ino
, &local_index
);
6019 btrfs_abort_transaction(trans
, err
);
6022 /* Return the original error code */
6026 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
6027 struct btrfs_inode
*dir
, struct dentry
*dentry
,
6028 struct btrfs_inode
*inode
, int backref
, u64 index
)
6030 int err
= btrfs_add_link(trans
, dir
, inode
,
6031 dentry
->d_name
.name
, dentry
->d_name
.len
,
6038 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
6039 umode_t mode
, dev_t rdev
)
6041 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6042 struct btrfs_trans_handle
*trans
;
6043 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6044 struct inode
*inode
= NULL
;
6050 * 2 for inode item and ref
6052 * 1 for xattr if selinux is on
6054 trans
= btrfs_start_transaction(root
, 5);
6056 return PTR_ERR(trans
);
6058 err
= btrfs_find_free_ino(root
, &objectid
);
6062 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6063 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6065 if (IS_ERR(inode
)) {
6066 err
= PTR_ERR(inode
);
6072 * If the active LSM wants to access the inode during
6073 * d_instantiate it needs these. Smack checks to see
6074 * if the filesystem supports xattrs by looking at the
6077 inode
->i_op
= &btrfs_special_inode_operations
;
6078 init_special_inode(inode
, inode
->i_mode
, rdev
);
6080 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6084 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6089 btrfs_update_inode(trans
, root
, inode
);
6090 d_instantiate_new(dentry
, inode
);
6093 btrfs_end_transaction(trans
);
6094 btrfs_btree_balance_dirty(fs_info
);
6096 inode_dec_link_count(inode
);
6097 discard_new_inode(inode
);
6102 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
6103 umode_t mode
, bool excl
)
6105 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6106 struct btrfs_trans_handle
*trans
;
6107 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6108 struct inode
*inode
= NULL
;
6114 * 2 for inode item and ref
6116 * 1 for xattr if selinux is on
6118 trans
= btrfs_start_transaction(root
, 5);
6120 return PTR_ERR(trans
);
6122 err
= btrfs_find_free_ino(root
, &objectid
);
6126 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6127 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6129 if (IS_ERR(inode
)) {
6130 err
= PTR_ERR(inode
);
6135 * If the active LSM wants to access the inode during
6136 * d_instantiate it needs these. Smack checks to see
6137 * if the filesystem supports xattrs by looking at the
6140 inode
->i_fop
= &btrfs_file_operations
;
6141 inode
->i_op
= &btrfs_file_inode_operations
;
6142 inode
->i_mapping
->a_ops
= &btrfs_aops
;
6144 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6148 err
= btrfs_update_inode(trans
, root
, inode
);
6152 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6157 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
6158 d_instantiate_new(dentry
, inode
);
6161 btrfs_end_transaction(trans
);
6163 inode_dec_link_count(inode
);
6164 discard_new_inode(inode
);
6166 btrfs_btree_balance_dirty(fs_info
);
6170 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
6171 struct dentry
*dentry
)
6173 struct btrfs_trans_handle
*trans
= NULL
;
6174 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6175 struct inode
*inode
= d_inode(old_dentry
);
6176 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6181 /* do not allow sys_link's with other subvols of the same device */
6182 if (root
->root_key
.objectid
!= BTRFS_I(inode
)->root
->root_key
.objectid
)
6185 if (inode
->i_nlink
>= BTRFS_LINK_MAX
)
6188 err
= btrfs_set_inode_index(BTRFS_I(dir
), &index
);
6193 * 2 items for inode and inode ref
6194 * 2 items for dir items
6195 * 1 item for parent inode
6196 * 1 item for orphan item deletion if O_TMPFILE
6198 trans
= btrfs_start_transaction(root
, inode
->i_nlink
? 5 : 6);
6199 if (IS_ERR(trans
)) {
6200 err
= PTR_ERR(trans
);
6205 /* There are several dir indexes for this inode, clear the cache. */
6206 BTRFS_I(inode
)->dir_index
= 0ULL;
6208 inode_inc_iversion(inode
);
6209 inode
->i_ctime
= current_time(inode
);
6211 set_bit(BTRFS_INODE_COPY_EVERYTHING
, &BTRFS_I(inode
)->runtime_flags
);
6213 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6219 struct dentry
*parent
= dentry
->d_parent
;
6222 err
= btrfs_update_inode(trans
, root
, inode
);
6225 if (inode
->i_nlink
== 1) {
6227 * If new hard link count is 1, it's a file created
6228 * with open(2) O_TMPFILE flag.
6230 err
= btrfs_orphan_del(trans
, BTRFS_I(inode
));
6234 d_instantiate(dentry
, inode
);
6235 ret
= btrfs_log_new_name(trans
, BTRFS_I(inode
), NULL
, parent
,
6237 if (ret
== BTRFS_NEED_TRANS_COMMIT
) {
6238 err
= btrfs_commit_transaction(trans
);
6245 btrfs_end_transaction(trans
);
6247 inode_dec_link_count(inode
);
6250 btrfs_btree_balance_dirty(fs_info
);
6254 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
6256 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6257 struct inode
*inode
= NULL
;
6258 struct btrfs_trans_handle
*trans
;
6259 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6265 * 2 items for inode and ref
6266 * 2 items for dir items
6267 * 1 for xattr if selinux is on
6269 trans
= btrfs_start_transaction(root
, 5);
6271 return PTR_ERR(trans
);
6273 err
= btrfs_find_free_ino(root
, &objectid
);
6277 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6278 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6279 S_IFDIR
| mode
, &index
);
6280 if (IS_ERR(inode
)) {
6281 err
= PTR_ERR(inode
);
6286 /* these must be set before we unlock the inode */
6287 inode
->i_op
= &btrfs_dir_inode_operations
;
6288 inode
->i_fop
= &btrfs_dir_file_operations
;
6290 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6294 btrfs_i_size_write(BTRFS_I(inode
), 0);
6295 err
= btrfs_update_inode(trans
, root
, inode
);
6299 err
= btrfs_add_link(trans
, BTRFS_I(dir
), BTRFS_I(inode
),
6300 dentry
->d_name
.name
,
6301 dentry
->d_name
.len
, 0, index
);
6305 d_instantiate_new(dentry
, inode
);
6308 btrfs_end_transaction(trans
);
6310 inode_dec_link_count(inode
);
6311 discard_new_inode(inode
);
6313 btrfs_btree_balance_dirty(fs_info
);
6317 static noinline
int uncompress_inline(struct btrfs_path
*path
,
6319 size_t pg_offset
, u64 extent_offset
,
6320 struct btrfs_file_extent_item
*item
)
6323 struct extent_buffer
*leaf
= path
->nodes
[0];
6326 unsigned long inline_size
;
6330 WARN_ON(pg_offset
!= 0);
6331 compress_type
= btrfs_file_extent_compression(leaf
, item
);
6332 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6333 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
6334 btrfs_item_nr(path
->slots
[0]));
6335 tmp
= kmalloc(inline_size
, GFP_NOFS
);
6338 ptr
= btrfs_file_extent_inline_start(item
);
6340 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
6342 max_size
= min_t(unsigned long, PAGE_SIZE
, max_size
);
6343 ret
= btrfs_decompress(compress_type
, tmp
, page
,
6344 extent_offset
, inline_size
, max_size
);
6347 * decompression code contains a memset to fill in any space between the end
6348 * of the uncompressed data and the end of max_size in case the decompressed
6349 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6350 * the end of an inline extent and the beginning of the next block, so we
6351 * cover that region here.
6354 if (max_size
+ pg_offset
< PAGE_SIZE
) {
6355 char *map
= kmap(page
);
6356 memset(map
+ pg_offset
+ max_size
, 0, PAGE_SIZE
- max_size
- pg_offset
);
6364 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6365 * @inode: file to search in
6366 * @page: page to read extent data into if the extent is inline
6367 * @pg_offset: offset into @page to copy to
6368 * @start: file offset
6369 * @len: length of range starting at @start
6371 * This returns the first &struct extent_map which overlaps with the given
6372 * range, reading it from the B-tree and caching it if necessary. Note that
6373 * there may be more extents which overlap the given range after the returned
6376 * If @page is not NULL and the extent is inline, this also reads the extent
6377 * data directly into the page and marks the extent up to date in the io_tree.
6379 * Return: ERR_PTR on error, non-NULL extent_map on success.
6381 struct extent_map
*btrfs_get_extent(struct btrfs_inode
*inode
,
6382 struct page
*page
, size_t pg_offset
,
6385 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
6388 u64 extent_start
= 0;
6390 u64 objectid
= btrfs_ino(inode
);
6391 int extent_type
= -1;
6392 struct btrfs_path
*path
= NULL
;
6393 struct btrfs_root
*root
= inode
->root
;
6394 struct btrfs_file_extent_item
*item
;
6395 struct extent_buffer
*leaf
;
6396 struct btrfs_key found_key
;
6397 struct extent_map
*em
= NULL
;
6398 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
6399 struct extent_io_tree
*io_tree
= &inode
->io_tree
;
6401 read_lock(&em_tree
->lock
);
6402 em
= lookup_extent_mapping(em_tree
, start
, len
);
6403 read_unlock(&em_tree
->lock
);
6406 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
6407 free_extent_map(em
);
6408 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
6409 free_extent_map(em
);
6413 em
= alloc_extent_map();
6418 em
->start
= EXTENT_MAP_HOLE
;
6419 em
->orig_start
= EXTENT_MAP_HOLE
;
6421 em
->block_len
= (u64
)-1;
6423 path
= btrfs_alloc_path();
6429 /* Chances are we'll be called again, so go ahead and do readahead */
6430 path
->reada
= READA_FORWARD
;
6433 * Unless we're going to uncompress the inline extent, no sleep would
6436 path
->leave_spinning
= 1;
6438 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, objectid
, start
, 0);
6442 } else if (ret
> 0) {
6443 if (path
->slots
[0] == 0)
6448 leaf
= path
->nodes
[0];
6449 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
6450 struct btrfs_file_extent_item
);
6451 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6452 if (found_key
.objectid
!= objectid
||
6453 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
6455 * If we backup past the first extent we want to move forward
6456 * and see if there is an extent in front of us, otherwise we'll
6457 * say there is a hole for our whole search range which can
6464 extent_type
= btrfs_file_extent_type(leaf
, item
);
6465 extent_start
= found_key
.offset
;
6466 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
6467 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6468 /* Only regular file could have regular/prealloc extent */
6469 if (!S_ISREG(inode
->vfs_inode
.i_mode
)) {
6472 "regular/prealloc extent found for non-regular inode %llu",
6476 extent_end
= extent_start
+
6477 btrfs_file_extent_num_bytes(leaf
, item
);
6479 trace_btrfs_get_extent_show_fi_regular(inode
, leaf
, item
,
6481 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
6484 size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6485 extent_end
= ALIGN(extent_start
+ size
,
6486 fs_info
->sectorsize
);
6488 trace_btrfs_get_extent_show_fi_inline(inode
, leaf
, item
,
6493 if (start
>= extent_end
) {
6495 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
6496 ret
= btrfs_next_leaf(root
, path
);
6500 } else if (ret
> 0) {
6503 leaf
= path
->nodes
[0];
6505 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6506 if (found_key
.objectid
!= objectid
||
6507 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6509 if (start
+ len
<= found_key
.offset
)
6511 if (start
> found_key
.offset
)
6514 /* New extent overlaps with existing one */
6516 em
->orig_start
= start
;
6517 em
->len
= found_key
.offset
- start
;
6518 em
->block_start
= EXTENT_MAP_HOLE
;
6522 btrfs_extent_item_to_extent_map(inode
, path
, item
, !page
, em
);
6524 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
6525 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6527 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
6531 size_t extent_offset
;
6537 size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6538 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
6539 copy_size
= min_t(u64
, PAGE_SIZE
- pg_offset
,
6540 size
- extent_offset
);
6541 em
->start
= extent_start
+ extent_offset
;
6542 em
->len
= ALIGN(copy_size
, fs_info
->sectorsize
);
6543 em
->orig_block_len
= em
->len
;
6544 em
->orig_start
= em
->start
;
6545 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
6547 btrfs_set_path_blocking(path
);
6548 if (!PageUptodate(page
)) {
6549 if (btrfs_file_extent_compression(leaf
, item
) !=
6550 BTRFS_COMPRESS_NONE
) {
6551 ret
= uncompress_inline(path
, page
, pg_offset
,
6552 extent_offset
, item
);
6559 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
6561 if (pg_offset
+ copy_size
< PAGE_SIZE
) {
6562 memset(map
+ pg_offset
+ copy_size
, 0,
6563 PAGE_SIZE
- pg_offset
-
6568 flush_dcache_page(page
);
6570 set_extent_uptodate(io_tree
, em
->start
,
6571 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
6576 em
->orig_start
= start
;
6578 em
->block_start
= EXTENT_MAP_HOLE
;
6580 btrfs_release_path(path
);
6581 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
6583 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6584 em
->start
, em
->len
, start
, len
);
6590 write_lock(&em_tree
->lock
);
6591 err
= btrfs_add_extent_mapping(fs_info
, em_tree
, &em
, start
, len
);
6592 write_unlock(&em_tree
->lock
);
6594 btrfs_free_path(path
);
6596 trace_btrfs_get_extent(root
, inode
, em
);
6599 free_extent_map(em
);
6600 return ERR_PTR(err
);
6602 BUG_ON(!em
); /* Error is always set */
6606 struct extent_map
*btrfs_get_extent_fiemap(struct btrfs_inode
*inode
,
6609 struct extent_map
*em
;
6610 struct extent_map
*hole_em
= NULL
;
6611 u64 delalloc_start
= start
;
6617 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
);
6621 * If our em maps to:
6623 * - a pre-alloc extent,
6624 * there might actually be delalloc bytes behind it.
6626 if (em
->block_start
!= EXTENT_MAP_HOLE
&&
6627 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
6632 /* check to see if we've wrapped (len == -1 or similar) */
6641 /* ok, we didn't find anything, lets look for delalloc */
6642 delalloc_len
= count_range_bits(&inode
->io_tree
, &delalloc_start
,
6643 end
, len
, EXTENT_DELALLOC
, 1);
6644 delalloc_end
= delalloc_start
+ delalloc_len
;
6645 if (delalloc_end
< delalloc_start
)
6646 delalloc_end
= (u64
)-1;
6649 * We didn't find anything useful, return the original results from
6652 if (delalloc_start
> end
|| delalloc_end
<= start
) {
6659 * Adjust the delalloc_start to make sure it doesn't go backwards from
6660 * the start they passed in
6662 delalloc_start
= max(start
, delalloc_start
);
6663 delalloc_len
= delalloc_end
- delalloc_start
;
6665 if (delalloc_len
> 0) {
6668 const u64 hole_end
= extent_map_end(hole_em
);
6670 em
= alloc_extent_map();
6678 * When btrfs_get_extent can't find anything it returns one
6681 * Make sure what it found really fits our range, and adjust to
6682 * make sure it is based on the start from the caller
6684 if (hole_end
<= start
|| hole_em
->start
> end
) {
6685 free_extent_map(hole_em
);
6688 hole_start
= max(hole_em
->start
, start
);
6689 hole_len
= hole_end
- hole_start
;
6692 if (hole_em
&& delalloc_start
> hole_start
) {
6694 * Our hole starts before our delalloc, so we have to
6695 * return just the parts of the hole that go until the
6698 em
->len
= min(hole_len
, delalloc_start
- hole_start
);
6699 em
->start
= hole_start
;
6700 em
->orig_start
= hole_start
;
6702 * Don't adjust block start at all, it is fixed at
6705 em
->block_start
= hole_em
->block_start
;
6706 em
->block_len
= hole_len
;
6707 if (test_bit(EXTENT_FLAG_PREALLOC
, &hole_em
->flags
))
6708 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
6711 * Hole is out of passed range or it starts after
6714 em
->start
= delalloc_start
;
6715 em
->len
= delalloc_len
;
6716 em
->orig_start
= delalloc_start
;
6717 em
->block_start
= EXTENT_MAP_DELALLOC
;
6718 em
->block_len
= delalloc_len
;
6725 free_extent_map(hole_em
);
6727 free_extent_map(em
);
6728 return ERR_PTR(err
);
6733 static struct extent_map
*btrfs_create_dio_extent(struct inode
*inode
,
6736 const u64 orig_start
,
6737 const u64 block_start
,
6738 const u64 block_len
,
6739 const u64 orig_block_len
,
6740 const u64 ram_bytes
,
6743 struct extent_map
*em
= NULL
;
6746 if (type
!= BTRFS_ORDERED_NOCOW
) {
6747 em
= create_io_em(inode
, start
, len
, orig_start
,
6748 block_start
, block_len
, orig_block_len
,
6750 BTRFS_COMPRESS_NONE
, /* compress_type */
6755 ret
= btrfs_add_ordered_extent_dio(inode
, start
, block_start
,
6756 len
, block_len
, type
);
6759 free_extent_map(em
);
6760 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
6761 start
+ len
- 1, 0);
6770 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
6773 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6774 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6775 struct extent_map
*em
;
6776 struct btrfs_key ins
;
6780 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
6781 ret
= btrfs_reserve_extent(root
, len
, len
, fs_info
->sectorsize
,
6782 0, alloc_hint
, &ins
, 1, 1);
6784 return ERR_PTR(ret
);
6786 em
= btrfs_create_dio_extent(inode
, start
, ins
.offset
, start
,
6787 ins
.objectid
, ins
.offset
, ins
.offset
,
6788 ins
.offset
, BTRFS_ORDERED_REGULAR
);
6789 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
6791 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
6798 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6799 * block must be cow'd
6801 noinline
int can_nocow_extent(struct inode
*inode
, u64 offset
, u64
*len
,
6802 u64
*orig_start
, u64
*orig_block_len
,
6805 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6806 struct btrfs_path
*path
;
6808 struct extent_buffer
*leaf
;
6809 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6810 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6811 struct btrfs_file_extent_item
*fi
;
6812 struct btrfs_key key
;
6819 bool nocow
= (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
);
6821 path
= btrfs_alloc_path();
6825 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
6826 btrfs_ino(BTRFS_I(inode
)), offset
, 0);
6830 slot
= path
->slots
[0];
6833 /* can't find the item, must cow */
6840 leaf
= path
->nodes
[0];
6841 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
6842 if (key
.objectid
!= btrfs_ino(BTRFS_I(inode
)) ||
6843 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
6844 /* not our file or wrong item type, must cow */
6848 if (key
.offset
> offset
) {
6849 /* Wrong offset, must cow */
6853 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
6854 found_type
= btrfs_file_extent_type(leaf
, fi
);
6855 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
6856 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
6857 /* not a regular extent, must cow */
6861 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_REG
)
6864 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
6865 if (extent_end
<= offset
)
6868 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
6869 if (disk_bytenr
== 0)
6872 if (btrfs_file_extent_compression(leaf
, fi
) ||
6873 btrfs_file_extent_encryption(leaf
, fi
) ||
6874 btrfs_file_extent_other_encoding(leaf
, fi
))
6878 * Do the same check as in btrfs_cross_ref_exist but without the
6879 * unnecessary search.
6881 if (btrfs_file_extent_generation(leaf
, fi
) <=
6882 btrfs_root_last_snapshot(&root
->root_item
))
6885 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
6888 *orig_start
= key
.offset
- backref_offset
;
6889 *orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
6890 *ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
6893 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
6896 num_bytes
= min(offset
+ *len
, extent_end
) - offset
;
6897 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6900 range_end
= round_up(offset
+ num_bytes
,
6901 root
->fs_info
->sectorsize
) - 1;
6902 ret
= test_range_bit(io_tree
, offset
, range_end
,
6903 EXTENT_DELALLOC
, 0, NULL
);
6910 btrfs_release_path(path
);
6913 * look for other files referencing this extent, if we
6914 * find any we must cow
6917 ret
= btrfs_cross_ref_exist(root
, btrfs_ino(BTRFS_I(inode
)),
6918 key
.offset
- backref_offset
, disk_bytenr
);
6925 * adjust disk_bytenr and num_bytes to cover just the bytes
6926 * in this extent we are about to write. If there
6927 * are any csums in that range we have to cow in order
6928 * to keep the csums correct
6930 disk_bytenr
+= backref_offset
;
6931 disk_bytenr
+= offset
- key
.offset
;
6932 if (csum_exist_in_range(fs_info
, disk_bytenr
, num_bytes
))
6935 * all of the above have passed, it is safe to overwrite this extent
6941 btrfs_free_path(path
);
6945 static int lock_extent_direct(struct inode
*inode
, u64 lockstart
, u64 lockend
,
6946 struct extent_state
**cached_state
, int writing
)
6948 struct btrfs_ordered_extent
*ordered
;
6952 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6955 * We're concerned with the entire range that we're going to be
6956 * doing DIO to, so we need to make sure there's no ordered
6957 * extents in this range.
6959 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), lockstart
,
6960 lockend
- lockstart
+ 1);
6963 * We need to make sure there are no buffered pages in this
6964 * range either, we could have raced between the invalidate in
6965 * generic_file_direct_write and locking the extent. The
6966 * invalidate needs to happen so that reads after a write do not
6970 (!writing
|| !filemap_range_has_page(inode
->i_mapping
,
6971 lockstart
, lockend
)))
6974 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6979 * If we are doing a DIO read and the ordered extent we
6980 * found is for a buffered write, we can not wait for it
6981 * to complete and retry, because if we do so we can
6982 * deadlock with concurrent buffered writes on page
6983 * locks. This happens only if our DIO read covers more
6984 * than one extent map, if at this point has already
6985 * created an ordered extent for a previous extent map
6986 * and locked its range in the inode's io tree, and a
6987 * concurrent write against that previous extent map's
6988 * range and this range started (we unlock the ranges
6989 * in the io tree only when the bios complete and
6990 * buffered writes always lock pages before attempting
6991 * to lock range in the io tree).
6994 test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
))
6995 btrfs_start_ordered_extent(inode
, ordered
, 1);
6998 btrfs_put_ordered_extent(ordered
);
7001 * We could trigger writeback for this range (and wait
7002 * for it to complete) and then invalidate the pages for
7003 * this range (through invalidate_inode_pages2_range()),
7004 * but that can lead us to a deadlock with a concurrent
7005 * call to readpages() (a buffered read or a defrag call
7006 * triggered a readahead) on a page lock due to an
7007 * ordered dio extent we created before but did not have
7008 * yet a corresponding bio submitted (whence it can not
7009 * complete), which makes readpages() wait for that
7010 * ordered extent to complete while holding a lock on
7025 /* The callers of this must take lock_extent() */
7026 static struct extent_map
*create_io_em(struct inode
*inode
, u64 start
, u64 len
,
7027 u64 orig_start
, u64 block_start
,
7028 u64 block_len
, u64 orig_block_len
,
7029 u64 ram_bytes
, int compress_type
,
7032 struct extent_map_tree
*em_tree
;
7033 struct extent_map
*em
;
7036 ASSERT(type
== BTRFS_ORDERED_PREALLOC
||
7037 type
== BTRFS_ORDERED_COMPRESSED
||
7038 type
== BTRFS_ORDERED_NOCOW
||
7039 type
== BTRFS_ORDERED_REGULAR
);
7041 em_tree
= &BTRFS_I(inode
)->extent_tree
;
7042 em
= alloc_extent_map();
7044 return ERR_PTR(-ENOMEM
);
7047 em
->orig_start
= orig_start
;
7049 em
->block_len
= block_len
;
7050 em
->block_start
= block_start
;
7051 em
->orig_block_len
= orig_block_len
;
7052 em
->ram_bytes
= ram_bytes
;
7053 em
->generation
= -1;
7054 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
7055 if (type
== BTRFS_ORDERED_PREALLOC
) {
7056 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
7057 } else if (type
== BTRFS_ORDERED_COMPRESSED
) {
7058 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
7059 em
->compress_type
= compress_type
;
7063 btrfs_drop_extent_cache(BTRFS_I(inode
), em
->start
,
7064 em
->start
+ em
->len
- 1, 0);
7065 write_lock(&em_tree
->lock
);
7066 ret
= add_extent_mapping(em_tree
, em
, 1);
7067 write_unlock(&em_tree
->lock
);
7069 * The caller has taken lock_extent(), who could race with us
7072 } while (ret
== -EEXIST
);
7075 free_extent_map(em
);
7076 return ERR_PTR(ret
);
7079 /* em got 2 refs now, callers needs to do free_extent_map once. */
7084 static int btrfs_get_blocks_direct_read(struct extent_map
*em
,
7085 struct buffer_head
*bh_result
,
7086 struct inode
*inode
,
7089 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7091 if (em
->block_start
== EXTENT_MAP_HOLE
||
7092 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7095 len
= min(len
, em
->len
- (start
- em
->start
));
7097 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
7099 bh_result
->b_size
= len
;
7100 bh_result
->b_bdev
= fs_info
->fs_devices
->latest_bdev
;
7101 set_buffer_mapped(bh_result
);
7106 static int btrfs_get_blocks_direct_write(struct extent_map
**map
,
7107 struct buffer_head
*bh_result
,
7108 struct inode
*inode
,
7109 struct btrfs_dio_data
*dio_data
,
7112 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7113 struct extent_map
*em
= *map
;
7117 * We don't allocate a new extent in the following cases
7119 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7121 * 2) The extent is marked as PREALLOC. We're good to go here and can
7122 * just use the extent.
7125 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
7126 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
7127 em
->block_start
!= EXTENT_MAP_HOLE
)) {
7129 u64 block_start
, orig_start
, orig_block_len
, ram_bytes
;
7131 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7132 type
= BTRFS_ORDERED_PREALLOC
;
7134 type
= BTRFS_ORDERED_NOCOW
;
7135 len
= min(len
, em
->len
- (start
- em
->start
));
7136 block_start
= em
->block_start
+ (start
- em
->start
);
7138 if (can_nocow_extent(inode
, start
, &len
, &orig_start
,
7139 &orig_block_len
, &ram_bytes
) == 1 &&
7140 btrfs_inc_nocow_writers(fs_info
, block_start
)) {
7141 struct extent_map
*em2
;
7143 em2
= btrfs_create_dio_extent(inode
, start
, len
,
7144 orig_start
, block_start
,
7145 len
, orig_block_len
,
7147 btrfs_dec_nocow_writers(fs_info
, block_start
);
7148 if (type
== BTRFS_ORDERED_PREALLOC
) {
7149 free_extent_map(em
);
7153 if (em2
&& IS_ERR(em2
)) {
7158 * For inode marked NODATACOW or extent marked PREALLOC,
7159 * use the existing or preallocated extent, so does not
7160 * need to adjust btrfs_space_info's bytes_may_use.
7162 btrfs_free_reserved_data_space_noquota(inode
, start
,
7168 /* this will cow the extent */
7169 len
= bh_result
->b_size
;
7170 free_extent_map(em
);
7171 *map
= em
= btrfs_new_extent_direct(inode
, start
, len
);
7177 len
= min(len
, em
->len
- (start
- em
->start
));
7180 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
7182 bh_result
->b_size
= len
;
7183 bh_result
->b_bdev
= fs_info
->fs_devices
->latest_bdev
;
7184 set_buffer_mapped(bh_result
);
7186 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7187 set_buffer_new(bh_result
);
7190 * Need to update the i_size under the extent lock so buffered
7191 * readers will get the updated i_size when we unlock.
7193 if (!dio_data
->overwrite
&& start
+ len
> i_size_read(inode
))
7194 i_size_write(inode
, start
+ len
);
7196 WARN_ON(dio_data
->reserve
< len
);
7197 dio_data
->reserve
-= len
;
7198 dio_data
->unsubmitted_oe_range_end
= start
+ len
;
7199 current
->journal_info
= dio_data
;
7204 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
7205 struct buffer_head
*bh_result
, int create
)
7207 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7208 struct extent_map
*em
;
7209 struct extent_state
*cached_state
= NULL
;
7210 struct btrfs_dio_data
*dio_data
= NULL
;
7211 u64 start
= iblock
<< inode
->i_blkbits
;
7212 u64 lockstart
, lockend
;
7213 u64 len
= bh_result
->b_size
;
7217 len
= min_t(u64
, len
, fs_info
->sectorsize
);
7220 lockend
= start
+ len
- 1;
7222 if (current
->journal_info
) {
7224 * Need to pull our outstanding extents and set journal_info to NULL so
7225 * that anything that needs to check if there's a transaction doesn't get
7228 dio_data
= current
->journal_info
;
7229 current
->journal_info
= NULL
;
7233 * If this errors out it's because we couldn't invalidate pagecache for
7234 * this range and we need to fallback to buffered.
7236 if (lock_extent_direct(inode
, lockstart
, lockend
, &cached_state
,
7242 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, start
, len
);
7249 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7250 * io. INLINE is special, and we could probably kludge it in here, but
7251 * it's still buffered so for safety lets just fall back to the generic
7254 * For COMPRESSED we _have_ to read the entire extent in so we can
7255 * decompress it, so there will be buffering required no matter what we
7256 * do, so go ahead and fallback to buffered.
7258 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7259 * to buffered IO. Don't blame me, this is the price we pay for using
7262 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
7263 em
->block_start
== EXTENT_MAP_INLINE
) {
7264 free_extent_map(em
);
7270 ret
= btrfs_get_blocks_direct_write(&em
, bh_result
, inode
,
7271 dio_data
, start
, len
);
7275 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
,
7276 lockend
, &cached_state
);
7278 ret
= btrfs_get_blocks_direct_read(em
, bh_result
, inode
,
7280 /* Can be negative only if we read from a hole */
7283 free_extent_map(em
);
7287 * We need to unlock only the end area that we aren't using.
7288 * The rest is going to be unlocked by the endio routine.
7290 lockstart
= start
+ bh_result
->b_size
;
7291 if (lockstart
< lockend
) {
7292 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
7293 lockstart
, lockend
, &cached_state
);
7295 free_extent_state(cached_state
);
7299 free_extent_map(em
);
7304 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7308 current
->journal_info
= dio_data
;
7312 static inline blk_status_t
submit_dio_repair_bio(struct inode
*inode
,
7316 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7319 BUG_ON(bio_op(bio
) == REQ_OP_WRITE
);
7321 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DIO_REPAIR
);
7325 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
);
7330 static int btrfs_check_dio_repairable(struct inode
*inode
,
7331 struct bio
*failed_bio
,
7332 struct io_failure_record
*failrec
,
7335 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7338 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
, failrec
->len
);
7339 if (num_copies
== 1) {
7341 * we only have a single copy of the data, so don't bother with
7342 * all the retry and error correction code that follows. no
7343 * matter what the error is, it is very likely to persist.
7345 btrfs_debug(fs_info
,
7346 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7347 num_copies
, failrec
->this_mirror
, failed_mirror
);
7351 failrec
->failed_mirror
= failed_mirror
;
7352 failrec
->this_mirror
++;
7353 if (failrec
->this_mirror
== failed_mirror
)
7354 failrec
->this_mirror
++;
7356 if (failrec
->this_mirror
> num_copies
) {
7357 btrfs_debug(fs_info
,
7358 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7359 num_copies
, failrec
->this_mirror
, failed_mirror
);
7366 static blk_status_t
dio_read_error(struct inode
*inode
, struct bio
*failed_bio
,
7367 struct page
*page
, unsigned int pgoff
,
7368 u64 start
, u64 end
, int failed_mirror
,
7369 bio_end_io_t
*repair_endio
, void *repair_arg
)
7371 struct io_failure_record
*failrec
;
7372 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7373 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
7376 unsigned int read_mode
= 0;
7379 blk_status_t status
;
7380 struct bio_vec bvec
;
7382 BUG_ON(bio_op(failed_bio
) == REQ_OP_WRITE
);
7384 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
7386 return errno_to_blk_status(ret
);
7388 ret
= btrfs_check_dio_repairable(inode
, failed_bio
, failrec
,
7391 free_io_failure(failure_tree
, io_tree
, failrec
);
7392 return BLK_STS_IOERR
;
7395 segs
= bio_segments(failed_bio
);
7396 bio_get_first_bvec(failed_bio
, &bvec
);
7398 (bvec
.bv_len
> btrfs_inode_sectorsize(inode
)))
7399 read_mode
|= REQ_FAILFAST_DEV
;
7401 isector
= start
- btrfs_io_bio(failed_bio
)->logical
;
7402 isector
>>= inode
->i_sb
->s_blocksize_bits
;
7403 bio
= btrfs_create_repair_bio(inode
, failed_bio
, failrec
, page
,
7404 pgoff
, isector
, repair_endio
, repair_arg
);
7405 bio
->bi_opf
= REQ_OP_READ
| read_mode
;
7407 btrfs_debug(BTRFS_I(inode
)->root
->fs_info
,
7408 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7409 read_mode
, failrec
->this_mirror
, failrec
->in_validation
);
7411 status
= submit_dio_repair_bio(inode
, bio
, failrec
->this_mirror
);
7413 free_io_failure(failure_tree
, io_tree
, failrec
);
7420 struct btrfs_retry_complete
{
7421 struct completion done
;
7422 struct inode
*inode
;
7427 static void btrfs_retry_endio_nocsum(struct bio
*bio
)
7429 struct btrfs_retry_complete
*done
= bio
->bi_private
;
7430 struct inode
*inode
= done
->inode
;
7431 struct bio_vec
*bvec
;
7432 struct extent_io_tree
*io_tree
, *failure_tree
;
7433 struct bvec_iter_all iter_all
;
7438 ASSERT(bio
->bi_vcnt
== 1);
7439 io_tree
= &BTRFS_I(inode
)->io_tree
;
7440 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
7441 ASSERT(bio_first_bvec_all(bio
)->bv_len
== btrfs_inode_sectorsize(inode
));
7444 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
7445 bio_for_each_segment_all(bvec
, bio
, iter_all
)
7446 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
, failure_tree
,
7447 io_tree
, done
->start
, bvec
->bv_page
,
7448 btrfs_ino(BTRFS_I(inode
)), 0);
7450 complete(&done
->done
);
7454 static blk_status_t
__btrfs_correct_data_nocsum(struct inode
*inode
,
7455 struct btrfs_io_bio
*io_bio
)
7457 struct btrfs_fs_info
*fs_info
;
7458 struct bio_vec bvec
;
7459 struct bvec_iter iter
;
7460 struct btrfs_retry_complete done
;
7466 blk_status_t err
= BLK_STS_OK
;
7468 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
7469 sectorsize
= fs_info
->sectorsize
;
7471 start
= io_bio
->logical
;
7473 io_bio
->bio
.bi_iter
= io_bio
->iter
;
7475 bio_for_each_segment(bvec
, &io_bio
->bio
, iter
) {
7476 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
.bv_len
);
7477 pgoff
= bvec
.bv_offset
;
7479 next_block_or_try_again
:
7482 init_completion(&done
.done
);
7484 ret
= dio_read_error(inode
, &io_bio
->bio
, bvec
.bv_page
,
7485 pgoff
, start
, start
+ sectorsize
- 1,
7487 btrfs_retry_endio_nocsum
, &done
);
7493 wait_for_completion_io(&done
.done
);
7495 if (!done
.uptodate
) {
7496 /* We might have another mirror, so try again */
7497 goto next_block_or_try_again
;
7501 start
+= sectorsize
;
7505 pgoff
+= sectorsize
;
7506 ASSERT(pgoff
< PAGE_SIZE
);
7507 goto next_block_or_try_again
;
7514 static void btrfs_retry_endio(struct bio
*bio
)
7516 struct btrfs_retry_complete
*done
= bio
->bi_private
;
7517 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
7518 struct extent_io_tree
*io_tree
, *failure_tree
;
7519 struct inode
*inode
= done
->inode
;
7520 struct bio_vec
*bvec
;
7524 struct bvec_iter_all iter_all
;
7531 ASSERT(bio
->bi_vcnt
== 1);
7532 ASSERT(bio_first_bvec_all(bio
)->bv_len
== btrfs_inode_sectorsize(done
->inode
));
7534 io_tree
= &BTRFS_I(inode
)->io_tree
;
7535 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
7537 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
7538 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
7539 ret
= __readpage_endio_check(inode
, io_bio
, i
, bvec
->bv_page
,
7540 bvec
->bv_offset
, done
->start
,
7543 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
,
7544 failure_tree
, io_tree
, done
->start
,
7546 btrfs_ino(BTRFS_I(inode
)),
7553 done
->uptodate
= uptodate
;
7555 complete(&done
->done
);
7559 static blk_status_t
__btrfs_subio_endio_read(struct inode
*inode
,
7560 struct btrfs_io_bio
*io_bio
, blk_status_t err
)
7562 struct btrfs_fs_info
*fs_info
;
7563 struct bio_vec bvec
;
7564 struct bvec_iter iter
;
7565 struct btrfs_retry_complete done
;
7572 bool uptodate
= (err
== 0);
7574 blk_status_t status
;
7576 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
7577 sectorsize
= fs_info
->sectorsize
;
7580 start
= io_bio
->logical
;
7582 io_bio
->bio
.bi_iter
= io_bio
->iter
;
7584 bio_for_each_segment(bvec
, &io_bio
->bio
, iter
) {
7585 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
.bv_len
);
7587 pgoff
= bvec
.bv_offset
;
7590 csum_pos
= BTRFS_BYTES_TO_BLKS(fs_info
, offset
);
7591 ret
= __readpage_endio_check(inode
, io_bio
, csum_pos
,
7592 bvec
.bv_page
, pgoff
, start
, sectorsize
);
7599 init_completion(&done
.done
);
7601 status
= dio_read_error(inode
, &io_bio
->bio
, bvec
.bv_page
,
7602 pgoff
, start
, start
+ sectorsize
- 1,
7603 io_bio
->mirror_num
, btrfs_retry_endio
,
7610 wait_for_completion_io(&done
.done
);
7612 if (!done
.uptodate
) {
7613 /* We might have another mirror, so try again */
7617 offset
+= sectorsize
;
7618 start
+= sectorsize
;
7624 pgoff
+= sectorsize
;
7625 ASSERT(pgoff
< PAGE_SIZE
);
7633 static blk_status_t
btrfs_subio_endio_read(struct inode
*inode
,
7634 struct btrfs_io_bio
*io_bio
, blk_status_t err
)
7636 bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
7640 return __btrfs_correct_data_nocsum(inode
, io_bio
);
7644 return __btrfs_subio_endio_read(inode
, io_bio
, err
);
7648 static void btrfs_endio_direct_read(struct bio
*bio
)
7650 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7651 struct inode
*inode
= dip
->inode
;
7652 struct bio
*dio_bio
;
7653 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
7654 blk_status_t err
= bio
->bi_status
;
7656 if (dip
->flags
& BTRFS_DIO_ORIG_BIO_SUBMITTED
)
7657 err
= btrfs_subio_endio_read(inode
, io_bio
, err
);
7659 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
7660 dip
->logical_offset
+ dip
->bytes
- 1);
7661 dio_bio
= dip
->dio_bio
;
7665 dio_bio
->bi_status
= err
;
7666 dio_end_io(dio_bio
);
7667 btrfs_io_bio_free_csum(io_bio
);
7671 static void __endio_write_update_ordered(struct inode
*inode
,
7672 const u64 offset
, const u64 bytes
,
7673 const bool uptodate
)
7675 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7676 struct btrfs_ordered_extent
*ordered
= NULL
;
7677 struct btrfs_workqueue
*wq
;
7678 u64 ordered_offset
= offset
;
7679 u64 ordered_bytes
= bytes
;
7682 if (btrfs_is_free_space_inode(BTRFS_I(inode
)))
7683 wq
= fs_info
->endio_freespace_worker
;
7685 wq
= fs_info
->endio_write_workers
;
7687 while (ordered_offset
< offset
+ bytes
) {
7688 last_offset
= ordered_offset
;
7689 if (btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
7693 btrfs_init_work(&ordered
->work
, finish_ordered_fn
, NULL
,
7695 btrfs_queue_work(wq
, &ordered
->work
);
7698 * If btrfs_dec_test_ordered_pending does not find any ordered
7699 * extent in the range, we can exit.
7701 if (ordered_offset
== last_offset
)
7704 * Our bio might span multiple ordered extents. In this case
7705 * we keep going until we have accounted the whole dio.
7707 if (ordered_offset
< offset
+ bytes
) {
7708 ordered_bytes
= offset
+ bytes
- ordered_offset
;
7714 static void btrfs_endio_direct_write(struct bio
*bio
)
7716 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7717 struct bio
*dio_bio
= dip
->dio_bio
;
7719 __endio_write_update_ordered(dip
->inode
, dip
->logical_offset
,
7720 dip
->bytes
, !bio
->bi_status
);
7724 dio_bio
->bi_status
= bio
->bi_status
;
7725 dio_end_io(dio_bio
);
7729 static blk_status_t
btrfs_submit_bio_start_direct_io(void *private_data
,
7730 struct bio
*bio
, u64 offset
)
7732 struct inode
*inode
= private_data
;
7734 ret
= btrfs_csum_one_bio(inode
, bio
, offset
, 1);
7735 BUG_ON(ret
); /* -ENOMEM */
7739 static void btrfs_end_dio_bio(struct bio
*bio
)
7741 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7742 blk_status_t err
= bio
->bi_status
;
7745 btrfs_warn(BTRFS_I(dip
->inode
)->root
->fs_info
,
7746 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7747 btrfs_ino(BTRFS_I(dip
->inode
)), bio_op(bio
),
7749 (unsigned long long)bio
->bi_iter
.bi_sector
,
7750 bio
->bi_iter
.bi_size
, err
);
7752 if (dip
->subio_endio
)
7753 err
= dip
->subio_endio(dip
->inode
, btrfs_io_bio(bio
), err
);
7757 * We want to perceive the errors flag being set before
7758 * decrementing the reference count. We don't need a barrier
7759 * since atomic operations with a return value are fully
7760 * ordered as per atomic_t.txt
7765 /* if there are more bios still pending for this dio, just exit */
7766 if (!atomic_dec_and_test(&dip
->pending_bios
))
7770 bio_io_error(dip
->orig_bio
);
7772 dip
->dio_bio
->bi_status
= BLK_STS_OK
;
7773 bio_endio(dip
->orig_bio
);
7779 static inline blk_status_t
btrfs_lookup_and_bind_dio_csum(struct inode
*inode
,
7780 struct btrfs_dio_private
*dip
,
7784 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
7785 struct btrfs_io_bio
*orig_io_bio
= btrfs_io_bio(dip
->orig_bio
);
7790 * We load all the csum data we need when we submit
7791 * the first bio to reduce the csum tree search and
7794 if (dip
->logical_offset
== file_offset
) {
7795 ret
= btrfs_lookup_bio_sums(inode
, dip
->orig_bio
, file_offset
,
7801 if (bio
== dip
->orig_bio
)
7804 file_offset
-= dip
->logical_offset
;
7805 file_offset
>>= inode
->i_sb
->s_blocksize_bits
;
7806 csum_size
= btrfs_super_csum_size(btrfs_sb(inode
->i_sb
)->super_copy
);
7807 io_bio
->csum
= orig_io_bio
->csum
+ csum_size
* file_offset
;
7812 static inline blk_status_t
btrfs_submit_dio_bio(struct bio
*bio
,
7813 struct inode
*inode
, u64 file_offset
, int async_submit
)
7815 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7816 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7817 bool write
= bio_op(bio
) == REQ_OP_WRITE
;
7820 /* Check btrfs_submit_bio_hook() for rules about async submit. */
7822 async_submit
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
7825 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DATA
);
7830 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
7833 if (write
&& async_submit
) {
7834 ret
= btrfs_wq_submit_bio(fs_info
, bio
, 0, 0,
7836 btrfs_submit_bio_start_direct_io
);
7840 * If we aren't doing async submit, calculate the csum of the
7843 ret
= btrfs_csum_one_bio(inode
, bio
, file_offset
, 1);
7847 ret
= btrfs_lookup_and_bind_dio_csum(inode
, dip
, bio
,
7853 ret
= btrfs_map_bio(fs_info
, bio
, 0);
7858 static int btrfs_submit_direct_hook(struct btrfs_dio_private
*dip
)
7860 struct inode
*inode
= dip
->inode
;
7861 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7863 struct bio
*orig_bio
= dip
->orig_bio
;
7864 u64 start_sector
= orig_bio
->bi_iter
.bi_sector
;
7865 u64 file_offset
= dip
->logical_offset
;
7866 int async_submit
= 0;
7868 int clone_offset
= 0;
7871 blk_status_t status
;
7872 struct btrfs_io_geometry geom
;
7874 submit_len
= orig_bio
->bi_iter
.bi_size
;
7875 ret
= btrfs_get_io_geometry(fs_info
, btrfs_op(orig_bio
),
7876 start_sector
<< 9, submit_len
, &geom
);
7880 if (geom
.len
>= submit_len
) {
7882 dip
->flags
|= BTRFS_DIO_ORIG_BIO_SUBMITTED
;
7886 /* async crcs make it difficult to collect full stripe writes. */
7887 if (btrfs_data_alloc_profile(fs_info
) & BTRFS_BLOCK_GROUP_RAID56_MASK
)
7893 ASSERT(geom
.len
<= INT_MAX
);
7894 atomic_inc(&dip
->pending_bios
);
7896 clone_len
= min_t(int, submit_len
, geom
.len
);
7899 * This will never fail as it's passing GPF_NOFS and
7900 * the allocation is backed by btrfs_bioset.
7902 bio
= btrfs_bio_clone_partial(orig_bio
, clone_offset
,
7904 bio
->bi_private
= dip
;
7905 bio
->bi_end_io
= btrfs_end_dio_bio
;
7906 btrfs_io_bio(bio
)->logical
= file_offset
;
7908 ASSERT(submit_len
>= clone_len
);
7909 submit_len
-= clone_len
;
7910 if (submit_len
== 0)
7914 * Increase the count before we submit the bio so we know
7915 * the end IO handler won't happen before we increase the
7916 * count. Otherwise, the dip might get freed before we're
7917 * done setting it up.
7919 atomic_inc(&dip
->pending_bios
);
7921 status
= btrfs_submit_dio_bio(bio
, inode
, file_offset
,
7925 atomic_dec(&dip
->pending_bios
);
7929 clone_offset
+= clone_len
;
7930 start_sector
+= clone_len
>> 9;
7931 file_offset
+= clone_len
;
7933 ret
= btrfs_get_io_geometry(fs_info
, btrfs_op(orig_bio
),
7934 start_sector
<< 9, submit_len
, &geom
);
7937 } while (submit_len
> 0);
7940 status
= btrfs_submit_dio_bio(bio
, inode
, file_offset
, async_submit
);
7948 * Before atomic variable goto zero, we must make sure dip->errors is
7949 * perceived to be set. This ordering is ensured by the fact that an
7950 * atomic operations with a return value are fully ordered as per
7953 if (atomic_dec_and_test(&dip
->pending_bios
))
7954 bio_io_error(dip
->orig_bio
);
7956 /* bio_end_io() will handle error, so we needn't return it */
7960 static void btrfs_submit_direct(struct bio
*dio_bio
, struct inode
*inode
,
7963 struct btrfs_dio_private
*dip
= NULL
;
7964 struct bio
*bio
= NULL
;
7965 struct btrfs_io_bio
*io_bio
;
7966 bool write
= (bio_op(dio_bio
) == REQ_OP_WRITE
);
7969 bio
= btrfs_bio_clone(dio_bio
);
7971 dip
= kzalloc(sizeof(*dip
), GFP_NOFS
);
7977 dip
->private = dio_bio
->bi_private
;
7979 dip
->logical_offset
= file_offset
;
7980 dip
->bytes
= dio_bio
->bi_iter
.bi_size
;
7981 dip
->disk_bytenr
= (u64
)dio_bio
->bi_iter
.bi_sector
<< 9;
7982 bio
->bi_private
= dip
;
7983 dip
->orig_bio
= bio
;
7984 dip
->dio_bio
= dio_bio
;
7985 atomic_set(&dip
->pending_bios
, 0);
7986 io_bio
= btrfs_io_bio(bio
);
7987 io_bio
->logical
= file_offset
;
7990 bio
->bi_end_io
= btrfs_endio_direct_write
;
7992 bio
->bi_end_io
= btrfs_endio_direct_read
;
7993 dip
->subio_endio
= btrfs_subio_endio_read
;
7997 * Reset the range for unsubmitted ordered extents (to a 0 length range)
7998 * even if we fail to submit a bio, because in such case we do the
7999 * corresponding error handling below and it must not be done a second
8000 * time by btrfs_direct_IO().
8003 struct btrfs_dio_data
*dio_data
= current
->journal_info
;
8005 dio_data
->unsubmitted_oe_range_end
= dip
->logical_offset
+
8007 dio_data
->unsubmitted_oe_range_start
=
8008 dio_data
->unsubmitted_oe_range_end
;
8011 ret
= btrfs_submit_direct_hook(dip
);
8015 btrfs_io_bio_free_csum(io_bio
);
8019 * If we arrived here it means either we failed to submit the dip
8020 * or we either failed to clone the dio_bio or failed to allocate the
8021 * dip. If we cloned the dio_bio and allocated the dip, we can just
8022 * call bio_endio against our io_bio so that we get proper resource
8023 * cleanup if we fail to submit the dip, otherwise, we must do the
8024 * same as btrfs_endio_direct_[write|read] because we can't call these
8025 * callbacks - they require an allocated dip and a clone of dio_bio.
8030 * The end io callbacks free our dip, do the final put on bio
8031 * and all the cleanup and final put for dio_bio (through
8038 __endio_write_update_ordered(inode
,
8040 dio_bio
->bi_iter
.bi_size
,
8043 unlock_extent(&BTRFS_I(inode
)->io_tree
, file_offset
,
8044 file_offset
+ dio_bio
->bi_iter
.bi_size
- 1);
8046 dio_bio
->bi_status
= BLK_STS_IOERR
;
8048 * Releases and cleans up our dio_bio, no need to bio_put()
8049 * nor bio_endio()/bio_io_error() against dio_bio.
8051 dio_end_io(dio_bio
);
8058 static ssize_t
check_direct_IO(struct btrfs_fs_info
*fs_info
,
8059 const struct iov_iter
*iter
, loff_t offset
)
8063 unsigned int blocksize_mask
= fs_info
->sectorsize
- 1;
8064 ssize_t retval
= -EINVAL
;
8066 if (offset
& blocksize_mask
)
8069 if (iov_iter_alignment(iter
) & blocksize_mask
)
8072 /* If this is a write we don't need to check anymore */
8073 if (iov_iter_rw(iter
) != READ
|| !iter_is_iovec(iter
))
8076 * Check to make sure we don't have duplicate iov_base's in this
8077 * iovec, if so return EINVAL, otherwise we'll get csum errors
8078 * when reading back.
8080 for (seg
= 0; seg
< iter
->nr_segs
; seg
++) {
8081 for (i
= seg
+ 1; i
< iter
->nr_segs
; i
++) {
8082 if (iter
->iov
[seg
].iov_base
== iter
->iov
[i
].iov_base
)
8091 static ssize_t
btrfs_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
8093 struct file
*file
= iocb
->ki_filp
;
8094 struct inode
*inode
= file
->f_mapping
->host
;
8095 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8096 struct btrfs_dio_data dio_data
= { 0 };
8097 struct extent_changeset
*data_reserved
= NULL
;
8098 loff_t offset
= iocb
->ki_pos
;
8102 bool relock
= false;
8105 if (check_direct_IO(fs_info
, iter
, offset
))
8108 inode_dio_begin(inode
);
8111 * The generic stuff only does filemap_write_and_wait_range, which
8112 * isn't enough if we've written compressed pages to this area, so
8113 * we need to flush the dirty pages again to make absolutely sure
8114 * that any outstanding dirty pages are on disk.
8116 count
= iov_iter_count(iter
);
8117 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
8118 &BTRFS_I(inode
)->runtime_flags
))
8119 filemap_fdatawrite_range(inode
->i_mapping
, offset
,
8120 offset
+ count
- 1);
8122 if (iov_iter_rw(iter
) == WRITE
) {
8124 * If the write DIO is beyond the EOF, we need update
8125 * the isize, but it is protected by i_mutex. So we can
8126 * not unlock the i_mutex at this case.
8128 if (offset
+ count
<= inode
->i_size
) {
8129 dio_data
.overwrite
= 1;
8130 inode_unlock(inode
);
8132 } else if (iocb
->ki_flags
& IOCB_NOWAIT
) {
8136 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
8142 * We need to know how many extents we reserved so that we can
8143 * do the accounting properly if we go over the number we
8144 * originally calculated. Abuse current->journal_info for this.
8146 dio_data
.reserve
= round_up(count
,
8147 fs_info
->sectorsize
);
8148 dio_data
.unsubmitted_oe_range_start
= (u64
)offset
;
8149 dio_data
.unsubmitted_oe_range_end
= (u64
)offset
;
8150 current
->journal_info
= &dio_data
;
8151 down_read(&BTRFS_I(inode
)->dio_sem
);
8152 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK
,
8153 &BTRFS_I(inode
)->runtime_flags
)) {
8154 inode_dio_end(inode
);
8155 flags
= DIO_LOCKING
| DIO_SKIP_HOLES
;
8159 ret
= __blockdev_direct_IO(iocb
, inode
,
8160 fs_info
->fs_devices
->latest_bdev
,
8161 iter
, btrfs_get_blocks_direct
, NULL
,
8162 btrfs_submit_direct
, flags
);
8163 if (iov_iter_rw(iter
) == WRITE
) {
8164 up_read(&BTRFS_I(inode
)->dio_sem
);
8165 current
->journal_info
= NULL
;
8166 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
8167 if (dio_data
.reserve
)
8168 btrfs_delalloc_release_space(inode
, data_reserved
,
8169 offset
, dio_data
.reserve
, true);
8171 * On error we might have left some ordered extents
8172 * without submitting corresponding bios for them, so
8173 * cleanup them up to avoid other tasks getting them
8174 * and waiting for them to complete forever.
8176 if (dio_data
.unsubmitted_oe_range_start
<
8177 dio_data
.unsubmitted_oe_range_end
)
8178 __endio_write_update_ordered(inode
,
8179 dio_data
.unsubmitted_oe_range_start
,
8180 dio_data
.unsubmitted_oe_range_end
-
8181 dio_data
.unsubmitted_oe_range_start
,
8183 } else if (ret
>= 0 && (size_t)ret
< count
)
8184 btrfs_delalloc_release_space(inode
, data_reserved
,
8185 offset
, count
- (size_t)ret
, true);
8186 btrfs_delalloc_release_extents(BTRFS_I(inode
), count
);
8190 inode_dio_end(inode
);
8194 extent_changeset_free(data_reserved
);
8198 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8200 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
8201 __u64 start
, __u64 len
)
8205 ret
= fiemap_check_flags(fieinfo
, BTRFS_FIEMAP_FLAGS
);
8209 return extent_fiemap(inode
, fieinfo
, start
, len
);
8212 int btrfs_readpage(struct file
*file
, struct page
*page
)
8214 struct extent_io_tree
*tree
;
8215 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8216 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
8219 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
8221 struct inode
*inode
= page
->mapping
->host
;
8224 if (current
->flags
& PF_MEMALLOC
) {
8225 redirty_page_for_writepage(wbc
, page
);
8231 * If we are under memory pressure we will call this directly from the
8232 * VM, we need to make sure we have the inode referenced for the ordered
8233 * extent. If not just return like we didn't do anything.
8235 if (!igrab(inode
)) {
8236 redirty_page_for_writepage(wbc
, page
);
8237 return AOP_WRITEPAGE_ACTIVATE
;
8239 ret
= extent_write_full_page(page
, wbc
);
8240 btrfs_add_delayed_iput(inode
);
8244 static int btrfs_writepages(struct address_space
*mapping
,
8245 struct writeback_control
*wbc
)
8247 return extent_writepages(mapping
, wbc
);
8251 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
8252 struct list_head
*pages
, unsigned nr_pages
)
8254 return extent_readpages(mapping
, pages
, nr_pages
);
8257 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8259 int ret
= try_release_extent_mapping(page
, gfp_flags
);
8261 ClearPagePrivate(page
);
8262 set_page_private(page
, 0);
8268 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8270 if (PageWriteback(page
) || PageDirty(page
))
8272 return __btrfs_releasepage(page
, gfp_flags
);
8275 static void btrfs_invalidatepage(struct page
*page
, unsigned int offset
,
8276 unsigned int length
)
8278 struct inode
*inode
= page
->mapping
->host
;
8279 struct extent_io_tree
*tree
;
8280 struct btrfs_ordered_extent
*ordered
;
8281 struct extent_state
*cached_state
= NULL
;
8282 u64 page_start
= page_offset(page
);
8283 u64 page_end
= page_start
+ PAGE_SIZE
- 1;
8286 int inode_evicting
= inode
->i_state
& I_FREEING
;
8289 * we have the page locked, so new writeback can't start,
8290 * and the dirty bit won't be cleared while we are here.
8292 * Wait for IO on this page so that we can safely clear
8293 * the PagePrivate2 bit and do ordered accounting
8295 wait_on_page_writeback(page
);
8297 tree
= &BTRFS_I(inode
)->io_tree
;
8299 btrfs_releasepage(page
, GFP_NOFS
);
8303 if (!inode_evicting
)
8304 lock_extent_bits(tree
, page_start
, page_end
, &cached_state
);
8307 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), start
,
8308 page_end
- start
+ 1);
8311 ordered
->file_offset
+ ordered
->num_bytes
- 1);
8313 * IO on this page will never be started, so we need
8314 * to account for any ordered extents now
8316 if (!inode_evicting
)
8317 clear_extent_bit(tree
, start
, end
,
8318 EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
8319 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
8320 EXTENT_DEFRAG
, 1, 0, &cached_state
);
8322 * whoever cleared the private bit is responsible
8323 * for the finish_ordered_io
8325 if (TestClearPagePrivate2(page
)) {
8326 struct btrfs_ordered_inode_tree
*tree
;
8329 tree
= &BTRFS_I(inode
)->ordered_tree
;
8331 spin_lock_irq(&tree
->lock
);
8332 set_bit(BTRFS_ORDERED_TRUNCATED
, &ordered
->flags
);
8333 new_len
= start
- ordered
->file_offset
;
8334 if (new_len
< ordered
->truncated_len
)
8335 ordered
->truncated_len
= new_len
;
8336 spin_unlock_irq(&tree
->lock
);
8338 if (btrfs_dec_test_ordered_pending(inode
, &ordered
,
8340 end
- start
+ 1, 1))
8341 btrfs_finish_ordered_io(ordered
);
8343 btrfs_put_ordered_extent(ordered
);
8344 if (!inode_evicting
) {
8345 cached_state
= NULL
;
8346 lock_extent_bits(tree
, start
, end
,
8351 if (start
< page_end
)
8356 * Qgroup reserved space handler
8357 * Page here will be either
8358 * 1) Already written to disk
8359 * In this case, its reserved space is released from data rsv map
8360 * and will be freed by delayed_ref handler finally.
8361 * So even we call qgroup_free_data(), it won't decrease reserved
8363 * 2) Not written to disk
8364 * This means the reserved space should be freed here. However,
8365 * if a truncate invalidates the page (by clearing PageDirty)
8366 * and the page is accounted for while allocating extent
8367 * in btrfs_check_data_free_space() we let delayed_ref to
8368 * free the entire extent.
8370 if (PageDirty(page
))
8371 btrfs_qgroup_free_data(inode
, NULL
, page_start
, PAGE_SIZE
);
8372 if (!inode_evicting
) {
8373 clear_extent_bit(tree
, page_start
, page_end
, EXTENT_LOCKED
|
8374 EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
8375 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 1, 1,
8378 __btrfs_releasepage(page
, GFP_NOFS
);
8381 ClearPageChecked(page
);
8382 if (PagePrivate(page
)) {
8383 ClearPagePrivate(page
);
8384 set_page_private(page
, 0);
8390 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8391 * called from a page fault handler when a page is first dirtied. Hence we must
8392 * be careful to check for EOF conditions here. We set the page up correctly
8393 * for a written page which means we get ENOSPC checking when writing into
8394 * holes and correct delalloc and unwritten extent mapping on filesystems that
8395 * support these features.
8397 * We are not allowed to take the i_mutex here so we have to play games to
8398 * protect against truncate races as the page could now be beyond EOF. Because
8399 * truncate_setsize() writes the inode size before removing pages, once we have
8400 * the page lock we can determine safely if the page is beyond EOF. If it is not
8401 * beyond EOF, then the page is guaranteed safe against truncation until we
8404 vm_fault_t
btrfs_page_mkwrite(struct vm_fault
*vmf
)
8406 struct page
*page
= vmf
->page
;
8407 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
8408 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8409 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
8410 struct btrfs_ordered_extent
*ordered
;
8411 struct extent_state
*cached_state
= NULL
;
8412 struct extent_changeset
*data_reserved
= NULL
;
8414 unsigned long zero_start
;
8424 reserved_space
= PAGE_SIZE
;
8426 sb_start_pagefault(inode
->i_sb
);
8427 page_start
= page_offset(page
);
8428 page_end
= page_start
+ PAGE_SIZE
- 1;
8432 * Reserving delalloc space after obtaining the page lock can lead to
8433 * deadlock. For example, if a dirty page is locked by this function
8434 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8435 * dirty page write out, then the btrfs_writepage() function could
8436 * end up waiting indefinitely to get a lock on the page currently
8437 * being processed by btrfs_page_mkwrite() function.
8439 ret2
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
8442 ret2
= file_update_time(vmf
->vma
->vm_file
);
8446 ret
= vmf_error(ret2
);
8452 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
8455 size
= i_size_read(inode
);
8457 if ((page
->mapping
!= inode
->i_mapping
) ||
8458 (page_start
>= size
)) {
8459 /* page got truncated out from underneath us */
8462 wait_on_page_writeback(page
);
8464 lock_extent_bits(io_tree
, page_start
, page_end
, &cached_state
);
8465 set_page_extent_mapped(page
);
8468 * we can't set the delalloc bits if there are pending ordered
8469 * extents. Drop our locks and wait for them to finish
8471 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
8474 unlock_extent_cached(io_tree
, page_start
, page_end
,
8477 btrfs_start_ordered_extent(inode
, ordered
, 1);
8478 btrfs_put_ordered_extent(ordered
);
8482 if (page
->index
== ((size
- 1) >> PAGE_SHIFT
)) {
8483 reserved_space
= round_up(size
- page_start
,
8484 fs_info
->sectorsize
);
8485 if (reserved_space
< PAGE_SIZE
) {
8486 end
= page_start
+ reserved_space
- 1;
8487 btrfs_delalloc_release_space(inode
, data_reserved
,
8488 page_start
, PAGE_SIZE
- reserved_space
,
8494 * page_mkwrite gets called when the page is firstly dirtied after it's
8495 * faulted in, but write(2) could also dirty a page and set delalloc
8496 * bits, thus in this case for space account reason, we still need to
8497 * clear any delalloc bits within this page range since we have to
8498 * reserve data&meta space before lock_page() (see above comments).
8500 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, end
,
8501 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
8502 EXTENT_DEFRAG
, 0, 0, &cached_state
);
8504 ret2
= btrfs_set_extent_delalloc(inode
, page_start
, end
, 0,
8507 unlock_extent_cached(io_tree
, page_start
, page_end
,
8509 ret
= VM_FAULT_SIGBUS
;
8513 /* page is wholly or partially inside EOF */
8514 if (page_start
+ PAGE_SIZE
> size
)
8515 zero_start
= offset_in_page(size
);
8517 zero_start
= PAGE_SIZE
;
8519 if (zero_start
!= PAGE_SIZE
) {
8521 memset(kaddr
+ zero_start
, 0, PAGE_SIZE
- zero_start
);
8522 flush_dcache_page(page
);
8525 ClearPageChecked(page
);
8526 set_page_dirty(page
);
8527 SetPageUptodate(page
);
8529 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
8530 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
8531 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->root
->last_log_commit
;
8533 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
);
8535 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
8536 sb_end_pagefault(inode
->i_sb
);
8537 extent_changeset_free(data_reserved
);
8538 return VM_FAULT_LOCKED
;
8543 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
8544 btrfs_delalloc_release_space(inode
, data_reserved
, page_start
,
8545 reserved_space
, (ret
!= 0));
8547 sb_end_pagefault(inode
->i_sb
);
8548 extent_changeset_free(data_reserved
);
8552 static int btrfs_truncate(struct inode
*inode
, bool skip_writeback
)
8554 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8555 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8556 struct btrfs_block_rsv
*rsv
;
8558 struct btrfs_trans_handle
*trans
;
8559 u64 mask
= fs_info
->sectorsize
- 1;
8560 u64 min_size
= btrfs_calc_metadata_size(fs_info
, 1);
8562 if (!skip_writeback
) {
8563 ret
= btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
),
8570 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8571 * things going on here:
8573 * 1) We need to reserve space to update our inode.
8575 * 2) We need to have something to cache all the space that is going to
8576 * be free'd up by the truncate operation, but also have some slack
8577 * space reserved in case it uses space during the truncate (thank you
8578 * very much snapshotting).
8580 * And we need these to be separate. The fact is we can use a lot of
8581 * space doing the truncate, and we have no earthly idea how much space
8582 * we will use, so we need the truncate reservation to be separate so it
8583 * doesn't end up using space reserved for updating the inode. We also
8584 * need to be able to stop the transaction and start a new one, which
8585 * means we need to be able to update the inode several times, and we
8586 * have no idea of knowing how many times that will be, so we can't just
8587 * reserve 1 item for the entirety of the operation, so that has to be
8588 * done separately as well.
8590 * So that leaves us with
8592 * 1) rsv - for the truncate reservation, which we will steal from the
8593 * transaction reservation.
8594 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8595 * updating the inode.
8597 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
8600 rsv
->size
= min_size
;
8604 * 1 for the truncate slack space
8605 * 1 for updating the inode.
8607 trans
= btrfs_start_transaction(root
, 2);
8608 if (IS_ERR(trans
)) {
8609 ret
= PTR_ERR(trans
);
8613 /* Migrate the slack space for the truncate to our reserve */
8614 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
, rsv
,
8619 * So if we truncate and then write and fsync we normally would just
8620 * write the extents that changed, which is a problem if we need to
8621 * first truncate that entire inode. So set this flag so we write out
8622 * all of the extents in the inode to the sync log so we're completely
8625 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
8626 trans
->block_rsv
= rsv
;
8629 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
8631 BTRFS_EXTENT_DATA_KEY
);
8632 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
8633 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
8636 ret
= btrfs_update_inode(trans
, root
, inode
);
8640 btrfs_end_transaction(trans
);
8641 btrfs_btree_balance_dirty(fs_info
);
8643 trans
= btrfs_start_transaction(root
, 2);
8644 if (IS_ERR(trans
)) {
8645 ret
= PTR_ERR(trans
);
8650 btrfs_block_rsv_release(fs_info
, rsv
, -1);
8651 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
,
8652 rsv
, min_size
, false);
8653 BUG_ON(ret
); /* shouldn't happen */
8654 trans
->block_rsv
= rsv
;
8658 * We can't call btrfs_truncate_block inside a trans handle as we could
8659 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8660 * we've truncated everything except the last little bit, and can do
8661 * btrfs_truncate_block and then update the disk_i_size.
8663 if (ret
== NEED_TRUNCATE_BLOCK
) {
8664 btrfs_end_transaction(trans
);
8665 btrfs_btree_balance_dirty(fs_info
);
8667 ret
= btrfs_truncate_block(inode
, inode
->i_size
, 0, 0);
8670 trans
= btrfs_start_transaction(root
, 1);
8671 if (IS_ERR(trans
)) {
8672 ret
= PTR_ERR(trans
);
8675 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
8681 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
8682 ret2
= btrfs_update_inode(trans
, root
, inode
);
8686 ret2
= btrfs_end_transaction(trans
);
8689 btrfs_btree_balance_dirty(fs_info
);
8692 btrfs_free_block_rsv(fs_info
, rsv
);
8698 * create a new subvolume directory/inode (helper for the ioctl).
8700 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
8701 struct btrfs_root
*new_root
,
8702 struct btrfs_root
*parent_root
,
8705 struct inode
*inode
;
8709 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
8710 new_dirid
, new_dirid
,
8711 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
8714 return PTR_ERR(inode
);
8715 inode
->i_op
= &btrfs_dir_inode_operations
;
8716 inode
->i_fop
= &btrfs_dir_file_operations
;
8718 set_nlink(inode
, 1);
8719 btrfs_i_size_write(BTRFS_I(inode
), 0);
8720 unlock_new_inode(inode
);
8722 err
= btrfs_subvol_inherit_props(trans
, new_root
, parent_root
);
8724 btrfs_err(new_root
->fs_info
,
8725 "error inheriting subvolume %llu properties: %d",
8726 new_root
->root_key
.objectid
, err
);
8728 err
= btrfs_update_inode(trans
, new_root
, inode
);
8734 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
8736 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
8737 struct btrfs_inode
*ei
;
8738 struct inode
*inode
;
8740 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_KERNEL
);
8747 ei
->last_sub_trans
= 0;
8748 ei
->logged_trans
= 0;
8749 ei
->delalloc_bytes
= 0;
8750 ei
->new_delalloc_bytes
= 0;
8751 ei
->defrag_bytes
= 0;
8752 ei
->disk_i_size
= 0;
8755 ei
->index_cnt
= (u64
)-1;
8757 ei
->last_unlink_trans
= 0;
8758 ei
->last_log_commit
= 0;
8760 spin_lock_init(&ei
->lock
);
8761 ei
->outstanding_extents
= 0;
8762 if (sb
->s_magic
!= BTRFS_TEST_MAGIC
)
8763 btrfs_init_metadata_block_rsv(fs_info
, &ei
->block_rsv
,
8764 BTRFS_BLOCK_RSV_DELALLOC
);
8765 ei
->runtime_flags
= 0;
8766 ei
->prop_compress
= BTRFS_COMPRESS_NONE
;
8767 ei
->defrag_compress
= BTRFS_COMPRESS_NONE
;
8769 ei
->delayed_node
= NULL
;
8771 ei
->i_otime
.tv_sec
= 0;
8772 ei
->i_otime
.tv_nsec
= 0;
8774 inode
= &ei
->vfs_inode
;
8775 extent_map_tree_init(&ei
->extent_tree
);
8776 extent_io_tree_init(fs_info
, &ei
->io_tree
, IO_TREE_INODE_IO
, inode
);
8777 extent_io_tree_init(fs_info
, &ei
->io_failure_tree
,
8778 IO_TREE_INODE_IO_FAILURE
, inode
);
8779 ei
->io_tree
.track_uptodate
= true;
8780 ei
->io_failure_tree
.track_uptodate
= true;
8781 atomic_set(&ei
->sync_writers
, 0);
8782 mutex_init(&ei
->log_mutex
);
8783 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
8784 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
8785 INIT_LIST_HEAD(&ei
->delayed_iput
);
8786 RB_CLEAR_NODE(&ei
->rb_node
);
8787 init_rwsem(&ei
->dio_sem
);
8792 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8793 void btrfs_test_destroy_inode(struct inode
*inode
)
8795 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
8796 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
8800 void btrfs_free_inode(struct inode
*inode
)
8802 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
8805 void btrfs_destroy_inode(struct inode
*inode
)
8807 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8808 struct btrfs_ordered_extent
*ordered
;
8809 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8811 WARN_ON(!hlist_empty(&inode
->i_dentry
));
8812 WARN_ON(inode
->i_data
.nrpages
);
8813 WARN_ON(BTRFS_I(inode
)->block_rsv
.reserved
);
8814 WARN_ON(BTRFS_I(inode
)->block_rsv
.size
);
8815 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
8816 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
8817 WARN_ON(BTRFS_I(inode
)->new_delalloc_bytes
);
8818 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
8819 WARN_ON(BTRFS_I(inode
)->defrag_bytes
);
8822 * This can happen where we create an inode, but somebody else also
8823 * created the same inode and we need to destroy the one we already
8830 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
8835 "found ordered extent %llu %llu on inode cleanup",
8836 ordered
->file_offset
, ordered
->num_bytes
);
8837 btrfs_remove_ordered_extent(inode
, ordered
);
8838 btrfs_put_ordered_extent(ordered
);
8839 btrfs_put_ordered_extent(ordered
);
8842 btrfs_qgroup_check_reserved_leak(inode
);
8843 inode_tree_del(inode
);
8844 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
8847 int btrfs_drop_inode(struct inode
*inode
)
8849 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8854 /* the snap/subvol tree is on deleting */
8855 if (btrfs_root_refs(&root
->root_item
) == 0)
8858 return generic_drop_inode(inode
);
8861 static void init_once(void *foo
)
8863 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
8865 inode_init_once(&ei
->vfs_inode
);
8868 void __cold
btrfs_destroy_cachep(void)
8871 * Make sure all delayed rcu free inodes are flushed before we
8875 kmem_cache_destroy(btrfs_inode_cachep
);
8876 kmem_cache_destroy(btrfs_trans_handle_cachep
);
8877 kmem_cache_destroy(btrfs_path_cachep
);
8878 kmem_cache_destroy(btrfs_free_space_cachep
);
8879 kmem_cache_destroy(btrfs_free_space_bitmap_cachep
);
8882 int __init
btrfs_init_cachep(void)
8884 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode",
8885 sizeof(struct btrfs_inode
), 0,
8886 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
| SLAB_ACCOUNT
,
8888 if (!btrfs_inode_cachep
)
8891 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle",
8892 sizeof(struct btrfs_trans_handle
), 0,
8893 SLAB_TEMPORARY
| SLAB_MEM_SPREAD
, NULL
);
8894 if (!btrfs_trans_handle_cachep
)
8897 btrfs_path_cachep
= kmem_cache_create("btrfs_path",
8898 sizeof(struct btrfs_path
), 0,
8899 SLAB_MEM_SPREAD
, NULL
);
8900 if (!btrfs_path_cachep
)
8903 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space",
8904 sizeof(struct btrfs_free_space
), 0,
8905 SLAB_MEM_SPREAD
, NULL
);
8906 if (!btrfs_free_space_cachep
)
8909 btrfs_free_space_bitmap_cachep
= kmem_cache_create("btrfs_free_space_bitmap",
8910 PAGE_SIZE
, PAGE_SIZE
,
8911 SLAB_RED_ZONE
, NULL
);
8912 if (!btrfs_free_space_bitmap_cachep
)
8917 btrfs_destroy_cachep();
8921 static int btrfs_getattr(const struct path
*path
, struct kstat
*stat
,
8922 u32 request_mask
, unsigned int flags
)
8925 struct inode
*inode
= d_inode(path
->dentry
);
8926 u32 blocksize
= inode
->i_sb
->s_blocksize
;
8927 u32 bi_flags
= BTRFS_I(inode
)->flags
;
8929 stat
->result_mask
|= STATX_BTIME
;
8930 stat
->btime
.tv_sec
= BTRFS_I(inode
)->i_otime
.tv_sec
;
8931 stat
->btime
.tv_nsec
= BTRFS_I(inode
)->i_otime
.tv_nsec
;
8932 if (bi_flags
& BTRFS_INODE_APPEND
)
8933 stat
->attributes
|= STATX_ATTR_APPEND
;
8934 if (bi_flags
& BTRFS_INODE_COMPRESS
)
8935 stat
->attributes
|= STATX_ATTR_COMPRESSED
;
8936 if (bi_flags
& BTRFS_INODE_IMMUTABLE
)
8937 stat
->attributes
|= STATX_ATTR_IMMUTABLE
;
8938 if (bi_flags
& BTRFS_INODE_NODUMP
)
8939 stat
->attributes
|= STATX_ATTR_NODUMP
;
8941 stat
->attributes_mask
|= (STATX_ATTR_APPEND
|
8942 STATX_ATTR_COMPRESSED
|
8943 STATX_ATTR_IMMUTABLE
|
8946 generic_fillattr(inode
, stat
);
8947 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
8949 spin_lock(&BTRFS_I(inode
)->lock
);
8950 delalloc_bytes
= BTRFS_I(inode
)->new_delalloc_bytes
;
8951 spin_unlock(&BTRFS_I(inode
)->lock
);
8952 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
8953 ALIGN(delalloc_bytes
, blocksize
)) >> 9;
8957 static int btrfs_rename_exchange(struct inode
*old_dir
,
8958 struct dentry
*old_dentry
,
8959 struct inode
*new_dir
,
8960 struct dentry
*new_dentry
)
8962 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
8963 struct btrfs_trans_handle
*trans
;
8964 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
8965 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
8966 struct inode
*new_inode
= new_dentry
->d_inode
;
8967 struct inode
*old_inode
= old_dentry
->d_inode
;
8968 struct timespec64 ctime
= current_time(old_inode
);
8969 struct dentry
*parent
;
8970 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
8971 u64 new_ino
= btrfs_ino(BTRFS_I(new_inode
));
8975 bool root_log_pinned
= false;
8976 bool dest_log_pinned
= false;
8977 struct btrfs_log_ctx ctx_root
;
8978 struct btrfs_log_ctx ctx_dest
;
8979 bool sync_log_root
= false;
8980 bool sync_log_dest
= false;
8981 bool commit_transaction
= false;
8983 /* we only allow rename subvolume link between subvolumes */
8984 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
8987 btrfs_init_log_ctx(&ctx_root
, old_inode
);
8988 btrfs_init_log_ctx(&ctx_dest
, new_inode
);
8990 /* close the race window with snapshot create/destroy ioctl */
8991 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
||
8992 new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
8993 down_read(&fs_info
->subvol_sem
);
8996 * We want to reserve the absolute worst case amount of items. So if
8997 * both inodes are subvols and we need to unlink them then that would
8998 * require 4 item modifications, but if they are both normal inodes it
8999 * would require 5 item modifications, so we'll assume their normal
9000 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9001 * should cover the worst case number of items we'll modify.
9003 trans
= btrfs_start_transaction(root
, 12);
9004 if (IS_ERR(trans
)) {
9005 ret
= PTR_ERR(trans
);
9010 btrfs_record_root_in_trans(trans
, dest
);
9013 * We need to find a free sequence number both in the source and
9014 * in the destination directory for the exchange.
9016 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &old_idx
);
9019 ret
= btrfs_set_inode_index(BTRFS_I(old_dir
), &new_idx
);
9023 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9024 BTRFS_I(new_inode
)->dir_index
= 0ULL;
9026 /* Reference for the source. */
9027 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9028 /* force full log commit if subvolume involved. */
9029 btrfs_set_log_full_commit(trans
);
9031 btrfs_pin_log_trans(root
);
9032 root_log_pinned
= true;
9033 ret
= btrfs_insert_inode_ref(trans
, dest
,
9034 new_dentry
->d_name
.name
,
9035 new_dentry
->d_name
.len
,
9037 btrfs_ino(BTRFS_I(new_dir
)),
9043 /* And now for the dest. */
9044 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9045 /* force full log commit if subvolume involved. */
9046 btrfs_set_log_full_commit(trans
);
9048 btrfs_pin_log_trans(dest
);
9049 dest_log_pinned
= true;
9050 ret
= btrfs_insert_inode_ref(trans
, root
,
9051 old_dentry
->d_name
.name
,
9052 old_dentry
->d_name
.len
,
9054 btrfs_ino(BTRFS_I(old_dir
)),
9060 /* Update inode version and ctime/mtime. */
9061 inode_inc_iversion(old_dir
);
9062 inode_inc_iversion(new_dir
);
9063 inode_inc_iversion(old_inode
);
9064 inode_inc_iversion(new_inode
);
9065 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
9066 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
9067 old_inode
->i_ctime
= ctime
;
9068 new_inode
->i_ctime
= ctime
;
9070 if (old_dentry
->d_parent
!= new_dentry
->d_parent
) {
9071 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
9072 BTRFS_I(old_inode
), 1);
9073 btrfs_record_unlink_dir(trans
, BTRFS_I(new_dir
),
9074 BTRFS_I(new_inode
), 1);
9077 /* src is a subvolume */
9078 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9079 ret
= btrfs_unlink_subvol(trans
, old_dir
, old_dentry
);
9080 } else { /* src is an inode */
9081 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
9082 BTRFS_I(old_dentry
->d_inode
),
9083 old_dentry
->d_name
.name
,
9084 old_dentry
->d_name
.len
);
9086 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9089 btrfs_abort_transaction(trans
, ret
);
9093 /* dest is a subvolume */
9094 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9095 ret
= btrfs_unlink_subvol(trans
, new_dir
, new_dentry
);
9096 } else { /* dest is an inode */
9097 ret
= __btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
9098 BTRFS_I(new_dentry
->d_inode
),
9099 new_dentry
->d_name
.name
,
9100 new_dentry
->d_name
.len
);
9102 ret
= btrfs_update_inode(trans
, dest
, new_inode
);
9105 btrfs_abort_transaction(trans
, ret
);
9109 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
9110 new_dentry
->d_name
.name
,
9111 new_dentry
->d_name
.len
, 0, old_idx
);
9113 btrfs_abort_transaction(trans
, ret
);
9117 ret
= btrfs_add_link(trans
, BTRFS_I(old_dir
), BTRFS_I(new_inode
),
9118 old_dentry
->d_name
.name
,
9119 old_dentry
->d_name
.len
, 0, new_idx
);
9121 btrfs_abort_transaction(trans
, ret
);
9125 if (old_inode
->i_nlink
== 1)
9126 BTRFS_I(old_inode
)->dir_index
= old_idx
;
9127 if (new_inode
->i_nlink
== 1)
9128 BTRFS_I(new_inode
)->dir_index
= new_idx
;
9130 if (root_log_pinned
) {
9131 parent
= new_dentry
->d_parent
;
9132 ret
= btrfs_log_new_name(trans
, BTRFS_I(old_inode
),
9133 BTRFS_I(old_dir
), parent
,
9135 if (ret
== BTRFS_NEED_LOG_SYNC
)
9136 sync_log_root
= true;
9137 else if (ret
== BTRFS_NEED_TRANS_COMMIT
)
9138 commit_transaction
= true;
9140 btrfs_end_log_trans(root
);
9141 root_log_pinned
= false;
9143 if (dest_log_pinned
) {
9144 if (!commit_transaction
) {
9145 parent
= old_dentry
->d_parent
;
9146 ret
= btrfs_log_new_name(trans
, BTRFS_I(new_inode
),
9147 BTRFS_I(new_dir
), parent
,
9149 if (ret
== BTRFS_NEED_LOG_SYNC
)
9150 sync_log_dest
= true;
9151 else if (ret
== BTRFS_NEED_TRANS_COMMIT
)
9152 commit_transaction
= true;
9155 btrfs_end_log_trans(dest
);
9156 dest_log_pinned
= false;
9160 * If we have pinned a log and an error happened, we unpin tasks
9161 * trying to sync the log and force them to fallback to a transaction
9162 * commit if the log currently contains any of the inodes involved in
9163 * this rename operation (to ensure we do not persist a log with an
9164 * inconsistent state for any of these inodes or leading to any
9165 * inconsistencies when replayed). If the transaction was aborted, the
9166 * abortion reason is propagated to userspace when attempting to commit
9167 * the transaction. If the log does not contain any of these inodes, we
9168 * allow the tasks to sync it.
9170 if (ret
&& (root_log_pinned
|| dest_log_pinned
)) {
9171 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
9172 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
9173 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
9175 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
9176 btrfs_set_log_full_commit(trans
);
9178 if (root_log_pinned
) {
9179 btrfs_end_log_trans(root
);
9180 root_log_pinned
= false;
9182 if (dest_log_pinned
) {
9183 btrfs_end_log_trans(dest
);
9184 dest_log_pinned
= false;
9187 if (!ret
&& sync_log_root
&& !commit_transaction
) {
9188 ret
= btrfs_sync_log(trans
, BTRFS_I(old_inode
)->root
,
9191 commit_transaction
= true;
9193 if (!ret
&& sync_log_dest
&& !commit_transaction
) {
9194 ret
= btrfs_sync_log(trans
, BTRFS_I(new_inode
)->root
,
9197 commit_transaction
= true;
9199 if (commit_transaction
) {
9201 * We may have set commit_transaction when logging the new name
9202 * in the destination root, in which case we left the source
9203 * root context in the list of log contextes. So make sure we
9204 * remove it to avoid invalid memory accesses, since the context
9205 * was allocated in our stack frame.
9207 if (sync_log_root
) {
9208 mutex_lock(&root
->log_mutex
);
9209 list_del_init(&ctx_root
.list
);
9210 mutex_unlock(&root
->log_mutex
);
9212 ret
= btrfs_commit_transaction(trans
);
9216 ret2
= btrfs_end_transaction(trans
);
9217 ret
= ret
? ret
: ret2
;
9220 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
||
9221 old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9222 up_read(&fs_info
->subvol_sem
);
9224 ASSERT(list_empty(&ctx_root
.list
));
9225 ASSERT(list_empty(&ctx_dest
.list
));
9230 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle
*trans
,
9231 struct btrfs_root
*root
,
9233 struct dentry
*dentry
)
9236 struct inode
*inode
;
9240 ret
= btrfs_find_free_ino(root
, &objectid
);
9244 inode
= btrfs_new_inode(trans
, root
, dir
,
9245 dentry
->d_name
.name
,
9247 btrfs_ino(BTRFS_I(dir
)),
9249 S_IFCHR
| WHITEOUT_MODE
,
9252 if (IS_ERR(inode
)) {
9253 ret
= PTR_ERR(inode
);
9257 inode
->i_op
= &btrfs_special_inode_operations
;
9258 init_special_inode(inode
, inode
->i_mode
,
9261 ret
= btrfs_init_inode_security(trans
, inode
, dir
,
9266 ret
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
9267 BTRFS_I(inode
), 0, index
);
9271 ret
= btrfs_update_inode(trans
, root
, inode
);
9273 unlock_new_inode(inode
);
9275 inode_dec_link_count(inode
);
9281 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
9282 struct inode
*new_dir
, struct dentry
*new_dentry
,
9285 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9286 struct btrfs_trans_handle
*trans
;
9287 unsigned int trans_num_items
;
9288 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9289 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9290 struct inode
*new_inode
= d_inode(new_dentry
);
9291 struct inode
*old_inode
= d_inode(old_dentry
);
9294 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
9295 bool log_pinned
= false;
9296 struct btrfs_log_ctx ctx
;
9297 bool sync_log
= false;
9298 bool commit_transaction
= false;
9300 if (btrfs_ino(BTRFS_I(new_dir
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
9303 /* we only allow rename subvolume link between subvolumes */
9304 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9307 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
9308 (new_inode
&& btrfs_ino(BTRFS_I(new_inode
)) == BTRFS_FIRST_FREE_OBJECTID
))
9311 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
9312 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
9316 /* check for collisions, even if the name isn't there */
9317 ret
= btrfs_check_dir_item_collision(dest
, new_dir
->i_ino
,
9318 new_dentry
->d_name
.name
,
9319 new_dentry
->d_name
.len
);
9322 if (ret
== -EEXIST
) {
9324 * eexist without a new_inode */
9325 if (WARN_ON(!new_inode
)) {
9329 /* maybe -EOVERFLOW */
9336 * we're using rename to replace one file with another. Start IO on it
9337 * now so we don't add too much work to the end of the transaction
9339 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
)
9340 filemap_flush(old_inode
->i_mapping
);
9342 /* close the racy window with snapshot create/destroy ioctl */
9343 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9344 down_read(&fs_info
->subvol_sem
);
9346 * We want to reserve the absolute worst case amount of items. So if
9347 * both inodes are subvols and we need to unlink them then that would
9348 * require 4 item modifications, but if they are both normal inodes it
9349 * would require 5 item modifications, so we'll assume they are normal
9350 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9351 * should cover the worst case number of items we'll modify.
9352 * If our rename has the whiteout flag, we need more 5 units for the
9353 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9354 * when selinux is enabled).
9356 trans_num_items
= 11;
9357 if (flags
& RENAME_WHITEOUT
)
9358 trans_num_items
+= 5;
9359 trans
= btrfs_start_transaction(root
, trans_num_items
);
9360 if (IS_ERR(trans
)) {
9361 ret
= PTR_ERR(trans
);
9366 btrfs_record_root_in_trans(trans
, dest
);
9368 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &index
);
9372 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9373 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9374 /* force full log commit if subvolume involved. */
9375 btrfs_set_log_full_commit(trans
);
9377 btrfs_pin_log_trans(root
);
9379 ret
= btrfs_insert_inode_ref(trans
, dest
,
9380 new_dentry
->d_name
.name
,
9381 new_dentry
->d_name
.len
,
9383 btrfs_ino(BTRFS_I(new_dir
)), index
);
9388 inode_inc_iversion(old_dir
);
9389 inode_inc_iversion(new_dir
);
9390 inode_inc_iversion(old_inode
);
9391 old_dir
->i_ctime
= old_dir
->i_mtime
=
9392 new_dir
->i_ctime
= new_dir
->i_mtime
=
9393 old_inode
->i_ctime
= current_time(old_dir
);
9395 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
9396 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
9397 BTRFS_I(old_inode
), 1);
9399 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9400 ret
= btrfs_unlink_subvol(trans
, old_dir
, old_dentry
);
9402 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
9403 BTRFS_I(d_inode(old_dentry
)),
9404 old_dentry
->d_name
.name
,
9405 old_dentry
->d_name
.len
);
9407 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9410 btrfs_abort_transaction(trans
, ret
);
9415 inode_inc_iversion(new_inode
);
9416 new_inode
->i_ctime
= current_time(new_inode
);
9417 if (unlikely(btrfs_ino(BTRFS_I(new_inode
)) ==
9418 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
9419 ret
= btrfs_unlink_subvol(trans
, new_dir
, new_dentry
);
9420 BUG_ON(new_inode
->i_nlink
== 0);
9422 ret
= btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
9423 BTRFS_I(d_inode(new_dentry
)),
9424 new_dentry
->d_name
.name
,
9425 new_dentry
->d_name
.len
);
9427 if (!ret
&& new_inode
->i_nlink
== 0)
9428 ret
= btrfs_orphan_add(trans
,
9429 BTRFS_I(d_inode(new_dentry
)));
9431 btrfs_abort_transaction(trans
, ret
);
9436 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
9437 new_dentry
->d_name
.name
,
9438 new_dentry
->d_name
.len
, 0, index
);
9440 btrfs_abort_transaction(trans
, ret
);
9444 if (old_inode
->i_nlink
== 1)
9445 BTRFS_I(old_inode
)->dir_index
= index
;
9448 struct dentry
*parent
= new_dentry
->d_parent
;
9450 btrfs_init_log_ctx(&ctx
, old_inode
);
9451 ret
= btrfs_log_new_name(trans
, BTRFS_I(old_inode
),
9452 BTRFS_I(old_dir
), parent
,
9454 if (ret
== BTRFS_NEED_LOG_SYNC
)
9456 else if (ret
== BTRFS_NEED_TRANS_COMMIT
)
9457 commit_transaction
= true;
9459 btrfs_end_log_trans(root
);
9463 if (flags
& RENAME_WHITEOUT
) {
9464 ret
= btrfs_whiteout_for_rename(trans
, root
, old_dir
,
9468 btrfs_abort_transaction(trans
, ret
);
9474 * If we have pinned the log and an error happened, we unpin tasks
9475 * trying to sync the log and force them to fallback to a transaction
9476 * commit if the log currently contains any of the inodes involved in
9477 * this rename operation (to ensure we do not persist a log with an
9478 * inconsistent state for any of these inodes or leading to any
9479 * inconsistencies when replayed). If the transaction was aborted, the
9480 * abortion reason is propagated to userspace when attempting to commit
9481 * the transaction. If the log does not contain any of these inodes, we
9482 * allow the tasks to sync it.
9484 if (ret
&& log_pinned
) {
9485 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
9486 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
9487 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
9489 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
9490 btrfs_set_log_full_commit(trans
);
9492 btrfs_end_log_trans(root
);
9495 if (!ret
&& sync_log
) {
9496 ret
= btrfs_sync_log(trans
, BTRFS_I(old_inode
)->root
, &ctx
);
9498 commit_transaction
= true;
9499 } else if (sync_log
) {
9500 mutex_lock(&root
->log_mutex
);
9501 list_del(&ctx
.list
);
9502 mutex_unlock(&root
->log_mutex
);
9504 if (commit_transaction
) {
9505 ret
= btrfs_commit_transaction(trans
);
9509 ret2
= btrfs_end_transaction(trans
);
9510 ret
= ret
? ret
: ret2
;
9513 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9514 up_read(&fs_info
->subvol_sem
);
9519 static int btrfs_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
,
9520 struct inode
*new_dir
, struct dentry
*new_dentry
,
9523 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
9526 if (flags
& RENAME_EXCHANGE
)
9527 return btrfs_rename_exchange(old_dir
, old_dentry
, new_dir
,
9530 return btrfs_rename(old_dir
, old_dentry
, new_dir
, new_dentry
, flags
);
9533 struct btrfs_delalloc_work
{
9534 struct inode
*inode
;
9535 struct completion completion
;
9536 struct list_head list
;
9537 struct btrfs_work work
;
9540 static void btrfs_run_delalloc_work(struct btrfs_work
*work
)
9542 struct btrfs_delalloc_work
*delalloc_work
;
9543 struct inode
*inode
;
9545 delalloc_work
= container_of(work
, struct btrfs_delalloc_work
,
9547 inode
= delalloc_work
->inode
;
9548 filemap_flush(inode
->i_mapping
);
9549 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
9550 &BTRFS_I(inode
)->runtime_flags
))
9551 filemap_flush(inode
->i_mapping
);
9554 complete(&delalloc_work
->completion
);
9557 static struct btrfs_delalloc_work
*btrfs_alloc_delalloc_work(struct inode
*inode
)
9559 struct btrfs_delalloc_work
*work
;
9561 work
= kmalloc(sizeof(*work
), GFP_NOFS
);
9565 init_completion(&work
->completion
);
9566 INIT_LIST_HEAD(&work
->list
);
9567 work
->inode
= inode
;
9568 btrfs_init_work(&work
->work
, btrfs_run_delalloc_work
, NULL
, NULL
);
9574 * some fairly slow code that needs optimization. This walks the list
9575 * of all the inodes with pending delalloc and forces them to disk.
9577 static int start_delalloc_inodes(struct btrfs_root
*root
, int nr
, bool snapshot
)
9579 struct btrfs_inode
*binode
;
9580 struct inode
*inode
;
9581 struct btrfs_delalloc_work
*work
, *next
;
9582 struct list_head works
;
9583 struct list_head splice
;
9586 INIT_LIST_HEAD(&works
);
9587 INIT_LIST_HEAD(&splice
);
9589 mutex_lock(&root
->delalloc_mutex
);
9590 spin_lock(&root
->delalloc_lock
);
9591 list_splice_init(&root
->delalloc_inodes
, &splice
);
9592 while (!list_empty(&splice
)) {
9593 binode
= list_entry(splice
.next
, struct btrfs_inode
,
9596 list_move_tail(&binode
->delalloc_inodes
,
9597 &root
->delalloc_inodes
);
9598 inode
= igrab(&binode
->vfs_inode
);
9600 cond_resched_lock(&root
->delalloc_lock
);
9603 spin_unlock(&root
->delalloc_lock
);
9606 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH
,
9607 &binode
->runtime_flags
);
9608 work
= btrfs_alloc_delalloc_work(inode
);
9614 list_add_tail(&work
->list
, &works
);
9615 btrfs_queue_work(root
->fs_info
->flush_workers
,
9618 if (nr
!= -1 && ret
>= nr
)
9621 spin_lock(&root
->delalloc_lock
);
9623 spin_unlock(&root
->delalloc_lock
);
9626 list_for_each_entry_safe(work
, next
, &works
, list
) {
9627 list_del_init(&work
->list
);
9628 wait_for_completion(&work
->completion
);
9632 if (!list_empty(&splice
)) {
9633 spin_lock(&root
->delalloc_lock
);
9634 list_splice_tail(&splice
, &root
->delalloc_inodes
);
9635 spin_unlock(&root
->delalloc_lock
);
9637 mutex_unlock(&root
->delalloc_mutex
);
9641 int btrfs_start_delalloc_snapshot(struct btrfs_root
*root
)
9643 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
9646 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
9649 ret
= start_delalloc_inodes(root
, -1, true);
9655 int btrfs_start_delalloc_roots(struct btrfs_fs_info
*fs_info
, int nr
)
9657 struct btrfs_root
*root
;
9658 struct list_head splice
;
9661 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
9664 INIT_LIST_HEAD(&splice
);
9666 mutex_lock(&fs_info
->delalloc_root_mutex
);
9667 spin_lock(&fs_info
->delalloc_root_lock
);
9668 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
9669 while (!list_empty(&splice
) && nr
) {
9670 root
= list_first_entry(&splice
, struct btrfs_root
,
9672 root
= btrfs_grab_fs_root(root
);
9674 list_move_tail(&root
->delalloc_root
,
9675 &fs_info
->delalloc_roots
);
9676 spin_unlock(&fs_info
->delalloc_root_lock
);
9678 ret
= start_delalloc_inodes(root
, nr
, false);
9679 btrfs_put_fs_root(root
);
9687 spin_lock(&fs_info
->delalloc_root_lock
);
9689 spin_unlock(&fs_info
->delalloc_root_lock
);
9693 if (!list_empty(&splice
)) {
9694 spin_lock(&fs_info
->delalloc_root_lock
);
9695 list_splice_tail(&splice
, &fs_info
->delalloc_roots
);
9696 spin_unlock(&fs_info
->delalloc_root_lock
);
9698 mutex_unlock(&fs_info
->delalloc_root_mutex
);
9702 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
9703 const char *symname
)
9705 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
9706 struct btrfs_trans_handle
*trans
;
9707 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
9708 struct btrfs_path
*path
;
9709 struct btrfs_key key
;
9710 struct inode
*inode
= NULL
;
9717 struct btrfs_file_extent_item
*ei
;
9718 struct extent_buffer
*leaf
;
9720 name_len
= strlen(symname
);
9721 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
))
9722 return -ENAMETOOLONG
;
9725 * 2 items for inode item and ref
9726 * 2 items for dir items
9727 * 1 item for updating parent inode item
9728 * 1 item for the inline extent item
9729 * 1 item for xattr if selinux is on
9731 trans
= btrfs_start_transaction(root
, 7);
9733 return PTR_ERR(trans
);
9735 err
= btrfs_find_free_ino(root
, &objectid
);
9739 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
9740 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)),
9741 objectid
, S_IFLNK
|S_IRWXUGO
, &index
);
9742 if (IS_ERR(inode
)) {
9743 err
= PTR_ERR(inode
);
9749 * If the active LSM wants to access the inode during
9750 * d_instantiate it needs these. Smack checks to see
9751 * if the filesystem supports xattrs by looking at the
9754 inode
->i_fop
= &btrfs_file_operations
;
9755 inode
->i_op
= &btrfs_file_inode_operations
;
9756 inode
->i_mapping
->a_ops
= &btrfs_aops
;
9757 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
9759 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
9763 path
= btrfs_alloc_path();
9768 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
9770 key
.type
= BTRFS_EXTENT_DATA_KEY
;
9771 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
9772 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
9775 btrfs_free_path(path
);
9778 leaf
= path
->nodes
[0];
9779 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
9780 struct btrfs_file_extent_item
);
9781 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
9782 btrfs_set_file_extent_type(leaf
, ei
,
9783 BTRFS_FILE_EXTENT_INLINE
);
9784 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
9785 btrfs_set_file_extent_compression(leaf
, ei
, 0);
9786 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
9787 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
9789 ptr
= btrfs_file_extent_inline_start(ei
);
9790 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
9791 btrfs_mark_buffer_dirty(leaf
);
9792 btrfs_free_path(path
);
9794 inode
->i_op
= &btrfs_symlink_inode_operations
;
9795 inode_nohighmem(inode
);
9796 inode_set_bytes(inode
, name_len
);
9797 btrfs_i_size_write(BTRFS_I(inode
), name_len
);
9798 err
= btrfs_update_inode(trans
, root
, inode
);
9800 * Last step, add directory indexes for our symlink inode. This is the
9801 * last step to avoid extra cleanup of these indexes if an error happens
9805 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
9806 BTRFS_I(inode
), 0, index
);
9810 d_instantiate_new(dentry
, inode
);
9813 btrfs_end_transaction(trans
);
9815 inode_dec_link_count(inode
);
9816 discard_new_inode(inode
);
9818 btrfs_btree_balance_dirty(fs_info
);
9822 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
9823 u64 start
, u64 num_bytes
, u64 min_size
,
9824 loff_t actual_len
, u64
*alloc_hint
,
9825 struct btrfs_trans_handle
*trans
)
9827 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9828 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
9829 struct extent_map
*em
;
9830 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9831 struct btrfs_key ins
;
9832 u64 cur_offset
= start
;
9833 u64 clear_offset
= start
;
9836 u64 last_alloc
= (u64
)-1;
9838 bool own_trans
= true;
9839 u64 end
= start
+ num_bytes
- 1;
9843 while (num_bytes
> 0) {
9845 trans
= btrfs_start_transaction(root
, 3);
9846 if (IS_ERR(trans
)) {
9847 ret
= PTR_ERR(trans
);
9852 cur_bytes
= min_t(u64
, num_bytes
, SZ_256M
);
9853 cur_bytes
= max(cur_bytes
, min_size
);
9855 * If we are severely fragmented we could end up with really
9856 * small allocations, so if the allocator is returning small
9857 * chunks lets make its job easier by only searching for those
9860 cur_bytes
= min(cur_bytes
, last_alloc
);
9861 ret
= btrfs_reserve_extent(root
, cur_bytes
, cur_bytes
,
9862 min_size
, 0, *alloc_hint
, &ins
, 1, 0);
9865 btrfs_end_transaction(trans
);
9870 * We've reserved this space, and thus converted it from
9871 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9872 * from here on out we will only need to clear our reservation
9873 * for the remaining unreserved area, so advance our
9874 * clear_offset by our extent size.
9876 clear_offset
+= ins
.offset
;
9877 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
9879 last_alloc
= ins
.offset
;
9880 ret
= insert_reserved_file_extent(trans
, inode
,
9881 cur_offset
, ins
.objectid
,
9882 ins
.offset
, ins
.offset
,
9883 ins
.offset
, 0, 0, 0,
9884 BTRFS_FILE_EXTENT_PREALLOC
);
9886 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
9888 btrfs_abort_transaction(trans
, ret
);
9890 btrfs_end_transaction(trans
);
9894 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
9895 cur_offset
+ ins
.offset
-1, 0);
9897 em
= alloc_extent_map();
9899 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
9900 &BTRFS_I(inode
)->runtime_flags
);
9904 em
->start
= cur_offset
;
9905 em
->orig_start
= cur_offset
;
9906 em
->len
= ins
.offset
;
9907 em
->block_start
= ins
.objectid
;
9908 em
->block_len
= ins
.offset
;
9909 em
->orig_block_len
= ins
.offset
;
9910 em
->ram_bytes
= ins
.offset
;
9911 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
9912 em
->generation
= trans
->transid
;
9915 write_lock(&em_tree
->lock
);
9916 ret
= add_extent_mapping(em_tree
, em
, 1);
9917 write_unlock(&em_tree
->lock
);
9920 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
9921 cur_offset
+ ins
.offset
- 1,
9924 free_extent_map(em
);
9926 num_bytes
-= ins
.offset
;
9927 cur_offset
+= ins
.offset
;
9928 *alloc_hint
= ins
.objectid
+ ins
.offset
;
9930 inode_inc_iversion(inode
);
9931 inode
->i_ctime
= current_time(inode
);
9932 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
9933 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
9934 (actual_len
> inode
->i_size
) &&
9935 (cur_offset
> inode
->i_size
)) {
9936 if (cur_offset
> actual_len
)
9937 i_size
= actual_len
;
9939 i_size
= cur_offset
;
9940 i_size_write(inode
, i_size
);
9941 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
9944 ret
= btrfs_update_inode(trans
, root
, inode
);
9947 btrfs_abort_transaction(trans
, ret
);
9949 btrfs_end_transaction(trans
);
9954 btrfs_end_transaction(trans
);
9956 if (clear_offset
< end
)
9957 btrfs_free_reserved_data_space(inode
, NULL
, clear_offset
,
9958 end
- clear_offset
+ 1);
9962 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
9963 u64 start
, u64 num_bytes
, u64 min_size
,
9964 loff_t actual_len
, u64
*alloc_hint
)
9966 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
9967 min_size
, actual_len
, alloc_hint
,
9971 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
9972 struct btrfs_trans_handle
*trans
, int mode
,
9973 u64 start
, u64 num_bytes
, u64 min_size
,
9974 loff_t actual_len
, u64
*alloc_hint
)
9976 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
9977 min_size
, actual_len
, alloc_hint
, trans
);
9980 static int btrfs_set_page_dirty(struct page
*page
)
9982 return __set_page_dirty_nobuffers(page
);
9985 static int btrfs_permission(struct inode
*inode
, int mask
)
9987 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9988 umode_t mode
= inode
->i_mode
;
9990 if (mask
& MAY_WRITE
&&
9991 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
9992 if (btrfs_root_readonly(root
))
9994 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
9997 return generic_permission(inode
, mask
);
10000 static int btrfs_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
10002 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
10003 struct btrfs_trans_handle
*trans
;
10004 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10005 struct inode
*inode
= NULL
;
10011 * 5 units required for adding orphan entry
10013 trans
= btrfs_start_transaction(root
, 5);
10015 return PTR_ERR(trans
);
10017 ret
= btrfs_find_free_ino(root
, &objectid
);
10021 inode
= btrfs_new_inode(trans
, root
, dir
, NULL
, 0,
10022 btrfs_ino(BTRFS_I(dir
)), objectid
, mode
, &index
);
10023 if (IS_ERR(inode
)) {
10024 ret
= PTR_ERR(inode
);
10029 inode
->i_fop
= &btrfs_file_operations
;
10030 inode
->i_op
= &btrfs_file_inode_operations
;
10032 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10033 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10035 ret
= btrfs_init_inode_security(trans
, inode
, dir
, NULL
);
10039 ret
= btrfs_update_inode(trans
, root
, inode
);
10042 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
10047 * We set number of links to 0 in btrfs_new_inode(), and here we set
10048 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10051 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10053 set_nlink(inode
, 1);
10054 d_tmpfile(dentry
, inode
);
10055 unlock_new_inode(inode
);
10056 mark_inode_dirty(inode
);
10058 btrfs_end_transaction(trans
);
10060 discard_new_inode(inode
);
10061 btrfs_btree_balance_dirty(fs_info
);
10065 void btrfs_set_range_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
10067 struct inode
*inode
= tree
->private_data
;
10068 unsigned long index
= start
>> PAGE_SHIFT
;
10069 unsigned long end_index
= end
>> PAGE_SHIFT
;
10072 while (index
<= end_index
) {
10073 page
= find_get_page(inode
->i_mapping
, index
);
10074 ASSERT(page
); /* Pages should be in the extent_io_tree */
10075 set_page_writeback(page
);
10083 * Add an entry indicating a block group or device which is pinned by a
10084 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10085 * negative errno on failure.
10087 static int btrfs_add_swapfile_pin(struct inode
*inode
, void *ptr
,
10088 bool is_block_group
)
10090 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
10091 struct btrfs_swapfile_pin
*sp
, *entry
;
10092 struct rb_node
**p
;
10093 struct rb_node
*parent
= NULL
;
10095 sp
= kmalloc(sizeof(*sp
), GFP_NOFS
);
10100 sp
->is_block_group
= is_block_group
;
10102 spin_lock(&fs_info
->swapfile_pins_lock
);
10103 p
= &fs_info
->swapfile_pins
.rb_node
;
10106 entry
= rb_entry(parent
, struct btrfs_swapfile_pin
, node
);
10107 if (sp
->ptr
< entry
->ptr
||
10108 (sp
->ptr
== entry
->ptr
&& sp
->inode
< entry
->inode
)) {
10109 p
= &(*p
)->rb_left
;
10110 } else if (sp
->ptr
> entry
->ptr
||
10111 (sp
->ptr
== entry
->ptr
&& sp
->inode
> entry
->inode
)) {
10112 p
= &(*p
)->rb_right
;
10114 spin_unlock(&fs_info
->swapfile_pins_lock
);
10119 rb_link_node(&sp
->node
, parent
, p
);
10120 rb_insert_color(&sp
->node
, &fs_info
->swapfile_pins
);
10121 spin_unlock(&fs_info
->swapfile_pins_lock
);
10125 /* Free all of the entries pinned by this swapfile. */
10126 static void btrfs_free_swapfile_pins(struct inode
*inode
)
10128 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
10129 struct btrfs_swapfile_pin
*sp
;
10130 struct rb_node
*node
, *next
;
10132 spin_lock(&fs_info
->swapfile_pins_lock
);
10133 node
= rb_first(&fs_info
->swapfile_pins
);
10135 next
= rb_next(node
);
10136 sp
= rb_entry(node
, struct btrfs_swapfile_pin
, node
);
10137 if (sp
->inode
== inode
) {
10138 rb_erase(&sp
->node
, &fs_info
->swapfile_pins
);
10139 if (sp
->is_block_group
)
10140 btrfs_put_block_group(sp
->ptr
);
10145 spin_unlock(&fs_info
->swapfile_pins_lock
);
10148 struct btrfs_swap_info
{
10154 unsigned long nr_pages
;
10158 static int btrfs_add_swap_extent(struct swap_info_struct
*sis
,
10159 struct btrfs_swap_info
*bsi
)
10161 unsigned long nr_pages
;
10162 u64 first_ppage
, first_ppage_reported
, next_ppage
;
10165 first_ppage
= ALIGN(bsi
->block_start
, PAGE_SIZE
) >> PAGE_SHIFT
;
10166 next_ppage
= ALIGN_DOWN(bsi
->block_start
+ bsi
->block_len
,
10167 PAGE_SIZE
) >> PAGE_SHIFT
;
10169 if (first_ppage
>= next_ppage
)
10171 nr_pages
= next_ppage
- first_ppage
;
10173 first_ppage_reported
= first_ppage
;
10174 if (bsi
->start
== 0)
10175 first_ppage_reported
++;
10176 if (bsi
->lowest_ppage
> first_ppage_reported
)
10177 bsi
->lowest_ppage
= first_ppage_reported
;
10178 if (bsi
->highest_ppage
< (next_ppage
- 1))
10179 bsi
->highest_ppage
= next_ppage
- 1;
10181 ret
= add_swap_extent(sis
, bsi
->nr_pages
, nr_pages
, first_ppage
);
10184 bsi
->nr_extents
+= ret
;
10185 bsi
->nr_pages
+= nr_pages
;
10189 static void btrfs_swap_deactivate(struct file
*file
)
10191 struct inode
*inode
= file_inode(file
);
10193 btrfs_free_swapfile_pins(inode
);
10194 atomic_dec(&BTRFS_I(inode
)->root
->nr_swapfiles
);
10197 static int btrfs_swap_activate(struct swap_info_struct
*sis
, struct file
*file
,
10200 struct inode
*inode
= file_inode(file
);
10201 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
10202 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
10203 struct extent_state
*cached_state
= NULL
;
10204 struct extent_map
*em
= NULL
;
10205 struct btrfs_device
*device
= NULL
;
10206 struct btrfs_swap_info bsi
= {
10207 .lowest_ppage
= (sector_t
)-1ULL,
10214 * If the swap file was just created, make sure delalloc is done. If the
10215 * file changes again after this, the user is doing something stupid and
10216 * we don't really care.
10218 ret
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
10223 * The inode is locked, so these flags won't change after we check them.
10225 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
) {
10226 btrfs_warn(fs_info
, "swapfile must not be compressed");
10229 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
)) {
10230 btrfs_warn(fs_info
, "swapfile must not be copy-on-write");
10233 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
10234 btrfs_warn(fs_info
, "swapfile must not be checksummed");
10239 * Balance or device remove/replace/resize can move stuff around from
10240 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10241 * concurrently while we are mapping the swap extents, and
10242 * fs_info->swapfile_pins prevents them from running while the swap file
10243 * is active and moving the extents. Note that this also prevents a
10244 * concurrent device add which isn't actually necessary, but it's not
10245 * really worth the trouble to allow it.
10247 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
10248 btrfs_warn(fs_info
,
10249 "cannot activate swapfile while exclusive operation is running");
10253 * Snapshots can create extents which require COW even if NODATACOW is
10254 * set. We use this counter to prevent snapshots. We must increment it
10255 * before walking the extents because we don't want a concurrent
10256 * snapshot to run after we've already checked the extents.
10258 atomic_inc(&BTRFS_I(inode
)->root
->nr_swapfiles
);
10260 isize
= ALIGN_DOWN(inode
->i_size
, fs_info
->sectorsize
);
10262 lock_extent_bits(io_tree
, 0, isize
- 1, &cached_state
);
10264 while (start
< isize
) {
10265 u64 logical_block_start
, physical_block_start
;
10266 struct btrfs_block_group
*bg
;
10267 u64 len
= isize
- start
;
10269 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, start
, len
);
10275 if (em
->block_start
== EXTENT_MAP_HOLE
) {
10276 btrfs_warn(fs_info
, "swapfile must not have holes");
10280 if (em
->block_start
== EXTENT_MAP_INLINE
) {
10282 * It's unlikely we'll ever actually find ourselves
10283 * here, as a file small enough to fit inline won't be
10284 * big enough to store more than the swap header, but in
10285 * case something changes in the future, let's catch it
10286 * here rather than later.
10288 btrfs_warn(fs_info
, "swapfile must not be inline");
10292 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
10293 btrfs_warn(fs_info
, "swapfile must not be compressed");
10298 logical_block_start
= em
->block_start
+ (start
- em
->start
);
10299 len
= min(len
, em
->len
- (start
- em
->start
));
10300 free_extent_map(em
);
10303 ret
= can_nocow_extent(inode
, start
, &len
, NULL
, NULL
, NULL
);
10309 btrfs_warn(fs_info
,
10310 "swapfile must not be copy-on-write");
10315 em
= btrfs_get_chunk_map(fs_info
, logical_block_start
, len
);
10321 if (em
->map_lookup
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
10322 btrfs_warn(fs_info
,
10323 "swapfile must have single data profile");
10328 if (device
== NULL
) {
10329 device
= em
->map_lookup
->stripes
[0].dev
;
10330 ret
= btrfs_add_swapfile_pin(inode
, device
, false);
10335 } else if (device
!= em
->map_lookup
->stripes
[0].dev
) {
10336 btrfs_warn(fs_info
, "swapfile must be on one device");
10341 physical_block_start
= (em
->map_lookup
->stripes
[0].physical
+
10342 (logical_block_start
- em
->start
));
10343 len
= min(len
, em
->len
- (logical_block_start
- em
->start
));
10344 free_extent_map(em
);
10347 bg
= btrfs_lookup_block_group(fs_info
, logical_block_start
);
10349 btrfs_warn(fs_info
,
10350 "could not find block group containing swapfile");
10355 ret
= btrfs_add_swapfile_pin(inode
, bg
, true);
10357 btrfs_put_block_group(bg
);
10364 if (bsi
.block_len
&&
10365 bsi
.block_start
+ bsi
.block_len
== physical_block_start
) {
10366 bsi
.block_len
+= len
;
10368 if (bsi
.block_len
) {
10369 ret
= btrfs_add_swap_extent(sis
, &bsi
);
10374 bsi
.block_start
= physical_block_start
;
10375 bsi
.block_len
= len
;
10382 ret
= btrfs_add_swap_extent(sis
, &bsi
);
10385 if (!IS_ERR_OR_NULL(em
))
10386 free_extent_map(em
);
10388 unlock_extent_cached(io_tree
, 0, isize
- 1, &cached_state
);
10391 btrfs_swap_deactivate(file
);
10393 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
10399 sis
->bdev
= device
->bdev
;
10400 *span
= bsi
.highest_ppage
- bsi
.lowest_ppage
+ 1;
10401 sis
->max
= bsi
.nr_pages
;
10402 sis
->pages
= bsi
.nr_pages
- 1;
10403 sis
->highest_bit
= bsi
.nr_pages
- 1;
10404 return bsi
.nr_extents
;
10407 static void btrfs_swap_deactivate(struct file
*file
)
10411 static int btrfs_swap_activate(struct swap_info_struct
*sis
, struct file
*file
,
10414 return -EOPNOTSUPP
;
10418 static const struct inode_operations btrfs_dir_inode_operations
= {
10419 .getattr
= btrfs_getattr
,
10420 .lookup
= btrfs_lookup
,
10421 .create
= btrfs_create
,
10422 .unlink
= btrfs_unlink
,
10423 .link
= btrfs_link
,
10424 .mkdir
= btrfs_mkdir
,
10425 .rmdir
= btrfs_rmdir
,
10426 .rename
= btrfs_rename2
,
10427 .symlink
= btrfs_symlink
,
10428 .setattr
= btrfs_setattr
,
10429 .mknod
= btrfs_mknod
,
10430 .listxattr
= btrfs_listxattr
,
10431 .permission
= btrfs_permission
,
10432 .get_acl
= btrfs_get_acl
,
10433 .set_acl
= btrfs_set_acl
,
10434 .update_time
= btrfs_update_time
,
10435 .tmpfile
= btrfs_tmpfile
,
10438 static const struct file_operations btrfs_dir_file_operations
= {
10439 .llseek
= generic_file_llseek
,
10440 .read
= generic_read_dir
,
10441 .iterate_shared
= btrfs_real_readdir
,
10442 .open
= btrfs_opendir
,
10443 .unlocked_ioctl
= btrfs_ioctl
,
10444 #ifdef CONFIG_COMPAT
10445 .compat_ioctl
= btrfs_compat_ioctl
,
10447 .release
= btrfs_release_file
,
10448 .fsync
= btrfs_sync_file
,
10451 static const struct extent_io_ops btrfs_extent_io_ops
= {
10452 /* mandatory callbacks */
10453 .submit_bio_hook
= btrfs_submit_bio_hook
,
10454 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
10458 * btrfs doesn't support the bmap operation because swapfiles
10459 * use bmap to make a mapping of extents in the file. They assume
10460 * these extents won't change over the life of the file and they
10461 * use the bmap result to do IO directly to the drive.
10463 * the btrfs bmap call would return logical addresses that aren't
10464 * suitable for IO and they also will change frequently as COW
10465 * operations happen. So, swapfile + btrfs == corruption.
10467 * For now we're avoiding this by dropping bmap.
10469 static const struct address_space_operations btrfs_aops
= {
10470 .readpage
= btrfs_readpage
,
10471 .writepage
= btrfs_writepage
,
10472 .writepages
= btrfs_writepages
,
10473 .readpages
= btrfs_readpages
,
10474 .direct_IO
= btrfs_direct_IO
,
10475 .invalidatepage
= btrfs_invalidatepage
,
10476 .releasepage
= btrfs_releasepage
,
10477 .set_page_dirty
= btrfs_set_page_dirty
,
10478 .error_remove_page
= generic_error_remove_page
,
10479 .swap_activate
= btrfs_swap_activate
,
10480 .swap_deactivate
= btrfs_swap_deactivate
,
10483 static const struct inode_operations btrfs_file_inode_operations
= {
10484 .getattr
= btrfs_getattr
,
10485 .setattr
= btrfs_setattr
,
10486 .listxattr
= btrfs_listxattr
,
10487 .permission
= btrfs_permission
,
10488 .fiemap
= btrfs_fiemap
,
10489 .get_acl
= btrfs_get_acl
,
10490 .set_acl
= btrfs_set_acl
,
10491 .update_time
= btrfs_update_time
,
10493 static const struct inode_operations btrfs_special_inode_operations
= {
10494 .getattr
= btrfs_getattr
,
10495 .setattr
= btrfs_setattr
,
10496 .permission
= btrfs_permission
,
10497 .listxattr
= btrfs_listxattr
,
10498 .get_acl
= btrfs_get_acl
,
10499 .set_acl
= btrfs_set_acl
,
10500 .update_time
= btrfs_update_time
,
10502 static const struct inode_operations btrfs_symlink_inode_operations
= {
10503 .get_link
= page_get_link
,
10504 .getattr
= btrfs_getattr
,
10505 .setattr
= btrfs_setattr
,
10506 .permission
= btrfs_permission
,
10507 .listxattr
= btrfs_listxattr
,
10508 .update_time
= btrfs_update_time
,
10511 const struct dentry_operations btrfs_dentry_operations
= {
10512 .d_delete
= btrfs_dentry_delete
,