Linux 5.6.13
[linux/fpc-iii.git] / fs / btrfs / raid56.c
bloba8e53c8e7b017e7398f9741872fb1cffc977fa9b
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2012 Fusion-io All rights reserved.
4 * Copyright (C) 2012 Intel Corp. All rights reserved.
5 */
7 #include <linux/sched.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/raid/pq.h>
12 #include <linux/hash.h>
13 #include <linux/list_sort.h>
14 #include <linux/raid/xor.h>
15 #include <linux/mm.h>
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "volumes.h"
19 #include "raid56.h"
20 #include "async-thread.h"
22 /* set when additional merges to this rbio are not allowed */
23 #define RBIO_RMW_LOCKED_BIT 1
26 * set when this rbio is sitting in the hash, but it is just a cache
27 * of past RMW
29 #define RBIO_CACHE_BIT 2
32 * set when it is safe to trust the stripe_pages for caching
34 #define RBIO_CACHE_READY_BIT 3
36 #define RBIO_CACHE_SIZE 1024
38 #define BTRFS_STRIPE_HASH_TABLE_BITS 11
40 /* Used by the raid56 code to lock stripes for read/modify/write */
41 struct btrfs_stripe_hash {
42 struct list_head hash_list;
43 spinlock_t lock;
46 /* Used by the raid56 code to lock stripes for read/modify/write */
47 struct btrfs_stripe_hash_table {
48 struct list_head stripe_cache;
49 spinlock_t cache_lock;
50 int cache_size;
51 struct btrfs_stripe_hash table[];
54 enum btrfs_rbio_ops {
55 BTRFS_RBIO_WRITE,
56 BTRFS_RBIO_READ_REBUILD,
57 BTRFS_RBIO_PARITY_SCRUB,
58 BTRFS_RBIO_REBUILD_MISSING,
61 struct btrfs_raid_bio {
62 struct btrfs_fs_info *fs_info;
63 struct btrfs_bio *bbio;
65 /* while we're doing rmw on a stripe
66 * we put it into a hash table so we can
67 * lock the stripe and merge more rbios
68 * into it.
70 struct list_head hash_list;
73 * LRU list for the stripe cache
75 struct list_head stripe_cache;
78 * for scheduling work in the helper threads
80 struct btrfs_work work;
83 * bio list and bio_list_lock are used
84 * to add more bios into the stripe
85 * in hopes of avoiding the full rmw
87 struct bio_list bio_list;
88 spinlock_t bio_list_lock;
90 /* also protected by the bio_list_lock, the
91 * plug list is used by the plugging code
92 * to collect partial bios while plugged. The
93 * stripe locking code also uses it to hand off
94 * the stripe lock to the next pending IO
96 struct list_head plug_list;
99 * flags that tell us if it is safe to
100 * merge with this bio
102 unsigned long flags;
104 /* size of each individual stripe on disk */
105 int stripe_len;
107 /* number of data stripes (no p/q) */
108 int nr_data;
110 int real_stripes;
112 int stripe_npages;
114 * set if we're doing a parity rebuild
115 * for a read from higher up, which is handled
116 * differently from a parity rebuild as part of
117 * rmw
119 enum btrfs_rbio_ops operation;
121 /* first bad stripe */
122 int faila;
124 /* second bad stripe (for raid6 use) */
125 int failb;
127 int scrubp;
129 * number of pages needed to represent the full
130 * stripe
132 int nr_pages;
135 * size of all the bios in the bio_list. This
136 * helps us decide if the rbio maps to a full
137 * stripe or not
139 int bio_list_bytes;
141 int generic_bio_cnt;
143 refcount_t refs;
145 atomic_t stripes_pending;
147 atomic_t error;
149 * these are two arrays of pointers. We allocate the
150 * rbio big enough to hold them both and setup their
151 * locations when the rbio is allocated
154 /* pointers to pages that we allocated for
155 * reading/writing stripes directly from the disk (including P/Q)
157 struct page **stripe_pages;
160 * pointers to the pages in the bio_list. Stored
161 * here for faster lookup
163 struct page **bio_pages;
166 * bitmap to record which horizontal stripe has data
168 unsigned long *dbitmap;
170 /* allocated with real_stripes-many pointers for finish_*() calls */
171 void **finish_pointers;
173 /* allocated with stripe_npages-many bits for finish_*() calls */
174 unsigned long *finish_pbitmap;
177 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
178 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
179 static void rmw_work(struct btrfs_work *work);
180 static void read_rebuild_work(struct btrfs_work *work);
181 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
182 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
183 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
184 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
185 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
187 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
188 int need_check);
189 static void scrub_parity_work(struct btrfs_work *work);
191 static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func)
193 btrfs_init_work(&rbio->work, work_func, NULL, NULL);
194 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
198 * the stripe hash table is used for locking, and to collect
199 * bios in hopes of making a full stripe
201 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
203 struct btrfs_stripe_hash_table *table;
204 struct btrfs_stripe_hash_table *x;
205 struct btrfs_stripe_hash *cur;
206 struct btrfs_stripe_hash *h;
207 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
208 int i;
209 int table_size;
211 if (info->stripe_hash_table)
212 return 0;
215 * The table is large, starting with order 4 and can go as high as
216 * order 7 in case lock debugging is turned on.
218 * Try harder to allocate and fallback to vmalloc to lower the chance
219 * of a failing mount.
221 table_size = sizeof(*table) + sizeof(*h) * num_entries;
222 table = kvzalloc(table_size, GFP_KERNEL);
223 if (!table)
224 return -ENOMEM;
226 spin_lock_init(&table->cache_lock);
227 INIT_LIST_HEAD(&table->stripe_cache);
229 h = table->table;
231 for (i = 0; i < num_entries; i++) {
232 cur = h + i;
233 INIT_LIST_HEAD(&cur->hash_list);
234 spin_lock_init(&cur->lock);
237 x = cmpxchg(&info->stripe_hash_table, NULL, table);
238 if (x)
239 kvfree(x);
240 return 0;
244 * caching an rbio means to copy anything from the
245 * bio_pages array into the stripe_pages array. We
246 * use the page uptodate bit in the stripe cache array
247 * to indicate if it has valid data
249 * once the caching is done, we set the cache ready
250 * bit.
252 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
254 int i;
255 char *s;
256 char *d;
257 int ret;
259 ret = alloc_rbio_pages(rbio);
260 if (ret)
261 return;
263 for (i = 0; i < rbio->nr_pages; i++) {
264 if (!rbio->bio_pages[i])
265 continue;
267 s = kmap(rbio->bio_pages[i]);
268 d = kmap(rbio->stripe_pages[i]);
270 copy_page(d, s);
272 kunmap(rbio->bio_pages[i]);
273 kunmap(rbio->stripe_pages[i]);
274 SetPageUptodate(rbio->stripe_pages[i]);
276 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
280 * we hash on the first logical address of the stripe
282 static int rbio_bucket(struct btrfs_raid_bio *rbio)
284 u64 num = rbio->bbio->raid_map[0];
287 * we shift down quite a bit. We're using byte
288 * addressing, and most of the lower bits are zeros.
289 * This tends to upset hash_64, and it consistently
290 * returns just one or two different values.
292 * shifting off the lower bits fixes things.
294 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
298 * stealing an rbio means taking all the uptodate pages from the stripe
299 * array in the source rbio and putting them into the destination rbio
301 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
303 int i;
304 struct page *s;
305 struct page *d;
307 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
308 return;
310 for (i = 0; i < dest->nr_pages; i++) {
311 s = src->stripe_pages[i];
312 if (!s || !PageUptodate(s)) {
313 continue;
316 d = dest->stripe_pages[i];
317 if (d)
318 __free_page(d);
320 dest->stripe_pages[i] = s;
321 src->stripe_pages[i] = NULL;
326 * merging means we take the bio_list from the victim and
327 * splice it into the destination. The victim should
328 * be discarded afterwards.
330 * must be called with dest->rbio_list_lock held
332 static void merge_rbio(struct btrfs_raid_bio *dest,
333 struct btrfs_raid_bio *victim)
335 bio_list_merge(&dest->bio_list, &victim->bio_list);
336 dest->bio_list_bytes += victim->bio_list_bytes;
337 dest->generic_bio_cnt += victim->generic_bio_cnt;
338 bio_list_init(&victim->bio_list);
342 * used to prune items that are in the cache. The caller
343 * must hold the hash table lock.
345 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
347 int bucket = rbio_bucket(rbio);
348 struct btrfs_stripe_hash_table *table;
349 struct btrfs_stripe_hash *h;
350 int freeit = 0;
353 * check the bit again under the hash table lock.
355 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
356 return;
358 table = rbio->fs_info->stripe_hash_table;
359 h = table->table + bucket;
361 /* hold the lock for the bucket because we may be
362 * removing it from the hash table
364 spin_lock(&h->lock);
367 * hold the lock for the bio list because we need
368 * to make sure the bio list is empty
370 spin_lock(&rbio->bio_list_lock);
372 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
373 list_del_init(&rbio->stripe_cache);
374 table->cache_size -= 1;
375 freeit = 1;
377 /* if the bio list isn't empty, this rbio is
378 * still involved in an IO. We take it out
379 * of the cache list, and drop the ref that
380 * was held for the list.
382 * If the bio_list was empty, we also remove
383 * the rbio from the hash_table, and drop
384 * the corresponding ref
386 if (bio_list_empty(&rbio->bio_list)) {
387 if (!list_empty(&rbio->hash_list)) {
388 list_del_init(&rbio->hash_list);
389 refcount_dec(&rbio->refs);
390 BUG_ON(!list_empty(&rbio->plug_list));
395 spin_unlock(&rbio->bio_list_lock);
396 spin_unlock(&h->lock);
398 if (freeit)
399 __free_raid_bio(rbio);
403 * prune a given rbio from the cache
405 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
407 struct btrfs_stripe_hash_table *table;
408 unsigned long flags;
410 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
411 return;
413 table = rbio->fs_info->stripe_hash_table;
415 spin_lock_irqsave(&table->cache_lock, flags);
416 __remove_rbio_from_cache(rbio);
417 spin_unlock_irqrestore(&table->cache_lock, flags);
421 * remove everything in the cache
423 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
425 struct btrfs_stripe_hash_table *table;
426 unsigned long flags;
427 struct btrfs_raid_bio *rbio;
429 table = info->stripe_hash_table;
431 spin_lock_irqsave(&table->cache_lock, flags);
432 while (!list_empty(&table->stripe_cache)) {
433 rbio = list_entry(table->stripe_cache.next,
434 struct btrfs_raid_bio,
435 stripe_cache);
436 __remove_rbio_from_cache(rbio);
438 spin_unlock_irqrestore(&table->cache_lock, flags);
442 * remove all cached entries and free the hash table
443 * used by unmount
445 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
447 if (!info->stripe_hash_table)
448 return;
449 btrfs_clear_rbio_cache(info);
450 kvfree(info->stripe_hash_table);
451 info->stripe_hash_table = NULL;
455 * insert an rbio into the stripe cache. It
456 * must have already been prepared by calling
457 * cache_rbio_pages
459 * If this rbio was already cached, it gets
460 * moved to the front of the lru.
462 * If the size of the rbio cache is too big, we
463 * prune an item.
465 static void cache_rbio(struct btrfs_raid_bio *rbio)
467 struct btrfs_stripe_hash_table *table;
468 unsigned long flags;
470 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
471 return;
473 table = rbio->fs_info->stripe_hash_table;
475 spin_lock_irqsave(&table->cache_lock, flags);
476 spin_lock(&rbio->bio_list_lock);
478 /* bump our ref if we were not in the list before */
479 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
480 refcount_inc(&rbio->refs);
482 if (!list_empty(&rbio->stripe_cache)){
483 list_move(&rbio->stripe_cache, &table->stripe_cache);
484 } else {
485 list_add(&rbio->stripe_cache, &table->stripe_cache);
486 table->cache_size += 1;
489 spin_unlock(&rbio->bio_list_lock);
491 if (table->cache_size > RBIO_CACHE_SIZE) {
492 struct btrfs_raid_bio *found;
494 found = list_entry(table->stripe_cache.prev,
495 struct btrfs_raid_bio,
496 stripe_cache);
498 if (found != rbio)
499 __remove_rbio_from_cache(found);
502 spin_unlock_irqrestore(&table->cache_lock, flags);
506 * helper function to run the xor_blocks api. It is only
507 * able to do MAX_XOR_BLOCKS at a time, so we need to
508 * loop through.
510 static void run_xor(void **pages, int src_cnt, ssize_t len)
512 int src_off = 0;
513 int xor_src_cnt = 0;
514 void *dest = pages[src_cnt];
516 while(src_cnt > 0) {
517 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
518 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
520 src_cnt -= xor_src_cnt;
521 src_off += xor_src_cnt;
526 * Returns true if the bio list inside this rbio covers an entire stripe (no
527 * rmw required).
529 static int rbio_is_full(struct btrfs_raid_bio *rbio)
531 unsigned long flags;
532 unsigned long size = rbio->bio_list_bytes;
533 int ret = 1;
535 spin_lock_irqsave(&rbio->bio_list_lock, flags);
536 if (size != rbio->nr_data * rbio->stripe_len)
537 ret = 0;
538 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
539 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
541 return ret;
545 * returns 1 if it is safe to merge two rbios together.
546 * The merging is safe if the two rbios correspond to
547 * the same stripe and if they are both going in the same
548 * direction (read vs write), and if neither one is
549 * locked for final IO
551 * The caller is responsible for locking such that
552 * rmw_locked is safe to test
554 static int rbio_can_merge(struct btrfs_raid_bio *last,
555 struct btrfs_raid_bio *cur)
557 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
558 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
559 return 0;
562 * we can't merge with cached rbios, since the
563 * idea is that when we merge the destination
564 * rbio is going to run our IO for us. We can
565 * steal from cached rbios though, other functions
566 * handle that.
568 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
569 test_bit(RBIO_CACHE_BIT, &cur->flags))
570 return 0;
572 if (last->bbio->raid_map[0] !=
573 cur->bbio->raid_map[0])
574 return 0;
576 /* we can't merge with different operations */
577 if (last->operation != cur->operation)
578 return 0;
580 * We've need read the full stripe from the drive.
581 * check and repair the parity and write the new results.
583 * We're not allowed to add any new bios to the
584 * bio list here, anyone else that wants to
585 * change this stripe needs to do their own rmw.
587 if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
588 return 0;
590 if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
591 return 0;
593 if (last->operation == BTRFS_RBIO_READ_REBUILD) {
594 int fa = last->faila;
595 int fb = last->failb;
596 int cur_fa = cur->faila;
597 int cur_fb = cur->failb;
599 if (last->faila >= last->failb) {
600 fa = last->failb;
601 fb = last->faila;
604 if (cur->faila >= cur->failb) {
605 cur_fa = cur->failb;
606 cur_fb = cur->faila;
609 if (fa != cur_fa || fb != cur_fb)
610 return 0;
612 return 1;
615 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
616 int index)
618 return stripe * rbio->stripe_npages + index;
622 * these are just the pages from the rbio array, not from anything
623 * the FS sent down to us
625 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
626 int index)
628 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
632 * helper to index into the pstripe
634 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
636 return rbio_stripe_page(rbio, rbio->nr_data, index);
640 * helper to index into the qstripe, returns null
641 * if there is no qstripe
643 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
645 if (rbio->nr_data + 1 == rbio->real_stripes)
646 return NULL;
647 return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
651 * The first stripe in the table for a logical address
652 * has the lock. rbios are added in one of three ways:
654 * 1) Nobody has the stripe locked yet. The rbio is given
655 * the lock and 0 is returned. The caller must start the IO
656 * themselves.
658 * 2) Someone has the stripe locked, but we're able to merge
659 * with the lock owner. The rbio is freed and the IO will
660 * start automatically along with the existing rbio. 1 is returned.
662 * 3) Someone has the stripe locked, but we're not able to merge.
663 * The rbio is added to the lock owner's plug list, or merged into
664 * an rbio already on the plug list. When the lock owner unlocks,
665 * the next rbio on the list is run and the IO is started automatically.
666 * 1 is returned
668 * If we return 0, the caller still owns the rbio and must continue with
669 * IO submission. If we return 1, the caller must assume the rbio has
670 * already been freed.
672 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
674 struct btrfs_stripe_hash *h;
675 struct btrfs_raid_bio *cur;
676 struct btrfs_raid_bio *pending;
677 unsigned long flags;
678 struct btrfs_raid_bio *freeit = NULL;
679 struct btrfs_raid_bio *cache_drop = NULL;
680 int ret = 0;
682 h = rbio->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
684 spin_lock_irqsave(&h->lock, flags);
685 list_for_each_entry(cur, &h->hash_list, hash_list) {
686 if (cur->bbio->raid_map[0] != rbio->bbio->raid_map[0])
687 continue;
689 spin_lock(&cur->bio_list_lock);
691 /* Can we steal this cached rbio's pages? */
692 if (bio_list_empty(&cur->bio_list) &&
693 list_empty(&cur->plug_list) &&
694 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
695 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
696 list_del_init(&cur->hash_list);
697 refcount_dec(&cur->refs);
699 steal_rbio(cur, rbio);
700 cache_drop = cur;
701 spin_unlock(&cur->bio_list_lock);
703 goto lockit;
706 /* Can we merge into the lock owner? */
707 if (rbio_can_merge(cur, rbio)) {
708 merge_rbio(cur, rbio);
709 spin_unlock(&cur->bio_list_lock);
710 freeit = rbio;
711 ret = 1;
712 goto out;
717 * We couldn't merge with the running rbio, see if we can merge
718 * with the pending ones. We don't have to check for rmw_locked
719 * because there is no way they are inside finish_rmw right now
721 list_for_each_entry(pending, &cur->plug_list, plug_list) {
722 if (rbio_can_merge(pending, rbio)) {
723 merge_rbio(pending, rbio);
724 spin_unlock(&cur->bio_list_lock);
725 freeit = rbio;
726 ret = 1;
727 goto out;
732 * No merging, put us on the tail of the plug list, our rbio
733 * will be started with the currently running rbio unlocks
735 list_add_tail(&rbio->plug_list, &cur->plug_list);
736 spin_unlock(&cur->bio_list_lock);
737 ret = 1;
738 goto out;
740 lockit:
741 refcount_inc(&rbio->refs);
742 list_add(&rbio->hash_list, &h->hash_list);
743 out:
744 spin_unlock_irqrestore(&h->lock, flags);
745 if (cache_drop)
746 remove_rbio_from_cache(cache_drop);
747 if (freeit)
748 __free_raid_bio(freeit);
749 return ret;
753 * called as rmw or parity rebuild is completed. If the plug list has more
754 * rbios waiting for this stripe, the next one on the list will be started
756 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
758 int bucket;
759 struct btrfs_stripe_hash *h;
760 unsigned long flags;
761 int keep_cache = 0;
763 bucket = rbio_bucket(rbio);
764 h = rbio->fs_info->stripe_hash_table->table + bucket;
766 if (list_empty(&rbio->plug_list))
767 cache_rbio(rbio);
769 spin_lock_irqsave(&h->lock, flags);
770 spin_lock(&rbio->bio_list_lock);
772 if (!list_empty(&rbio->hash_list)) {
774 * if we're still cached and there is no other IO
775 * to perform, just leave this rbio here for others
776 * to steal from later
778 if (list_empty(&rbio->plug_list) &&
779 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
780 keep_cache = 1;
781 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
782 BUG_ON(!bio_list_empty(&rbio->bio_list));
783 goto done;
786 list_del_init(&rbio->hash_list);
787 refcount_dec(&rbio->refs);
790 * we use the plug list to hold all the rbios
791 * waiting for the chance to lock this stripe.
792 * hand the lock over to one of them.
794 if (!list_empty(&rbio->plug_list)) {
795 struct btrfs_raid_bio *next;
796 struct list_head *head = rbio->plug_list.next;
798 next = list_entry(head, struct btrfs_raid_bio,
799 plug_list);
801 list_del_init(&rbio->plug_list);
803 list_add(&next->hash_list, &h->hash_list);
804 refcount_inc(&next->refs);
805 spin_unlock(&rbio->bio_list_lock);
806 spin_unlock_irqrestore(&h->lock, flags);
808 if (next->operation == BTRFS_RBIO_READ_REBUILD)
809 start_async_work(next, read_rebuild_work);
810 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
811 steal_rbio(rbio, next);
812 start_async_work(next, read_rebuild_work);
813 } else if (next->operation == BTRFS_RBIO_WRITE) {
814 steal_rbio(rbio, next);
815 start_async_work(next, rmw_work);
816 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
817 steal_rbio(rbio, next);
818 start_async_work(next, scrub_parity_work);
821 goto done_nolock;
824 done:
825 spin_unlock(&rbio->bio_list_lock);
826 spin_unlock_irqrestore(&h->lock, flags);
828 done_nolock:
829 if (!keep_cache)
830 remove_rbio_from_cache(rbio);
833 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
835 int i;
837 if (!refcount_dec_and_test(&rbio->refs))
838 return;
840 WARN_ON(!list_empty(&rbio->stripe_cache));
841 WARN_ON(!list_empty(&rbio->hash_list));
842 WARN_ON(!bio_list_empty(&rbio->bio_list));
844 for (i = 0; i < rbio->nr_pages; i++) {
845 if (rbio->stripe_pages[i]) {
846 __free_page(rbio->stripe_pages[i]);
847 rbio->stripe_pages[i] = NULL;
851 btrfs_put_bbio(rbio->bbio);
852 kfree(rbio);
855 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
857 struct bio *next;
859 while (cur) {
860 next = cur->bi_next;
861 cur->bi_next = NULL;
862 cur->bi_status = err;
863 bio_endio(cur);
864 cur = next;
869 * this frees the rbio and runs through all the bios in the
870 * bio_list and calls end_io on them
872 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
874 struct bio *cur = bio_list_get(&rbio->bio_list);
875 struct bio *extra;
877 if (rbio->generic_bio_cnt)
878 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
881 * At this moment, rbio->bio_list is empty, however since rbio does not
882 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
883 * hash list, rbio may be merged with others so that rbio->bio_list
884 * becomes non-empty.
885 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
886 * more and we can call bio_endio() on all queued bios.
888 unlock_stripe(rbio);
889 extra = bio_list_get(&rbio->bio_list);
890 __free_raid_bio(rbio);
892 rbio_endio_bio_list(cur, err);
893 if (extra)
894 rbio_endio_bio_list(extra, err);
898 * end io function used by finish_rmw. When we finally
899 * get here, we've written a full stripe
901 static void raid_write_end_io(struct bio *bio)
903 struct btrfs_raid_bio *rbio = bio->bi_private;
904 blk_status_t err = bio->bi_status;
905 int max_errors;
907 if (err)
908 fail_bio_stripe(rbio, bio);
910 bio_put(bio);
912 if (!atomic_dec_and_test(&rbio->stripes_pending))
913 return;
915 err = BLK_STS_OK;
917 /* OK, we have read all the stripes we need to. */
918 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
919 0 : rbio->bbio->max_errors;
920 if (atomic_read(&rbio->error) > max_errors)
921 err = BLK_STS_IOERR;
923 rbio_orig_end_io(rbio, err);
927 * the read/modify/write code wants to use the original bio for
928 * any pages it included, and then use the rbio for everything
929 * else. This function decides if a given index (stripe number)
930 * and page number in that stripe fall inside the original bio
931 * or the rbio.
933 * if you set bio_list_only, you'll get a NULL back for any ranges
934 * that are outside the bio_list
936 * This doesn't take any refs on anything, you get a bare page pointer
937 * and the caller must bump refs as required.
939 * You must call index_rbio_pages once before you can trust
940 * the answers from this function.
942 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
943 int index, int pagenr, int bio_list_only)
945 int chunk_page;
946 struct page *p = NULL;
948 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
950 spin_lock_irq(&rbio->bio_list_lock);
951 p = rbio->bio_pages[chunk_page];
952 spin_unlock_irq(&rbio->bio_list_lock);
954 if (p || bio_list_only)
955 return p;
957 return rbio->stripe_pages[chunk_page];
961 * number of pages we need for the entire stripe across all the
962 * drives
964 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
966 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
970 * allocation and initial setup for the btrfs_raid_bio. Not
971 * this does not allocate any pages for rbio->pages.
973 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
974 struct btrfs_bio *bbio,
975 u64 stripe_len)
977 struct btrfs_raid_bio *rbio;
978 int nr_data = 0;
979 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
980 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
981 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
982 void *p;
984 rbio = kzalloc(sizeof(*rbio) +
985 sizeof(*rbio->stripe_pages) * num_pages +
986 sizeof(*rbio->bio_pages) * num_pages +
987 sizeof(*rbio->finish_pointers) * real_stripes +
988 sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) +
989 sizeof(*rbio->finish_pbitmap) *
990 BITS_TO_LONGS(stripe_npages),
991 GFP_NOFS);
992 if (!rbio)
993 return ERR_PTR(-ENOMEM);
995 bio_list_init(&rbio->bio_list);
996 INIT_LIST_HEAD(&rbio->plug_list);
997 spin_lock_init(&rbio->bio_list_lock);
998 INIT_LIST_HEAD(&rbio->stripe_cache);
999 INIT_LIST_HEAD(&rbio->hash_list);
1000 rbio->bbio = bbio;
1001 rbio->fs_info = fs_info;
1002 rbio->stripe_len = stripe_len;
1003 rbio->nr_pages = num_pages;
1004 rbio->real_stripes = real_stripes;
1005 rbio->stripe_npages = stripe_npages;
1006 rbio->faila = -1;
1007 rbio->failb = -1;
1008 refcount_set(&rbio->refs, 1);
1009 atomic_set(&rbio->error, 0);
1010 atomic_set(&rbio->stripes_pending, 0);
1013 * the stripe_pages, bio_pages, etc arrays point to the extra
1014 * memory we allocated past the end of the rbio
1016 p = rbio + 1;
1017 #define CONSUME_ALLOC(ptr, count) do { \
1018 ptr = p; \
1019 p = (unsigned char *)p + sizeof(*(ptr)) * (count); \
1020 } while (0)
1021 CONSUME_ALLOC(rbio->stripe_pages, num_pages);
1022 CONSUME_ALLOC(rbio->bio_pages, num_pages);
1023 CONSUME_ALLOC(rbio->finish_pointers, real_stripes);
1024 CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages));
1025 CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages));
1026 #undef CONSUME_ALLOC
1028 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1029 nr_data = real_stripes - 1;
1030 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1031 nr_data = real_stripes - 2;
1032 else
1033 BUG();
1035 rbio->nr_data = nr_data;
1036 return rbio;
1039 /* allocate pages for all the stripes in the bio, including parity */
1040 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1042 int i;
1043 struct page *page;
1045 for (i = 0; i < rbio->nr_pages; i++) {
1046 if (rbio->stripe_pages[i])
1047 continue;
1048 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1049 if (!page)
1050 return -ENOMEM;
1051 rbio->stripe_pages[i] = page;
1053 return 0;
1056 /* only allocate pages for p/q stripes */
1057 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1059 int i;
1060 struct page *page;
1062 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1064 for (; i < rbio->nr_pages; i++) {
1065 if (rbio->stripe_pages[i])
1066 continue;
1067 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1068 if (!page)
1069 return -ENOMEM;
1070 rbio->stripe_pages[i] = page;
1072 return 0;
1076 * add a single page from a specific stripe into our list of bios for IO
1077 * this will try to merge into existing bios if possible, and returns
1078 * zero if all went well.
1080 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1081 struct bio_list *bio_list,
1082 struct page *page,
1083 int stripe_nr,
1084 unsigned long page_index,
1085 unsigned long bio_max_len)
1087 struct bio *last = bio_list->tail;
1088 u64 last_end = 0;
1089 int ret;
1090 struct bio *bio;
1091 struct btrfs_bio_stripe *stripe;
1092 u64 disk_start;
1094 stripe = &rbio->bbio->stripes[stripe_nr];
1095 disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1097 /* if the device is missing, just fail this stripe */
1098 if (!stripe->dev->bdev)
1099 return fail_rbio_index(rbio, stripe_nr);
1101 /* see if we can add this page onto our existing bio */
1102 if (last) {
1103 last_end = (u64)last->bi_iter.bi_sector << 9;
1104 last_end += last->bi_iter.bi_size;
1107 * we can't merge these if they are from different
1108 * devices or if they are not contiguous
1110 if (last_end == disk_start && stripe->dev->bdev &&
1111 !last->bi_status &&
1112 last->bi_disk == stripe->dev->bdev->bd_disk &&
1113 last->bi_partno == stripe->dev->bdev->bd_partno) {
1114 ret = bio_add_page(last, page, PAGE_SIZE, 0);
1115 if (ret == PAGE_SIZE)
1116 return 0;
1120 /* put a new bio on the list */
1121 bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1122 bio->bi_iter.bi_size = 0;
1123 bio_set_dev(bio, stripe->dev->bdev);
1124 bio->bi_iter.bi_sector = disk_start >> 9;
1126 bio_add_page(bio, page, PAGE_SIZE, 0);
1127 bio_list_add(bio_list, bio);
1128 return 0;
1132 * while we're doing the read/modify/write cycle, we could
1133 * have errors in reading pages off the disk. This checks
1134 * for errors and if we're not able to read the page it'll
1135 * trigger parity reconstruction. The rmw will be finished
1136 * after we've reconstructed the failed stripes
1138 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1140 if (rbio->faila >= 0 || rbio->failb >= 0) {
1141 BUG_ON(rbio->faila == rbio->real_stripes - 1);
1142 __raid56_parity_recover(rbio);
1143 } else {
1144 finish_rmw(rbio);
1149 * helper function to walk our bio list and populate the bio_pages array with
1150 * the result. This seems expensive, but it is faster than constantly
1151 * searching through the bio list as we setup the IO in finish_rmw or stripe
1152 * reconstruction.
1154 * This must be called before you trust the answers from page_in_rbio
1156 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1158 struct bio *bio;
1159 u64 start;
1160 unsigned long stripe_offset;
1161 unsigned long page_index;
1163 spin_lock_irq(&rbio->bio_list_lock);
1164 bio_list_for_each(bio, &rbio->bio_list) {
1165 struct bio_vec bvec;
1166 struct bvec_iter iter;
1167 int i = 0;
1169 start = (u64)bio->bi_iter.bi_sector << 9;
1170 stripe_offset = start - rbio->bbio->raid_map[0];
1171 page_index = stripe_offset >> PAGE_SHIFT;
1173 if (bio_flagged(bio, BIO_CLONED))
1174 bio->bi_iter = btrfs_io_bio(bio)->iter;
1176 bio_for_each_segment(bvec, bio, iter) {
1177 rbio->bio_pages[page_index + i] = bvec.bv_page;
1178 i++;
1181 spin_unlock_irq(&rbio->bio_list_lock);
1185 * this is called from one of two situations. We either
1186 * have a full stripe from the higher layers, or we've read all
1187 * the missing bits off disk.
1189 * This will calculate the parity and then send down any
1190 * changed blocks.
1192 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1194 struct btrfs_bio *bbio = rbio->bbio;
1195 void **pointers = rbio->finish_pointers;
1196 int nr_data = rbio->nr_data;
1197 int stripe;
1198 int pagenr;
1199 int p_stripe = -1;
1200 int q_stripe = -1;
1201 struct bio_list bio_list;
1202 struct bio *bio;
1203 int ret;
1205 bio_list_init(&bio_list);
1207 if (rbio->real_stripes - rbio->nr_data == 1) {
1208 p_stripe = rbio->real_stripes - 1;
1209 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1210 p_stripe = rbio->real_stripes - 2;
1211 q_stripe = rbio->real_stripes - 1;
1212 } else {
1213 BUG();
1216 /* at this point we either have a full stripe,
1217 * or we've read the full stripe from the drive.
1218 * recalculate the parity and write the new results.
1220 * We're not allowed to add any new bios to the
1221 * bio list here, anyone else that wants to
1222 * change this stripe needs to do their own rmw.
1224 spin_lock_irq(&rbio->bio_list_lock);
1225 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1226 spin_unlock_irq(&rbio->bio_list_lock);
1228 atomic_set(&rbio->error, 0);
1231 * now that we've set rmw_locked, run through the
1232 * bio list one last time and map the page pointers
1234 * We don't cache full rbios because we're assuming
1235 * the higher layers are unlikely to use this area of
1236 * the disk again soon. If they do use it again,
1237 * hopefully they will send another full bio.
1239 index_rbio_pages(rbio);
1240 if (!rbio_is_full(rbio))
1241 cache_rbio_pages(rbio);
1242 else
1243 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1245 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1246 struct page *p;
1247 /* first collect one page from each data stripe */
1248 for (stripe = 0; stripe < nr_data; stripe++) {
1249 p = page_in_rbio(rbio, stripe, pagenr, 0);
1250 pointers[stripe] = kmap(p);
1253 /* then add the parity stripe */
1254 p = rbio_pstripe_page(rbio, pagenr);
1255 SetPageUptodate(p);
1256 pointers[stripe++] = kmap(p);
1258 if (q_stripe != -1) {
1261 * raid6, add the qstripe and call the
1262 * library function to fill in our p/q
1264 p = rbio_qstripe_page(rbio, pagenr);
1265 SetPageUptodate(p);
1266 pointers[stripe++] = kmap(p);
1268 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1269 pointers);
1270 } else {
1271 /* raid5 */
1272 copy_page(pointers[nr_data], pointers[0]);
1273 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1277 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1278 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1282 * time to start writing. Make bios for everything from the
1283 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1284 * everything else.
1286 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1287 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1288 struct page *page;
1289 if (stripe < rbio->nr_data) {
1290 page = page_in_rbio(rbio, stripe, pagenr, 1);
1291 if (!page)
1292 continue;
1293 } else {
1294 page = rbio_stripe_page(rbio, stripe, pagenr);
1297 ret = rbio_add_io_page(rbio, &bio_list,
1298 page, stripe, pagenr, rbio->stripe_len);
1299 if (ret)
1300 goto cleanup;
1304 if (likely(!bbio->num_tgtdevs))
1305 goto write_data;
1307 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1308 if (!bbio->tgtdev_map[stripe])
1309 continue;
1311 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1312 struct page *page;
1313 if (stripe < rbio->nr_data) {
1314 page = page_in_rbio(rbio, stripe, pagenr, 1);
1315 if (!page)
1316 continue;
1317 } else {
1318 page = rbio_stripe_page(rbio, stripe, pagenr);
1321 ret = rbio_add_io_page(rbio, &bio_list, page,
1322 rbio->bbio->tgtdev_map[stripe],
1323 pagenr, rbio->stripe_len);
1324 if (ret)
1325 goto cleanup;
1329 write_data:
1330 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1331 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1333 while (1) {
1334 bio = bio_list_pop(&bio_list);
1335 if (!bio)
1336 break;
1338 bio->bi_private = rbio;
1339 bio->bi_end_io = raid_write_end_io;
1340 bio->bi_opf = REQ_OP_WRITE;
1342 submit_bio(bio);
1344 return;
1346 cleanup:
1347 rbio_orig_end_io(rbio, BLK_STS_IOERR);
1349 while ((bio = bio_list_pop(&bio_list)))
1350 bio_put(bio);
1354 * helper to find the stripe number for a given bio. Used to figure out which
1355 * stripe has failed. This expects the bio to correspond to a physical disk,
1356 * so it looks up based on physical sector numbers.
1358 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1359 struct bio *bio)
1361 u64 physical = bio->bi_iter.bi_sector;
1362 u64 stripe_start;
1363 int i;
1364 struct btrfs_bio_stripe *stripe;
1366 physical <<= 9;
1368 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1369 stripe = &rbio->bbio->stripes[i];
1370 stripe_start = stripe->physical;
1371 if (physical >= stripe_start &&
1372 physical < stripe_start + rbio->stripe_len &&
1373 stripe->dev->bdev &&
1374 bio->bi_disk == stripe->dev->bdev->bd_disk &&
1375 bio->bi_partno == stripe->dev->bdev->bd_partno) {
1376 return i;
1379 return -1;
1383 * helper to find the stripe number for a given
1384 * bio (before mapping). Used to figure out which stripe has
1385 * failed. This looks up based on logical block numbers.
1387 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1388 struct bio *bio)
1390 u64 logical = bio->bi_iter.bi_sector;
1391 u64 stripe_start;
1392 int i;
1394 logical <<= 9;
1396 for (i = 0; i < rbio->nr_data; i++) {
1397 stripe_start = rbio->bbio->raid_map[i];
1398 if (logical >= stripe_start &&
1399 logical < stripe_start + rbio->stripe_len) {
1400 return i;
1403 return -1;
1407 * returns -EIO if we had too many failures
1409 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1411 unsigned long flags;
1412 int ret = 0;
1414 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1416 /* we already know this stripe is bad, move on */
1417 if (rbio->faila == failed || rbio->failb == failed)
1418 goto out;
1420 if (rbio->faila == -1) {
1421 /* first failure on this rbio */
1422 rbio->faila = failed;
1423 atomic_inc(&rbio->error);
1424 } else if (rbio->failb == -1) {
1425 /* second failure on this rbio */
1426 rbio->failb = failed;
1427 atomic_inc(&rbio->error);
1428 } else {
1429 ret = -EIO;
1431 out:
1432 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1434 return ret;
1438 * helper to fail a stripe based on a physical disk
1439 * bio.
1441 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1442 struct bio *bio)
1444 int failed = find_bio_stripe(rbio, bio);
1446 if (failed < 0)
1447 return -EIO;
1449 return fail_rbio_index(rbio, failed);
1453 * this sets each page in the bio uptodate. It should only be used on private
1454 * rbio pages, nothing that comes in from the higher layers
1456 static void set_bio_pages_uptodate(struct bio *bio)
1458 struct bio_vec *bvec;
1459 struct bvec_iter_all iter_all;
1461 ASSERT(!bio_flagged(bio, BIO_CLONED));
1463 bio_for_each_segment_all(bvec, bio, iter_all)
1464 SetPageUptodate(bvec->bv_page);
1468 * end io for the read phase of the rmw cycle. All the bios here are physical
1469 * stripe bios we've read from the disk so we can recalculate the parity of the
1470 * stripe.
1472 * This will usually kick off finish_rmw once all the bios are read in, but it
1473 * may trigger parity reconstruction if we had any errors along the way
1475 static void raid_rmw_end_io(struct bio *bio)
1477 struct btrfs_raid_bio *rbio = bio->bi_private;
1479 if (bio->bi_status)
1480 fail_bio_stripe(rbio, bio);
1481 else
1482 set_bio_pages_uptodate(bio);
1484 bio_put(bio);
1486 if (!atomic_dec_and_test(&rbio->stripes_pending))
1487 return;
1489 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1490 goto cleanup;
1493 * this will normally call finish_rmw to start our write
1494 * but if there are any failed stripes we'll reconstruct
1495 * from parity first
1497 validate_rbio_for_rmw(rbio);
1498 return;
1500 cleanup:
1502 rbio_orig_end_io(rbio, BLK_STS_IOERR);
1506 * the stripe must be locked by the caller. It will
1507 * unlock after all the writes are done
1509 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1511 int bios_to_read = 0;
1512 struct bio_list bio_list;
1513 int ret;
1514 int pagenr;
1515 int stripe;
1516 struct bio *bio;
1518 bio_list_init(&bio_list);
1520 ret = alloc_rbio_pages(rbio);
1521 if (ret)
1522 goto cleanup;
1524 index_rbio_pages(rbio);
1526 atomic_set(&rbio->error, 0);
1528 * build a list of bios to read all the missing parts of this
1529 * stripe
1531 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1532 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1533 struct page *page;
1535 * we want to find all the pages missing from
1536 * the rbio and read them from the disk. If
1537 * page_in_rbio finds a page in the bio list
1538 * we don't need to read it off the stripe.
1540 page = page_in_rbio(rbio, stripe, pagenr, 1);
1541 if (page)
1542 continue;
1544 page = rbio_stripe_page(rbio, stripe, pagenr);
1546 * the bio cache may have handed us an uptodate
1547 * page. If so, be happy and use it
1549 if (PageUptodate(page))
1550 continue;
1552 ret = rbio_add_io_page(rbio, &bio_list, page,
1553 stripe, pagenr, rbio->stripe_len);
1554 if (ret)
1555 goto cleanup;
1559 bios_to_read = bio_list_size(&bio_list);
1560 if (!bios_to_read) {
1562 * this can happen if others have merged with
1563 * us, it means there is nothing left to read.
1564 * But if there are missing devices it may not be
1565 * safe to do the full stripe write yet.
1567 goto finish;
1571 * the bbio may be freed once we submit the last bio. Make sure
1572 * not to touch it after that
1574 atomic_set(&rbio->stripes_pending, bios_to_read);
1575 while (1) {
1576 bio = bio_list_pop(&bio_list);
1577 if (!bio)
1578 break;
1580 bio->bi_private = rbio;
1581 bio->bi_end_io = raid_rmw_end_io;
1582 bio->bi_opf = REQ_OP_READ;
1584 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1586 submit_bio(bio);
1588 /* the actual write will happen once the reads are done */
1589 return 0;
1591 cleanup:
1592 rbio_orig_end_io(rbio, BLK_STS_IOERR);
1594 while ((bio = bio_list_pop(&bio_list)))
1595 bio_put(bio);
1597 return -EIO;
1599 finish:
1600 validate_rbio_for_rmw(rbio);
1601 return 0;
1605 * if the upper layers pass in a full stripe, we thank them by only allocating
1606 * enough pages to hold the parity, and sending it all down quickly.
1608 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1610 int ret;
1612 ret = alloc_rbio_parity_pages(rbio);
1613 if (ret) {
1614 __free_raid_bio(rbio);
1615 return ret;
1618 ret = lock_stripe_add(rbio);
1619 if (ret == 0)
1620 finish_rmw(rbio);
1621 return 0;
1625 * partial stripe writes get handed over to async helpers.
1626 * We're really hoping to merge a few more writes into this
1627 * rbio before calculating new parity
1629 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1631 int ret;
1633 ret = lock_stripe_add(rbio);
1634 if (ret == 0)
1635 start_async_work(rbio, rmw_work);
1636 return 0;
1640 * sometimes while we were reading from the drive to
1641 * recalculate parity, enough new bios come into create
1642 * a full stripe. So we do a check here to see if we can
1643 * go directly to finish_rmw
1645 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1647 /* head off into rmw land if we don't have a full stripe */
1648 if (!rbio_is_full(rbio))
1649 return partial_stripe_write(rbio);
1650 return full_stripe_write(rbio);
1654 * We use plugging call backs to collect full stripes.
1655 * Any time we get a partial stripe write while plugged
1656 * we collect it into a list. When the unplug comes down,
1657 * we sort the list by logical block number and merge
1658 * everything we can into the same rbios
1660 struct btrfs_plug_cb {
1661 struct blk_plug_cb cb;
1662 struct btrfs_fs_info *info;
1663 struct list_head rbio_list;
1664 struct btrfs_work work;
1668 * rbios on the plug list are sorted for easier merging.
1670 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1672 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1673 plug_list);
1674 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1675 plug_list);
1676 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1677 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1679 if (a_sector < b_sector)
1680 return -1;
1681 if (a_sector > b_sector)
1682 return 1;
1683 return 0;
1686 static void run_plug(struct btrfs_plug_cb *plug)
1688 struct btrfs_raid_bio *cur;
1689 struct btrfs_raid_bio *last = NULL;
1692 * sort our plug list then try to merge
1693 * everything we can in hopes of creating full
1694 * stripes.
1696 list_sort(NULL, &plug->rbio_list, plug_cmp);
1697 while (!list_empty(&plug->rbio_list)) {
1698 cur = list_entry(plug->rbio_list.next,
1699 struct btrfs_raid_bio, plug_list);
1700 list_del_init(&cur->plug_list);
1702 if (rbio_is_full(cur)) {
1703 int ret;
1705 /* we have a full stripe, send it down */
1706 ret = full_stripe_write(cur);
1707 BUG_ON(ret);
1708 continue;
1710 if (last) {
1711 if (rbio_can_merge(last, cur)) {
1712 merge_rbio(last, cur);
1713 __free_raid_bio(cur);
1714 continue;
1717 __raid56_parity_write(last);
1719 last = cur;
1721 if (last) {
1722 __raid56_parity_write(last);
1724 kfree(plug);
1728 * if the unplug comes from schedule, we have to push the
1729 * work off to a helper thread
1731 static void unplug_work(struct btrfs_work *work)
1733 struct btrfs_plug_cb *plug;
1734 plug = container_of(work, struct btrfs_plug_cb, work);
1735 run_plug(plug);
1738 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1740 struct btrfs_plug_cb *plug;
1741 plug = container_of(cb, struct btrfs_plug_cb, cb);
1743 if (from_schedule) {
1744 btrfs_init_work(&plug->work, unplug_work, NULL, NULL);
1745 btrfs_queue_work(plug->info->rmw_workers,
1746 &plug->work);
1747 return;
1749 run_plug(plug);
1753 * our main entry point for writes from the rest of the FS.
1755 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1756 struct btrfs_bio *bbio, u64 stripe_len)
1758 struct btrfs_raid_bio *rbio;
1759 struct btrfs_plug_cb *plug = NULL;
1760 struct blk_plug_cb *cb;
1761 int ret;
1763 rbio = alloc_rbio(fs_info, bbio, stripe_len);
1764 if (IS_ERR(rbio)) {
1765 btrfs_put_bbio(bbio);
1766 return PTR_ERR(rbio);
1768 bio_list_add(&rbio->bio_list, bio);
1769 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1770 rbio->operation = BTRFS_RBIO_WRITE;
1772 btrfs_bio_counter_inc_noblocked(fs_info);
1773 rbio->generic_bio_cnt = 1;
1776 * don't plug on full rbios, just get them out the door
1777 * as quickly as we can
1779 if (rbio_is_full(rbio)) {
1780 ret = full_stripe_write(rbio);
1781 if (ret)
1782 btrfs_bio_counter_dec(fs_info);
1783 return ret;
1786 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1787 if (cb) {
1788 plug = container_of(cb, struct btrfs_plug_cb, cb);
1789 if (!plug->info) {
1790 plug->info = fs_info;
1791 INIT_LIST_HEAD(&plug->rbio_list);
1793 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1794 ret = 0;
1795 } else {
1796 ret = __raid56_parity_write(rbio);
1797 if (ret)
1798 btrfs_bio_counter_dec(fs_info);
1800 return ret;
1804 * all parity reconstruction happens here. We've read in everything
1805 * we can find from the drives and this does the heavy lifting of
1806 * sorting the good from the bad.
1808 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1810 int pagenr, stripe;
1811 void **pointers;
1812 int faila = -1, failb = -1;
1813 struct page *page;
1814 blk_status_t err;
1815 int i;
1817 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1818 if (!pointers) {
1819 err = BLK_STS_RESOURCE;
1820 goto cleanup_io;
1823 faila = rbio->faila;
1824 failb = rbio->failb;
1826 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1827 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1828 spin_lock_irq(&rbio->bio_list_lock);
1829 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1830 spin_unlock_irq(&rbio->bio_list_lock);
1833 index_rbio_pages(rbio);
1835 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1837 * Now we just use bitmap to mark the horizontal stripes in
1838 * which we have data when doing parity scrub.
1840 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1841 !test_bit(pagenr, rbio->dbitmap))
1842 continue;
1844 /* setup our array of pointers with pages
1845 * from each stripe
1847 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1849 * if we're rebuilding a read, we have to use
1850 * pages from the bio list
1852 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1853 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1854 (stripe == faila || stripe == failb)) {
1855 page = page_in_rbio(rbio, stripe, pagenr, 0);
1856 } else {
1857 page = rbio_stripe_page(rbio, stripe, pagenr);
1859 pointers[stripe] = kmap(page);
1862 /* all raid6 handling here */
1863 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1865 * single failure, rebuild from parity raid5
1866 * style
1868 if (failb < 0) {
1869 if (faila == rbio->nr_data) {
1871 * Just the P stripe has failed, without
1872 * a bad data or Q stripe.
1873 * TODO, we should redo the xor here.
1875 err = BLK_STS_IOERR;
1876 goto cleanup;
1879 * a single failure in raid6 is rebuilt
1880 * in the pstripe code below
1882 goto pstripe;
1885 /* make sure our ps and qs are in order */
1886 if (faila > failb) {
1887 int tmp = failb;
1888 failb = faila;
1889 faila = tmp;
1892 /* if the q stripe is failed, do a pstripe reconstruction
1893 * from the xors.
1894 * If both the q stripe and the P stripe are failed, we're
1895 * here due to a crc mismatch and we can't give them the
1896 * data they want
1898 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1899 if (rbio->bbio->raid_map[faila] ==
1900 RAID5_P_STRIPE) {
1901 err = BLK_STS_IOERR;
1902 goto cleanup;
1905 * otherwise we have one bad data stripe and
1906 * a good P stripe. raid5!
1908 goto pstripe;
1911 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1912 raid6_datap_recov(rbio->real_stripes,
1913 PAGE_SIZE, faila, pointers);
1914 } else {
1915 raid6_2data_recov(rbio->real_stripes,
1916 PAGE_SIZE, faila, failb,
1917 pointers);
1919 } else {
1920 void *p;
1922 /* rebuild from P stripe here (raid5 or raid6) */
1923 BUG_ON(failb != -1);
1924 pstripe:
1925 /* Copy parity block into failed block to start with */
1926 copy_page(pointers[faila], pointers[rbio->nr_data]);
1928 /* rearrange the pointer array */
1929 p = pointers[faila];
1930 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1931 pointers[stripe] = pointers[stripe + 1];
1932 pointers[rbio->nr_data - 1] = p;
1934 /* xor in the rest */
1935 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1937 /* if we're doing this rebuild as part of an rmw, go through
1938 * and set all of our private rbio pages in the
1939 * failed stripes as uptodate. This way finish_rmw will
1940 * know they can be trusted. If this was a read reconstruction,
1941 * other endio functions will fiddle the uptodate bits
1943 if (rbio->operation == BTRFS_RBIO_WRITE) {
1944 for (i = 0; i < rbio->stripe_npages; i++) {
1945 if (faila != -1) {
1946 page = rbio_stripe_page(rbio, faila, i);
1947 SetPageUptodate(page);
1949 if (failb != -1) {
1950 page = rbio_stripe_page(rbio, failb, i);
1951 SetPageUptodate(page);
1955 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1957 * if we're rebuilding a read, we have to use
1958 * pages from the bio list
1960 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1961 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1962 (stripe == faila || stripe == failb)) {
1963 page = page_in_rbio(rbio, stripe, pagenr, 0);
1964 } else {
1965 page = rbio_stripe_page(rbio, stripe, pagenr);
1967 kunmap(page);
1971 err = BLK_STS_OK;
1972 cleanup:
1973 kfree(pointers);
1975 cleanup_io:
1977 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
1978 * valid rbio which is consistent with ondisk content, thus such a
1979 * valid rbio can be cached to avoid further disk reads.
1981 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1982 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1984 * - In case of two failures, where rbio->failb != -1:
1986 * Do not cache this rbio since the above read reconstruction
1987 * (raid6_datap_recov() or raid6_2data_recov()) may have
1988 * changed some content of stripes which are not identical to
1989 * on-disk content any more, otherwise, a later write/recover
1990 * may steal stripe_pages from this rbio and end up with
1991 * corruptions or rebuild failures.
1993 * - In case of single failure, where rbio->failb == -1:
1995 * Cache this rbio iff the above read reconstruction is
1996 * executed without problems.
1998 if (err == BLK_STS_OK && rbio->failb < 0)
1999 cache_rbio_pages(rbio);
2000 else
2001 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2003 rbio_orig_end_io(rbio, err);
2004 } else if (err == BLK_STS_OK) {
2005 rbio->faila = -1;
2006 rbio->failb = -1;
2008 if (rbio->operation == BTRFS_RBIO_WRITE)
2009 finish_rmw(rbio);
2010 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
2011 finish_parity_scrub(rbio, 0);
2012 else
2013 BUG();
2014 } else {
2015 rbio_orig_end_io(rbio, err);
2020 * This is called only for stripes we've read from disk to
2021 * reconstruct the parity.
2023 static void raid_recover_end_io(struct bio *bio)
2025 struct btrfs_raid_bio *rbio = bio->bi_private;
2028 * we only read stripe pages off the disk, set them
2029 * up to date if there were no errors
2031 if (bio->bi_status)
2032 fail_bio_stripe(rbio, bio);
2033 else
2034 set_bio_pages_uptodate(bio);
2035 bio_put(bio);
2037 if (!atomic_dec_and_test(&rbio->stripes_pending))
2038 return;
2040 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2041 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2042 else
2043 __raid_recover_end_io(rbio);
2047 * reads everything we need off the disk to reconstruct
2048 * the parity. endio handlers trigger final reconstruction
2049 * when the IO is done.
2051 * This is used both for reads from the higher layers and for
2052 * parity construction required to finish a rmw cycle.
2054 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2056 int bios_to_read = 0;
2057 struct bio_list bio_list;
2058 int ret;
2059 int pagenr;
2060 int stripe;
2061 struct bio *bio;
2063 bio_list_init(&bio_list);
2065 ret = alloc_rbio_pages(rbio);
2066 if (ret)
2067 goto cleanup;
2069 atomic_set(&rbio->error, 0);
2072 * read everything that hasn't failed. Thanks to the
2073 * stripe cache, it is possible that some or all of these
2074 * pages are going to be uptodate.
2076 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2077 if (rbio->faila == stripe || rbio->failb == stripe) {
2078 atomic_inc(&rbio->error);
2079 continue;
2082 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2083 struct page *p;
2086 * the rmw code may have already read this
2087 * page in
2089 p = rbio_stripe_page(rbio, stripe, pagenr);
2090 if (PageUptodate(p))
2091 continue;
2093 ret = rbio_add_io_page(rbio, &bio_list,
2094 rbio_stripe_page(rbio, stripe, pagenr),
2095 stripe, pagenr, rbio->stripe_len);
2096 if (ret < 0)
2097 goto cleanup;
2101 bios_to_read = bio_list_size(&bio_list);
2102 if (!bios_to_read) {
2104 * we might have no bios to read just because the pages
2105 * were up to date, or we might have no bios to read because
2106 * the devices were gone.
2108 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2109 __raid_recover_end_io(rbio);
2110 goto out;
2111 } else {
2112 goto cleanup;
2117 * the bbio may be freed once we submit the last bio. Make sure
2118 * not to touch it after that
2120 atomic_set(&rbio->stripes_pending, bios_to_read);
2121 while (1) {
2122 bio = bio_list_pop(&bio_list);
2123 if (!bio)
2124 break;
2126 bio->bi_private = rbio;
2127 bio->bi_end_io = raid_recover_end_io;
2128 bio->bi_opf = REQ_OP_READ;
2130 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2132 submit_bio(bio);
2134 out:
2135 return 0;
2137 cleanup:
2138 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2139 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2140 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2142 while ((bio = bio_list_pop(&bio_list)))
2143 bio_put(bio);
2145 return -EIO;
2149 * the main entry point for reads from the higher layers. This
2150 * is really only called when the normal read path had a failure,
2151 * so we assume the bio they send down corresponds to a failed part
2152 * of the drive.
2154 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2155 struct btrfs_bio *bbio, u64 stripe_len,
2156 int mirror_num, int generic_io)
2158 struct btrfs_raid_bio *rbio;
2159 int ret;
2161 if (generic_io) {
2162 ASSERT(bbio->mirror_num == mirror_num);
2163 btrfs_io_bio(bio)->mirror_num = mirror_num;
2166 rbio = alloc_rbio(fs_info, bbio, stripe_len);
2167 if (IS_ERR(rbio)) {
2168 if (generic_io)
2169 btrfs_put_bbio(bbio);
2170 return PTR_ERR(rbio);
2173 rbio->operation = BTRFS_RBIO_READ_REBUILD;
2174 bio_list_add(&rbio->bio_list, bio);
2175 rbio->bio_list_bytes = bio->bi_iter.bi_size;
2177 rbio->faila = find_logical_bio_stripe(rbio, bio);
2178 if (rbio->faila == -1) {
2179 btrfs_warn(fs_info,
2180 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2181 __func__, (u64)bio->bi_iter.bi_sector << 9,
2182 (u64)bio->bi_iter.bi_size, bbio->map_type);
2183 if (generic_io)
2184 btrfs_put_bbio(bbio);
2185 kfree(rbio);
2186 return -EIO;
2189 if (generic_io) {
2190 btrfs_bio_counter_inc_noblocked(fs_info);
2191 rbio->generic_bio_cnt = 1;
2192 } else {
2193 btrfs_get_bbio(bbio);
2197 * Loop retry:
2198 * for 'mirror == 2', reconstruct from all other stripes.
2199 * for 'mirror_num > 2', select a stripe to fail on every retry.
2201 if (mirror_num > 2) {
2203 * 'mirror == 3' is to fail the p stripe and
2204 * reconstruct from the q stripe. 'mirror > 3' is to
2205 * fail a data stripe and reconstruct from p+q stripe.
2207 rbio->failb = rbio->real_stripes - (mirror_num - 1);
2208 ASSERT(rbio->failb > 0);
2209 if (rbio->failb <= rbio->faila)
2210 rbio->failb--;
2213 ret = lock_stripe_add(rbio);
2216 * __raid56_parity_recover will end the bio with
2217 * any errors it hits. We don't want to return
2218 * its error value up the stack because our caller
2219 * will end up calling bio_endio with any nonzero
2220 * return
2222 if (ret == 0)
2223 __raid56_parity_recover(rbio);
2225 * our rbio has been added to the list of
2226 * rbios that will be handled after the
2227 * currently lock owner is done
2229 return 0;
2233 static void rmw_work(struct btrfs_work *work)
2235 struct btrfs_raid_bio *rbio;
2237 rbio = container_of(work, struct btrfs_raid_bio, work);
2238 raid56_rmw_stripe(rbio);
2241 static void read_rebuild_work(struct btrfs_work *work)
2243 struct btrfs_raid_bio *rbio;
2245 rbio = container_of(work, struct btrfs_raid_bio, work);
2246 __raid56_parity_recover(rbio);
2250 * The following code is used to scrub/replace the parity stripe
2252 * Caller must have already increased bio_counter for getting @bbio.
2254 * Note: We need make sure all the pages that add into the scrub/replace
2255 * raid bio are correct and not be changed during the scrub/replace. That
2256 * is those pages just hold metadata or file data with checksum.
2259 struct btrfs_raid_bio *
2260 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2261 struct btrfs_bio *bbio, u64 stripe_len,
2262 struct btrfs_device *scrub_dev,
2263 unsigned long *dbitmap, int stripe_nsectors)
2265 struct btrfs_raid_bio *rbio;
2266 int i;
2268 rbio = alloc_rbio(fs_info, bbio, stripe_len);
2269 if (IS_ERR(rbio))
2270 return NULL;
2271 bio_list_add(&rbio->bio_list, bio);
2273 * This is a special bio which is used to hold the completion handler
2274 * and make the scrub rbio is similar to the other types
2276 ASSERT(!bio->bi_iter.bi_size);
2277 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2280 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2281 * to the end position, so this search can start from the first parity
2282 * stripe.
2284 for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2285 if (bbio->stripes[i].dev == scrub_dev) {
2286 rbio->scrubp = i;
2287 break;
2290 ASSERT(i < rbio->real_stripes);
2292 /* Now we just support the sectorsize equals to page size */
2293 ASSERT(fs_info->sectorsize == PAGE_SIZE);
2294 ASSERT(rbio->stripe_npages == stripe_nsectors);
2295 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2298 * We have already increased bio_counter when getting bbio, record it
2299 * so we can free it at rbio_orig_end_io().
2301 rbio->generic_bio_cnt = 1;
2303 return rbio;
2306 /* Used for both parity scrub and missing. */
2307 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2308 u64 logical)
2310 int stripe_offset;
2311 int index;
2313 ASSERT(logical >= rbio->bbio->raid_map[0]);
2314 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2315 rbio->stripe_len * rbio->nr_data);
2316 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2317 index = stripe_offset >> PAGE_SHIFT;
2318 rbio->bio_pages[index] = page;
2322 * We just scrub the parity that we have correct data on the same horizontal,
2323 * so we needn't allocate all pages for all the stripes.
2325 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2327 int i;
2328 int bit;
2329 int index;
2330 struct page *page;
2332 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2333 for (i = 0; i < rbio->real_stripes; i++) {
2334 index = i * rbio->stripe_npages + bit;
2335 if (rbio->stripe_pages[index])
2336 continue;
2338 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2339 if (!page)
2340 return -ENOMEM;
2341 rbio->stripe_pages[index] = page;
2344 return 0;
2347 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2348 int need_check)
2350 struct btrfs_bio *bbio = rbio->bbio;
2351 void **pointers = rbio->finish_pointers;
2352 unsigned long *pbitmap = rbio->finish_pbitmap;
2353 int nr_data = rbio->nr_data;
2354 int stripe;
2355 int pagenr;
2356 int p_stripe = -1;
2357 int q_stripe = -1;
2358 struct page *p_page = NULL;
2359 struct page *q_page = NULL;
2360 struct bio_list bio_list;
2361 struct bio *bio;
2362 int is_replace = 0;
2363 int ret;
2365 bio_list_init(&bio_list);
2367 if (rbio->real_stripes - rbio->nr_data == 1) {
2368 p_stripe = rbio->real_stripes - 1;
2369 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2370 p_stripe = rbio->real_stripes - 2;
2371 q_stripe = rbio->real_stripes - 1;
2372 } else {
2373 BUG();
2376 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2377 is_replace = 1;
2378 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2382 * Because the higher layers(scrubber) are unlikely to
2383 * use this area of the disk again soon, so don't cache
2384 * it.
2386 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2388 if (!need_check)
2389 goto writeback;
2391 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2392 if (!p_page)
2393 goto cleanup;
2394 SetPageUptodate(p_page);
2396 if (q_stripe != -1) {
2397 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2398 if (!q_page) {
2399 __free_page(p_page);
2400 goto cleanup;
2402 SetPageUptodate(q_page);
2405 atomic_set(&rbio->error, 0);
2407 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2408 struct page *p;
2409 void *parity;
2410 /* first collect one page from each data stripe */
2411 for (stripe = 0; stripe < nr_data; stripe++) {
2412 p = page_in_rbio(rbio, stripe, pagenr, 0);
2413 pointers[stripe] = kmap(p);
2416 /* then add the parity stripe */
2417 pointers[stripe++] = kmap(p_page);
2419 if (q_stripe != -1) {
2422 * raid6, add the qstripe and call the
2423 * library function to fill in our p/q
2425 pointers[stripe++] = kmap(q_page);
2427 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2428 pointers);
2429 } else {
2430 /* raid5 */
2431 copy_page(pointers[nr_data], pointers[0]);
2432 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2435 /* Check scrubbing parity and repair it */
2436 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2437 parity = kmap(p);
2438 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2439 copy_page(parity, pointers[rbio->scrubp]);
2440 else
2441 /* Parity is right, needn't writeback */
2442 bitmap_clear(rbio->dbitmap, pagenr, 1);
2443 kunmap(p);
2445 for (stripe = 0; stripe < nr_data; stripe++)
2446 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2447 kunmap(p_page);
2450 __free_page(p_page);
2451 if (q_page)
2452 __free_page(q_page);
2454 writeback:
2456 * time to start writing. Make bios for everything from the
2457 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2458 * everything else.
2460 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2461 struct page *page;
2463 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2464 ret = rbio_add_io_page(rbio, &bio_list,
2465 page, rbio->scrubp, pagenr, rbio->stripe_len);
2466 if (ret)
2467 goto cleanup;
2470 if (!is_replace)
2471 goto submit_write;
2473 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2474 struct page *page;
2476 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2477 ret = rbio_add_io_page(rbio, &bio_list, page,
2478 bbio->tgtdev_map[rbio->scrubp],
2479 pagenr, rbio->stripe_len);
2480 if (ret)
2481 goto cleanup;
2484 submit_write:
2485 nr_data = bio_list_size(&bio_list);
2486 if (!nr_data) {
2487 /* Every parity is right */
2488 rbio_orig_end_io(rbio, BLK_STS_OK);
2489 return;
2492 atomic_set(&rbio->stripes_pending, nr_data);
2494 while (1) {
2495 bio = bio_list_pop(&bio_list);
2496 if (!bio)
2497 break;
2499 bio->bi_private = rbio;
2500 bio->bi_end_io = raid_write_end_io;
2501 bio->bi_opf = REQ_OP_WRITE;
2503 submit_bio(bio);
2505 return;
2507 cleanup:
2508 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2510 while ((bio = bio_list_pop(&bio_list)))
2511 bio_put(bio);
2514 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2516 if (stripe >= 0 && stripe < rbio->nr_data)
2517 return 1;
2518 return 0;
2522 * While we're doing the parity check and repair, we could have errors
2523 * in reading pages off the disk. This checks for errors and if we're
2524 * not able to read the page it'll trigger parity reconstruction. The
2525 * parity scrub will be finished after we've reconstructed the failed
2526 * stripes
2528 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2530 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2531 goto cleanup;
2533 if (rbio->faila >= 0 || rbio->failb >= 0) {
2534 int dfail = 0, failp = -1;
2536 if (is_data_stripe(rbio, rbio->faila))
2537 dfail++;
2538 else if (is_parity_stripe(rbio->faila))
2539 failp = rbio->faila;
2541 if (is_data_stripe(rbio, rbio->failb))
2542 dfail++;
2543 else if (is_parity_stripe(rbio->failb))
2544 failp = rbio->failb;
2547 * Because we can not use a scrubbing parity to repair
2548 * the data, so the capability of the repair is declined.
2549 * (In the case of RAID5, we can not repair anything)
2551 if (dfail > rbio->bbio->max_errors - 1)
2552 goto cleanup;
2555 * If all data is good, only parity is correctly, just
2556 * repair the parity.
2558 if (dfail == 0) {
2559 finish_parity_scrub(rbio, 0);
2560 return;
2564 * Here means we got one corrupted data stripe and one
2565 * corrupted parity on RAID6, if the corrupted parity
2566 * is scrubbing parity, luckily, use the other one to repair
2567 * the data, or we can not repair the data stripe.
2569 if (failp != rbio->scrubp)
2570 goto cleanup;
2572 __raid_recover_end_io(rbio);
2573 } else {
2574 finish_parity_scrub(rbio, 1);
2576 return;
2578 cleanup:
2579 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2583 * end io for the read phase of the rmw cycle. All the bios here are physical
2584 * stripe bios we've read from the disk so we can recalculate the parity of the
2585 * stripe.
2587 * This will usually kick off finish_rmw once all the bios are read in, but it
2588 * may trigger parity reconstruction if we had any errors along the way
2590 static void raid56_parity_scrub_end_io(struct bio *bio)
2592 struct btrfs_raid_bio *rbio = bio->bi_private;
2594 if (bio->bi_status)
2595 fail_bio_stripe(rbio, bio);
2596 else
2597 set_bio_pages_uptodate(bio);
2599 bio_put(bio);
2601 if (!atomic_dec_and_test(&rbio->stripes_pending))
2602 return;
2605 * this will normally call finish_rmw to start our write
2606 * but if there are any failed stripes we'll reconstruct
2607 * from parity first
2609 validate_rbio_for_parity_scrub(rbio);
2612 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2614 int bios_to_read = 0;
2615 struct bio_list bio_list;
2616 int ret;
2617 int pagenr;
2618 int stripe;
2619 struct bio *bio;
2621 bio_list_init(&bio_list);
2623 ret = alloc_rbio_essential_pages(rbio);
2624 if (ret)
2625 goto cleanup;
2627 atomic_set(&rbio->error, 0);
2629 * build a list of bios to read all the missing parts of this
2630 * stripe
2632 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2633 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2634 struct page *page;
2636 * we want to find all the pages missing from
2637 * the rbio and read them from the disk. If
2638 * page_in_rbio finds a page in the bio list
2639 * we don't need to read it off the stripe.
2641 page = page_in_rbio(rbio, stripe, pagenr, 1);
2642 if (page)
2643 continue;
2645 page = rbio_stripe_page(rbio, stripe, pagenr);
2647 * the bio cache may have handed us an uptodate
2648 * page. If so, be happy and use it
2650 if (PageUptodate(page))
2651 continue;
2653 ret = rbio_add_io_page(rbio, &bio_list, page,
2654 stripe, pagenr, rbio->stripe_len);
2655 if (ret)
2656 goto cleanup;
2660 bios_to_read = bio_list_size(&bio_list);
2661 if (!bios_to_read) {
2663 * this can happen if others have merged with
2664 * us, it means there is nothing left to read.
2665 * But if there are missing devices it may not be
2666 * safe to do the full stripe write yet.
2668 goto finish;
2672 * the bbio may be freed once we submit the last bio. Make sure
2673 * not to touch it after that
2675 atomic_set(&rbio->stripes_pending, bios_to_read);
2676 while (1) {
2677 bio = bio_list_pop(&bio_list);
2678 if (!bio)
2679 break;
2681 bio->bi_private = rbio;
2682 bio->bi_end_io = raid56_parity_scrub_end_io;
2683 bio->bi_opf = REQ_OP_READ;
2685 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2687 submit_bio(bio);
2689 /* the actual write will happen once the reads are done */
2690 return;
2692 cleanup:
2693 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2695 while ((bio = bio_list_pop(&bio_list)))
2696 bio_put(bio);
2698 return;
2700 finish:
2701 validate_rbio_for_parity_scrub(rbio);
2704 static void scrub_parity_work(struct btrfs_work *work)
2706 struct btrfs_raid_bio *rbio;
2708 rbio = container_of(work, struct btrfs_raid_bio, work);
2709 raid56_parity_scrub_stripe(rbio);
2712 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2714 if (!lock_stripe_add(rbio))
2715 start_async_work(rbio, scrub_parity_work);
2718 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2720 struct btrfs_raid_bio *
2721 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2722 struct btrfs_bio *bbio, u64 length)
2724 struct btrfs_raid_bio *rbio;
2726 rbio = alloc_rbio(fs_info, bbio, length);
2727 if (IS_ERR(rbio))
2728 return NULL;
2730 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2731 bio_list_add(&rbio->bio_list, bio);
2733 * This is a special bio which is used to hold the completion handler
2734 * and make the scrub rbio is similar to the other types
2736 ASSERT(!bio->bi_iter.bi_size);
2738 rbio->faila = find_logical_bio_stripe(rbio, bio);
2739 if (rbio->faila == -1) {
2740 BUG();
2741 kfree(rbio);
2742 return NULL;
2746 * When we get bbio, we have already increased bio_counter, record it
2747 * so we can free it at rbio_orig_end_io()
2749 rbio->generic_bio_cnt = 1;
2751 return rbio;
2754 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2756 if (!lock_stripe_add(rbio))
2757 start_async_work(rbio, read_rebuild_work);