1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/uuid.h>
9 #include "transaction.h"
11 #include "print-tree.h"
13 #include "space-info.h"
16 * Read a root item from the tree. In case we detect a root item smaller then
17 * sizeof(root_item), we know it's an old version of the root structure and
18 * initialize all new fields to zero. The same happens if we detect mismatching
19 * generation numbers as then we know the root was once mounted with an older
20 * kernel that was not aware of the root item structure change.
22 static void btrfs_read_root_item(struct extent_buffer
*eb
, int slot
,
23 struct btrfs_root_item
*item
)
29 len
= btrfs_item_size_nr(eb
, slot
);
30 read_extent_buffer(eb
, item
, btrfs_item_ptr_offset(eb
, slot
),
31 min_t(u32
, len
, sizeof(*item
)));
32 if (len
< sizeof(*item
))
34 if (!need_reset
&& btrfs_root_generation(item
)
35 != btrfs_root_generation_v2(item
)) {
36 if (btrfs_root_generation_v2(item
) != 0) {
37 btrfs_warn(eb
->fs_info
,
38 "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
43 memset(&item
->generation_v2
, 0,
44 sizeof(*item
) - offsetof(struct btrfs_root_item
,
48 memcpy(item
->uuid
, uuid
.b
, BTRFS_UUID_SIZE
);
53 * btrfs_find_root - lookup the root by the key.
54 * root: the root of the root tree
55 * search_key: the key to search
56 * path: the path we search
57 * root_item: the root item of the tree we look for
58 * root_key: the root key of the tree we look for
60 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
61 * of the search key, just lookup the root with the highest offset for a
64 * If we find something return 0, otherwise > 0, < 0 on error.
66 int btrfs_find_root(struct btrfs_root
*root
, const struct btrfs_key
*search_key
,
67 struct btrfs_path
*path
, struct btrfs_root_item
*root_item
,
68 struct btrfs_key
*root_key
)
70 struct btrfs_key found_key
;
71 struct extent_buffer
*l
;
75 ret
= btrfs_search_slot(NULL
, root
, search_key
, path
, 0, 0);
79 if (search_key
->offset
!= -1ULL) { /* the search key is exact */
83 BUG_ON(ret
== 0); /* Logical error */
84 if (path
->slots
[0] == 0)
91 slot
= path
->slots
[0];
93 btrfs_item_key_to_cpu(l
, &found_key
, slot
);
94 if (found_key
.objectid
!= search_key
->objectid
||
95 found_key
.type
!= BTRFS_ROOT_ITEM_KEY
) {
101 btrfs_read_root_item(l
, slot
, root_item
);
103 memcpy(root_key
, &found_key
, sizeof(found_key
));
105 btrfs_release_path(path
);
109 void btrfs_set_root_node(struct btrfs_root_item
*item
,
110 struct extent_buffer
*node
)
112 btrfs_set_root_bytenr(item
, node
->start
);
113 btrfs_set_root_level(item
, btrfs_header_level(node
));
114 btrfs_set_root_generation(item
, btrfs_header_generation(node
));
118 * copy the data in 'item' into the btree
120 int btrfs_update_root(struct btrfs_trans_handle
*trans
, struct btrfs_root
121 *root
, struct btrfs_key
*key
, struct btrfs_root_item
124 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
125 struct btrfs_path
*path
;
126 struct extent_buffer
*l
;
132 path
= btrfs_alloc_path();
136 ret
= btrfs_search_slot(trans
, root
, key
, path
, 0, 1);
142 "unable to find root key (%llu %u %llu) in tree %llu",
143 key
->objectid
, key
->type
, key
->offset
,
144 root
->root_key
.objectid
);
146 btrfs_abort_transaction(trans
, ret
);
151 slot
= path
->slots
[0];
152 ptr
= btrfs_item_ptr_offset(l
, slot
);
153 old_len
= btrfs_item_size_nr(l
, slot
);
156 * If this is the first time we update the root item which originated
157 * from an older kernel, we need to enlarge the item size to make room
158 * for the added fields.
160 if (old_len
< sizeof(*item
)) {
161 btrfs_release_path(path
);
162 ret
= btrfs_search_slot(trans
, root
, key
, path
,
165 btrfs_abort_transaction(trans
, ret
);
169 ret
= btrfs_del_item(trans
, root
, path
);
171 btrfs_abort_transaction(trans
, ret
);
174 btrfs_release_path(path
);
175 ret
= btrfs_insert_empty_item(trans
, root
, path
,
178 btrfs_abort_transaction(trans
, ret
);
182 slot
= path
->slots
[0];
183 ptr
= btrfs_item_ptr_offset(l
, slot
);
187 * Update generation_v2 so at the next mount we know the new root
190 btrfs_set_root_generation_v2(item
, btrfs_root_generation(item
));
192 write_extent_buffer(l
, item
, ptr
, sizeof(*item
));
193 btrfs_mark_buffer_dirty(path
->nodes
[0]);
195 btrfs_free_path(path
);
199 int btrfs_insert_root(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
200 const struct btrfs_key
*key
, struct btrfs_root_item
*item
)
203 * Make sure generation v1 and v2 match. See update_root for details.
205 btrfs_set_root_generation_v2(item
, btrfs_root_generation(item
));
206 return btrfs_insert_item(trans
, root
, key
, item
, sizeof(*item
));
209 int btrfs_find_orphan_roots(struct btrfs_fs_info
*fs_info
)
211 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
212 struct extent_buffer
*leaf
;
213 struct btrfs_path
*path
;
214 struct btrfs_key key
;
215 struct btrfs_key root_key
;
216 struct btrfs_root
*root
;
220 path
= btrfs_alloc_path();
224 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
225 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
228 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
229 root_key
.offset
= (u64
)-1;
232 ret
= btrfs_search_slot(NULL
, tree_root
, &key
, path
, 0, 0);
238 leaf
= path
->nodes
[0];
239 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
240 ret
= btrfs_next_leaf(tree_root
, path
);
245 leaf
= path
->nodes
[0];
248 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
249 btrfs_release_path(path
);
251 if (key
.objectid
!= BTRFS_ORPHAN_OBJECTID
||
252 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
255 root_key
.objectid
= key
.offset
;
259 * The root might have been inserted already, as before we look
260 * for orphan roots, log replay might have happened, which
261 * triggers a transaction commit and qgroup accounting, which
262 * in turn reads and inserts fs roots while doing backref
265 root
= btrfs_lookup_fs_root(fs_info
, root_key
.objectid
);
267 WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
,
269 if (btrfs_root_refs(&root
->root_item
) == 0) {
270 set_bit(BTRFS_ROOT_DEAD_TREE
, &root
->state
);
271 btrfs_add_dead_root(root
);
276 root
= btrfs_read_fs_root(tree_root
, &root_key
);
277 err
= PTR_ERR_OR_ZERO(root
);
278 if (err
&& err
!= -ENOENT
) {
280 } else if (err
== -ENOENT
) {
281 struct btrfs_trans_handle
*trans
;
283 btrfs_release_path(path
);
285 trans
= btrfs_join_transaction(tree_root
);
287 err
= PTR_ERR(trans
);
288 btrfs_handle_fs_error(fs_info
, err
,
289 "Failed to start trans to delete orphan item");
292 err
= btrfs_del_orphan_item(trans
, tree_root
,
294 btrfs_end_transaction(trans
);
296 btrfs_handle_fs_error(fs_info
, err
,
297 "Failed to delete root orphan item");
303 err
= btrfs_init_fs_root(root
);
305 btrfs_free_fs_root(root
);
309 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
);
311 err
= btrfs_insert_fs_root(fs_info
, root
);
313 BUG_ON(err
== -EEXIST
);
314 btrfs_free_fs_root(root
);
318 if (btrfs_root_refs(&root
->root_item
) == 0) {
319 set_bit(BTRFS_ROOT_DEAD_TREE
, &root
->state
);
320 btrfs_add_dead_root(root
);
324 btrfs_free_path(path
);
328 /* drop the root item for 'key' from the tree root */
329 int btrfs_del_root(struct btrfs_trans_handle
*trans
,
330 const struct btrfs_key
*key
)
332 struct btrfs_root
*root
= trans
->fs_info
->tree_root
;
333 struct btrfs_path
*path
;
336 path
= btrfs_alloc_path();
339 ret
= btrfs_search_slot(trans
, root
, key
, path
, -1, 1);
345 ret
= btrfs_del_item(trans
, root
, path
);
347 btrfs_free_path(path
);
351 int btrfs_del_root_ref(struct btrfs_trans_handle
*trans
, u64 root_id
,
352 u64 ref_id
, u64 dirid
, u64
*sequence
, const char *name
,
356 struct btrfs_root
*tree_root
= trans
->fs_info
->tree_root
;
357 struct btrfs_path
*path
;
358 struct btrfs_root_ref
*ref
;
359 struct extent_buffer
*leaf
;
360 struct btrfs_key key
;
365 path
= btrfs_alloc_path();
369 key
.objectid
= root_id
;
370 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
373 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
376 leaf
= path
->nodes
[0];
377 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
378 struct btrfs_root_ref
);
379 ptr
= (unsigned long)(ref
+ 1);
380 if ((btrfs_root_ref_dirid(leaf
, ref
) != dirid
) ||
381 (btrfs_root_ref_name_len(leaf
, ref
) != name_len
) ||
382 memcmp_extent_buffer(leaf
, name
, ptr
, name_len
)) {
386 *sequence
= btrfs_root_ref_sequence(leaf
, ref
);
388 ret
= btrfs_del_item(trans
, tree_root
, path
);
396 if (key
.type
== BTRFS_ROOT_BACKREF_KEY
) {
397 btrfs_release_path(path
);
398 key
.objectid
= ref_id
;
399 key
.type
= BTRFS_ROOT_REF_KEY
;
400 key
.offset
= root_id
;
405 btrfs_free_path(path
);
410 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY
411 * or BTRFS_ROOT_BACKREF_KEY.
413 * The dirid, sequence, name and name_len refer to the directory entry
414 * that is referencing the root.
416 * For a forward ref, the root_id is the id of the tree referencing
417 * the root and ref_id is the id of the subvol or snapshot.
419 * For a back ref the root_id is the id of the subvol or snapshot and
420 * ref_id is the id of the tree referencing it.
422 * Will return 0, -ENOMEM, or anything from the CoW path
424 int btrfs_add_root_ref(struct btrfs_trans_handle
*trans
, u64 root_id
,
425 u64 ref_id
, u64 dirid
, u64 sequence
, const char *name
,
428 struct btrfs_root
*tree_root
= trans
->fs_info
->tree_root
;
429 struct btrfs_key key
;
431 struct btrfs_path
*path
;
432 struct btrfs_root_ref
*ref
;
433 struct extent_buffer
*leaf
;
436 path
= btrfs_alloc_path();
440 key
.objectid
= root_id
;
441 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
444 ret
= btrfs_insert_empty_item(trans
, tree_root
, path
, &key
,
445 sizeof(*ref
) + name_len
);
447 btrfs_abort_transaction(trans
, ret
);
448 btrfs_free_path(path
);
452 leaf
= path
->nodes
[0];
453 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
454 btrfs_set_root_ref_dirid(leaf
, ref
, dirid
);
455 btrfs_set_root_ref_sequence(leaf
, ref
, sequence
);
456 btrfs_set_root_ref_name_len(leaf
, ref
, name_len
);
457 ptr
= (unsigned long)(ref
+ 1);
458 write_extent_buffer(leaf
, name
, ptr
, name_len
);
459 btrfs_mark_buffer_dirty(leaf
);
461 if (key
.type
== BTRFS_ROOT_BACKREF_KEY
) {
462 btrfs_release_path(path
);
463 key
.objectid
= ref_id
;
464 key
.type
= BTRFS_ROOT_REF_KEY
;
465 key
.offset
= root_id
;
469 btrfs_free_path(path
);
474 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
475 * for subvolumes. To work around this problem, we steal a bit from
476 * root_item->inode_item->flags, and use it to indicate if those fields
477 * have been properly initialized.
479 void btrfs_check_and_init_root_item(struct btrfs_root_item
*root_item
)
481 u64 inode_flags
= btrfs_stack_inode_flags(&root_item
->inode
);
483 if (!(inode_flags
& BTRFS_INODE_ROOT_ITEM_INIT
)) {
484 inode_flags
|= BTRFS_INODE_ROOT_ITEM_INIT
;
485 btrfs_set_stack_inode_flags(&root_item
->inode
, inode_flags
);
486 btrfs_set_root_flags(root_item
, 0);
487 btrfs_set_root_limit(root_item
, 0);
491 void btrfs_update_root_times(struct btrfs_trans_handle
*trans
,
492 struct btrfs_root
*root
)
494 struct btrfs_root_item
*item
= &root
->root_item
;
495 struct timespec64 ct
;
497 ktime_get_real_ts64(&ct
);
498 spin_lock(&root
->root_item_lock
);
499 btrfs_set_root_ctransid(item
, trans
->transid
);
500 btrfs_set_stack_timespec_sec(&item
->ctime
, ct
.tv_sec
);
501 btrfs_set_stack_timespec_nsec(&item
->ctime
, ct
.tv_nsec
);
502 spin_unlock(&root
->root_item_lock
);
506 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
507 * root: the root of the parent directory
508 * rsv: block reservation
509 * items: the number of items that we need do reservation
510 * use_global_rsv: allow fallback to the global block reservation
512 * This function is used to reserve the space for snapshot/subvolume
513 * creation and deletion. Those operations are different with the
514 * common file/directory operations, they change two fs/file trees
515 * and root tree, the number of items that the qgroup reserves is
516 * different with the free space reservation. So we can not use
517 * the space reservation mechanism in start_transaction().
519 int btrfs_subvolume_reserve_metadata(struct btrfs_root
*root
,
520 struct btrfs_block_rsv
*rsv
, int items
,
523 u64 qgroup_num_bytes
= 0;
526 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
527 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
529 if (test_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
)) {
530 /* One for parent inode, two for dir entries */
531 qgroup_num_bytes
= 3 * fs_info
->nodesize
;
532 ret
= btrfs_qgroup_reserve_meta_prealloc(root
,
533 qgroup_num_bytes
, true);
538 num_bytes
= btrfs_calc_insert_metadata_size(fs_info
, items
);
539 rsv
->space_info
= btrfs_find_space_info(fs_info
,
540 BTRFS_BLOCK_GROUP_METADATA
);
541 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
,
542 BTRFS_RESERVE_FLUSH_ALL
);
544 if (ret
== -ENOSPC
&& use_global_rsv
)
545 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, num_bytes
, true);
547 if (ret
&& qgroup_num_bytes
)
548 btrfs_qgroup_free_meta_prealloc(root
, qgroup_num_bytes
);
553 void btrfs_subvolume_release_metadata(struct btrfs_fs_info
*fs_info
,
554 struct btrfs_block_rsv
*rsv
)
556 btrfs_block_rsv_release(fs_info
, rsv
, (u64
)-1);